51
|
Patel SS, Tomar S, Sharma D, Mahindroo N, Udayabanu M. Targeting sonic hedgehog signaling in neurological disorders. Neurosci Biobehav Rev 2017; 74:76-97. [PMID: 28088536 DOI: 10.1016/j.neubiorev.2017.01.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/29/2016] [Accepted: 01/07/2017] [Indexed: 12/13/2022]
Abstract
Sonic hedgehog (Shh) signaling influences neurogenesis and neural patterning during the development of central nervous system. Dysregulation of Shh signaling in brain leads to neurological disorders like autism spectrum disorder, depression, dementia, stroke, Parkinson's diseases, Huntington's disease, locomotor deficit, epilepsy, demyelinating disease, neuropathies as well as brain tumors. The synthesis, processing and transport of Shh ligand as well as the localization of its receptors and signal transduction in the central nervous system has been carefully reviewed. Further, we summarize the regulation of small molecule modulators of Shh pathway with potential in neurological disorders. In conclusion, further studies are warranted to demonstrate the potential of positive and negative regulators of the Shh pathway in neurological disorders.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat 173234, Himachal Pradesh, India
| | - Sunil Tomar
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan 173212, Himachal Pradesh, India
| | - Diksha Sharma
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan 173212, Himachal Pradesh, India
| | - Neeraj Mahindroo
- School of Pharmaceutical Sciences, Shoolini University, Post Box 9, Solan 173212, Himachal Pradesh, India
| | - Malairaman Udayabanu
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat 173234, Himachal Pradesh, India.
| |
Collapse
|
52
|
Xu X, Lu Y, Li Y, Prinz RA. Sonic Hedgehog Signaling in Thyroid Cancer. Front Endocrinol (Lausanne) 2017; 8:284. [PMID: 29163356 PMCID: PMC5670164 DOI: 10.3389/fendo.2017.00284] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/10/2017] [Indexed: 12/21/2022] Open
Abstract
Thyroid cancer is the most common malignancy of the endocrine system. The initiation of thyroid cancer is often triggered by a genetic mutation in the phosphortidylinositol-3 kinase (PI3K) or mitogen-activated protein kinase (MAPK) pathway, such as RAS and BRAF, or by the rearrangement of growth factor receptor tyrosine kinase genes such as RET/PTC. The sonic hedgehog (Shh) pathway is evolutionarily conserved and plays an important role in the embryonic development of normal tissues and organs. Gene mutations in the Shh pathway are involved in basal cell carcinomas (BCC). Activation of the Shh pathway due to overexpression of the genes encoding the components of this pathway stimulates the growth and spread of a wide range of cancer types. The Shh pathway also plays an important role in cancer stem cell (CSC) self-renewal. GDC-0449 and LDE-225, two inhibitors of this pathway, have been approved for treating BCC and are being tested as a single agent or in combination with other drugs for treating various other cancers. Here, we review the recent findings on activation of the Shh pathway in thyroid cancer and its role in maintaining thyroid CSC self-renewal. We also summarize the recent developments on crosstalk of the Shh pathway with the MAPK and PI3K oncogenic pathways, and its implications for combination therapy.
Collapse
Affiliation(s)
- Xiulong Xu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
- *Correspondence: Xiulong Xu, ,
| | - Yurong Lu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
| | - Richard A. Prinz
- Department of Surgery, NorthShore University Health System, Evanston, IL, United States
| |
Collapse
|
53
|
Le Q, Yao W, Chen Y, Yan B, Liu C, Yuan M, Zhou Y, Ma L. GRK6 regulates ROS response and maintains hematopoietic stem cell self-renewal. Cell Death Dis 2016; 7:e2478. [PMID: 27882944 PMCID: PMC5260904 DOI: 10.1038/cddis.2016.377] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/15/2016] [Accepted: 10/14/2016] [Indexed: 02/06/2023]
Abstract
G protein-coupled receptor kinases (GRKs) are critically involved in immune response through regulation of cytokine receptors in mature leukocytes, but their role in hematopoiesis is largely unknown. Here, we demonstrate that GRK6 knockout (GRK6-/-) mice exhibit lymphocytopenia, loss of the hematopoietic stem cell (HSC) and multiple progenitor populations. GRK6 deficiency leads to compromised lymphoid differentiation, largely owing to the impairment of HSC self-renewal. Transcriptome and proteomic analysis suggest that GRK6 is involved in reactive oxygen species signaling. GRK6 could interact with DNA-PKcs (DNA-dependent protein kinase, catalytic subunit) and regulate its phosphorylation. Moreover, reactive oxygen species scavenger α-lipoic acid administration could partially rescue the loss of HSC in GRK6-/- mice. Our work demonstrates the importance of GRK6 in regulation of HSC self-renewal and reveals its potential role in participation of stress response.
