51
|
Monoallelic loss of tumor suppressor GRIM-19 promotes tumorigenesis in mice. Proc Natl Acad Sci U S A 2013; 110:E4213-22. [PMID: 24145455 DOI: 10.1073/pnas.1303760110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Gene-associated with retinoid-interferon induced mortality-19 (GRIM-19), a STAT3-inhibitory protein, was isolated as a growth-suppressive gene product using a genome-wide expression knockdown screen. We and others have shown a loss of expression and occurrence of mutations in the GRIM-19 gene in a variety of primary human cancers, indicating its potential role as tumor suppressor. To help investigate its role in tumor development in vivo, we generated a genetically modified mouse in which Grim-19 can be conditionally inactivated. Deletion of Grim-19 in the skin significantly increased the susceptibility of mice to chemical carcinogenesis, resulting in development of squamous cell carcinomas. These tumors had high Stat3 activity and an increased expression of Stat3-responsive genes. Loss of Grim-19 also caused mitochondrial electron transport dysfunction resulting from failure to assemble electron transport chain complexes and altered the expression of several cellular genes involved in glycolysis. Surprisingly, the deletion of a single copy of the Grim-19 gene was sufficient to promote carcinogenesis and formation of invasive squamous cell carcinomas. These observations highlight the critical role of GRIM-19 as a tumor suppressor.
Collapse
|
52
|
A common nonsense mutation of the BLM gene and prostate cancer risk and survival. Gene 2013; 532:173-6. [PMID: 24096176 DOI: 10.1016/j.gene.2013.09.079] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/18/2013] [Accepted: 09/23/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Germline mutations of BRCA2 and NBS1 genes cause inherited recessive chromosomal instability syndromes and predispose to prostate cancer of poor prognosis. Mutations of the BLM gene cause another chromosomal instability clinical syndrome, called Bloom syndrome. Recently, a recurrent truncating mutation of BLM (Q548X) has been associated with a 6-fold increased risk of breast cancer in Russia, Belarus and Ukraine, but its role in prostate cancer etiology and survival has not been investigated yet. METHODS To establish whether the Q548X allele of the BLM gene is present in Poland, and whether this allele predisposes to poor prognosis prostate cancer, we genotyped 3337 men with prostate cancer and 2604 controls. RESULTS Q548X was detected in 13 of 3337 (0.4%) men with prostate cancer compared to 15 of 2604 (0.6%) controls (OR=0.7; 95% CI 0.3-1.4). A positive family history of any cancer in a first- or second-degree relative was seen only in 4 of the 13 (30%) mutation positive families, compared to 49% (1485/3001) of the non-carrier families (p=0.3). The mean follow-up was 49months. Survival was similar among carriers of Q548X and non-carriers (HR=1.1; p=0.9). The 5-year survival for men with a BLM mutation was 83%, compared to 72% for mutation-negative cases. CONCLUSIONS BLM Q548X is a common founder mutation in Poland. We found no evidence that this mutation predisposes one to prostate cancer or affect prostate cancer survival. However, based on the observed 0.6% population frequency of the Q548X allele, we estimate that one in 100,000 children should be affected by Bloom syndrome in Poland.
Collapse
|
53
|
Altered RECQ Helicase Expression in Sporadic Primary Colorectal Cancers. Transl Oncol 2013; 6:458-69. [PMID: 23908689 DOI: 10.1593/tlo.13238] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/05/2013] [Accepted: 05/14/2013] [Indexed: 02/06/2023] Open
Abstract
Deregulation of DNA repair enzymes occurs in cancers and may create a susceptibility to chemotherapy. Expression levels of DNA repair enzymes have been shown to predict the responsiveness of cancers to certain chemotherapeutic agents. The RECQ helicases repair damaged DNA including damage caused by topoisomerase I inhibitors, such as irinotecan. Altered expression levels of these enzymes in colorectal cancer (CRC) may influence the response of the cancers to irinotecan. Thus, we assessed RECQ helicase (WRN, BLM, RECQL, RECQL4, and RECQL5) expression in primary CRCs, matched normal colon, and CRC cell lines. We found that BLM and RECQL4 mRNA levels are significantly increased in CRC (P = .0011 and P < .0001, respectively), whereas RECQL and RECQL5 are significantly decreased (P = .0103 and P = .0029, respectively). RECQ helicase expression patterns varied between specific molecular subtypes of CRCs. The mRNA and protein expression of the majority of the RECQ helicases was closely correlated, suggesting that altered mRNA expression is the predominant mechanism for deregulated RECQ helicase expression. Immunohistochemistry localized the RECQ helicases to the nucleus. RECQ helicase expression is altered in CRC, suggesting that RECQ helicase expression has potential to identify CRCs that are susceptible to specific chemotherapeutic agents.
Collapse
|
54
|
Chandra S, Priyadarshini R, Madhavan V, Tikoo S, Hussain M, Mudgal R, Modi P, Srivastava V, Sengupta S. Enhancement of c-Myc degradation by BLM helicase leads to delayed tumor initiation. J Cell Sci 2013; 126:3782-95. [PMID: 23750012 DOI: 10.1242/jcs.124719] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The spectrum of tumors that arise owing to the overexpression of c-Myc and loss of BLM is very similar. Hence, it was hypothesized that the presence of BLM negatively regulates c-Myc functions. By using multiple isogenic cell lines, we observed that the decrease of endogenous c-Myc levels that occurs in the presence of BLM is reversed when the cells are treated with proteasome inhibitors, indicating that BLM enhances c-Myc turnover. Whereas the N-terminal region of BLM interacts with c-Myc, the rest of the helicase interacts with the c-Myc E3 ligase Fbw7. The two BLM domains act as 'clamp and/or adaptor', enhancing the binding of c-Myc to Fbw7. BLM promotes Fbw7-dependent K48-linked c-Myc ubiquitylation and its subsequent degradation in a helicase-independent manner. A subset of BLM-regulated genes that are also targets of c-Myc were determined and validated at both RNA and protein levels. To obtain an in vivo validation of the effect of BLM on c-Myc-mediated tumor initiation, isogenic cells from colon cancer cells that either do or do not express BLM had been manipulated to block c-Myc expression in a controlled manner. By using these cell lines, the metastatic potential and rate of initiation of tumors in nude mice were determined. The presence of BLM decreases c-Myc-mediated invasiveness and delays tumor initiation in a mouse xenograft model. Consequently, in tumors that express BLM but not c-Myc, we observed a decreased ratio of proliferation to apoptosis together with a suppressed expression of the angiogenesis marker CD31. Hence, partly owing to its regulation of c-Myc stability, BLM acts as a 'caretaker tumor suppressor'.
Collapse
Affiliation(s)
- Suruchika Chandra
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Liu B, Yip RK, Zhou Z. Chromatin remodeling, DNA damage repair and aging. Curr Genomics 2013; 13:533-47. [PMID: 23633913 PMCID: PMC3468886 DOI: 10.2174/138920212803251373] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 06/19/2012] [Accepted: 07/25/2012] [Indexed: 01/26/2023] Open
Abstract
Cells are constantly exposed to a variety of environmental and endogenous conditions causing DNA damage, which is detected and repaired by conserved DNA repair pathways to maintain genomic integrity. Chromatin remodeling is critical in this process, as the organization of eukaryotic DNA into compact chromatin presents a natural barrier to all DNA-related events. Studies on human premature aging syndromes together with normal aging have suggested that accumulated damages might lead to exhaustion of resources that are required for physiological functions and thus accelerate aging. In this manuscript, combining the present understandings and latest findings, we focus mainly on discussing the role of chromatin remodeling in the repair of DNA double-strand breaks (DSBs) and regulation of aging.
Collapse
Affiliation(s)
- Baohua Liu
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China ; Department of Biochemistry, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | | | | |
Collapse
|
56
|
Scaffolding protein SPIDR/KIAA0146 connects the Bloom syndrome helicase with homologous recombination repair. Proc Natl Acad Sci U S A 2013; 110:10646-51. [PMID: 23509288 DOI: 10.1073/pnas.1220921110] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Bloom syndrome gene product, BLM, is a member of the highly conserved RecQ family. An emerging concept is the BLM helicase collaborates with the homologous recombination (HR) machinery to help avoid undesirable HR events and to achieve a high degree of fidelity during the HR reaction. However, exactly how such coordination occurs in vivo is poorly understood. Here, we identified a protein termed SPIDR (scaffolding protein involved in DNA repair) as the link between BLM and the HR machinery. SPIDR independently interacts with BLM and RAD51 and promotes the formation of a BLM/RAD51-containing complex of biological importance. Consistent with its role as a scaffolding protein for the assembly of BLM and RAD51 foci, cells depleted of SPIDR show increased rate of sister chromatid exchange and defects in HR. Moreover, SPIDR depletion leads to genome instability and causes hypersensitivity to DNA damaging agents. We propose that, through providing a scaffold for the cooperation of BLM and RAD51 in a multifunctional DNA-processing complex, SPIDR not only regulates the efficiency of HR, but also dictates the specific HR pathway.
