51
|
Development of Therapeutic Approaches for Myotonic Dystrophies Type 1 and Type 2. Int J Mol Sci 2022; 23:ijms231810491. [PMID: 36142405 PMCID: PMC9499601 DOI: 10.3390/ijms231810491] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Myotonic Dystrophies type 1 (DM1) and type 2 (DM2) are complex multisystem diseases without disease-based therapies. These disorders are caused by the expansions of unstable CTG (DM1) and CCTG (DM2) repeats outside of the coding regions of the disease genes: DMPK in DM1 and CNBP in DM2. Multiple clinical and molecular studies provided a consensus for DM1 pathogenesis, showing that the molecular pathophysiology of DM1 is associated with the toxicity of RNA CUG repeats, which cause multiple disturbances in RNA metabolism in patients' cells. As a result, splicing, translation, RNA stability and transcription of multiple genes are misregulated in DM1 cells. While mutant CCUG repeats are the main cause of DM2, additional factors might play a role in DM2 pathogenesis. This review describes current progress in the translation of mechanistic knowledge in DM1 and DM2 to clinical trials, with a focus on the development of disease-specific therapies for patients with adult forms of DM1 and congenital DM1 (CDM1).
Collapse
|
52
|
Ravel-Chapuis A, Duchesne E, Jasmin BJ. Pharmacological and exercise-induced activation of AMPK as emerging therapies for myotonic dystrophy type 1 patients. J Physiol 2022; 600:3249-3264. [PMID: 35695045 DOI: 10.1113/jp282725] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/07/2022] [Indexed: 11/08/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic disorder with variable clinical features. Currently, there is no cure or effective treatment for DM1. The disease is caused by an expansion of CUG repeats in the 3' UTR of DMPK mRNAs. Mutant DMPK mRNAs accumulate in nuclei as RNA foci and trigger an imbalance in the level and localization of RNA-binding proteins causing the characteristic missplicing events that account for the varied DM1 symptoms, a disease mechanism referred to as RNA toxicity. In recent years, multiple signalling pathways have been identified as being aberrantly regulated in skeletal muscle in response to the CUG expansion, including AMPK, a sensor of energy status, as well as a master regulator of cellular energy homeostasis. Converging lines of evidence highlight the benefits of activating AMPK signalling pharmacologically on RNA toxicity, as well as on muscle histology and function, in preclinical DM1 models. Importantly, a clinical trial with metformin, an activator of AMPK, resulted in functional benefits in DM1 patients. In addition, exercise, a known AMPK activator, has shown promising effects on RNA toxicity and muscle function in DM1 mice. Finally, clinical trials involving moderate-intensity exercise also induced functional benefits for DM1 patients. Taken together, these studies clearly demonstrate the molecular, histological and functional benefits of AMPK activation and exercise-based interventions on the DM1 phenotype. Despite these advances, several key questions remain; in particular, the extent of the true implication of AMPK in the observed beneficial improvements, as well as how, mechanistically, activation of AMPK signalling improves the DM1 pathophysiology.
Collapse
Affiliation(s)
- Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Elise Duchesne
- Département des sciences de la santé, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada.,Groupe de Recherche Interdisciplinaire sur les Maladies Neuromusculaires (GRIMN), Centre intégré universitaire de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Hôpital de Jonquière, QC, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
53
|
Lee J, Li K, Zimmerman SC. A Selective Alkylating Agent for CTG Repeats in Myotonic Dystrophy Type 1. ACS Chem Biol 2022; 17:1103-1110. [PMID: 35483041 DOI: 10.1021/acschembio.1c00949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Disease intervention at the DNA level generally has been avoided because of off-target effects. Recent advances in genome editing technologies using CRISPR-Cas9 have opened a new era in DNA-targeted therapeutic approaches. However, delivery of such systems remains a major challenge. Here, we report a selective DNA-modifying small molecule that targets a disease-specific structure and mismatches involved in myotonic dystrophy type 1 (DM1). This ligand alkylates T-T mismatch-containing hairpins formed in the expanded CTG repeats (d(CTG)exp) in DM1. Ligand alkylation of d(CTG)exp inhibits the transcription of d(CAG·CTG)exp, thereby reducing the level of the toxic r(CUG)exp transcript. The bioactivity of the ligand also included a reduction in DM1 pathological features such as disease foci formation and misregulation of pre-mRNA splicing in DM1 model cells. Furthermore, the CTG-alkylating ligand may change the d(CAG·CTG)exp repeat length dynamics in DM1 patient cells. Our strategy of linking an alkylating moiety to a DNA mismatch-selective small molecule may be generally applicable to other repeat expansion diseases such as Huntington's disease and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- JuYeon Lee
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ke Li
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Steven C. Zimmerman
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
54
|
Jenquin JR, O’Brien AP, Poukalov K, Lu Y, Frias JA, Shorrock HK, Richardson JI, Mazdiyasni H, Yang H, Huigens RW, Boykin D, Ranum LP, Cleary JD, Wang ET, Berglund JA. Molecular characterization of myotonic dystrophy fibroblast cell lines for use in small molecule screening. iScience 2022; 25:104198. [PMID: 35479399 PMCID: PMC9035709 DOI: 10.1016/j.isci.2022.104198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 12/30/2021] [Accepted: 04/01/2022] [Indexed: 01/05/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are common forms of adult onset muscular dystrophy. Pathogenesis in both diseases is largely driven by production of toxic-expanded repeat RNAs that sequester MBNL RNA-binding proteins, causing mis-splicing. Given this shared pathogenesis, we hypothesized that diamidines, small molecules that rescue mis-splicing in DM1 models, could also rescue mis-splicing in DM2 models. While several DM1 cell models exist, few are available for DM2 limiting research and therapeutic development. Here, we characterize DM1 and DM2 patient-derived fibroblasts for use in small molecule screens and therapeutic studies. We identify mis-splicing events unique to DM2 fibroblasts and common events shared with DM1 fibroblasts. We show that diamidines can partially rescue molecular phenotypes in both DM1 and DM2 fibroblasts. This study demonstrates the potential of fibroblasts as models for DM1 and DM2, which will help meet an important need for well-characterized DM2 cell models.
Collapse
Affiliation(s)
- Jana R. Jenquin
- Department of Biochemistry and Molecular Biology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| | - Alana P. O’Brien
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kiril Poukalov
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Yidan Lu
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jesus A. Frias
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| | - Hannah K. Shorrock
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| | - Jared I. Richardson
- Department of Biochemistry and Molecular Biology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| | - Hormoz Mazdiyasni
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| | - Hongfen Yang
- Department of Medicinal Chemistry, Center for Natural Products Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Robert W. Huigens
- Department of Medicinal Chemistry, Center for Natural Products Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - David Boykin
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Laura P.W. Ranum
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - John Douglas Cleary
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| | - Eric T. Wang
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - J. Andrew Berglund
- Department of Biochemistry and Molecular Biology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| |
Collapse
|
55
|
Lee KY, Seah C, Li C, Chen YF, Chen CY, Wu CI, Liao PC, Shyu YC, Olafson HR, McKee KK, Wang ET, Yeh CH, Wang CH. Mice lacking MBNL1 and MBNL2 exhibit sudden cardiac death and molecular signatures recapitulating myotonic dystrophy. Hum Mol Genet 2022; 31:3144-3160. [PMID: 35567413 PMCID: PMC9476621 DOI: 10.1093/hmg/ddac108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/22/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Myotonic dystrophy (DM) is caused by expansions of C(C)TG repeats in the non-coding regions of the DMPK and CNBP genes, and DM patients often suffer from sudden cardiac death due to lethal conduction block or arrhythmia. Specific molecular changes that underlie DM cardiac pathology have been linked to repeat-associated depletion of Muscleblind-like (MBNL) 1 and 2 proteins and upregulation of CUGBP, Elav-like family member 1 (CELF1). Hypothesis solely targeting MBNL1 or CELF1 pathways that could address all the consequences of repeat expansion in heart remained inconclusive, particularly when the direct cause of mortality and results of transcriptome analyses remained undetermined in Mbnl compound knockout (KO) mice with cardiac phenotypes. Here, we develop Myh6-Cre double KO (DKO) (Mbnl1−/−; Mbnl2cond/cond; Myh6-Cre+/−) mice to eliminate Mbnl1/2 in cardiomyocytes and observe spontaneous lethal cardiac events under no anesthesia. RNA sequencing recapitulates DM heart spliceopathy and shows gene expression changes that were previously undescribed in DM heart studies. Notably, immunoblotting reveals a nearly 6-fold increase of Calsequestrin 1 and 50% reduction of epidermal growth factor proteins. Our findings demonstrate that complete ablation of MBNL1/2 in cardiomyocytes is essential for generating sudden death due to lethal cardiac rhythms and reveal potential mechanisms for DM heart pathogenesis.
Collapse
Affiliation(s)
- Kuang-Yung Lee
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan.,Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Carol Seah
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Ching Li
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Yu-Fu Chen
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Chwen-Yu Chen
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Ching-I Wu
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Po-Cheng Liao
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan
| | - Yu-Chiau Shyu
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan.,Department of Nursing, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| | - Hailey R Olafson
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL. 32610, USA
| | - Kendra K McKee
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL. 32610, USA
| | - Eric T Wang
- Department of Molecular Genetics & Microbiology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL. 32610, USA
| | - Chi-Hsiao Yeh
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Linko Branch, Taoyuan, Taiwan.,Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Chao-Hung Wang
- Division of Cardiology, Department of Internal Medicine, Heart Failure Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung, Taiwan.,Chang Gung University, College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
56
|
The X-linked splicing regulator MBNL3 has been co-opted to restrict placental growth in eutherians. PLoS Biol 2022; 20:e3001615. [PMID: 35476669 PMCID: PMC9084524 DOI: 10.1371/journal.pbio.3001615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/09/2022] [Accepted: 03/29/2022] [Indexed: 11/19/2022] Open
Abstract
Understanding the regulatory interactions that control gene expression during the development of novel tissues is a key goal of evolutionary developmental biology. Here, we show that Mbnl3 has undergone a striking process of evolutionary specialization in eutherian mammals resulting in the emergence of a novel placental function for the gene. Mbnl3 belongs to a family of RNA-binding proteins whose members regulate multiple aspects of RNA metabolism. We find that, in eutherians, while both Mbnl3 and its paralog Mbnl2 are strongly expressed in placenta, Mbnl3 expression has been lost from nonplacental tissues in association with the evolution of a novel promoter. Moreover, Mbnl3 has undergone accelerated protein sequence evolution leading to changes in its RNA-binding specificities and cellular localization. While Mbnl2 and Mbnl3 share partially redundant roles in regulating alternative splicing, polyadenylation site usage and, in turn, placenta maturation, Mbnl3 has also acquired novel biological functions. Specifically, Mbnl3 knockout (M3KO) alone results in increased placental growth associated with higher Myc expression. Furthermore, Mbnl3 loss increases fetal resource allocation during limiting conditions, suggesting that location of Mbnl3 on the X chromosome has led to its role in limiting placental growth, favoring the maternal side of the parental genetic conflict.
Collapse
|
57
|
Pamudurti NR, Patop IL, Krishnamoorthy A, Bartok O, Maya R, Lerner N, Ashwall-Fluss R, Konakondla JVV, Beatus T, Kadener S. circMbl functions in cis and in trans to regulate gene expression and physiology in a tissue-specific fashion. Cell Rep 2022; 39:110740. [PMID: 35476987 PMCID: PMC9352392 DOI: 10.1016/j.celrep.2022.110740] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/11/2022] [Accepted: 04/05/2022] [Indexed: 11/03/2022] Open
Abstract
Muscleblind (mbl) is an essential muscle and neuronal splicing regulator. Mbl hosts multiple circular RNAs (circRNAs), including circMbl, which is conserved from flies to humans. Here, we show that mbl-derived circRNAs are key regulators of MBL by cis- and trans-acting mechanisms. By generating fly lines to specifically modulate the levels of all mbl RNA isoforms, including circMbl, we demonstrate that the two major mbl protein isoforms, MBL-O/P and MBL-C, buffer their own levels by producing different types of circRNA isoforms in the eye and fly brain, respectively. Moreover, we show that circMbl has unique functions in trans, as knockdown of circMbl results in specific morphological and physiological phenotypes. In addition, depletion of MBL-C or circMbl results in opposite behavioral phenotypes, showing that they also regulate each other in trans. Together, our results illuminate key aspects of mbl regulation and uncover cis and trans functions of circMbl in vivo.
Collapse
Affiliation(s)
| | | | | | - Osnat Bartok
- Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Roni Maya
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; Department of Neurobiology, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Noam Lerner
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; Department of Neurobiology, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Reut Ashwall-Fluss
- Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | | | - Tsevi Beatus
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; Department of Neurobiology, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Sebastian Kadener
- Biology Department, Brandeis University, Waltham, MA 02454, USA; Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
58
|
Molecular Therapies for Myotonic Dystrophy Type 1: From Small Drugs to Gene Editing. Int J Mol Sci 2022; 23:ijms23094622. [PMID: 35563013 PMCID: PMC9101876 DOI: 10.3390/ijms23094622] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy affecting many different body tissues, predominantly skeletal and cardiac muscles and the central nervous system. The expansion of CTG repeats in the DM1 protein-kinase (DMPK) gene is the genetic cause of the disease. The pathogenetic mechanisms are mainly mediated by the production of a toxic expanded CUG transcript from the DMPK gene. With the availability of new knowledge, disease models, and technical tools, much progress has been made in the discovery of altered pathways and in the potential of therapeutic intervention, making the path to the clinic a closer reality. In this review, we describe and discuss the molecular therapeutic strategies for DM1, which are designed to directly target the CTG genomic tract, the expanded CUG transcript or downstream signaling molecules.
Collapse
|
59
|
de Pontual L, Tomé S. Overview of the Complex Relationship between Epigenetics Markers, CTG Repeat Instability and Symptoms in Myotonic Dystrophy Type 1. Int J Mol Sci 2022; 23:ijms23073477. [PMID: 35408837 PMCID: PMC8998570 DOI: 10.3390/ijms23073477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Among the trinucleotide repeat disorders, myotonic dystrophy type 1 (DM1) is one of the most complex neuromuscular diseases caused by an unstable CTG repeat expansion in the DMPK gene. DM1 patients exhibit high variability in the dynamics of CTG repeat instability and in the manifestations and progression of the disease. The largest expanded alleles are generally associated with the earliest and most severe clinical form. However, CTG repeat length alone is not sufficient to predict disease severity and progression, suggesting the involvement of other factors. Several data support the role of epigenetic alterations in clinical and genetic variability. By highlighting epigenetic alterations in DM1, this review provides a new avenue on how these changes can serve as biomarkers to predict clinical features and the mutation behavior.
Collapse
Affiliation(s)
| | - Stéphanie Tomé
- Correspondence: ; Tel.: +33-1-42-16-57-16; Fax: +33-1-42-16-57-00
| |
Collapse
|
60
|
The Splicing of the Mitochondrial Calcium Uniporter Genuine Activator MICU1 Is Driven by RBFOX2 Splicing Factor during Myogenic Differentiation. Int J Mol Sci 2022; 23:ijms23052517. [PMID: 35269658 PMCID: PMC8909990 DOI: 10.3390/ijms23052517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Alternative splicing, the process by which exons within a pre-mRNA transcript are differentially joined or skipped, is crucial in skeletal muscle since it is required both during myogenesis and in post-natal life to reprogram the transcripts of contractile proteins, metabolic enzymes, and transcription factors in functionally distinct muscle fiber types. The importance of such events is underlined by the numerosity of pathological conditions caused by alternative splicing aberrations. Importantly, many skeletal muscle Ca2+ homeostasis genes are also regulated by alternative splicing mechanisms, among which is the Mitochondrial Ca2+ Uniporter (MCU) genuine activator MICU1 which regulates MCU opening upon cell stimulation. We have previously shown that murine skeletal muscle MICU1 is subjected to alternative splicing, thereby generating a splice variant-which was named MICU1.1-that confers unique properties to the mitochondrial Ca2+ uptake and ensuring sufficient ATP production for muscle contraction. Here we extended the analysis of MICU1 alternative splicing to human tissues, finding two additional splicing variants that were characterized by their ability to regulate mitochondrial Ca2+ uptake. Furthermore, we found that MICU1 alternative splicing is induced during myogenesis by the splicing factor RBFOX2. These results highlight the complexity of the alternative splicing mechanisms in skeletal muscle and the regulation of mitochondrial Ca2+ among tissues.
Collapse
|
61
|
Soltanzadeh P. Myotonic Dystrophies: A Genetic Overview. Genes (Basel) 2022; 13:367. [PMID: 35205411 PMCID: PMC8872148 DOI: 10.3390/genes13020367] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Myotonic dystrophies (DM) are the most common muscular dystrophies in adults, which can affect other non-skeletal muscle organs such as the heart, brain and gastrointestinal system. There are two genetically distinct types of myotonic dystrophy: myotonic dystrophy type 1 (DM1) and myotonic dystrophy type 2 (DM2), both dominantly inherited with significant overlap in clinical manifestations. DM1 results from CTG repeat expansions in the 3'-untranslated region (3'UTR) of the DMPK (dystrophia myotonica protein kinase) gene on chromosome 19, while DM2 is caused by CCTG repeat expansions in intron 1 of the CNBP (cellular nucleic acid-binding protein) gene on chromosome 3. Recent advances in genetics and molecular biology, especially in the field of RNA biology, have allowed better understanding of the potential pathomechanisms involved in DM. In this review article, core clinical features and genetics of DM are presented followed by a discussion on the current postulated pathomechanisms and therapeutic approaches used in DM, including the ones currently in human clinical trial phase.
Collapse
Affiliation(s)
- Payam Soltanzadeh
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
62
|
Arandel L, Matloka M, Klein AF, Rau F, Sureau A, Ney M, Cordier A, Kondili M, Polay-Espinoza M, Naouar N, Ferry A, Lemaitre M, Begard S, Colin M, Lamarre C, Tran H, Buée L, Marie J, Sergeant N, Furling D. Reversal of RNA toxicity in myotonic dystrophy via a decoy RNA-binding protein with high affinity for expanded CUG repeats. Nat Biomed Eng 2022; 6:207-220. [PMID: 35145256 DOI: 10.1038/s41551-021-00838-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/07/2021] [Indexed: 12/19/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is an RNA-dominant disease whose pathogenesis stems from the functional loss of muscleblind-like RNA-binding proteins (RBPs), which causes the formation of alternative-splicing defects. The loss of functional muscleblind-like protein 1 (MBNL1) results from its nuclear sequestration by mutant transcripts containing pathogenic expanded CUG repeats (CUGexp). Here we show that an RBP engineered to act as a decoy for CUGexp reverses the toxicity of the mutant transcripts. In vitro, the binding of the RBP decoy to CUGexp in immortalized muscle cells derived from a patient with DM1 released sequestered endogenous MBNL1 from nuclear RNA foci, restored MBNL1 activity, and corrected the transcriptomic signature of DM1. In mice with DM1, the local or systemic delivery of the RBP decoy via an adeno-associated virus into the animals' skeletal muscle led to the long-lasting correction of the splicing defects and to ameliorated disease pathology. Our findings support the development of decoy RBPs with high binding affinities for expanded RNA repeats as a therapeutic strategy for myotonic dystrophies.
Collapse
Affiliation(s)
- Ludovic Arandel
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Magdalena Matloka
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Arnaud F Klein
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Frédérique Rau
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Alain Sureau
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Michel Ney
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Aurélien Cordier
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Maria Kondili
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Micaela Polay-Espinoza
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Naira Naouar
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Arnaud Ferry
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Mégane Lemaitre
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France.,Sorbonne Université, Inserm, Phénotypage du petit animal, Paris, France
| | - Séverine Begard
- Université de Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Lille, France
| | - Morvane Colin
- Université de Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Lille, France
| | - Chloé Lamarre
- Université de Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Lille, France
| | - Hélène Tran
- Université de Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Lille, France
| | - Luc Buée
- Université de Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Lille, France
| | - Joëlle Marie
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Nicolas Sergeant
- Université de Lille, Inserm, CHU Lille, Lille Neuroscience and Cognition, Lille, France.
| | - Denis Furling
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France.
| |
Collapse
|
63
|
Espinosa-Espinosa J, González-Barriga A, López-Castel A, Artero R. Deciphering the Complex Molecular Pathogenesis of Myotonic Dystrophy Type 1 through Omics Studies. Int J Mol Sci 2022; 23:ijms23031441. [PMID: 35163365 PMCID: PMC8836095 DOI: 10.3390/ijms23031441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/15/2022] Open
Abstract
Omics studies are crucial to improve our understanding of myotonic dystrophy type 1 (DM1), the most common muscular dystrophy in adults. Employing tissue samples and cell lines derived from patients and animal models, omics approaches have revealed the myriad alterations in gene and microRNA expression, alternative splicing, 3′ polyadenylation, CpG methylation, and proteins levels, among others, that contribute to this complex multisystem disease. In addition, omics characterization of drug candidate treatment experiments provides crucial insight into the degree of therapeutic rescue and off-target effects that can be achieved. Finally, several innovative technologies such as single-cell sequencing and artificial intelligence will have a significant impact on future DM1 research.
Collapse
Affiliation(s)
- Jorge Espinosa-Espinosa
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; (J.E.-E.); (R.A.)
- Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| | - Anchel González-Barriga
- Centre de Recherche en Myologie, Inserm, Institut de Myologie, Sorbonne Université, 75013 Paris, France;
| | - Arturo López-Castel
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; (J.E.-E.); (R.A.)
- Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-963543028
| | - Rubén Artero
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; (J.E.-E.); (R.A.)
- Translational Genomics Group, Incliva Biomedical Research Institute, 46010 Valencia, Spain
| |
Collapse
|
64
|
Kajdasz A, Niewiadomska D, Sekrecki M, Sobczak K. Distribution of alternative untranslated regions within the mRNA of the CELF1 splicing factor affects its expression. Sci Rep 2022; 12:190. [PMID: 34996980 PMCID: PMC8742084 DOI: 10.1038/s41598-021-03901-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/03/2021] [Indexed: 01/09/2023] Open
Abstract
CUG-binding protein, ELAV-like Family Member 1 (CELF1) plays an important role during the development of different tissues, such as striated muscle and brain tissue. CELF1 is an RNA-binding protein that regulates RNA metabolism processes, e.g., alternative splicing, and antagonizes other RNA-binding proteins, such as Muscleblind-like proteins (MBNLs). Abnormal activity of both classes of proteins plays a crucial role in the pathogenesis of myotonic dystrophy type 1 (DM1), the most common form of muscular dystrophy in adults. In this work, we show that alternative splicing of exons forming both the 5' and 3' untranslated regions (UTRs) of CELF1 mRNA is efficiently regulated during development and tissue differentiation and is disrupted in skeletal muscles in the context of DM1. Alternative splicing of the CELF1 5'UTR leads to translation of two potential protein isoforms that differ in the lengths of their N-terminal domains. We also show that the MBNL and CELF proteins regulate the distribution of mRNA splicing isoforms with different 5'UTRs and 3'UTRs and affect the CELF1 expression by changing its sensitivity to specific microRNAs or RNA-binding proteins. Together, our findings show the existence of different mechanisms of regulation of CELF1 expression through the distribution of various 5' and 3' UTR isoforms within CELF1 mRNA.
Collapse
Affiliation(s)
- Arkadiusz Kajdasz
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Daria Niewiadomska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Michal Sekrecki
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Krzysztof Sobczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
65
|
Li M, Xu F, Liu Z, Wang C, Zhao Y, Zhu G, Shen X. TNF Signaling Acts Downstream of MiR-322/-503 in Regulating DM1 Myogenesis. Front Endocrinol (Lausanne) 2022; 13:843202. [PMID: 35464065 PMCID: PMC9021394 DOI: 10.3389/fendo.2022.843202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by the expanded CUG repeats and usually displays defective myogenesis. Although we previously reported that ectopic miR-322/-503 expression improved myogenesis in DM1 by targeting the toxic RNA, the underlying pathways regulating myogenesis that were aberrantly altered in DM1 and rescued by miR-322/-503 were still unknown. Here, we constructed DM1 and miR-322/-503 overexpressing DM1 myoblast models, which were subjected to in vitro myoblast differentiation along with their corresponding controls. Agreeing with previous findings, DM1 myoblast showed remarkable myogenesis defects, while miR-322/-503 overexpression successfully rescued the defects. By RNA sequencing, we noticed that Tumor necrosis factor (TNF) signaling was the only pathway that was significantly and oppositely altered in these two experimental sets, with it upregulated in DM1 and inhibited by miR-322/-503 overexpression. Consistently, hyperactivity of TNF signaling was detected in two DM1 mouse models. Blocking TNF signaling significantly rescued the myogenesis defects in DM1. On the contrary, TNF-α treatment abolished the rescue effect of miR-322/-503 on DM1 myogenesis. Taking together, these results implied that TNF signaling mediated the myogenesis defects in DM1 and might act downstream of miR-322/-503 in regulating the myogenesis in DM1. Moreover, the inhibition of TNF signaling benefiting myogenesis in DM1 provided us with a novel therapeutic strategy for DM1.