Collapse
|
57
|
Roles of DNA helicases in the mediation and regulation of homologous recombination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 767:185-202. [PMID: 23161012 DOI: 10.1007/978-1-4614-5037-5_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Homologous recombination (HR) is an evolutionarily conserved process that eliminates DNA double-strand breaks from chromosomes, repairs injured DNA replication forks, and helps orchestrate meiotic chromosome segregation. Recent studies have shown that DNA helicases play multifaceted roles in HR mediation and regulation. In particular, the S. cerevisiae Sgs1 helicase and its human ortholog BLM helicase are involved in not only the resection of the primary lesion to generate single-stranded DNA to prompt the assembly of the HR machinery, but they also function in somatic cells to suppress the formation of chromosome arm crossovers during HR. On the other hand, the S. cerevisiae Mph1 and Srs2 helicases, and their respective functional equivalents in other eukaryotes, suppress spurious HR events and favor the formation of noncrossovers via distinct mechanisms. Thus, the functional integrity of the HR process and HR outcomes are dependent upon these helicase enzymes. Since mutations in some of these helicases lead to cancer predisposition in humans and mice, studies on them have clear relevance to human health and disease.
Collapse
|
58
|
Non-Bloom syndrome-associated partial and total loss-of-function variants of BLM helicase. Proc Natl Acad Sci U S A 2012; 109:19357-62. [PMID: 23129629 DOI: 10.1073/pnas.1210304109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Bloom syndrome (BS) is an autosomal recessive disorder caused by mutations in the RecQ-like DNA helicase BLM, which functions in the maintenance of genome stability. Using a humanized model of Saccharomyces cerevisiae that expresses a chimera of the N terminus of yeast Sgs1 and the C terminus of human BLM from the chromosomal SGS1 locus, we have functionally evaluated 27 BLM alleles that are not currently known to be associated with BS. We identified nine alleles with impaired function when assessed for hypersensitivity to the DNA-damaging agent hydroxyurea (HU). Six of these alleles (P690L, R717T, W803R, Y811C, F857L, G972V) caused sensitivity to HU that was comparable to known BS-associated or helicase-dead alleles, suggesting that they may cause BS and, in the heterozygous state, act as risk factors for cancerogenesis. We also identified three alleles (R791C, P868L, G1120R) that caused intermediate sensitivity to HU; although unlikely to cause BS, these partial loss-of-function alleles may increase risk for cancers or other BS-associated complications if a person is homozygous or compound heterozygous for these alleles or if they carry a known BS-associated allele.
Collapse
|
59
|
Ng AJ, Mutsaers AJ, Baker EK, Walkley CR. Genetically engineered mouse models and human osteosarcoma. Clin Sarcoma Res 2012; 2:19. [PMID: 23036272 PMCID: PMC3523007 DOI: 10.1186/2045-3329-2-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/30/2011] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma is the most common form of bone cancer. Pivotal insight into the genes involved in human osteosarcoma has been provided by the study of rare familial cancer predisposition syndromes. Three kindreds stand out as predisposing to the development of osteosarcoma: Li-Fraumeni syndrome, familial retinoblastoma and RecQ helicase disorders, which include Rothmund-Thomson Syndrome in particular. These disorders have highlighted the important roles of P53 and RB respectively, in the development of osteosarcoma. The association of OS with RECQL4 mutations is apparent but the relevance of this to OS is uncertain as mutations in RECQL4 are not found in sporadic OS. Application of the knowledge or mutations of P53 and RB in familial and sporadic OS has enabled the development of tractable, highly penetrant murine models of OS. These models share many of the cardinal features associated with human osteosarcoma including, importantly, a high incidence of spontaneous metastasis. The recent development of these models has been a significant advance for efforts to improve our understanding of the genetics of human OS and, more critically, to provide a high-throughput genetically modifiable platform for preclinical evaluation of new therapeutics.
Collapse
Affiliation(s)
- Alvin Jm Ng
- St Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia.,Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, VIC, 3065, Australia
| | - Anthony J Mutsaers
- St Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia.,Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, VIC, 3065, Australia.,Ontario Veterinary College, University of Guelph, 50 Stone Road, Guelph, ON, N1G 2W1, Canada
| | - Emma K Baker
- St Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia.,Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, VIC, 3065, Australia
| | - Carl R Walkley
- St Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia.,Department of Medicine, University of Melbourne, St. Vincent's Hospital, Fitzroy, VIC, 3065, Australia
| |
Collapse
|
60
|
Manikandan M, Raksha G, Munirajan AK. Haploinsufficiency of Tumor Suppressor Genes is Driven by the Cumulative Effect of microRNAs, microRNA Binding Site Polymorphisms and microRNA Polymorphisms: An In silico Approach. Cancer Inform 2012; 11:157-71. [PMID: 23032637 PMCID: PMC3433856 DOI: 10.4137/cin.s10176] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Haploinsufficiency of tumor suppressor genes, wherein the reduced production and activity of proteins results in the inability of the cell to maintain normal cellular function, is one among the various causes of cancer. However the precise molecular mechanisms underlying this condition remain unclear. Here we hypothesize that single nucleotide polymorphisms (SNPs) in the 3′untranslated region (UTR) of mRNAs and microRNA seed sequence (miR-SNPs) may cause haploinsufficiency at the level of proteins through altered binding specificity of microRNAs (miRNAs). Bioinformatics analysis of haploinsufficient genes for variations in their 3′UTR showed that the occurrence of SNPs result in the creation of new binding sites for miRNAs, thereby bringing the respective mRNA variant under the control of more miRNAs. In addition, 19 miR-SNPs were found to result in non-specific binding of microRNAs to tumor suppressors. Networking analysis suggests that the haploinsufficient tumor suppressor genes strongly interact with one another, and any subtle alterations in this network will contribute to tumorigenesis.
Collapse
Affiliation(s)
- Mayakannan Manikandan
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai - 600113, Tamil Nadu, India
| | | | | |
Collapse
|
61
|
Abstract
The DEAH helicase RHAU (alias DHX36, G4R1) is the only helicase shown to have G-quadruplex (G4)-RNA resolvase activity and the major source of G4-DNA resolvase activity. Previous report showed RHAU mRNA expression to be elevated in human lymphoid and CD34(+) BM cells, suggesting a potential role in hematopoiesis. Here, we generated a conditional knockout of the RHAU gene in mice. Germ line deletion of RHAU led to embryonic lethality. We then targeted the RHAU gene specifically in the hematopoiesis system, using a Cre-inducible system in which an optimized variant of Cre recombinase was expressed under the control of the Vav1 promoter. RHAU deletion in hematopoietic system caused hemolytic anemia and differentiation defect at the proerythroblast stage. The partial differentiation block of proerythroblasts was because of a proliferation defect. Transcriptome analysis of RHAU knockout proerythroblasts showed that a statistically significant portion of the deregulated genes contain G4 motifs in their promoters. This suggests that RHAU may play a role in the regulation of gene expression that relies on its G4 resolvase activity.
Collapse
|
62
|
Sokolenko AP, Iyevleva AG, Preobrazhenskaya EV, Mitiushkina NV, Abysheva SN, Suspitsin EN, Kuligina ES, Gorodnova TV, Pfeifer W, Togo AV, Turkevich EA, Ivantsov AO, Voskresenskiy DV, Dolmatov GD, Bit-Sava EM, Matsko DE, Semiglazov VF, Fichtner I, Larionov AA, Kuznetsov SG, Antoniou AC, Imyanitov EN. High prevalence and breast cancer predisposing role of the BLM c.1642 C>T (Q548X) mutation in Russia. Int J Cancer 2011; 130:2867-73. [PMID: 21815139 DOI: 10.1002/ijc.26342] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 07/21/2011] [Indexed: 11/11/2022]
Abstract
The BLM gene belongs to the RecQ helicase family and has been implicated in the maintenance of genomic stability. Its homozygous germline inactivation causes Bloom syndrome, a severe genetic disorder characterized by growth retardation, impaired fertility and highly elevated cancer risk. We hypothesized that BLM is a candidate gene for breast cancer (BC) predisposition. Sequencing of its entire coding region in 95 genetically enriched Russian BC patients identified two heterozygous carriers of the c.1642 C>T (Q548X) mutation. The extended study revealed this allele in 17/1,498 (1.1%) BC cases vs. 2/1,093 (0.2%) healthy women (p = 0.004). There was a suggestion that BLM mutations were more common in patients reporting first-degree family history of BC (6/251 (2.4%) vs. 11/1,247 (0.9%), p = 0.05), early-onset cases (12/762 (1.6%) vs. 5/736 (0.7%), p = 0.14) and women with bilateral appearance of the disease (2/122 (1.6%) vs. 15/1376 (1.1%), p = 0.64). None of the BLM-associated BC exhibited somatic loss of heterozygosity at the BLM gene locus. This study demonstrates that BLM Q548X allele is recurrent in Slavic subjects and may be associated with BC risk.