Collapse
Affiliation(s)
- Meng Li
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Feng Xu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Zhongxian Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Chunguang Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yun Zhao
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
- *Correspondence: Xiaopeng Shen, ; Guoping Zhu,
| | - Xiaopeng Shen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
- Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
- *Correspondence: Xiaopeng Shen, ; Guoping Zhu,
| |
Collapse
|
66
|
Cerro-Herreros E, González-Martínez I, Moreno N, Espinosa-Espinosa J, Fernández-Costa JM, Colom-Rodrigo A, Overby SJ, Seoane-Miraz D, Poyatos-García J, Vilchez JJ, López de Munain A, Varela MA, Wood MJ, Pérez-Alonso M, Llamusí B, Artero R. Preclinical characterization of antagomiR-218 as a potential treatment for myotonic dystrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:174-191. [PMID: 34513303 PMCID: PMC8413838 DOI: 10.1016/j.omtn.2021.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 07/17/2021] [Indexed: 12/13/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a rare neuromuscular disease caused by expansion of unstable CTG repeats in a non-coding region of the DMPK gene. CUG expansions in mutant DMPK transcripts sequester MBNL1 proteins in ribonuclear foci. Depletion of this protein is a primary contributor to disease symptoms such as muscle weakness and atrophy and myotonia, yet upregulation of endogenous MBNL1 levels may compensate for this sequestration. Having previously demonstrated that antisense oligonucleotides against miR-218 boost MBNL1 expression and rescue phenotypes in disease models, here we provide preclinical characterization of an antagomiR-218 molecule using the HSALR mouse model and patient-derived myotubes. In HSALR, antagomiR-218 reached 40–60 pM 2 weeks after injection, rescued molecular and functional phenotypes in a dose- and time-dependent manner, and showed a good toxicity profile after a single subcutaneous administration. In muscle tissue, antagomiR rescued the normal subcellular distribution of Mbnl1 and did not alter the proportion of myonuclei containing CUG foci. In patient-derived cells, antagomiR-218 improved defective fusion and differentiation and rescued up to 34% of the gene expression alterations found in the transcriptome of patient cells. Importantly, miR-218 was found to be upregulated in DM1 muscle biopsies, pinpointing this microRNA (miRNA) as a relevant therapeutic target.
Collapse
Affiliation(s)
- Estefanía Cerro-Herreros
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Dr. Moliner, 50, 46100 Burjasot, Valencia, Spain.,Incliva Biomedical Research Institute, Avenida Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Irene González-Martínez
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Dr. Moliner, 50, 46100 Burjasot, Valencia, Spain.,Incliva Biomedical Research Institute, Avenida Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Nerea Moreno
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Dr. Moliner, 50, 46100 Burjasot, Valencia, Spain.,Incliva Biomedical Research Institute, Avenida Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Jorge Espinosa-Espinosa
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Dr. Moliner, 50, 46100 Burjasot, Valencia, Spain.,Incliva Biomedical Research Institute, Avenida Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Juan M Fernández-Costa
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Dr. Moliner, 50, 46100 Burjasot, Valencia, Spain.,Incliva Biomedical Research Institute, Avenida Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Anna Colom-Rodrigo
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Dr. Moliner, 50, 46100 Burjasot, Valencia, Spain.,Incliva Biomedical Research Institute, Avenida Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Sarah J Overby
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Dr. Moliner, 50, 46100 Burjasot, Valencia, Spain.,Incliva Biomedical Research Institute, Avenida Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - David Seoane-Miraz
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Headley Way, OX3 9DU, Oxford, UK.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Javier Poyatos-García
- The IISLAFE Health Research Institute, Avenida Fernando Abril Martorell, 106 Torre A 7 planta, 46026 Valencia, Spain.,Neuromuscular Reference Centre ERN EURO-NMD and Neuromuscular Pathology and Ataxia Research Group, Hospital La Fe Health Research Institute, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan J Vilchez
- The IISLAFE Health Research Institute, Avenida Fernando Abril Martorell, 106 Torre A 7 planta, 46026 Valencia, Spain.,Neuromuscular Reference Centre ERN EURO-NMD and Neuromuscular Pathology and Ataxia Research Group, Hospital La Fe Health Research Institute, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Adolfo López de Munain
- Biodonostia Health Research Institute, P° Dr. Beguiristain s/n, 20014 Donostia-San Sebastián, Spain.,Hospital Universitario Donostia-Osakidetza-Departamento de Neurociencias-Universidad del Pais Vasco-CIBERNED
| | - Miguel A Varela
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Headley Way, OX3 9DU, Oxford, UK.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Matthew J Wood
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Headley Way, OX3 9DU, Oxford, UK.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Manuel Pérez-Alonso
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Dr. Moliner, 50, 46100 Burjasot, Valencia, Spain.,Incliva Biomedical Research Institute, Avenida Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Beatriz Llamusí
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Dr. Moliner, 50, 46100 Burjasot, Valencia, Spain.,Incliva Biomedical Research Institute, Avenida Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Rubén Artero
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Dr. Moliner, 50, 46100 Burjasot, Valencia, Spain.,Incliva Biomedical Research Institute, Avenida Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| |
Collapse
|
67
|
De Serres-Bérard T, Pierre M, Chahine M, Puymirat J. Deciphering the mechanisms underlying brain alterations and cognitive impairment in congenital myotonic dystrophy. Neurobiol Dis 2021; 160:105532. [PMID: 34655747 DOI: 10.1016/j.nbd.2021.105532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic and heterogeneous disorder caused by the expansion of CTG repeats in the 3' UTR of the myotonic dystrophy protein kinase (DMPK) gene. There is a congenital form (CDM1) of the disease characterized by severe hypotonia, respiratory insufficiency as well as developmental delays and intellectual disabilities. CDM1 infants manifest important brain structure abnormalities present from birth while, in contrast, older patients with adult-onset DM1 often present neurodegenerative features and milder progressive cognitive deficits. Promising therapies targeting central molecular mechanisms contributing to the symptoms of adult-onset DM1 are currently in development, but their relevance for treating cognitive impairment in CDM1, which seems to be a partially distinct neurodevelopmental disorder, remain to be elucidated. Here, we provide an update on the clinical presentation of CDM1 and review recent in vitro and in vivo models that have provided meaningful insights on its consequences in development, with a particular focus on the brain. We discuss how enhanced toxic gain-of-function of the mutated DMPK transcripts with larger CUG repeats and the resulting dysregulation of RNA-binding proteins may affect the developing cortex in utero. Because the methylation of CpG islets flanking the trinucleotide repeats has emerged as a strong biomarker of CDM1, we highlight the need to investigate the tissue-specific impacts of these chromatin modifications in the brain. Finally, we outline promising potential therapeutic treatments for CDM1 and propose future in vitro and in vivo models with great potential to shed light on this disease.
Collapse
Affiliation(s)
- Thiéry De Serres-Bérard
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, Canada; CERVO Brain Research Center, Institut universitaire en santé mentale de Québec, Quebec City, Canada
| | - Marion Pierre
- CERVO Brain Research Center, Institut universitaire en santé mentale de Québec, Quebec City, Canada
| | - Mohamed Chahine
- CERVO Brain Research Center, Institut universitaire en santé mentale de Québec, Quebec City, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada.
| | - Jack Puymirat
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| |
Collapse
|
68
|
Schröder C, Horsthemke B, Depienne C. GC-rich repeat expansions: associated disorders and mechanisms. MED GENET-BERLIN 2021; 33:325-335. [PMID: 38835438 PMCID: PMC11006399 DOI: 10.1515/medgen-2021-2099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/12/2021] [Indexed: 06/06/2024]
Abstract
Noncoding repeat expansions are a well-known cause of genetic disorders mainly affecting the central nervous system. Missed by most standard technologies used in routine diagnosis, pathogenic noncoding repeat expansions have to be searched for using specific techniques such as repeat-primed PCR or specific bioinformatics tools applied to genome data, such as ExpansionHunter. In this review, we focus on GC-rich repeat expansions, which represent at least one third of all noncoding repeat expansions described so far. GC-rich expansions are mainly located in regulatory regions (promoter, 5' untranslated region, first intron) of genes and can lead to either a toxic gain-of-function mediated by RNA toxicity and/or repeat-associated non-AUG (RAN) translation, or a loss-of-function of the associated gene, depending on their size and their methylation status. We herein review the clinical and molecular characteristics of disorders associated with these difficult-to-detect expansions.
Collapse
Affiliation(s)
- Christopher Schröder
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernhard Horsthemke
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
69
|
Hanoun S, Sun Y, Ebrahimi F, Ghasemi M. Speech and language abnormalities in myotonic dystrophy: An overview. J Clin Neurosci 2021; 96:212-220. [PMID: 34789418 DOI: 10.1016/j.jocn.2021.10.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/30/2021] [Accepted: 10/24/2021] [Indexed: 12/26/2022]
Abstract
Myotonic dystrophy (DM) is an autosomal dominant neuromuscular and multisystem disease that is divided into two types, DM1 and DM2, according to mutations in DMPK and CNBP genes, respectively. DM patients may manifest with various speech and language abnormalities. In this review, we had an overview on speech and language abnormalities in both DM1 and DM2. Our literature search highlights that irrespective of age, all DM patients (i.e. congenital, juvenile, and adult onset DM1 as well as DM2 patients) exhibit various degrees of speech impairments. These problems are related to both cognitive dysfunction (e.g. difficulties in written and spoken language) and bulbar/vocal muscles weakness and myotonia. DM1 adult patients have also a significant decrease in speech rate and performance due to myotonia and flaccid dysarthria, which can improve with warming up. Weakness, tiredness, and hypotonia of oral and velopharyngeal muscles can cause flaccid dysarthria. Hearing impairment also plays a role in affecting speech recognition in DM2. A better understanding of different aspects of speech and language abnormalities in DM patients may provide better characterization of these abnormalities as markers that can be potentially used as outcome measures in natural history studies or clinical trials.
Collapse
Affiliation(s)
- Sakhaa Hanoun
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Medicine, Al-Quds University, Jerusalem, Palestine
| | - Yuyao Sun
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Farzad Ebrahimi
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL, USA; Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
70
|
Malik I, Tseng Y, Wright SE, Zheng K, Ramaiyer P, Green KM, Todd PK. SRSF protein kinase 1 modulates RAN translation and suppresses CGG repeat toxicity. EMBO Mol Med 2021; 13:e14163. [PMID: 34542927 PMCID: PMC8573603 DOI: 10.15252/emmm.202114163] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 11/20/2022] Open
Abstract
Transcribed CGG repeat expansions cause neurodegeneration in Fragile X-associated tremor/ataxia syndrome (FXTAS). CGG repeat RNAs sequester RNA-binding proteins (RBPs) into nuclear foci and undergo repeat-associated non-AUG (RAN) translation into toxic peptides. To identify proteins involved in these processes, we employed a CGG repeat RNA-tagging system to capture repeat-associated RBPs by mass spectrometry in mammalian cells. We identified several SR (serine/arginine-rich) proteins that interact selectively with CGG repeats basally and under cellular stress. These proteins modify toxicity in a Drosophila model of FXTAS. Pharmacologic inhibition of serine/arginine protein kinases (SRPKs), which alter SRSF protein phosphorylation, localization, and activity, directly inhibits RAN translation of CGG and GGGGCC repeats (associated with C9orf72 ALS/FTD) and triggers repeat RNA retention in the nucleus. Lowering SRPK expression suppressed toxicity in both FXTAS and C9orf72 ALS/FTD model flies, and SRPK inhibitors suppressed CGG repeat toxicity in rodent neurons. Together, these findings demonstrate roles for CGG repeat RNA binding proteins in RAN translation and repeat toxicity and support further evaluation of SRPK inhibitors in modulating RAN translation associated with repeat expansion disorders.
Collapse
Affiliation(s)
- Indranil Malik
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | - Yi‐Ju Tseng
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
- Cellular and Molecular Biology Graduate ProgramUniversity of MichiganAnn ArborMIUSA
| | - Shannon E Wright
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
- Neuroscience Graduate ProgramUniversity of MichiganAnn ArborMIUSA
| | - Kristina Zheng
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | | | - Katelyn M Green
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
- Cellular and Molecular Biology Graduate ProgramUniversity of MichiganAnn ArborMIUSA
| | - Peter K Todd
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
- Ann Arbor Veterans Administration HealthcareAnn ArborMIUSA
| |
Collapse
|
71
|
Cardiac Pathology in Myotonic Dystrophy Type 1. Int J Mol Sci 2021; 22:ijms222111874. [PMID: 34769305 PMCID: PMC8584352 DOI: 10.3390/ijms222111874] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/08/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1), the most common muscular dystrophy affecting adults and children, is a multi-systemic disorder affecting skeletal, cardiac, and smooth muscles as well as neurologic, endocrine and other systems. This review is on the cardiac pathology associated with DM1. The heart is one of the primary organs affected in DM1. Cardiac conduction defects are seen in up to 75% of adult DM1 cases and sudden death due to cardiac arrhythmias is one of the most common causes of death in DM1. Unfortunately, the pathogenesis of cardiac manifestations in DM1 is ill defined. In this review, we provide an overview of the history of cardiac studies in DM1, clinical manifestations, and pathology of the heart in DM1. This is followed by a discussion of emerging data about the utility of cardiac magnetic resonance imaging (CMR) as a biomarker for cardiac disease in DM1, and ends with a discussion on models of cardiac RNA toxicity in DM1 and recent clinical guidelines for cardiologic management of individuals with DM1.
Collapse
|
72
|
Microtubule-based transport is essential to distribute RNA and nascent protein in skeletal muscle. Nat Commun 2021; 12:6079. [PMID: 34707124 PMCID: PMC8551216 DOI: 10.1038/s41467-021-26383-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022] Open
Abstract
While the importance of RNA localization in highly differentiated cells is well appreciated, basic principles of RNA localization in skeletal muscle remain poorly characterized. Here, we develop a method to detect and quantify single molecule RNA localization patterns in skeletal myofibers, and uncover a critical role for directed transport of RNPs in muscle. We find that RNAs localize and are translated along sarcomere Z-disks, dispersing tens of microns from progenitor nuclei, regardless of encoded protein function. We find that directed transport along the lattice-like microtubule network of myofibers becomes essential to achieve this localization pattern as muscle development progresses; disruption of this network leads to extreme accumulation of RNPs and nascent protein around myonuclei. Our observations suggest that global active RNP transport may be required to distribute RNAs in highly differentiated cells and reveal fundamental mechanisms of gene regulation, with consequences for myopathies caused by perturbations to RNPs or microtubules.
Collapse
|
73
|
Shi DL, Grifone R. RNA-Binding Proteins in the Post-transcriptional Control of Skeletal Muscle Development, Regeneration and Disease. Front Cell Dev Biol 2021; 9:738978. [PMID: 34616743 PMCID: PMC8488162 DOI: 10.3389/fcell.2021.738978] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
Embryonic myogenesis is a temporally and spatially regulated process that generates skeletal muscle of the trunk and limbs. During this process, mononucleated myoblasts derived from myogenic progenitor cells within the somites undergo proliferation, migration and differentiation to elongate and fuse into multinucleated functional myofibers. Skeletal muscle is the most abundant tissue of the body and has the remarkable ability to self-repair by re-activating the myogenic program in muscle stem cells, known as satellite cells. Post-transcriptional regulation of gene expression mediated by RNA-binding proteins is critically required for muscle development during embryogenesis and for muscle homeostasis in the adult. Differential subcellular localization and activity of RNA-binding proteins orchestrates target gene expression at multiple levels to regulate different steps of myogenesis. Dysfunctions of these post-transcriptional regulators impair muscle development and homeostasis, but also cause defects in motor neurons or the neuromuscular junction, resulting in muscle degeneration and neuromuscular disease. Many RNA-binding proteins, such as members of the muscle blind-like (MBNL) and CUG-BP and ETR-3-like factors (CELF) families, display both overlapping and distinct targets in muscle cells. Thus they function either cooperatively or antagonistically to coordinate myoblast proliferation and differentiation. Evidence is accumulating that the dynamic interplay of their regulatory activity may control the progression of myogenic program as well as stem cell quiescence and activation. Moreover, the role of RNA-binding proteins that regulate post-transcriptional modification in the myogenic program is far less understood as compared with transcription factors involved in myogenic specification and differentiation. Here we review past achievements and recent advances in understanding the functions of RNA-binding proteins during skeletal muscle development, regeneration and disease, with the aim to identify the fundamental questions that are still open for further investigations.
Collapse
Affiliation(s)
- De-Li Shi
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Developmental Biology Laboratory, CNRS-UMR 7622, Institut de Biologie de Paris-Seine, Sorbonne University, Paris, France
| | - Raphaëlle Grifone
- Developmental Biology Laboratory, CNRS-UMR 7622, Institut de Biologie de Paris-Seine, Sorbonne University, Paris, France
| |
Collapse
|
74
|
Matilainen O, Ribeiro ARS, Verbeeren J, Cetinbas M, Sood H, Sadreyev RI, Garcia SMDA. Loss of muscleblind splicing factor shortens Caenorhabditis elegans lifespan by reducing the activity of p38 MAPK/PMK-1 and transcription factors ATF-7 and Nrf/SKN-1. Genetics 2021; 219:6325509. [PMID: 34849877 PMCID: PMC8633093 DOI: 10.1093/genetics/iyab114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022] Open
Abstract
Muscleblind-like splicing regulators (MBNLs) are RNA-binding factors that have an important role in developmental processes. Dysfunction of these factors is a key contributor of different neuromuscular degenerative disorders, including Myotonic Dystrophy type 1 (DM1). Since DM1 is a multisystemic disease characterized by symptoms resembling accelerated aging, we asked which cellular processes do MBNLs regulate that make them necessary for normal lifespan. By utilizing the model organism Caenorhabditis elegans, we found that loss of MBL-1 (the sole ortholog of mammalian MBNLs), which is known to be required for normal lifespan, shortens lifespan by decreasing the activity of p38 MAPK/PMK-1 as well as the function of transcription factors ATF-7 and SKN-1. Furthermore, we show that mitochondrial stress caused by the knockdown of mitochondrial electron transport chain components promotes the longevity of mbl-1 mutants in a partially PMK-1-dependent manner. Together, the data establish a mechanism of how DM1-associated loss of muscleblind affects lifespan. Furthermore, this study suggests that mitochondrial stress could alleviate symptoms caused by the dysfunction of muscleblind splicing factor, creating a potential approach to investigate for therapy.
Collapse
Affiliation(s)
- Olli Matilainen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00790, Finland
| | - Ana R S Ribeiro
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00790, Finland
| | - Jens Verbeeren
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00790, Finland
| | - Murat Cetinbas
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Heini Sood
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00790, Finland
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Susana M D A Garcia
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki 00790, Finland
| |
Collapse
|
75
|
Shen X, Liu Z, Wang C, Xu F, Zhang J, Li M, Lei Y, Wang A, Bi C, Zhu G. Inhibition of Postn Rescues Myogenesis Defects in Myotonic Dystrophy Type 1 Myoblast Model. Front Cell Dev Biol 2021; 9:710112. [PMID: 34490258 PMCID: PMC8417118 DOI: 10.3389/fcell.2021.710112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/30/2021] [Indexed: 12/27/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an inherited neuromuscular disease caused by expanded CTG repeats in the 3' untranslated region (3'UTR) of the DMPK gene. The myogenesis process is defective in DM1, which is closely associated with progressive muscle weakness and wasting. Despite many proposed explanations for the myogenesis defects in DM1, the underlying mechanism and the involvement of the extracellular microenvironment remained unknown. Here, we constructed a DM1 myoblast cell model and reproduced the myogenesis defects. By RNA sequencing (RNA-seq), we discovered that periostin (Postn) was the most significantly upregulated gene in DM1 myogenesis compared with normal controls. This difference in Postn was confirmed by real-time quantitative PCR (RT-qPCR) and western blotting. Moreover, Postn was found to be significantly upregulated in skeletal muscle and myoblasts of DM1 patients. Next, we knocked down Postn using a short hairpin RNA (shRNA) in DM1 myoblast cells and found that the myogenesis defects in the DM1 group were successfully rescued, as evidenced by increases in the myotube area, the fusion index, and the expression of myogenesis regulatory genes. Similarly, Postn knockdown in normal myoblast cells enhanced myogenesis. As POSTN is a secreted protein, we treated the DM1 myoblast cells with a POSTN-neutralizing antibody and found that DM1 myogenesis defects were successfully rescued by POSTN neutralization. We also tested the myogenic ability of myoblasts in the skeletal muscle injury mouse model and found that Postn knockdown improved the myogenic ability of DM1 myoblasts. The activity of the TGF-β/Smad3 pathway was upregulated during DM1 myogenesis but repressed when inhibiting Postn with a Postn shRNA or a POSTN-neutralizing antibody, which suggested that the TGF-β/Smad3 pathway might mediate the function of Postn in DM1 myogenesis. These results suggest that Postn is a potential therapeutical target for the treatment of myogenesis defects in DM1.
Collapse
Affiliation(s)
- Xiaopeng Shen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Zhongxian Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Chunguang Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Feng Xu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Jingyi Zhang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Meng Li
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yang Lei
- Wuhu Center for Disease Control and Prevention, Wuhu, China
| | - Ao Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Chao Bi
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China.,Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.,Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, China
| |
Collapse
|
76
|
Liguori F, Amadio S, Volonté C. Fly for ALS: Drosophila modeling on the route to amyotrophic lateral sclerosis modifiers. Cell Mol Life Sci 2021; 78:6143-6160. [PMID: 34322715 PMCID: PMC11072332 DOI: 10.1007/s00018-021-03905-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare, devastating disease, causing movement impairment, respiratory failure and ultimate death. A plethora of genetic, cellular and molecular mechanisms are involved in ALS signature, although the initiating causes and progressive pathological events are far from being understood. Drosophila research has produced seminal discoveries for more than a century and has been successfully used in the past 25 years to untangle the process of ALS pathogenesis, and recognize potential markers and novel strategies for therapeutic solutions. This review will provide an updated view of several ALS modifiers validated in C9ORF72, SOD1, FUS, TDP-43 and Ataxin-2 Drosophila models. We will discuss basic and preclinical findings, illustrating recent developments and novel breakthroughs, also depicting unsettled challenges and limitations in the Drosophila-ALS field. We intend to stimulate a renewed debate on Drosophila as a screening route to identify more successful disease modifiers and neuroprotective agents.
Collapse
Affiliation(s)
- Francesco Liguori
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy
| | - Susanna Amadio
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy
| | - Cinzia Volonté
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy.
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (IASI-CNR), Via dei Taurini 19, 00185, Rome, Italy.
| |
Collapse
|
77
|
Malik I, Kelley CP, Wang ET, Todd PK. Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat Rev Mol Cell Biol 2021; 22:589-607. [PMID: 34140671 PMCID: PMC9612635 DOI: 10.1038/s41580-021-00382-6] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 02/05/2023]
Abstract
The human genome contains over one million short tandem repeats. Expansion of a subset of these repeat tracts underlies over fifty human disorders, including common genetic causes of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (C9orf72), polyglutamine-associated ataxias and Huntington disease, myotonic dystrophy, and intellectual disability disorders such as Fragile X syndrome. In this Review, we discuss the four major mechanisms by which expansion of short tandem repeats causes disease: loss of function through transcription repression, RNA-mediated gain of function through gelation and sequestration of RNA-binding proteins, gain of function of canonically translated repeat-harbouring proteins, and repeat-associated non-AUG translation of toxic repeat peptides. Somatic repeat instability amplifies these mechanisms and influences both disease age of onset and tissue specificity of pathogenic features. We focus on the crosstalk between these disease mechanisms, and argue that they often synergize to drive pathogenesis. We also discuss the emerging native functions of repeat elements and how their dynamics might contribute to disease at a larger scale than currently appreciated. Lastly, we propose that lynchpins tying these disease mechanisms and native functions together offer promising therapeutic targets with potential shared applications across this class of human disorders.