Collapse
Affiliation(s)
- Anna P Sokolenko
- N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Wang Y, Smith K, Waldman BC, Waldman AS. Depletion of the bloom syndrome helicase stimulates homology-dependent repair at double-strand breaks in human chromosomes. DNA Repair (Amst) 2011; 10:416-26. [PMID: 21300576 PMCID: PMC3062690 DOI: 10.1016/j.dnarep.2011.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/10/2010] [Accepted: 01/14/2011] [Indexed: 12/29/2022]
Abstract
Mutation of BLM helicase causes Blooms syndrome, a disorder associated with genome instability, high levels of sister chromatid exchanges, and cancer predisposition. To study the influence of BLM on double-strand break (DSB) repair in human chromosomes, we stably transfected a normal human cell line with a DNA substrate that contained a thymidine kinase (tk)-neo fusion gene disrupted by the recognition site for endonuclease I-SceI. The substrate also contained a closely linked functional tk gene to serve as a recombination partner for the tk-neo fusion gene. We derived two cell lines each containing a single integrated copy of the DNA substrate. In these cell lines, a DSB was introduced within the tk-neo fusion gene by expression of I-SceI. DSB repair events that occurred via homologous recombination (HR) or nonhomologous end-joining (NHEJ) were recovered by selection for G418-resistant clones. DSB repair was examined under conditions of either normal BLM expression or reduced BLM expression brought about by RNA interference. We report that BLM knockdown in both cell lines specifically increased the frequency of HR events that produced deletions by crossovers or single-strand annealing while leaving the frequency of gene conversions unchanged or reduced. We observed no change in the accuracy of individual HR events and no substantial alteration of the nature of individual NHEJ events when BLM expression was reduced. Our work provides the first direct evidence that BLM influences DSB repair pathway choice in human chromosomes and suggests that BLM deficiency can engender genomic instability by provoking an increased frequency of HR events of a potentially deleterious nature.
Collapse
Affiliation(s)
- Yibin Wang
- Department of Biological Science, University of South Carolina, 700 Sumter Street, Columbia, SC 29208,
| | - Krissy Smith
- Department of Biological Science, University of South Carolina, 700 Sumter Street, Columbia, SC 29208,
| | - Barbara Criscuolo Waldman
- Department of Biological Science, University of South Carolina, 700 Sumter Street, Columbia, SC 29208,
| | - Alan S. Waldman
- Corresponding Author-- Department of Biological Science, 700 Sumter Street, University of South Carolina, Columbia, SC 29208, , telephone: 803-777-8405, fax: 803-777-4002
| |
Collapse
|
64
|
Chen H, You MJ, Jiang Y, Wang W, Li L. RMI1 attenuates tumor development and is essential for early embryonic survival. Mol Carcinog 2011; 50:80-8. [PMID: 21229605 PMCID: PMC3079784 DOI: 10.1002/mc.20694] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 09/27/2010] [Indexed: 01/13/2023]
Abstract
RMI1/BLAP75 (RecQ-mediated genome instability 1/Bloom-associated protein 75) is an OB-fold protein highly conserved from yeast to human. Previous studies showed that RMI1 is required for the stability of the BLM/RMI1/Top3α complex and for the suppression of elevated sister chromatids exchange (SCE). The presence of RMI1 strongly stimulates Holliday dissolution activity of the Bloom helicase in vitro. The in vivo function of RMI1, however, remains largely undefined. To address this question, we generated RMI1 knockout mice through homologous replacement targeting. We found that, while RMI1 +/⁻ mice showed no obvious developmental phenotype, deletion of both mRMI1 alleles resulted in early embryonic lethality before implantation. To determine whether RMI1 plays a role in tumorigenesis, we generated RMI1/p53 double heterozygous mice and analyzed their onset of ionizing radiation-induced tumor development. RMI1 +/⁻/p53 +/⁻ mice succumbed to tumor with a higher frequency and exhibited a substantially shortened survival when compared to the wild type, RMI1 +/⁻ and p53 +/⁻ cohorts. These results demonstrated a dual-role of RMI1 in embryonic development and tumor suppression.
Collapse
Affiliation(s)
- Haoyi Chen
- Department of Experimental Radiation Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas 77030
| | - M James You
- Department of Hematopathology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas 77030
| | - Yingjun Jiang
- Department of Experimental Radiation Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas 77030
| | - Weidong Wang
- Laboratory of Genetics, National Institute on Aging, National Institute of Health, 251 Bayview Boulevard, Baltimore, MD 21224
| | - Lei Li
- Department of Experimental Radiation Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas 77030
- Department of Genetics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas 77030
| |
Collapse
|
65
|
Abstract
The RecQ helicases are conserved from bacteria to humans and play a critical role in genome stability. In humans, loss of RecQ gene function is associated with cancer predisposition and/or premature aging. Recent experiments have shown that the RecQ helicases function during distinct steps during DNA repair; DNA end resection, displacement-loop (D-loop) processing, branch migration, and resolution of double Holliday junctions (dHJs). RecQ function in these different processing steps has important implications for its role in repair of double-strand breaks (DSBs) that occur during DNA replication and meiosis, as well as at specific genomic loci such as telomeres.
Collapse
Affiliation(s)
- Kara A Bernstein
- Columbia University Medical Center, Department of Genetics & Development, New York, New York 10032, USA.
| | | | | |
Collapse
|
66
|
|
67
|
Abstract
Bloom Syndrome (BS) is an autosomal recessive disorder due to mutation in Bloom helicase (referred in literature either as BLM helicase or BLM). Patients with BS are predisposed to almost all forms of cancer. BS patients are even today diagnosed in the clinics by hyper-recombination phenotype that is manifested by high rates of Sister Chromatid Exchange. The function of BLM as a helicase and its role during the regulation of homologous recombination (HR) is well characterized. However in the last few years the role of BLM as a DNA damage sensor has been revealed. For example, it has been demonstrated that BLM can stimulate the ATPase and chromatin remodeling activities of RAD54 in vitro. This indicates that BLM may increase the accessibility of the sensor proteins that recognize the lesion. Over the years evidence has accumulated that BLM is one of the earliest proteins that accumulates at the site of the lesion. Finally BLM also acts like a "molecular node" by integrating the upstream signals and acting as a bridge between the transducer and effector proteins (which again includes BLM itself), which in turn repair the DNA damage. Hence BLM seems to be a protein involved in multiple functions - all of which may together contribute to its reported role as a "caretaker tumor suppressor". In this review the recent literature documenting the upstream BLM functions has been elucidated and future directions indicated.
Collapse
Affiliation(s)
- Shweta Tikoo
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | | |
Collapse
|
68
|
Haines JW, Coster MR, Adam J, Cheeseman M, Ainsbury EA, Thacker J, Bouffler SD. Xrcc2 modulates spontaneous and radiation-induced tumorigenesis in Apcmin/+ mice. Mol Cancer Res 2010; 8:1227-33. [PMID: 20671066 DOI: 10.1158/1541-7786.mcr-10-0089] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
XRCC2 has an important role in repair of DNA damage by homologous recombination. Adult Apc(min/+) (min, multiple intestinal neoplasia) mice, wild-type or heterozygous for Xrcc2 deficiency, were sham-irradiated or 2-Gy X-irradiated. Spontaneous mammary and intestinal tumor incidences are lower in Apc(min/+) Xrcc2(+/-) mice than in Apc(min/+) Xrcc2(+/+) mice (mammary tumors: 14% and 38%, respectively, χ(2) P = 0.03; intestinal adenomas in mice reaching full life span: 108.6 and 130.1, respectively, t-test P = 0.005). Following irradiation, the increase in mammary tumors was greatest in female mice heterozygous for Xrcc2 (7.25 ± 0.50-fold in Apc(min/+) Xrcc2(+/-) mice compared with 2.57 ± 0.35-fold in Apc(min/+) Xrcc2(+/+) mice; t-test P < 0.001). The increase in intestinal tumor multiplicity following irradiation was significantly greater in Apc(min/+) Xrcc2(+/-) mice (Apc(min/+) Xrcc2(+/-), 4.14 ± 0.05-fold, versus Apc(min/+) Xrcc2(+/+), 3.30 ± 0.05-fold; t-test P < 0.001). Loss of heterozygosity of all chromosome 18 markers was greater in intestinal tumors from Apc(min/+) Xrcc2(+/-) mice than in tumors from Apc(min/+) Xrcc2(+/+) mice. These findings indicate that Xrcc2 haploinsufficiency reduces spontaneous tumor incidence on an Apc(min/+) background but increases the tumorigenic response to radiation.
Collapse
Affiliation(s)
- Jackie W Haines
- Health Protection Agency, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Oxfordshire OX11 0RQ, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
69
|
Tereshchenko IV, Chen Y, McDaniel LD, Schultz RA, Tischfield JA, Shao C. Small scale genetic alterations contribute to increased mutability at the X-linked Hprt locus in vivo in Blm hypomorphic mice. DNA Repair (Amst) 2010; 9:551-7. [PMID: 20299287 DOI: 10.1016/j.dnarep.2010.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 01/25/2010] [Accepted: 02/05/2010] [Indexed: 11/16/2022]
Abstract
BLM, the gene mutated in Bloom syndrome (BS), encodes an ATP-dependent RecQ DNA helicase that is involved in the resolution of Holliday junctions, in the suppression of crossovers and in the management of damaged replication forks. Cells from BS patients have a characteristically high level of sister chromatid exchanges (SCEs), and increased chromosomal aberrations. Fibroblasts and lymphocytes of BS patients also exhibit increased mutation frequency at the X-linked reporter gene HPRT, suggesting that BLM also plays a role in preventing small scale genomic rearrangements. However, the nature of such small scale alterations has not been well characterized. Here we report the characterization of Hprt mutations in vivo in Blm hypomorphic mice, Blm(tm1Ches)/Blm(tm3Brd). We found that the frequency of Hprt mutants was increased about 6-fold in the Blm(tm1Ches)/Blm(tm3Brd) mice when compared to Blm(tm3Brd) heterozygous mice or wildtype mice. Molecular characterization of Hprt gene in the mutant clones indicates that many of the mutations were caused by deletions that range from several base pairs to several thousand base pairs. While deletions in BLM-proficient somatic cells are often shown to be mediated by direct repeats, all three deletion junctions in Hprt of Blm(tm1Ches)/Blm(tm3Brd) mice were flanked by inverted repeats, suggesting that secondary structures formed during DNA replication, when resolved improperly, may lead to deletions. In addition, single base pair substitution and insertion/deletion were also detected in the mutant clones. Taken together, our results indicated that BLM function is important in preventing small scale genetic alterations. Thus, both large scale and small scale genetic alterations are elevated when BLM is reduced, which may contribute to loss of function of tumor suppressor genes and subsequent tumorigenesis.