Collapse
Affiliation(s)
- Indranil Malik
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Chase P Kelley
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
- Genetics and Genomics Graduate Program, University of Florida, Gainesville, FL, USA
| | - Eric T Wang
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, Genetics Institute, University of Florida, Gainesville, FL, USA.
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
78
|
Rosario R, Anderson R. The molecular mechanisms that underlie fragile X-associated premature ovarian insufficiency: is it RNA or protein based? Mol Hum Reprod 2021; 26:727-737. [PMID: 32777047 PMCID: PMC7566375 DOI: 10.1093/molehr/gaaa057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/03/2020] [Indexed: 01/30/2023] Open
Abstract
The FMR1 gene contains a polymorphic CGG trinucleotide sequence within its 5′ untranslated region. More than 200 CGG repeats (termed a full mutation) underlie the severe neurodevelopmental condition fragile X syndrome, while repeat lengths that range between 55 and 200 (termed a premutation) result in the conditions fragile X-associated tremor/ataxia syndrome and fragile X-associated premature ovarian insufficiency (FXPOI). Premutations in FMR1 are the most common monogenic cause of premature ovarian insufficiency and are routinely tested for clinically; however, the mechanisms that contribute to the pathology are still largely unclear. As studies in this field move towards unravelling the molecular mechanisms involved in FXPOI aetiology, we review the evidence surrounding the two main theories which describe an RNA toxic gain-of-function mechanism, resulting in the loss of function of RNA-binding proteins, or a protein-based mechanism, where repeat-associated non-AUG translation leads to the formation of an abnormal polyglycine containing protein, called FMRpolyG.
Collapse
Affiliation(s)
- Roseanne Rosario
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Richard Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
79
|
Mérien A, Tahraoui-Bories J, Cailleret M, Dupont JB, Leteur C, Polentes J, Carteron A, Polvèche H, Concordet JP, Pinset C, Jarrige M, Furling D, Martinat C. CRISPR gene editing in pluripotent stem cells reveals the function of MBNL proteins during human in vitro myogenesis. Hum Mol Genet 2021; 31:41-56. [PMID: 34312665 PMCID: PMC8682758 DOI: 10.1093/hmg/ddab218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/10/2021] [Accepted: 07/21/2021] [Indexed: 11/14/2022] Open
Abstract
Alternative splicing has emerged as a fundamental mechanism for the spatiotemporal control of development. A better understanding of how this mechanism is regulated has the potential not only to elucidate fundamental biological principles, but also to decipher pathological mechanisms implicated in diseases where normal splicing networks are misregulated. Here, we took advantage of human pluripotent stem cells to decipher during human myogenesis the role of muscleblind-like (MBNL) proteins, a family of tissue-specific splicing regulators whose loss of function is associated with myotonic dystrophy type 1 (DM1), an inherited neuromuscular disease. Thanks to the CRISPR/Cas9 technology, we generated human-induced pluripotent stem cells (hiPSCs) depleted in MBNL proteins and evaluated the consequences of their losses on the generation of skeletal muscle cells. Our results suggested that MBNL proteins are required for the late myogenic maturation. In addition, loss of MBNL1 and MBNL2 recapitulated the main features of DM1 observed in hiPSC-derived skeletal muscle cells. Comparative transcriptomic analyses also revealed the muscle-related processes regulated by these proteins that are commonly misregulated in DM1. Together, our study reveals the temporal requirement of MBNL proteins in human myogenesis and should facilitate the identification of new therapeutic strategies capable to cope with the loss of function of these MBNL proteins.
Collapse
Affiliation(s)
- Antoine Mérien
- INSERM/UEPS UMR 861, Paris Saclay University, I-STEM, 91100 Corbeil-Essonnes, France
| | - Julie Tahraoui-Bories
- INSERM/UEPS UMR 861, Paris Saclay University, I-STEM, 91100 Corbeil-Essonnes, France
| | - Michel Cailleret
- INSERM/UEPS UMR 861, Paris Saclay University, I-STEM, 91100 Corbeil-Essonnes, France
| | - Jean-Baptiste Dupont
- INSERM/UEPS UMR 861, Paris Saclay University, I-STEM, 91100 Corbeil-Essonnes, France
| | | | | | | | | | | | | | | | - Denis Furling
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de recherche en myologie, Paris, France
| | - Cécile Martinat
- INSERM/UEPS UMR 861, Paris Saclay University, I-STEM, 91100 Corbeil-Essonnes, France
| |
Collapse
|
80
|
Hinman MN, Richardson JI, Sockol RA, Aronson ED, Stednitz SJ, Murray KN, Berglund JA, Guillemin K. Zebrafish mbnl mutants model physical and molecular phenotypes of myotonic dystrophy. Dis Model Mech 2021; 14:dmm045773. [PMID: 34125183 PMCID: PMC8246264 DOI: 10.1242/dmm.045773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
The muscleblind RNA-binding proteins (MBNL1, MBNL2 and MBNL3) are highly conserved across vertebrates and are important regulators of RNA alternative splicing. Loss of MBNL protein function through sequestration by CUG or CCUG RNA repeats is largely responsible for the phenotypes of the human genetic disorder myotonic dystrophy (DM). We generated the first stable zebrafish (Danio rerio) models of DM-associated MBNL loss of function through mutation of the three zebrafish mbnl genes. In contrast to mouse models, zebrafish double and triple homozygous mbnl mutants were viable to adulthood. Zebrafish mbnl mutants displayed disease-relevant physical phenotypes including decreased body size and impaired movement. They also exhibited widespread alternative splicing changes, including the misregulation of many DM-relevant exons. Physical and molecular phenotypes were more severe in compound mbnl mutants than in single mbnl mutants, suggesting partially redundant functions of Mbnl proteins. The high fecundity and larval optical transparency of this complete series of zebrafish mbnl mutants will make them useful for studying DM-related phenotypes and how individual Mbnl proteins contribute to them, and for testing potential therapeutics. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Melissa N. Hinman
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Jared I. Richardson
- RNA Institute, State University of New York at Albany, Albany, NY 12222, USA
- Department of Biochemistry and Molecular Biology, Center for NeuroGenetics, University of Florida, Gainesville, FL 32611, USA
| | - Rose A. Sockol
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Eliza D. Aronson
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Sarah J. Stednitz
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Katrina N. Murray
- Zebrafish International Resource Center, University of Oregon, Eugene, OR 97403, USA
| | - J. Andrew Berglund
- RNA Institute, State University of New York at Albany, Albany, NY 12222, USA
- Department of Biochemistry and Molecular Biology, Center for NeuroGenetics, University of Florida, Gainesville, FL 32611, USA
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
- Humans and the Microbiome Program, CIFAR, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
81
|
Depienne C, Mandel JL. 30 years of repeat expansion disorders: What have we learned and what are the remaining challenges? Am J Hum Genet 2021; 108:764-785. [PMID: 33811808 PMCID: PMC8205997 DOI: 10.1016/j.ajhg.2021.03.011] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Tandem repeats represent one of the most abundant class of variations in human genomes, which are polymorphic by nature and become highly unstable in a length-dependent manner. The expansion of repeat length across generations is a well-established process that results in human disorders mainly affecting the central nervous system. At least 50 disorders associated with expansion loci have been described to date, with half recognized only in the last ten years, as prior methodological difficulties limited their identification. These limitations still apply to the current widely used molecular diagnostic methods (exome or gene panels) and thus result in missed diagnosis detrimental to affected individuals and their families, especially for disorders that are very rare and/or clinically not recognizable. Most of these disorders have been identified through family-driven approaches and many others likely remain to be identified. The recent development of long-read technologies provides a unique opportunity to systematically investigate the contribution of tandem repeats and repeat expansions to the genetic architecture of human disorders. In this review, we summarize the current and most recent knowledge about the genetics of repeat expansion disorders and the diversity of their pathophysiological mechanisms and outline the perspectives of developing personalized treatments in the future.
Collapse
Affiliation(s)
- Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, UMR S 1127, Inserm U1127, CNRS UMR 7225, 75013 Paris, France.
| | - Jean-Louis Mandel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch 67400, France; Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch 67400, France; Université de Strasbourg, Illkirch 67400, France; USIAS University of Strasbourg Institute of Advanced study, 67000 Strasbourg, France.
| |
Collapse
|
82
|
González-Barriga A, Lallemant L, Dincã DM, Braz SO, Polvèche H, Magneron P, Pionneau C, Huguet-Lachon A, Claude JB, Chhuon C, Guerrera IC, Bourgeois CF, Auboeuf D, Gourdon G, Gomes-Pereira M. Integrative Cell Type-Specific Multi-Omics Approaches Reveal Impaired Programs of Glial Cell Differentiation in Mouse Culture Models of DM1. Front Cell Neurosci 2021; 15:662035. [PMID: 34025359 PMCID: PMC8136287 DOI: 10.3389/fncel.2021.662035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/22/2021] [Indexed: 12/31/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by a non-coding CTG repeat expansion in the DMPK gene. This mutation generates a toxic CUG RNA that interferes with the RNA processing of target genes in multiple tissues. Despite debilitating neurological impairment, the pathophysiological cascade of molecular and cellular events in the central nervous system (CNS) has been less extensively characterized than the molecular pathogenesis of muscle/cardiac dysfunction. Particularly, the contribution of different cell types to DM1 brain disease is not clearly understood. We first used transcriptomics to compare the impact of expanded CUG RNA on the transcriptome of primary neurons, astrocytes and oligodendrocytes derived from DMSXL mice, a transgenic model of DM1. RNA sequencing revealed more frequent expression and splicing changes in glia than neuronal cells. In particular, primary DMSXL oligodendrocytes showed the highest number of transcripts differentially expressed, while DMSXL astrocytes displayed the most severe splicing dysregulation. Interestingly, the expression and splicing defects of DMSXL glia recreated molecular signatures suggestive of impaired cell differentiation: while DMSXL oligodendrocytes failed to upregulate a subset of genes that are naturally activated during the oligodendroglia differentiation, a significant proportion of missplicing events in DMSXL oligodendrocytes and astrocytes increased the expression of RNA isoforms typical of precursor cell stages. Together these data suggest that expanded CUG RNA in glial cells affects preferentially differentiation-regulated molecular events. This hypothesis was corroborated by gene ontology (GO) analyses, which revealed an enrichment for biological processes and cellular components with critical roles during cell differentiation. Finally, we combined exon ontology with phosphoproteomics and cell imaging to explore the functional impact of CUG-associated spliceopathy on downstream protein metabolism. Changes in phosphorylation, protein isoform expression and intracellular localization in DMSXL astrocytes demonstrate the far-reaching impact of the DM1 repeat expansion on cell metabolism. Our multi-omics approaches provide insight into the mechanisms of CUG RNA toxicity in the CNS with cell type resolution, and support the priority for future research on non-neuronal mechanisms and proteomic changes in DM1 brain disease.