Collapse
|
70
|
Warren M, Chung YJ, Howat WJ, Kitson H, McGinnis R, Hao X, McCafferty J, Fredrickson TN, Bradley A, Morse HC. Irradiated Blm-deficient mice are a highly tumor prone model for analysis of a broad spectrum of hematologic malignancies. Leuk Res 2010; 34:210-20. [PMID: 19709744 PMCID: PMC2815150 DOI: 10.1016/j.leukres.2009.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/04/2009] [Accepted: 06/05/2009] [Indexed: 10/20/2022]
Abstract
Mutations in the BLM gene cause human Bloom syndrome (BS), an autosomal recessive disorder of growth retardation, immunodeficiency and cancer predisposition. Homozygous null Blm(m3/m3) mice are cancer prone with a 5-fold increased risk of cancer compared with Blm(m3/+) and Blm(+/+) mice. Irradiation of Blm(m3/m3) mice increased the risk to 28-fold. Tumors occurred mainly in the hematopoietic system and were similar to those in BS based on detailed histologic and immunohistochemical analyses. Irradiated Blm-deficient mice thus provide a novel model for understanding accelerated malignancies in BS and a new platform for investigating the molecular basis for a wide range of hematopoietic neoplasms.
Collapse
Affiliation(s)
- Madhuri Warren
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- University of Cambridge, Department of Histopathology, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| | - Yeun-Jun Chung
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - William J. Howat
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Hannah Kitson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ralph McGinnis
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Xingpei Hao
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - John McCafferty
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Torgny N. Fredrickson
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Allan Bradley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Herbert C. Morse
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
71
|
Abstract
Colon cancer closely follows the paradigm of a single "gatekeeper gene." Mutations inactivating the APC (adenomatous polyposis coli) gene are found in approximately 80% of all human colon tumors and heterozygosity for such mutations produces an autosomal dominant colon cancer predisposition in humans and in murine models. However, this tight association between a single genotype and phenotype belies a complex association of genetic and epigenetic factors that together generate the broad phenotypic spectrum ofboth familial and sporadic colon cancers. In this Chapter, we give a general overview of the structure, function and outstanding issues concerning the role of Apc in human and experimental colon cancer. The availability of increasingly close models for human colon cancer in genetically tractable animal species enables the discovery and eventual molecular identification of genetic modifiers of the Apc-mutant phenotypes, connecting the central role of Apc in colon carcinogenesis to the myriad factors that ultimately determine the course of the disease.
Collapse
|
72
|
Buchert M, Athineos D, Abud HE, Burke ZD, Faux MC, Samuel MS, Jarnicki AG, Winbanks CE, Newton IP, Meniel VS, Suzuki H, Stacker SA, Näthke IS, Tosh D, Huelsken J, Clarke AR, Heath JK, Sansom OJ, Ernst M. Genetic dissection of differential signaling threshold requirements for the Wnt/beta-catenin pathway in vivo. PLoS Genet 2010; 6:e1000816. [PMID: 20084116 PMCID: PMC2800045 DOI: 10.1371/journal.pgen.1000816] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 12/15/2009] [Indexed: 12/29/2022] Open
Abstract
Contributions of null and hypomorphic alleles of Apc in mice produce both developmental and pathophysiological phenotypes. To ascribe the resulting genotype-to-phenotype relationship unambiguously to the Wnt/β-catenin pathway, we challenged the allele combinations by genetically restricting intracellular β-catenin expression in the corresponding compound mutant mice. Subsequent evaluation of the extent of resulting Tcf4-reporter activity in mouse embryo fibroblasts enabled genetic measurement of Wnt/β-catenin signaling in the form of an allelic series of mouse mutants. Different permissive Wnt signaling thresholds appear to be required for the embryonic development of head structures, adult intestinal polyposis, hepatocellular carcinomas, liver zonation, and the development of natural killer cells. Furthermore, we identify a homozygous Apc allele combination with Wnt/β-catenin signaling capacity similar to that in the germline of the Apcmin mice, where somatic Apc loss-of-heterozygosity triggers intestinal polyposis, to distinguish whether co-morbidities in Apcmin mice arise independently of intestinal tumorigenesis. Together, the present genotype–phenotype analysis suggests tissue-specific response levels for the Wnt/β-catenin pathway that regulate both physiological and pathophysiological conditions. Germline or somatic mutations in genes are the underlying cause of many human diseases, most notably cancer. Interestingly though, even in situations where every cell of every tissue of an organism carries the same mutation (as is the case for germline mutations), some tissues are more susceptible to the development of disease over time than others. For example, in familial adenomatous polyposis (FAP), affected persons carry different germline mutations in the APC gene and are prone to developing cancers of the colon and the rectum—and, less frequently, cancers in other tissues such as stomach, liver, and bones. Here we utilize a panel of mutant mice with truncating or hypomorphic mutations in the Apc gene, resulting in different levels of activation of the Wnt/β-catenin pathway. Our results reveal that different pathophysiological outcomes depend on different permissive signaling thresholds in embryonic, intestinal, and liver tissues. Importantly, we demonstrate that reducing Wnt pathway activation by 50% is enough to prevent the manifestation of embryonic abnormalities and disease in the adult mouse. This raises the possibility of developing therapeutic strategies that modulate the activation levels of this pathway rather than trying to “repair” the mutation in the gene itself.
Collapse
Affiliation(s)
- Michael Buchert
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Australia
| | - Dimitris Athineos
- The Beatson Institute Cancer Research, Garscube Estate, Glasgow, United Kingdom
| | - Helen E. Abud
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Australia
- Department of Anatomy and Cell Biology, University of Melbourne, Melbourne, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - Zoe D. Burke
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Maree C. Faux
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Australia
| | - Michael S. Samuel
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Australia
- The Beatson Institute Cancer Research, Garscube Estate, Glasgow, United Kingdom
| | - Andrew G. Jarnicki
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Australia
| | | | - Ian P. Newton
- Cell and Developmental Biology, University of Dundee, Dundee, United Kingdom
| | - Valerie S. Meniel
- School of Biosciences, University of Cardiff, Cardiff, United Kingdom
| | - Hiromu Suzuki
- First Department of Internal Medicine, Sapporo Medical University, Sapporo, Japan
| | - Steven A. Stacker
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Australia
| | - Inke S. Näthke
- Cell and Developmental Biology, University of Dundee, Dundee, United Kingdom
| | - David Tosh
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Joerg Huelsken
- Ecole Polytechnique Fédérale de Lausanne, Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| | - Alan R. Clarke
- School of Biosciences, University of Cardiff, Cardiff, United Kingdom
| | - Joan K. Heath
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Australia
| | - Owen J. Sansom
- The Beatson Institute Cancer Research, Garscube Estate, Glasgow, United Kingdom
- * E-mail: (ME); (OS)
| | - Matthias Ernst
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Australia
- * E-mail: (ME); (OS)
| |
Collapse
|
73
|
Abstract
Mouse models of human cancer have played a vital role in understanding tumorigenesis and answering experimental questions that other systems cannot address. Advances continue to be made that allow better understanding of the mechanisms of tumor development, and therefore the identification of better therapeutic and diagnostic strategies. We review major advances that have been made in modeling cancer in the mouse and specific areas of research that have been explored with mouse models. For example, although there are differences between mice and humans, new models are able to more accurately model sporadic human cancers by specifically controlling timing and location of mutations, even within single cells. As hypotheses are developed in human and cell culture systems, engineered mice provide the most tractable and accurate test of their validity in vivo. For example, largely through the use of these models, the microenvironment has been established to play a critical role in tumorigenesis, since tumor development and the interaction with surrounding stroma can be studied as both evolve. These mouse models have specifically fueled our understanding of cancer initiation, immune system roles, tumor angiogenesis, invasion, and metastasis, and the relevance of molecular diversity observed among human cancers. Currently, these models are being designed to facilitate in vivo imaging to track both primary and metastatic tumor development from much earlier stages than previously possible. Finally, the approaches developed in this field to achieve basic understanding are emerging as effective tools to guide much needed development of treatment strategies, diagnostic strategies, and patient stratification strategies in clinical research.
Collapse
Affiliation(s)
- Jessica C Walrath
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, Maryland, USA
| | | | | | | |
Collapse
|
74
|
Davari P, Hebert JL, Albertson DG, Huey B, Roy R, Mancianti ML, Horvai AE, McDaniel LD, Schultz RA, Epstein EH. Loss of Blm enhances basal cell carcinoma and rhabdomyosarcoma tumorigenesis in Ptch1+/- mice. Carcinogenesis 2009; 31:968-73. [PMID: 19995795 DOI: 10.1093/carcin/bgp309] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Basal cell carcinomas (BCCs) have relative genomic stability and relatively benign clinical behavior but whether these two are related causally is unknown. To investigate the effects of introducing genomic instability into murine BCCs, we have compared ionizing radiation-induced tumorigenesis in Ptch1(+/-) mice versus that in Ptch1(+/-) mice carrying mutant Blm alleles. We found that BCCs in Ptch1(+/-) Blm(tm3Brd/tm3Brd) mice had a trend toward greater genomic instability as measured by array comprehensive genomic hybridization and that these mice developed significantly more microscopic BCCs than did Ptch1(+/-) Blm(+/tm3Brd) or Ptch1(+/-) Blm(+/+) mice. The mutant Blm alleles also markedly enhanced the formation of rhabdomyosarcomas (RMSs), another cancer to which Ptch1(+/)(-) mice and PTCH1(+/)(-) (basal cell nevus syndrome) patients are susceptible. Highly recurrent but different copy number changes were associated with the two tumor types and included losses of chromosomes 4 and 10 in all BCCs and gain of chromosome 10 in 80% of RMSs. Loss of chromosome 11 and 13, including the Trp53 and Ptch1 loci, respectively, occurred frequently in BCCs, suggesting tissue-specific selection for genes or pathways that collaborate with Ptch deficiency in tumorigenesis. Despite the quantitative differences, there was no dramatic qualititative difference in the BCC or RMS tumors associated with the mutant Blm genotype.
Collapse
Affiliation(s)
- Parastoo Davari
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA 94609, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Schuetz JM, MacArthur AC, Leach S, Lai AS, Gallagher RP, Connors JM, Gascoyne RD, Spinelli JJ, Brooks-Wilson AR. Genetic variation in the NBS1, MRE11, RAD50 and BLM genes and susceptibility to non-Hodgkin lymphoma. BMC MEDICAL GENETICS 2009; 10:117. [PMID: 19917125 PMCID: PMC2788526 DOI: 10.1186/1471-2350-10-117] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 11/16/2009] [Indexed: 11/30/2022]
Abstract
BACKGROUND Translocations are hallmarks of non-Hodgkin lymphoma (NHL) genomes. Because lymphoid cell development processes require the creation and repair of double stranded breaks, it is not surprising that disruption of this type of DNA repair can cause cancer. The members of the MRE11-RAD50-NBS1 (MRN) complex and BLM have central roles in maintenance of DNA integrity. Severe mutations in any of these genes cause genetic disorders, some of which are characterized by increased risk of lymphoma. METHODS We surveyed the genetic variation in these genes in constitutional DNA of NHL patients by means of gene re-sequencing, then conducted genetic association tests for susceptibility to NHL in a population-based collection of 797 NHL cases and 793 controls. RESULTS 114 SNPs were discovered in our sequenced samples, 61% of which were novel and not previously reported in dbSNP. Although four variants, two in RAD50 and two in NBS1, showed association results suggestive of an effect on NHL, they were not significant after correction for multiple tests. CONCLUSION These results suggest an influence of RAD50 and NBS1 on susceptibility to diffuse large B-cell lymphoma and marginal zone lymphoma. Larger association and functional studies could confirm such a role.
Collapse
Affiliation(s)
- Johanna M Schuetz
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Amy C MacArthur
- Cancer Control Research, BC Cancer Agency, Vancouver, BC, Canada
| | - Stephen Leach
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Agnes S Lai
- Cancer Control Research, BC Cancer Agency, Vancouver, BC, Canada
| | | | - Joseph M Connors
- Division of Medical Oncology, BC Cancer Agency, Vancouver, BC, Canada
| | - Randy D Gascoyne
- Pathology, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - John J Spinelli
- Cancer Control Research, BC Cancer Agency, Vancouver, BC, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Angela R Brooks-Wilson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
76
|
Meyer SE, Waltz SE, Goss KH. The Ron receptor tyrosine kinase is not required for adenoma formation in Apc(Min/+) mice. Mol Carcinog 2009; 48:995-1004. [PMID: 19452510 DOI: 10.1002/mc.20551] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Ron receptor tyrosine kinase is overexpressed in approximately half of all human colon cancers. Increased Ron expression positively correlates with tumor progression, and reduction of Ron levels in human colon adenocarcinoma cells reverses their tumorigenic properties. Nearly all colon tumors demonstrate loss of the adenomatous polyposis coli (APC) tumor suppressor, an early initiating event, subsequently leading to beta-catenin stabilization. To understand the role of Ron in early stage intestinal tumorigenesis, we generated Apc-mutant (Apc(Min/+)) mice with and without Ron signaling. Interestingly, we report here that significantly more Apc(Min/+) Ron-deficient mice developed higher tumor burden than Apc(Min/+) mice with wild-type Ron. Even though baseline levels of intestinal crypt proliferation were increased in the Apc(Min/+) Ron-deficient mice, loss of Ron did not influence tumor size or histological appearance of the Apc(Min/+) adenomas, nor was beta-catenin localization changed compared to Apc(Min/+) mice with Ron. Together, these data suggest that Ron may be important in normal intestinal tissue homeostasis, but that the expression of this receptor is not required for the formation and growth of adenomas in Apc(Min/+) mice.
Collapse
Affiliation(s)
- Sara E Meyer
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio, USA
| | | | | |
Collapse
|
77
|
Abstract
Around 1% of the open reading frames in the human genome encode predicted DNA and RNA helicases. One highly conserved group of DNA helicases is the RecQ family. Genetic defects in three of the five human RecQ helicases, BLM, WRN and RECQ4, give rise to defined syndromes associated with cancer predisposition, some features of premature ageing and chromosomal instability. In recent years, there has been a tremendous advance in our understanding of the cellular functions of individual RecQ helicases. In this Review, we discuss how these proteins might suppress genomic rearrangements, and therefore function as 'caretaker' tumour suppressors.
Collapse
Affiliation(s)
- Wai Kit Chu
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | | |
Collapse
|
78
|
Halberg RB, Waggoner J, Rasmussen K, White A, Clipson L, Prunuske AJ, Bacher JW, Sullivan R, Washington MK, Pitot HC, Petrini JHJ, Albertson DG, Dove WF. Long-lived Min mice develop advanced intestinal cancers through a genetically conservative pathway. Cancer Res 2009; 69:5768-75. [PMID: 19584276 PMCID: PMC2775466 DOI: 10.1158/0008-5472.can-09-0446] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
C57BL/6J mice carrying the Min allele of Adenomatous polyposis coli (Apc) develop numerous adenomas along the entire length of the intestine and consequently die at an early age. This short lifespan would prevent the accumulation of somatic genetic mutations or epigenetic alterations necessary for tumor progression. To overcome this limitation, we generated F(1) Apc(Min/+) hybrids by crossing C57BR/cdcJ and SWR/J females to C57BL/6J Apc(Min/+) males. These hybrids developed few intestinal tumors and often lived longer than 1 year. Many of the tumors (24-87%) were invasive adenocarcinomas, in which neoplastic tissue penetrated through the muscle wall into the mesentery. In a few cases (3%), lesions metastasized by extension to regional lymph nodes. The development of these familial cancers does not require chromosomal gains or losses, a high level of microsatellite instability, or the presence of Helicobacter. To test whether genetic instability might accelerate tumor progression, we generated Apc(Min/+) mice homozygous for the hypomorphic allele of the Nijmegen breakage syndrome gene (Nbs1(DeltaB)) and also treated Apc(Min/+) mice with a strong somatic mutagen. These imposed genetic instabilities did not reduce the time required for cancers to form nor increase the percentage of cancers nor drive progression to the point of distant metastasis. In summary, we have found that the Apc(Min/+) mouse model for familial intestinal cancer can develop frequent invasive cancers in the absence of overt genomic instability. Possible factors that promote invasion include age-dependent epigenetic changes, conservative somatic recombination, or direct effects of alleles in the F(1) hybrid genetic background.
Collapse
Affiliation(s)
- Richard B Halberg
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Hynes MJ, Huang KM, Huang EH. Review Paper: Implications of the “Cancer Stem Cell” Hypothesis on Murine Models of Colon Cancer and Colitis-associated Cancer. Vet Pathol 2009; 46:819-35. [DOI: 10.1354/vp.08-vp-0172-h-rev] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The use of murine models to investigate human diseases has been an invaluable tool. In the areas of inflammation and oncogenesis, such models have provided unique insights into pathogenesis and mechanisms to evaluate potential therapy. As such, one facet of these disease processes links inflammation and cancer. Inflammation is associated with at least 15% of the world's malignancies. One example of this relationship is documented in the association between colitis and colorectal cancer. To date, the precise molecular events linking inflammation and cancer remain unclear. A new paradigm that may bridge these processes includes the cancer stem cell hypothesis. In this review, murine models of colitis, colon cancer, and colitis-associated cancer are discussed in reference to the potential of this paradigm to clarify the relationship of these devastating diseases.
Collapse
Affiliation(s)
- M. J. Hynes
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - K. M. Huang
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA
| | - E. H. Huang
- Department of Surgery, University of Florida, Gainesville, FL
| |
Collapse
|
80
|
Abstract
Genetically engineered mice are essential tools in both mechanistic studies and drug development in colon cancer research. Mice with mutations in the Apc gene, as well as in genes that modify or interact with Apc, are important models of familial adenomatous polyposis. Mice with mutations in the beta-catenin signaling pathway have also revealed important information about colon cancer pathogenesis, along with models for hereditary nonpolyposis colon cancer and inflammatory bowel diseases associated with colon cancer. Finally, transplantation models (xenografts)have been useful in the study of metastasis and for testing potential therapeutics. This review discusses what models have been developed most recently and what they have taught us about colon cancer formation, progression, and possible treatment strategies.