Collapse
Affiliation(s)
- Anchel González-Barriga
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Louison Lallemant
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Diana M Dincã
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Sandra O Braz
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France.,Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Hélène Polvèche
- Laboratory of Biology and Modeling of the Cell, Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1210, Lyon, France.,Inserm/UEVE UMR 861, Université Paris Saclay I-STEM, Corbeil-Essonnes, France
| | - Paul Magneron
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Cédric Pionneau
- Sorbonne Université, Inserm, UMS PASS, Plateforme Post-génomique de la Pitié Salpêtrière (P3S), Paris, France
| | - Aline Huguet-Lachon
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Jean-Baptiste Claude
- Laboratory of Biology and Modeling of the Cell, Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1210, Lyon, France
| | - Cerina Chhuon
- Proteomics Platform Necker, Université de Paris - Structure Fédérative de Recherche Necker, Inserm US24/CNRS UMS 3633, Paris, France
| | - Ida Chiara Guerrera
- Proteomics Platform Necker, Université de Paris - Structure Fédérative de Recherche Necker, Inserm US24/CNRS UMS 3633, Paris, France
| | - Cyril F Bourgeois
- Laboratory of Biology and Modeling of the Cell, Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1210, Lyon, France
| | - Didier Auboeuf
- Laboratory of Biology and Modeling of the Cell, Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1210, Lyon, France
| | - Geneviève Gourdon
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Mário Gomes-Pereira
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| |
Collapse
|
83
|
Alexander MS, Hightower RM, Reid AL, Bennett AH, Iyer L, Slonim DK, Saha M, Kawahara G, Kunkel LM, Kopin AS, Gupta VA, Kang PB, Draper I. hnRNP L is essential for myogenic differentiation and modulates myotonic dystrophy pathologies. Muscle Nerve 2021; 63:928-940. [PMID: 33651408 DOI: 10.1002/mus.27216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION RNA-binding proteins (RBPs) play an important role in skeletal muscle development and disease by regulating RNA splicing. In myotonic dystrophy type 1 (DM1), the RBP MBNL1 (muscleblind-like) is sequestered by toxic CUG repeats, leading to missplicing of MBNL1 targets. Mounting evidence from the literature has implicated other factors in the pathogenesis of DM1. Herein we sought to evaluate the functional role of the splicing factor hnRNP L in normal and DM1 muscle cells. METHODS Co-immunoprecipitation assays using hnRNPL and MBNL1 expression constructs and splicing profiling in normal and DM1 muscle cell lines were performed. Zebrafish morpholinos targeting hnrpl and hnrnpl2 were injected into one-cell zebrafish for developmental and muscle analysis. In human myoblasts downregulation of hnRNP L was achieved with shRNAi. Ascochlorin administration to DM1 myoblasts was performed and expression of the CUG repeats, DM1 splicing biomarkers, and hnRNP L expression levels were evaluated. RESULTS Using DM1 patient myoblast cell lines we observed the formation of abnormal hnRNP L nuclear foci within and outside the expanded CUG repeats, suggesting a role for this factor in DM1 pathology. We showed that the antiviral and antitumorigenic isoprenoid compound ascochlorin increased MBNL1 and hnRNP L expression levels. Drug treatment of DM1 muscle cells with ascochlorin partially rescued missplicing of established early biomarkers of DM1 and improved the defective myotube formation displayed by DM1 muscle cells. DISCUSSION Together, these studies revealed that hnRNP L can modulate DM1 pathologies and is a potential therapeutic target.
Collapse
Affiliation(s)
- Matthew S Alexander
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, Alabama, USA.,Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rylie M Hightower
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, Alabama, USA.,Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Andrea L Reid
- Division of Neurology, Department of Pediatrics, University of Alabama at Birmingham and Children's of Alabama, Birmingham, Alabama, USA
| | - Alexis H Bennett
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lakshmanan Iyer
- Department of Neuroscience, Tufts University, Boston, Massachusetts, USA
| | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, Massachusetts, USA
| | - Madhurima Saha
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Genri Kawahara
- Department of Pathophysiology, Tokyo Medical University, Tokyo, Japan
| | - Louis M Kunkel
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Alan S Kopin
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| | - Vandana A Gupta
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Peter B Kang
- Division of Pediatric Neurology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida, USA.,Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA.,Department of Neurology, University of Florida College of Medicine, Gainesville, Florida, USA.,Genetics Institute and Myology Institute, University of Florida, Gainesville, Florida, USA.,Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, Minnesota, USA.,Neurology Department, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Isabelle Draper
- Department of Medicine, Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
84
|
Tanner MK, Tang Z, Thornton CA. Targeted splice sequencing reveals RNA toxicity and therapeutic response in myotonic dystrophy. Nucleic Acids Res 2021; 49:2240-2254. [PMID: 33503262 PMCID: PMC7913682 DOI: 10.1093/nar/gkab022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/03/2021] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Biomarker-driven trials hold promise for therapeutic development in chronic diseases, such as muscular dystrophy. Myotonic dystrophy type 1 (DM1) involves RNA toxicity, where transcripts containing expanded CUG-repeats (CUGexp) accumulate in nuclear foci and sequester splicing factors in the Muscleblind-like (Mbnl) family. Oligonucleotide therapies to mitigate RNA toxicity have emerged but reliable measures of target engagement are needed. Here we examined muscle transcriptomes in mouse models of DM1 and found that CUGexp expression or Mbnl gene deletion cause similar dysregulation of alternative splicing. We selected 35 dysregulated exons for further study by targeted RNA sequencing. Across a spectrum of mouse models, the individual splice events and a composite index derived from all events showed a graded response to decrements of Mbnl or increments of CUGexp. Antisense oligonucleotides caused prompt reduction of CUGexp RNA and parallel correction of the splicing index, followed by subsequent elimination of myotonia. These results suggest that targeted splice sequencing may provide a sensitive and reliable way to assess therapeutic impact in DM1.
Collapse
Affiliation(s)
- Matthew K Tanner
- Medical Scientist Training Program, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Zhenzhi Tang
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Charles A Thornton
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
85
|
Li J, Yang T, Tang H, Sha Z, Chen R, Chen L, Yu Y, Rowe GC, Das S, Xiao J. Inhibition of lncRNA MAAT Controls Multiple Types of Muscle Atrophy by cis- and trans-Regulatory Actions. Mol Ther 2020; 29:1102-1119. [PMID: 33279721 DOI: 10.1016/j.ymthe.2020.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/09/2020] [Accepted: 11/29/2020] [Indexed: 12/18/2022] Open
Abstract
Muscle atrophy is associated with negative outcomes in a variety of diseases. Identification of a common therapeutic target would address a significant unmet clinical need. Here, we identify a long non-coding RNA (lncRNA) (muscle-atrophy-associated transcript, lncMAAT) as a common regulator of skeletal muscle atrophy. lncMAAT is downregulated in multiple types of muscle-atrophy models both in vivo (denervation, Angiotensin II [AngII], fasting, immobilization, and aging-induced muscle atrophy) and in vitro (AngII, H2O2, and tumor necrosis factor alpha [TNF-α]-induced muscle atrophy). Gain- and loss-of-function analysis both in vitro and in vivo reveals that downregulation of lncMAAT is sufficient to induce muscle atrophy, while overexpression of lncMAAT can ameliorate multiple types of muscle atrophy. Mechanistically, lncMAAT negatively regulates the transcription of miR-29b through SOX6 by a trans-regulatory module and increases the expression of the neighboring gene Mbnl1 by a cis-regulatory module. Therefore, overexpression of lncMAAT may represent a promising therapy for muscle atrophy induced by different stimuli.
Collapse
Affiliation(s)
- Jin Li
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China
| | - Tingting Yang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Haifei Tang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zhao Sha
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Rui Chen
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Lei Chen
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Yan Yu
- Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Glenn C Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02214, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai 200444, China; School of Medicine, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
86
|
Castro AF, Loureiro JR, Bessa J, Silveira I. Antisense Transcription across Nucleotide Repeat Expansions in Neurodegenerative and Neuromuscular Diseases: Progress and Mysteries. Genes (Basel) 2020; 11:E1418. [PMID: 33261024 PMCID: PMC7760973 DOI: 10.3390/genes11121418] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Unstable repeat expansions and insertions cause more than 30 neurodegenerative and neuromuscular diseases. Remarkably, bidirectional transcription of repeat expansions has been identified in at least 14 of these diseases. More remarkably, a growing number of studies has been showing that both sense and antisense repeat RNAs are able to dysregulate important cellular pathways, contributing together to the observed clinical phenotype. Notably, antisense repeat RNAs from spinocerebellar ataxia type 7, myotonic dystrophy type 1, Huntington's disease and frontotemporal dementia/amyotrophic lateral sclerosis associated genes have been implicated in transcriptional regulation of sense gene expression, acting either at a transcriptional or posttranscriptional level. The recent evidence that antisense repeat RNAs could modulate gene expression broadens our understanding of the pathogenic pathways and adds more complexity to the development of therapeutic strategies for these disorders. In this review, we cover the amazing progress made in the understanding of the pathogenic mechanisms associated with repeat expansion neurodegenerative and neuromuscular diseases with a focus on the impact of antisense repeat transcription in the development of efficient therapies.
Collapse
Affiliation(s)
- Ana F. Castro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
- ICBAS, Universidade do Porto, 4050-313 Porto, Portugal
| | - Joana R. Loureiro
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
| | - José Bessa
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
- Vertebrate Development and Regeneration Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Isabel Silveira
- Genetics of Cognitive Dysfunction Laboratory, i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; (A.F.C.); (J.R.L.)
- IBMC-Institute for Molecular and Cell Biology, Universidade do Porto, 4200-135 Porto, Portugal;
| |
Collapse
|
87
|
Antisense oligonucleotide and adjuvant exercise therapy reverse fatigue in old mice with myotonic dystrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:393-405. [PMID: 33473325 PMCID: PMC7787993 DOI: 10.1016/j.omtn.2020.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
Patients with myotonic dystrophy type 1 (DM1) identify chronic fatigue as the most debilitating symptom, which manifests in part as prolonged recovery after exercise. Clinical features of DM1 result from pathogenic gain-of-function activity of transcripts containing an expanded microsatellite CUG repeat (CUGexp). In DM1 mice, therapies targeting the CUGexp transcripts correct the molecular phenotype, reverse myotonia, and improve muscle pathology. However, the effect of targeted molecular therapies on fatigue in DM1 is unknown. Here, we use two mouse models of DM1, age-matched wild-type controls, an exercise-activity assay, electrical impedance myography, and therapeutic antisense oligonucleotides (ASOs) to show that exaggerated exercise-induced fatigue progresses with age, is unrelated to muscle fiber size, and persists despite correction of the molecular phenotype for 3 months. In old DM1 mice, ASO treatment combined with an exercise training regimen consisting of treadmill walking 30 min per day 6 days per week for 3 months reverse all measures of fatigue. Exercise training without ASO therapy improves some measures of fatigue without correction of the molecular pathology. Our results highlight a key limitation of ASO monotherapy for this clinically important feature and support the development of moderate-intensity exercise as an adjuvant for targeted molecular therapies of DM1.
Collapse
|
88
|
Sztretye M, Szabó L, Dobrosi N, Fodor J, Szentesi P, Almássy J, Magyar ZÉ, Dienes B, Csernoch L. From Mice to Humans: An Overview of the Potentials and Limitations of Current Transgenic Mouse Models of Major Muscular Dystrophies and Congenital Myopathies. Int J Mol Sci 2020; 21:ijms21238935. [PMID: 33255644 PMCID: PMC7728138 DOI: 10.3390/ijms21238935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Muscular dystrophies are a group of more than 160 different human neuromuscular disorders characterized by a progressive deterioration of muscle mass and strength. The causes, symptoms, age of onset, severity, and progression vary depending on the exact time point of diagnosis and the entity. Congenital myopathies are rare muscle diseases mostly present at birth that result from genetic defects. There are no known cures for congenital myopathies; however, recent advances in gene therapy are promising tools in providing treatment. This review gives an overview of the mouse models used to investigate the most common muscular dystrophies and congenital myopathies with emphasis on their potentials and limitations in respect to human applications.
Collapse
|
89
|
Marceca GP, Nigita G, Calore F, Croce CM. MicroRNAs in Skeletal Muscle and Hints on Their Potential Role in Muscle Wasting During Cancer Cachexia. Front Oncol 2020; 10:607196. [PMID: 33330108 PMCID: PMC7732629 DOI: 10.3389/fonc.2020.607196] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer-associated cachexia is a heterogeneous, multifactorial syndrome characterized by systemic inflammation, unintentional weight loss, and profound alteration in body composition. The main feature of cancer cachexia is represented by the loss of skeletal muscle tissue, which may or may not be accompanied by significant adipose tissue wasting. Such phenotypic alteration occurs as the result of concomitant increased myofibril breakdown and reduced muscle protein synthesis, actively contributing to fatigue, worsening of quality of life, and refractoriness to chemotherapy. According to the classical view, this condition is primarily triggered by interactions between specific tumor-induced pro-inflammatory cytokines and their cognate receptors expressed on the myocyte membrane. This causes a shift in gene expression of muscle cells, eventually leading to a pronounced catabolic condition and cell death. More recent studies, however, have shown the involvement of regulatory non-coding RNAs in the outbreak of cancer cachexia. In particular, the role exerted by microRNAs is being widely addressed, and several mechanistic studies are in progress. In this review, we discuss the most recent findings concerning the role of microRNAs in triggering or exacerbating muscle wasting in cancer cachexia, while mentioning about possible roles played by long non-coding RNAs and ADAR-mediated miRNA modifications.