Collapse
Affiliation(s)
- Makoto Mark Taketo
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | |
Collapse
|
81
|
Interactions of Transposons with the Cellular DNA Repair Machinery. TRANSPOSONS AND THE DYNAMIC GENOME 2009. [DOI: 10.1007/7050_2008_043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
82
|
Urtishak KA, Smith KD, Chanoux RA, Greenberg RA, Johnson FB, Brown EJ. Timeless Maintains Genomic Stability and Suppresses Sister Chromatid Exchange during Unperturbed DNA Replication. J Biol Chem 2008; 284:8777-85. [PMID: 19112184 DOI: 10.1074/jbc.m806103200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Genome integrity is maintained during DNA replication by coordination of various replisome-regulated processes. Although it is known that Timeless (Tim) is a replisome component that participates in replication checkpoint responses to genotoxic stress, its importance for genome maintenance during normal DNA synthesis has not been reported. Here we demonstrate that Tim reduction leads to genomic instability during unperturbed DNA replication, culminating in increased chromatid breaks and translocations (triradials, quadriradials, and fusions). Tim deficiency led to increased H2AX phosphorylation and Rad51 and Rad52 foci formation selectively during DNA synthesis and caused a 3-4-fold increase in sister chromatid exchange. The sister chromatid exchange events stimulated by Tim reduction were largely mediated via a Brca2/Rad51-dependent mechanism and were additively increased by deletion of the Blm helicase. Therefore, Tim deficiency leads to an increased reliance on homologous recombination for proper continuation of DNA synthesis. Together, these results indicate a pivotal role for Tim in maintaining genome stability throughout normal DNA replication.
Collapse
Affiliation(s)
- Karen A Urtishak
- Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA."
| | | | | | | | | | | |
Collapse
|
83
|
Singh TR, Ali AM, Busygina V, Raynard S, Fan Q, Du CH, Andreassen PR, Sung P, Meetei AR. BLAP18/RMI2, a novel OB-fold-containing protein, is an essential component of the Bloom helicase-double Holliday junction dissolvasome. Genes Dev 2008; 22:2856-68. [PMID: 18923083 DOI: 10.1101/gad.1725108] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bloom Syndrome is an autosomal recessive cancer-prone disorder caused by mutations in the BLM gene. BLM encodes a DNA helicase of the RECQ family, and associates with Topo IIIalpha and BLAP75/RMI1 (BLAP for BLM-associated polypeptide/RecQ-mediated genome instability) to form the BTB (BLM-Topo IIIalpha-BLAP75/RMI1) complex. This complex can resolve the double Holliday junction (dHJ), a DNA intermediate generated during homologous recombination, to yield noncrossover recombinants exclusively. This attribute of the BTB complex likely serves to prevent chromosomal aberrations and rearrangements. Here we report the isolation and characterization of a novel member of the BTB complex termed BLAP18/RMI2. BLAP18/RMI2 contains a putative OB-fold domain, and several lines of evidence suggest that it is essential for BTB complex function. First, the majority of BLAP18/RMI2 exists in complex with Topo IIIalpha and BLAP75/RMI1. Second, depletion of BLAP18/RMI2 results in the destabilization of the BTB complex. Third, BLAP18/RMI2-depleted cells show spontaneous chromosomal breaks and are sensitive to methyl methanesulfonate treatment. Fourth, BLAP18/RMI2 is required to target BLM to chromatin and for the assembly of BLM foci upon hydroxyurea treatment. Finally, BLAP18/RMI2 stimulates the dHJ resolution capability of the BTB complex. Together, these results establish BLAP18/RMI2 as an essential member of the BTB dHJ dissolvasome that is required for the maintenance of a stable genome.
Collapse
Affiliation(s)
- Thiyam Ramsing Singh
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Amor-Guéret M, Dubois-d'Enghien C, Laugé A, Onclercq-Delic R, Barakat A, Chadli E, Bousfiha AA, Benjelloun M, Flori E, Doray B, Laugel V, Lourenço MT, Gonçalves R, Sousa S, Couturier J, Stoppa-Lyonnet D. Three NewBLMGene Mutations Associated with Bloom Syndrome. ACTA ACUST UNITED AC 2008; 12:257-61. [DOI: 10.1089/gte.2007.0119] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mounira Amor-Guéret
- Institut Curie, Centre de Recherche, Orsay, France
- CNRS, UMR2027, Orsay, France
| | | | - Anthony Laugé
- Institut Curie, Hôpital, Service de Génétique Oncologique, Paris France
| | | | | | - Elbekkay Chadli
- Institut Pasteur du Maroc, Service de Génétique, Casablanca, Morocco
| | - Ahmed Aziz Bousfiha
- CHU Ibn Rochd, Unité d'Immunologie Clinique du Service de Pédiatrie, 1, Casablanca, Morocco
| | - Meriem Benjelloun
- CHU Ibn Rochd, Unité d'Immunologie Clinique du Service de Pédiatrie, 1, Casablanca, Morocco
| | - Elisabeth Flori
- Service de Cytogénétique, Hôpital de Hautepierre, Strasbourg Cedex, France
| | - Bérénice Doray
- Service de Génétique Médicale, Hôpital de Hautepierre, Strasbourg Cedex, France
| | - Vincent Laugel
- Service de Pédiatrie 1, CHU Strasbourg-Hautepierre, Strasbourg Cedex, France
| | | | - Rui Gonçalves
- Serviço de Genetica Médica, Hospital de Dona Estefania, Lisboa, Portugal
| | - Silvia Sousa
- Serviço de Medicina II, Hospital de Egas Moniz, Lisboa, Portugal
| | - Jérôme Couturier
- Institut Curie, Hôpital, Service de Génétique Oncologique, Paris France
- INSERM, U380, Paris, France
| | - Dominique Stoppa-Lyonnet
- Institut Curie, Hôpital, Service de Génétique Oncologique, Paris France
- INSERM, U380, Paris, France
| |
Collapse
|
85
|
Hakem R. DNA-damage repair; the good, the bad, and the ugly. EMBO J 2008; 27:589-605. [PMID: 18285820 PMCID: PMC2262034 DOI: 10.1038/emboj.2008.15] [Citation(s) in RCA: 344] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 01/16/2008] [Indexed: 12/12/2022] Open
Abstract
Organisms have developed several DNA-repair pathways as well as DNA-damage checkpoints to cope with the frequent challenge of endogenous and exogenous DNA insults. In the absence or impairment of such repair or checkpoint mechanisms, the genomic integrity of the organism is often compromised. This review will focus on the functional consequences of impaired DNA-repair pathways. Although each pathway is addressed individually, it is essential to note that cross talk exists between repair pathways, and that there are instances in which a DNA-repair protein is involved in more than one pathway. It is also important to integrate DNA-repair process with DNA-damage checkpoints and cell survival, to gain a better understanding of the consequences of compromised DNA repair at both cellular and organismic levels. Functional consequences associated with impaired DNA repair include embryonic lethality, shortened life span, rapid ageing, impaired growth, and a variety of syndromes, including a pronounced manifestation of cancer.
Collapse
Affiliation(s)
- Razqallah Hakem
- Department of Medical Biophysics, Ontario Cancer Institute/UHN, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
86
|
Kwong LN, Weiss KR, Haigis KM, Dove WF. Atm is a negative regulator of intestinal neoplasia. Oncogene 2008; 27:1013-8. [PMID: 17700532 PMCID: PMC2266837 DOI: 10.1038/sj.onc.1210708] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 06/19/2007] [Accepted: 07/03/2007] [Indexed: 12/17/2022]
Abstract
The ataxia telangiectasia-mutated (ATM) gene has been implicated as an early barrier to the growth and progression of incipient solid tumors. Here, we show that germ-line nullizygosity for the mouse Atm gene significantly increases the proliferative index, net growth rate and multiplicity of intestinal adenomas in two distinct models of familial colon cancer: Apc(Min/+) and Apc(1638N/+). These effects of Atm deficiency are quantitatively different from deficiency for either of the genomic stability genes Bloom's syndrome helicase or DNA ligase 4, and the effect of Atm loss on tumor multiplicity is largely independent of the effect of ionizing radiation. Furthermore, the loss of heterozygosity rates at the adenomatous polyposis coli (Apc) locus are unaffected by Atm loss. Taken together, these data implicate the Atm gene product as a barrier to dysplastic growth in the early stages of intestinal tumor progression, independent of its effects on genomic stability.
Collapse
Affiliation(s)
- L N Kwong
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
87
|
Branzei D, Foiani M. RecQ helicases queuing with Srs2 to disrupt Rad51 filaments and suppress recombination. Genes Dev 2007; 21:3019-26. [PMID: 18056418 DOI: 10.1101/gad.1624707] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Dana Branzei
- Fondazione Italiana Ricerca sul Cancro, Institute of Molecular Oncology Foundation, 20139 Milan, Italy.
| | | |
Collapse
|
88
|
Hu Y, Raynard S, Sehorn MG, Lu X, Bussen W, Zheng L, Stark JM, Barnes EL, Chi P, Janscak P, Jasin M, Vogel H, Sung P, Luo G. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. Genes Dev 2007; 21:3073-84. [PMID: 18003859 DOI: 10.1101/gad.1609107] [Citation(s) in RCA: 280] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Members of the RecQ helicase family play critical roles in genome maintenance. There are five RecQ homologs in mammals, and defects in three of these (BLM, WRN, and RECQL4) give rise to cancer predisposition syndromes in humans. RECQL and RECQL5 have not been associated with a human disease. Here we show that deletion of Recql5 in mice results in cancer susceptibility. Recql5-deficient cells exhibit elevated frequencies of spontaneous DNA double-strand breaks and homologous recombination (HR) as scored using a reporter that harbors a direct repeat, and are prone to gross chromosomal rearrangements in response to replication stress. To understand how RECQL5 regulates HR, we use purified proteins to demonstrate that human RECQL5 binds the Rad51 recombinase and inhibits Rad51-mediated D-loop formation. By biochemical means and electron microscopy, we show that RECQL5 displaces Rad51 from single-stranded DNA (ssDNA) in a reaction that requires ATP hydrolysis and RPA. Together, our results identify RECQL5 as an important tumor suppressor that may act by preventing inappropriate HR events via Rad51 presynaptic filament disruption.
Collapse
Affiliation(s)
- Yiduo Hu
- Department of Genetics, Case Comprehensive Cancer Centre, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Kleiman NJ, David J, Elliston CD, Hopkins KM, Smilenov LB, Brenner DJ, Worgul BV, Hall EJ, Lieberman HB. Mrad9 and Atm Haploinsufficiency Enhance Spontaneous and X-Ray-Induced Cataractogenesis in Mice. Radiat Res 2007; 168:567-73. [PMID: 17973559 DOI: 10.1667/rr1122.1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 07/02/2007] [Indexed: 11/03/2022]
Affiliation(s)
- Norman J Kleiman
- Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Abstract
Genomic instability is the driving force behind cancer development. Human syndromes with DNA repair deficiencies comprise unique opportunities to study the clinical consequences of faulty genome maintenance leading to premature aging and premature cancer development. These syndromes include chromosomal breakage syndromes with defects in DNA damage signal transduction and double-strand break repair, mismatch repair defective syndromes as well as nucleotide excision repair defective syndromes. The same genes that are severely affected in these model diseases may harbour more subtle variations in the 'healthy' normal population leading to genomic instability, cancer development, and accelerated aging at later stages of life. Thus, studying those syndromes and the molecular mechanisms behind can significantly contribute to our understanding of (skin) cancerogenesis as well as to the development of novel individualized preventive and therapeutic anticancer strategies. The establishment of centers of excellence for studying rare genetic model diseases may be helpful in this direction.
Collapse
Affiliation(s)
- Kai-Martin Thoms
- Department of Dermatology and Venerology, Georg-August-University Goettingen, Germany
| | | | | |
Collapse
|
91
|
Kwong LN, Shedlovsky A, Biehl BS, Clipson L, Pasch CA, Dove WF. Identification of Mom7, a novel modifier of Apc(Min/+) on mouse chromosome 18. Genetics 2007; 176:1237-44. [PMID: 17435219 PMCID: PMC1894587 DOI: 10.1534/genetics.107.071217] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Apc(Min) mouse model of colorectal cancer provides a discrete, quantitative measurement of tumor multiplicity, allowing for robust quantitative trait locus analysis. This advantage has previously been used to uncover polymorphic modifiers of the Min phenotype: Mom1, which is partly explained by Pla2g2a; Mom2, a spontaneous mutant modifier; and Mom3, which was discovered in an outbred cross. Here, we describe the localization of a novel modifier, Mom7, to the pericentromeric region of chromosome 18. Mom7 was mapped in crosses involving four inbred strains: C57BL/6J (B6), BTBR/Pas (BTBR), AKR/J (AKR), and A/J. There are at least two distinct alleles of Mom7: the recessive, enhancing BTBR, AKR, and A/J alleles and the dominant, suppressive B6 allele. Homozygosity for the enhancing alleles increases tumor number by approximately threefold in the small intestine on both inbred and F(1) backgrounds. Congenic line analysis has narrowed the Mom7 region to within 7.4 Mb of the centromere, 28 Mb proximal to Apc. Analysis of SNP data from various genotyping projects suggests that the region could be as small as 4.4 Mb and that there may be five or more alleles of Mom7 segregating among the many strains of inbred mice. This has implications for experiments involving Apc(Min) and comparisons between different or mixed genetic backgrounds.
Collapse
Affiliation(s)
- Lawrence N. Kwong
- McArdle Laboratory for Cancer Research and Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Alexandra Shedlovsky
- McArdle Laboratory for Cancer Research and Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Bryan S. Biehl
- McArdle Laboratory for Cancer Research and Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Linda Clipson
- McArdle Laboratory for Cancer Research and Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Cheri A. Pasch
- McArdle Laboratory for Cancer Research and Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - William F. Dove
- McArdle Laboratory for Cancer Research and Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706
- Corresponding author: McArdle Laboratory for Cancer Research, 1400 University Ave., Madison, WI 53706. E-mail:
| |
Collapse
|
92
|
Abstract
Osteosarcoma is a devastating but rare disease, whose study has illuminated both the basic biology and clinical management of cancer over the past 30 years. These contributions have included insight into the roles of key cancer genes such as the retinoblastoma tumor suppressor gene and TP53, the identification of familial cancer syndromes implicating DNA helicases, and dramatic improvements in survival by the use of adjuvant chemotherapy. This review provides a synoptic overview of our current understanding of the molecular causes of osteosarcoma, and suggests future directions for study.
Collapse
Affiliation(s)
- Maya Kansara
- Ian Potter Foundation Centre for Cancer Genomics and Predictive Medicine and Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | |
Collapse
|
93
|
Rizzo JM, Tarsio M, Martínez-Muñoz GA, Kane PM. Diploids heterozygous for a vma13Delta mutation in Saccharomyces cerevisiae highlight the importance of V-ATPase subunit balance in supporting vacuolar acidification and silencing cytosolic V1-ATPase activity. J Biol Chem 2007; 282:8521-32. [PMID: 17234635 DOI: 10.1074/jbc.m607092200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The V-ATPase H subunit (encoded by the VMA13 gene) activates ATP-driven proton pumping in intact V-ATPase complexes and inhibits MgATPase activity in cytosolic V1 sectors (Parra, K. J., Keenan, K. L., and Kane, P. M. (2000) J. Biol. Chem. 275, 21761-21767). Yeast diploids heterozygous for a vma13Delta mutation show the pH- and calcium-dependent conditional lethality characteristic of mutants lacking V-ATPase activity, although they still contain one wild-type copy of VMA13. Vacuolar vesicles from this strain have approximately 50% of the ATPase activity of those from a wild-type diploid but do not support formation of a proton gradient. Compound heterozygotes with a second heterozygous deletion in another V1 subunit gene exhibit improved growth, vacuolar acidification, and ATP-driven proton transport in vacuolar vesicles. In contrast, compound heterozygotes with a second deletion in a Vo subunit grow even more poorly than the vma13Delta heterozygote, have very little vacuolar acidification, and have very low levels of V-ATPase subunits in isolated vacuoles. In addition, cytosolic V1 sectors from this strain and from the strain containing only the heterozygous vma13Delta mutation have elevated MgATPase activity. The results suggest that balancing levels of subunit H with those of other V-ATPase subunits is critical, both for allowing organelle acidification and for preventing unproductive hydrolysis of cytosolic ATP.
Collapse
Affiliation(s)
- Jason M Rizzo
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
94
|
Abstract
The canonical Wnt signaling plays important roles in embryonic development and tumorigenesis. For the latter, induced mutations in mice have greatly contributed to our understanding of the molecular mechanisms of cancer initiation and progression. Here, I will review recent reports on gastrointestinal cancer model mice, with an emphasis on the roles of the Wnt signal pathway. They include: mouse models for familial adenomatous polyposis; modifying factors that affect mouse intestinal polyposis, including the genes that help cancer progression; Wnt target genes that affect mouse intestinal polyposis; and a mouse model of gastric cancer that mimics Helicobacter pyroli infection.
Collapse
Affiliation(s)
- M M Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Yoshida-Konoé-cho, Sakyo, Kyoto, Japan.
| |
Collapse
|
95
|
Zanazzi C, Hersmus R, Veltman IM, Gillis AJM, van Drunen E, Beverloo HB, Hegmans JPJJ, Verweij M, Lambrecht BN, Oosterhuis JW, Looijenga LHJ. Gene expression profiling and gene copy-number changes in malignant mesothelioma cell lines. Genes Chromosomes Cancer 2007; 46:895-908. [PMID: 17620293 DOI: 10.1002/gcc.20475] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Malignant mesothelioma (MM) is an asbestos-induced tumor that acquires aneuploid DNA content during the tumorigenic process. We used instable MM cell lines as an in vitro model to study the impact of DNA copy-number changes on gene expression profiling, in the course of their chromosomal redistribution process. Two MM cell lines, PMR-MM2 (early passages of in vitro culture) and PMR-MM7 (both early and late passages of in vitro culture), were cytogenetically characterized. Genomic gains and losses were precisely defined using microarray-based comparative genomic hybridization (array-CGH), and minimal overlapping analysis led to the identification of the common unbalanced genomic regions. Using the U133Plus 2.0 Affymetrix gene chip array, we analyzed PMR-MM7 early and late passages for genome-wide gene expression, and correlated the differentially expressed genes with copy-number changes. The presence of a high number of genetic imbalances occurring from early to late culture steps reflected the tendency of MM cells toward genomic instability. The selection of specific chromosomal abnormalities observed during subsequent cultures demonstrated the spontaneous evolution of the cancer cells in an in vitro environment. MM cell lines were characterized by copy-number changes associated with the TP53 apoptotic pathway already present at the first steps of in vitro culture. Prolonged culture led to acquisition of additional chromosomal copy-number changes associated with dysregulation of genes involved in cell adhesion, regulation of mitotic cell cycle, signal transduction, carbohydrate metabolism, motor activity, glycosaminoglycan biosynthesis, protein binding activity, lipid transport, ATP synthesis, and methyltransferase activity.