Collapse
Affiliation(s)
- Gioacchino P Marceca
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Federica Calore
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
90
|
Shen X, Xu F, Li M, Wu S, Zhang J, Wang A, Xu L, Liu Y, Zhu G. miR-322/-503 rescues myoblast defects in myotonic dystrophy type 1 cell model by targeting CUG repeats. Cell Death Dis 2020; 11:891. [PMID: 33093470 PMCID: PMC7582138 DOI: 10.1038/s41419-020-03112-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is the most common type of adult muscular dystrophy caused by the expanded triple-nucleotides (CUG) repeats. Myoblast in DM1 displayed many defects, including defective myoblast differentiation, ribonuclear foci, and aberrant alternative splicing. Despite many were revealed to function in DM1, microRNAs that regulated DM1 via directly targeting the expanded CUG repeats were rarely reported. Here we discovered that miR-322/-503 rescued myoblast defects in DM1 cell model by targeting the expanded CUG repeats. First, we studied the function of miR-322/-503 in normal C2C12 myoblast cells. Downregulation of miR-322/-503 significantly hindered the myoblast differentiation, while miR-322/-503 overexpression promoted the process. Next, we examined the role of miR-322/-503 in the DM1 C2C12 cell model. miR-322/-503 was downregulated in the differentiation of DM1 C2C12 cells. When we introduced ectopic miR-322/-503 expression into DM1 C2C12 cells, myoblast defects were almost fully rescued, marked by significant improvements of myoblast differentiation and repressions of ribonuclear foci formation and aberrant alternative splicing. Then we investigated the downstream mechanism of miR-322/-503 in DM1. Agreeing with our previous work, Celf1 was proven to be miR-322/-503′s target. Celf1 knockdown partially reproduced miR-322/-503′s function in rescuing DM1 C2C12 differentiation but was unable to repress ribonuclear foci, suggesting other targets of miR-322/-503 existed in the DM1 C2C12 cells. As the seed regions of miR-322 and miR-503 were complementary to the CUG repeats, we hypothesized that the CUG repeats were the target of miR-322/-503. Through expression tests, reporter assays, and colocalization staining, miR-322/-503 was proved to directly and specifically target the expanded CUG repeats in the DM1 cell model rather than the shorter ones in normal cells. Those results implied a potential therapeutic function of miR-322/-503 on DM1, which needed further investigations in the future.
Collapse
Affiliation(s)
- Xiaopeng Shen
- School of Life Sciences, Anhui Normal University, Wuhu, China. .,The Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China.
| | - Feng Xu
- School of Life Sciences, Anhui Normal University, Wuhu, China.,The Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| | - Meng Li
- School of Life Sciences, Anhui Normal University, Wuhu, China.,The Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| | - Shen Wu
- School of Life Sciences, Anhui Normal University, Wuhu, China.,The Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| | - Jingyi Zhang
- School of Life Sciences, Anhui Normal University, Wuhu, China.,The Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| | - Ao Wang
- School of Life Sciences, Anhui Normal University, Wuhu, China.,The Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China
| | - Lei Xu
- Anhui Province Key Laboratory of Active Biological Macromolecules, Wannan Medical College, Wuhu, China
| | - Yu Liu
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Guoping Zhu
- School of Life Sciences, Anhui Normal University, Wuhu, China. .,The Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, China.
| |
Collapse
|
91
|
Szeto RA, Tran T, Truong J, Negraes PD, Trujillo CA. RNA processing in neurological tissue: development, aging and disease. Semin Cell Dev Biol 2020; 114:57-67. [PMID: 33077405 DOI: 10.1016/j.semcdb.2020.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/29/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
Gene expression comprises a diverse array of enzymes, proteins, non-coding transcripts, and cellular structures to guide the transfer of genetic information to its various final products. In the brain, the coordination among genes, or lack thereof, characterizes individual brain regions, mediates a variety of brain-related disorders, and brings light to fundamental differences between species. RNA processing, occurring between transcription and translation, controls an essential portion of gene expression through splicing, editing, localization, stability, and interference. The machinery to regulate transcripts must operate with precision serving as a blueprint for proteins and non-coding RNAs to derive their identity. Therefore, RNA processing has a broad scope of influence in the brain, as it modulates cell morphogenesis during development and underlies mechanisms behind certain neurological diseases. Here, we present these ideas through recent findings on RNA processing in development and post-developmental maturity to advance therapeutic discoveries and the collective knowledge of the RNA life cycle.
Collapse
Affiliation(s)
- Ryan A Szeto
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Timothy Tran
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Justin Truong
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Priscilla D Negraes
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Cleber A Trujillo
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
92
|
An Overview of Alternative Splicing Defects Implicated in Myotonic Dystrophy Type I. Genes (Basel) 2020; 11:genes11091109. [PMID: 32971903 PMCID: PMC7564762 DOI: 10.3390/genes11091109] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 01/02/2023] Open
Abstract
Myotonic dystrophy type I (DM1) is the most common form of adult muscular dystrophy, caused by expansion of a CTG triplet repeat in the 3′ untranslated region (3′UTR) of the myotonic dystrophy protein kinase (DMPK) gene. The pathological CTG repeats result in protein trapping by expanded transcripts, a decreased DMPK translation and the disruption of the chromatin structure, affecting neighboring genes expression. The muscleblind-like (MBNL) and CUG-BP and ETR-3-like factors (CELF) are two families of tissue-specific regulators of developmentally programmed alternative splicing that act as antagonist regulators of several pre-mRNA targets, including troponin 2 (TNNT2), insulin receptor (INSR), chloride channel 1 (CLCN1) and MBNL2. Sequestration of MBNL proteins and up-regulation of CELF1 are key to DM1 pathology, inducing a spliceopathy that leads to a developmental remodelling of the transcriptome due to an adult-to-foetal splicing switch, which results in the loss of cell function and viability. Moreover, recent studies indicate that additional pathogenic mechanisms may also contribute to disease pathology, including a misregulation of cellular mRNA translation, localization and stability. This review focuses on the cause and effects of MBNL and CELF1 deregulation in DM1, describing the molecular mechanisms underlying alternative splicing misregulation for a deeper understanding of DM1 complexity. To contribute to this analysis, we have prepared a comprehensive list of transcript alterations involved in DM1 pathogenesis, as well as other deregulated mRNA processing pathways implications.
Collapse
|
93
|
Voss DM, Sloan A, Spina R, Ames HM, Bar EE. The Alternative Splicing Factor, MBNL1, Inhibits Glioblastoma Tumor Initiation and Progression by Reducing Hypoxia-Induced Stemness. Cancer Res 2020; 80:4681-4692. [PMID: 32928918 DOI: 10.1158/0008-5472.can-20-1233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/23/2020] [Accepted: 09/09/2020] [Indexed: 12/31/2022]
Abstract
Muscleblind-like proteins (MBNL) belong to a family of tissue-specific regulators of RNA metabolism that control premessenger RNA splicing. Inactivation of MBNL causes an adult-to-fetal alternative splicing transition, resulting in the development of myotonic dystrophy. We have previously shown that the aggressive brain cancer, glioblastoma (GBM), maintains stem-like features (glioma stem cell, GSC) through hypoxia-induced responses. Accordingly, we hypothesize here that hypoxia-induced responses in GBM might also include MBNL-based alternative splicing to promote tumor progression. When cultured in hypoxia condition, GSCs rapidly exported muscleblind-like-1 (MBNL1) out of the nucleus, resulting in significant inhibition of MBNL1 activity. Notably, hypoxia-regulated inhibition of MBNL1 also resulted in evidence of adult-to-fetal alternative splicing transitions. Forced expression of a constitutively active isoform of MBNL1 inhibited GSC self-renewal and tumor initiation in orthotopic transplantation models. Induced expression of MBNL1 in established orthotopic tumors dramatically inhibited tumor progression, resulting in significantly prolonged survival. This study reveals that MBNL1 plays an essential role in GBM stemness and tumor progression, where hypoxic responses within the tumor inhibit MBNL1 activity, promoting stem-like phenotypes and tumor growth. Reversing these effects on MBNL1 may therefore, yield potent tumor suppressor activities, uncovering new therapeutic opportunities to counter this disease. SIGNIFICANCE: This study describes an unexpected mechanism by which RNA-binding protein, MBNL1, activity is inhibited in hypoxia by a simple isoform switch to regulate glioma stem cell self-renewal, tumorigenicity, and progression.
Collapse
Affiliation(s)
- Dillon M Voss
- Department of Neurological Surgery, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Anthony Sloan
- Department of Neurological Surgery, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Raffaella Spina
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Heather M Ames
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Eli E Bar
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland. .,Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
94
|
Yokoyama S, Ohno Y, Egawa T, Ohashi K, Ito R, Ortuste Quiroga HP, Yamashita T, Goto K. MBNL1-Associated Mitochondrial Dysfunction and Apoptosis in C2C12 Myotubes and Mouse Skeletal Muscle. Int J Mol Sci 2020; 21:ijms21176376. [PMID: 32887414 PMCID: PMC7503908 DOI: 10.3390/ijms21176376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 01/06/2023] Open
Abstract
We explored the interrelationship between a tissue-specific alternative splicing factor muscleblind-like 1 (MBNL1) and peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC-1α), B-cell lymphoma 2 (Bcl-2) or Bcl-2-associated X protein (Bax) in C2C12 myotubes and mouse skeletal muscle to investigate a possible physiological role of MBNL1 in mitochondrial-associated apoptosis of skeletal muscle. Expression level of PGC-1α and mitochondrial membrane potential evaluated by the fluorescence ratio of JC-1 aggregate to monomer in C2C12 myotubes were suppressed by knockdown of MBNL1. Conversely, the ratio of Bax to Bcl-2 as well as the apoptotic index in C2C12 myotubes was increased by MBNL1 knockdown. In plantaris muscle, on the other hand, not only the minimum muscle fiber diameter but also the expression level of MBNL1 and PGC-1α in of 100-week-old mice were significantly lower than that of 10-week-old mice. Furthermore, the ratio of Bax to Bcl-2 in mouse plantaris muscle was increased by aging. These results suggest that MBNL1 may play a key role in aging-associated muscle atrophy accompanied with mitochondrial dysfunction and apoptosis via mediating PGC-1α expression in skeletal muscle.
Collapse
Affiliation(s)
- Shingo Yokoyama
- Laboratory of Physiology, School of Health Science, Toyohashi SOZO University, Toyohashi 440-8511, Japan; (S.Y.); (K.O.)
| | - Yoshitaka Ohno
- Faculty of Rehabilitation and Care, Seijoh University, Tokai 476-8588, Japan;
- Department of Physiology, Graduate School of Health Science, Toyohashi SOZO University, Toyohashi 440-8511, Japan; (T.E.); (R.I.); (H.P.O.Q.); (T.Y.)
| | - Tatsuro Egawa
- Department of Physiology, Graduate School of Health Science, Toyohashi SOZO University, Toyohashi 440-8511, Japan; (T.E.); (R.I.); (H.P.O.Q.); (T.Y.)
- Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8511, Japan
| | - Kazuya Ohashi
- Laboratory of Physiology, School of Health Science, Toyohashi SOZO University, Toyohashi 440-8511, Japan; (S.Y.); (K.O.)
| | - Rika Ito
- Department of Physiology, Graduate School of Health Science, Toyohashi SOZO University, Toyohashi 440-8511, Japan; (T.E.); (R.I.); (H.P.O.Q.); (T.Y.)
| | - Huascar Pedro Ortuste Quiroga
- Department of Physiology, Graduate School of Health Science, Toyohashi SOZO University, Toyohashi 440-8511, Japan; (T.E.); (R.I.); (H.P.O.Q.); (T.Y.)
| | - Tomohiro Yamashita
- Department of Physiology, Graduate School of Health Science, Toyohashi SOZO University, Toyohashi 440-8511, Japan; (T.E.); (R.I.); (H.P.O.Q.); (T.Y.)
| | - Katsumasa Goto
- Laboratory of Physiology, School of Health Science, Toyohashi SOZO University, Toyohashi 440-8511, Japan; (S.Y.); (K.O.)
- Department of Physiology, Graduate School of Health Science, Toyohashi SOZO University, Toyohashi 440-8511, Japan; (T.E.); (R.I.); (H.P.O.Q.); (T.Y.)
- Correspondence:
| |
Collapse
|
95
|
Bretherton R, Bugg D, Olszewski E, Davis J. Regulators of cardiac fibroblast cell state. Matrix Biol 2020; 91-92:117-135. [PMID: 32416242 PMCID: PMC7789291 DOI: 10.1016/j.matbio.2020.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/13/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
Abstract
Fibroblasts are the primary regulator of cardiac extracellular matrix (ECM). In response to disease stimuli cardiac fibroblasts undergo cell state transitions to a myofibroblast phenotype, which underlies the fibrotic response in the heart and other organs. Identifying regulators of fibroblast state transitions would inform which pathways could be therapeutically modulated to tactically control maladaptive extracellular matrix remodeling. Indeed, a deeper understanding of fibroblast cell state and plasticity is necessary for controlling its fate for therapeutic benefit. p38 mitogen activated protein kinase (MAPK), which is part of the noncanonical transforming growth factor β (TGFβ) pathway, is a central regulator of fibroblast to myofibroblast cell state transitions that is activated by chemical and mechanical stress signals. Fibroblast intrinsic signaling, local and global cardiac mechanics, and multicellular interactions individually and synergistically impact these state transitions and hence the ECM, which will be reviewed here in the context of cardiac fibrosis.
Collapse
Affiliation(s)
- Ross Bretherton
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
| | - Darrian Bugg
- Department of Pathology, University of Washington, 850 Republican, #343, Seattle, WA 98109, United States
| | - Emily Olszewski
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States
| | - Jennifer Davis
- Department of Bioengineering, University of Washington, Seattle, WA 98105, United States; Department of Pathology, University of Washington, 850 Republican, #343, Seattle, WA 98109, United States; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA 98109, United States; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, United States.
| |
Collapse
|
96
|
McEachin ZT, Parameswaran J, Raj N, Bassell GJ, Jiang J. RNA-mediated toxicity in C9orf72 ALS and FTD. Neurobiol Dis 2020; 145:105055. [PMID: 32829028 DOI: 10.1016/j.nbd.2020.105055] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/27/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
A GGGGCC hexanucleotide repeat expansion in the first intron of C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Compelling evidence suggests that gain of toxicity from the bidirectionally transcribed repeat expanded RNAs plays a central role in disease pathogenesis. Two potential mechanisms have been proposed including RNA-mediated toxicity and/or the production of toxic dipeptide repeat proteins. In this review, we focus on the role of RNA mediated toxicity in ALS/FTD caused by the C9orf72 mutation and discuss arguments for and against this mechanism. In addition, we summarize how G4C2 repeat RNAs can elicit toxicity and potential therapeutic strategies to mitigate RNA-mediated toxicity.
Collapse
Affiliation(s)
- Zachary T McEachin
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; Laboratory for Translational Cell Biology, Emory University, Atlanta, GA 30322, USA.
| | | | - Nisha Raj
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; Laboratory for Translational Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; Laboratory for Translational Cell Biology, Emory University, Atlanta, GA 30322, USA; Department of Neurology, Emory University, Atlanta, GA 30322, USA
| | - Jie Jiang
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
97
|
Crawford Parks TE, Marcellus KA, Péladeau C, Jasmin BJ, Ravel-Chapuis A. Overexpression of Staufen1 in DM1 mouse skeletal muscle exacerbates dystrophic and atrophic features. Hum Mol Genet 2020; 29:2185-2199. [PMID: 32504084 DOI: 10.1093/hmg/ddaa111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
In myotonic dystrophy type 1 (DM1), the CUG expansion (CUGexp) in the 3' untranslated region of the dystrophia myotonica protein kinase messenger ribonucleic acid affects the homeostasis of ribonucleic acid-binding proteins, causing the multiple symptoms of DM1. We have previously reported that Staufen1 is increased in skeletal muscles from DM1 mice and patients and that sustained Staufen1 expression in mature mouse muscle causes a progressive myopathy. Here, we hypothesized that the elevated levels of Staufen1 contributes to the myopathic features of the disease. Interestingly, the classic DM1 mouse model human skeletal actin long repeat (HSALR) lacks overt atrophy while expressing CUGexp transcripts and elevated levels of endogenous Staufen1, suggesting a lower sensitivity to atrophic signaling in this model. We report that further overexpression of Staufen1 in the DM1 mouse model HSALR causes a myopathy via inhibition of protein kinase B signaling through an increase in phosphatase tensin homolog, leading to the expression of atrogenes. Interestingly, we also show that Staufen1 regulates the expression of muscleblind-like splicing regulator 1 and CUG-binding protein elav-like family member 1 in wild-type and DM1 skeletal muscle. Together, data obtained from these new DM1 mouse models provide evidence for the role of Staufen1 as an atrophy-associated gene that impacts progressive muscle wasting in DM1. Accordingly, our findings highlight the potential of Staufen1 as a therapeutic target and biomarker.
Collapse
Affiliation(s)
- Tara E Crawford Parks
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Kristen A Marcellus
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Christine Péladeau
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
98
|
Ballester-Lopez A, Núñez-Manchón J, Koehorst E, Linares-Pardo I, Almendrote M, Lucente G, Guanyabens N, Lopez-Osias M, Suárez-Mesa A, Hanick SA, Chojnacki J, Lucia A, Pintos-Morell G, Coll-Cantí J, Martínez-Piñeiro A, Ramos-Fransi A, Nogales-Gadea G. Three-dimensional imaging in myotonic dystrophy type 1: Linking molecular alterations with disease phenotype. NEUROLOGY-GENETICS 2020; 6:e484. [PMID: 32802949 PMCID: PMC7413607 DOI: 10.1212/nxg.0000000000000484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022]
Abstract
Objective We aimed to determine whether 3D imaging reconstruction allows identifying molecular:clinical associations in myotonic dystrophy type 1 (DM1). Methods We obtained myoblasts from 6 patients with DM1 and 6 controls. We measured cytosine-thymine-guanine (CTG) expansion and detected RNA foci and muscleblind like 1 (MBNL1) through 3D reconstruction. We studied dystrophia myotonica protein kinase (DMPK) expression and splicing alterations of MBNL1, insulin receptor, and sarcoplasmic reticulum Ca(2+)-ATPase 1. Results Three-dimensional analysis showed that RNA foci (nuclear and/or cytoplasmic) were present in 45%-100% of DM1-derived myoblasts we studied (range: 0-6 foci per cell). RNA foci represented <0.6% of the total myoblast nuclear volume. CTG expansion size was associated with the number of RNA foci per myoblast (r = 0.876 [95% confidence interval 0.222-0.986]) as well as with the number of cytoplasmic RNA foci (r = 0.943 [0.559-0.994]). Although MBNL1 colocalized with RNA foci in all DM1 myoblast cell lines, colocalization only accounted for 1% of total MBNL1 expression, with the absence of DM1 alternative splicing patterns. The number of RNA foci was associated with DMPK expression (r = 0.967 [0.079-0.999]). On the other hand, the number of cytoplasmic RNA foci was correlated with the age at disease onset (r = -0.818 [-0.979 to 0.019]). Conclusions CTG expansion size modulates RNA foci number in myoblasts derived from patients with DM1. MBNL1 sequestration plays only a minor role in the pathobiology of the disease in these cells. Higher number of cytoplasmic RNA foci is related to an early onset of the disease, a finding that should be corroborated in future studies.
Collapse
Affiliation(s)
- Alfonsina Ballester-Lopez
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| | - Judit Núñez-Manchón
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| | - Emma Koehorst
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| | - Ian Linares-Pardo
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| | - Miriam Almendrote
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| | - Giuseppe Lucente
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| | - Nicolau Guanyabens
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| | - Marta Lopez-Osias
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| | - Adrián Suárez-Mesa
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| | - Shaliza Ann Hanick
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| | - Jakub Chojnacki
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| | - Alejandro Lucia
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| | - Guillem Pintos-Morell
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| | - Jaume Coll-Cantí
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| | - Alicia Martínez-Piñeiro
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| | - Alba Ramos-Fransi
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| | - Gisela Nogales-Gadea
- Neuromuscular and Neuropediatric Research Group (A.B.-L., J.N.-M., E.K., I.L.-P., M.A., G.L., M.L.-O., A.S.-M., S.A.H., G.P.-M., J.C.-C., A.M.-P., A.R.-F., G.N.-G.), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) (A.B.-L., G.P.-M., J.C.-C., G.N.-G.), Instituto de Salud Carlos III, Madrid; Neuromuscular Pathology Unit. Neurology Service. Neuroscience department (M.A., G.L., N.G., J.C.-C., A.M.-P., A.R.-F.), Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona; IrsiCaixa AIDS Research Institute (J.C.), Badalona, Spain; Faculty of Sport Sciences (A.L.), Universidad Europea de Madrid; Instituto de Investigación Hospital 12 de Octubre (i+12) (A.L.), Madrid; and Division of Rare Diseases. University Hospital Vall d'Hebron (G.P.-M.), Barcelona, Spain
| |
Collapse
|
99
|
Mystery of Expansion: DNA Metabolism and Unstable Repeats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:101-124. [PMID: 32383118 DOI: 10.1007/978-3-030-41283-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The mammalian genome mostly contains repeated sequences. Some of these repeats are in the regulatory elements of genes, and their instability, particularly the propensity to change the repeat unit number, is responsible for 36 well-known neurodegenerative human disorders. The mechanism of repeat expansion has been an unsolved question for more than 20 years. There are a few hypotheses describing models of mutation development. Every hypothesis is based on assumptions about unusual secondary structures that violate DNA metabolism processes in the cell. Some models are based on replication errors, and other models are based on mismatch repair or base excision repair errors. Additionally, it has been shown that epigenetic regulation of gene expression can influence the probability and frequency of expansion. In this review, we consider the molecular bases of repeat expansion disorders and discuss possible mechanisms of repeat expansion during cell metabolism.
Collapse
|
100
|
Cerro-Herreros E, González-Martínez I, Moreno-Cervera N, Overby S, Pérez-Alonso M, Llamusí B, Artero R. Therapeutic Potential of AntagomiR-23b for Treating Myotonic Dystrophy. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:837-849. [PMID: 32805487 PMCID: PMC7452101 DOI: 10.1016/j.omtn.2020.07.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/06/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is a chronically debilitating, rare genetic disease that originates from an expansion of a noncoding CTG repeat in the dystrophia myotonica protein kinase (DMPK) gene. The expansion becomes pathogenic when DMPK transcripts contain 50 or more repetitions due to the sequestration of the muscleblind-like (MBNL) family of proteins. Depletion of MBNLs causes alterations in splicing patterns in transcripts that contribute to clinical symptoms such as myotonia and muscle weakness and wasting. We previously found that microRNA (miR)-23b directly regulates MBNL1 in DM1 myoblasts and mice and that antisense technology (“antagomiRs”) blocking this microRNA (miRNA) boosts MBNL1 protein levels. Here, we show the therapeutic effect over time in response to administration of antagomiR-23b as a treatment in human skeletal actin long repeat (HSALR) mice. Subcutaneous administration of antagomiR-23b upregulated the expression of MBNL1 protein and rescued splicing alterations, grip strength, and myotonia in a dose-dependent manner with long-lasting effects. Additionally, the effects of the treatment on grip strength and myotonia were still slightly notable after 45 days. The pharmacokinetic data obtained provide further evidence that miR-23b could be a valid therapeutic target for DM1.
Collapse
Affiliation(s)
- Estefanía Cerro-Herreros
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain
| | - Irene González-Martínez
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain
| | - Nerea Moreno-Cervera
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain
| | - Sarah Overby
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain
| | - Manuel Pérez-Alonso
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain
| | - Beatriz Llamusí
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain
| | - Rubén Artero
- Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), Universidad de Valencia, 46100 Valencia, Spain; Translational Genomics Group, Incliva Health Research Institute, 46010 Valencia, Spain; Joint Unit Incliva-CIPF, Valencia, Spain.
| |
Collapse
|