Collapse
Affiliation(s)
- Claudia Zanazzi
- Department of Pathology, Erasmus Medical Center, Daniel den Hoed Cancer Center, Josephine Nefkens Institute, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Haarer B, Viggiano S, Hibbs MA, Troyanskaya OG, Amberg DC. Modeling complex genetic interactions in a simple eukaryotic genome: actin displays a rich spectrum of complex haploinsufficiencies. Genes Dev 2006; 21:148-59. [PMID: 17167106 PMCID: PMC1770898 DOI: 10.1101/gad.1477507] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Multigenic influences are major contributors to human genetic disorders. Since humans are highly polymorphic, there are a high number of possible detrimental, multiallelic gene pairs. The actin cytoskeleton of yeast was used to determine the potential for deleterious bigenic interactions; approximately 4800 complex hemizygote strains were constructed between an actin-null allele and the nonessential gene deletion collection. We found 208 genes that have deleterious complex haploinsufficient (CHI) interactions with actin. This set is enriched for genes with gene ontology terms shared with actin, including several actin-binding protein genes, and nearly half of the CHI genes have defects in actin organization when deleted. Interactions were frequently seen with genes for multiple components of a complex or with genes involved in the same function. For example, many of the genes for the large ribosomal subunit (RPLs) were CHI with act1Delta and had actin organization defects when deleted. This was generally true of only one RPL paralog of apparently duplicate genes, suggesting functional specialization between ribosomal genes. In many cases, CHI interactions could be attributed to localized defects on the actin protein. Spatial congruence in these data suggest that the loss of binding to specific actin-binding proteins causes subsets of CHI interactions.
Collapse
Affiliation(s)
- Brian Haarer
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | - Susan Viggiano
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | - Mathew A. Hibbs
- Department of Computer Science and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Olga G. Troyanskaya
- Department of Computer Science and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - David C. Amberg
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
- Corresponding author.E-MAIL ; FAX (315) 464-8750
| |
Collapse
|
97
|
Marple T, Kim TM, Hasty P. Embryonic stem cells deficient for Brca2 or Blm exhibit divergent genotoxic profiles that support opposing activities during homologous recombination. Mutat Res 2006; 602:110-20. [PMID: 16997331 DOI: 10.1016/j.mrfmmm.2006.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 08/11/2006] [Accepted: 08/12/2006] [Indexed: 11/21/2022]
Abstract
The breast cancer susceptibility protein, Brca2 and the RecQ helicase, Blm (Bloom syndrome mutated) are tumor suppressors that maintain genome integrity, at least in part, through homologous recombination (HR). Brca2 facilitates HR by interacting with Rad51 in multiple regions, the BRC motifs encoded by exon 11 and a single domain encoded by exon 27; however, the exact importance of these regions is not fully understood. Blm also interacts with Rad51 and appears to suppress HR in most circumstances; however, its yeast homologue Sgs1 facilitates HR in response to some genotoxins. To better understand the biological importance of these two proteins, we performed a genotoxic screen on mouse embryonic stem (ES) cells impaired for either Brca2 or Blm to establish their genotoxic profiles (a cellular dose-response to a wide range of agents). This is the first side-by-side comparison of these two proteins in an identical genetic background. We compared cells deleted for Brca2 exon 27 to cells reduced for Blm expression and find that the Brca2- and Blm-impaired cells exhibit genotoxic profiles that reflect opposing activities during HR. Cells deleted for Brca2 exon 27 are hypersensitive to gamma-radiation, streptonigrin, mitomycin C and camptothecin and mildly resistant to ICRF-193 which is similar to HR defective cells null for Rad54. By contrast, Blm-impaired cells are hypersensitive to ICRF-193, mildly resistant to camptothecin and mitomycin C and more strongly resistant to hydroxyurea. These divergent profiles support the notion that Brca2 and Blm perform opposing functions during HR in mouse ES cells.
Collapse
Affiliation(s)
- Teresa Marple
- The Department of Molecular Medicine and Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, 15355 Lambda Drive San Antonio, TX 78245-3207, USA
| | | | | |
Collapse
|
98
|
Durant ST, Paffett KS, Shrivastav M, Timmins GS, Morgan WF, Nickoloff JA. UV radiation induces delayed hyperrecombination associated with hypermutation in human cells. Mol Cell Biol 2006; 26:6047-55. [PMID: 16880516 PMCID: PMC1592811 DOI: 10.1128/mcb.00444-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ionizing radiation induces delayed genomic instability in human cells, including chromosomal abnormalities and hyperrecombination. Here, we investigate delayed genome instability of cells exposed to UV radiation. We examined homologous recombination-mediated reactivation of a green fluorescent protein (GFP) gene in p53-proficient human cells. We observed an approximately 5-fold enhancement of delayed hyperrecombination (DHR) among cells surviving a low dose of UV-C (5 J/m2), revealed as mixed GFP+/- colonies. UV-B did not induce DHR at an equitoxic (75 J/m2) dose or a higher dose (150 J/m2). UV is known to induce delayed hypermutation associated with increased oxidative stress. We found that hypoxanthine phosphoribosyltransferase (HPRT) mutation frequencies were approximately 5-fold higher in strains derived from GFP+/- (DHR) colonies than in strains in which recombination was directly induced by UV (GFP+ colonies). To determine whether hypermutation was directly caused by hyperrecombination, we analyzed hprt mutation spectra. Large-scale alterations reflecting large deletions and insertions were observed in 25% of GFP+ strains, and most mutants had a single change in HPRT. In striking contrast, all mutations arising in the hypermutable GFP+/- strains were small (1- to 2-base) changes, including substitutions, deletions, and insertions (reminiscent of mutagenesis from oxidative damage), and the majority were compound, with an average of four hprt mutations per mutant. The absence of large hprt deletions in DHR strains indicates that DHR does not cause hypermutation. We propose that UV-induced DHR and hypermutation result from a common source, namely, increased oxidative stress. These two forms of delayed genome instability may collaborate in skin cancer initiation and progression.
Collapse
Affiliation(s)
- Stephen T Durant
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | | | |
Collapse
|
99
|
Takeda J, Horie K, Yusa K. New strategy for comprehensive analysis of gene functions in embryonic stem cells. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2006:15-22. [PMID: 16903413 DOI: 10.1007/3-540-31437-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
At present, the limitation of Phenotype-based genetic screening in embryonic stem cells (ESCs) is the diploid nature of the genome. Since it is known that cells deficient in the Bloom's syndrome gene (Blm) show an increased rate of homologous recombination, we have developed a new system to conditionally regulate the Blm allele for introduction of bi-allelic mutations across the genome. Transient deficiency of Blm induces homologous recombination not only between sister chromatids but also between homologous chromosomes, resulting in a high rate of loss of heterozygosity (LOH). Introduction of genome-wide mutations in ESCs can be achieved by retroviral vector. In combination, using genome-wide mutagenesis and transient loss of Blm expression, we have generated ES libraries with bi-allelic mutations. These results show that this new system is very efficient for identifying gene functions in ESCs.
Collapse
Affiliation(s)
- J Takeda
- Department of Social and Environmental Medicine, Graduate School of Medicine, Osaka University, Suita, Japan.
| | | | | |
Collapse
|
100
|
Leng M, Chan DW, Luo H, Zhu C, Qin J, Wang Y. MPS1-dependent mitotic BLM phosphorylation is important for chromosome stability. Proc Natl Acad Sci U S A 2006; 103:11485-90. [PMID: 16864798 PMCID: PMC1518802 DOI: 10.1073/pnas.0601828103] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Indexed: 01/08/2023] Open
Abstract
Spindle assembly checkpoint (SAC) ensures bipolar attachment of chromosomes to the mitotic spindle and is essential for faithful chromosome segregation, thereby preventing chromosome instability (CIN). Genetic evidence suggests a causal link between compromised SAC, CIN, and cancer. Bloom syndrome (BS) is a genetic disorder that predisposes affected individuals to cancer. BS cells exhibit elevated rates of sister chromatid exchange, chromosome breaks, and CIN. The BS gene product, BLM, is a member of the RecQ helicases that are required for maintenance of genome stability. The BLM helicase interacts with proteins involved in DNA replication, recombination, and repair and is required for the repair of stalled-replication forks and in the DNA damage response. Here we present biochemical evidence to suggest a role of BLM phosphorylation during mitosis in maintaining chromosome stability. BLM is associated with the SAC kinase MPS1 and is phosphorylated at S144 in a MPS1-dependent manner. Phosphorylated BLM interacts with polo-like kinase 1, a mitotic kinase that binds to phosphoserine/threonine through its polo-box domain (PBD). Furthermore, BS cells expressing BLM-S144A show normal levels of sister chromatid exchange but fail to maintain the mitotic arrest when SAC is activated and exhibit a broad distribution of chromosome numbers. We propose that MPS1-dependent BLM phosphorylation is important for ensuring accurate chromosome segregation, and its deregulation may contribute to cancer.
Collapse
Affiliation(s)
- Mei Leng
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Doug W. Chan
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Hao Luo
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Cihui Zhu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Jun Qin
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Yi Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| |
Collapse
|