Collapse
Affiliation(s)
- Qiumin Le
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Wenqing Yao
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yuejun Chen
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Biao Yan
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Cao Liu
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Man Yuan
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yuqing Zhou
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Lan Ma
- The State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, the Institutes of Brain Science, and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
54
|
Abstract
The casein kinase 1 (CK1) family of serine (Ser)/threonine (Thr) protein kinases participates in a myriad of cellular processes including developmental signaling. Hedgehog (Hh) and Wnt pathways are two major and evolutionarily conserved signaling pathways that control embryonic development and adult tissue homeostasis. Deregulation of these pathways leads to many human disorders including birth defects and cancer. Here, I review the role of CK1 in the regulation of Hh and Wnt signal transduction cascades from the membrane reception systems to the transcriptional effectors. In both Hh and Wnt pathways, multiple CK1 family members regulate signal transduction at several levels of the pathways and play either positive or negative roles depending on the signaling status, individual CK1 isoforms involved, and the specific substrates they phosphorylate. A common mechanism underlying the control of CK1-mediated phosphorylation of Hh and Wnt pathway components is the regulation of CK1/substrate interaction within large protein complexes. I will highlight this feature in the context of Hh signaling and draw interesting parallels between the Hh and Wnt pathways.
Collapse
Affiliation(s)
- Jin Jiang
- University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States.
| |
Collapse
|
55
|
Aptamers in hematological malignancies and their potential therapeutic implications. Crit Rev Oncol Hematol 2016; 106:108-17. [PMID: 27637356 DOI: 10.1016/j.critrevonc.2016.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/06/2016] [Accepted: 08/09/2016] [Indexed: 02/07/2023] Open
Abstract
Aptamers are short DNA/RNA oligonucleotides selected by the process called Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Due to their functional similarity to monoclonal antibodies with some superior characters, such as high specificity and affinity, flexible modification and stability, and lack of toxicity and immunogenicity, they are promising alternative and complementary targeted therapy for hematologic malignancies. The trends in aptamer technology including production, selection, modifications are briefly discussed in this review. The key aspect is to illustrate aptamers against cancer cells in hematologic malignancies especially those that have entered clinical trials. We also discuss some challenges remain in the application of aptamers.
Collapse
|
56
|
Lucena-Agell D, Hervás-Aguilar A, Múnera-Huertas T, Pougovkina O, Rudnicka J, Galindo A, Tilburn J, Arst HN, Peñalva MA. Mutational analysis of the Aspergillus ambient pH receptor PalH underscores its potential as a target for antifungal compounds. Mol Microbiol 2016; 101:982-1002. [PMID: 27279148 PMCID: PMC5026065 DOI: 10.1111/mmi.13438] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2016] [Indexed: 12/18/2022]
Abstract
The pal/RIM ambient pH signalling pathway is crucial for the ability of pathogenic fungi to infect hosts. The Aspergillus nidulans 7‐TMD receptor PalH senses alkaline pH, subsequently facilitating ubiquitination of the arrestin PalF. Ubiquitinated PalF triggers downstream signalling events. The mechanism(s) by which PalH transduces the alkaline pH signal to PalF is poorly understood. We show that PalH is phosphorylated in a signal dependent manner, resembling mammalian GPCRs, although PalH phosphorylation, in contrast to mammalian GPCRs, is arrestin dependent. A genetic screen revealed that an ambient‐exposed region comprising the extracellular loop connecting TM4‐TM5 and ambient‐proximal residues within TM5 is required for signalling. In contrast, substitution by alanines of four aromatic residues within TM6 and TM7 results in a weak ‘constitutive’ activation of the pathway. Our data support the hypothesis that PalH mechanistically resembles mammalian GPCRs that signal via arrestins, such that the relative positions of individual helices within the heptahelical bundle determines the Pro316‐dependent transition between inactive and active PalH conformations, governed by an ambient‐exposed region including critical Tyr259 that potentially represents an agonist binding site. These findings open the possibility of screening for agonist compounds stabilizing the inactive conformation of PalH, which might act as antifungal drugs against ascomycetes.
Collapse
Affiliation(s)
- Daniel Lucena-Agell
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - América Hervás-Aguilar
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Tatiana Múnera-Huertas
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Olga Pougovkina
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Joanna Rudnicka
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Antonio Galindo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Joan Tilburn
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Herbert N Arst
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain.,Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, SW7 2AZ, UK
| | - Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid, 28040, Spain.
| |
Collapse
|
57
|
Guccione M, Ettari R, Taliani S, Da Settimo F, Zappalà M, Grasso S. G-Protein-Coupled Receptor Kinase 2 (GRK2) Inhibitors: Current Trends and Future Perspectives. J Med Chem 2016; 59:9277-9294. [PMID: 27362616 DOI: 10.1021/acs.jmedchem.5b01939] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
G-protein-coupled receptor kinase 2 (GRK2) is a G-protein-coupled receptor kinase that is ubiquitously expressed in many tissues and regulates various intracellular mechanisms. The up- or down-regulation of GRK2 correlates with several pathological disorders. GRK2 plays an important role in the maintenance of heart structure and function; thus, this kinase is involved in many cardiovascular diseases. GRK2 up-regulation can worsen cardiac ischemia; furthermore, increased kinase levels occur during the early stages of heart failure and in hypertensive subjects. GRK2 up-regulation can lead to changes in the insulin signaling cascade, which can translate to insulin resistance. Increased GRK2 levels also correlate with the degree of cognitive impairment that is typically observed in Alzheimer's disease. This article reviews the most potent and selective GRK2 inhibitors that have been developed. We focus on their mechanism of action, inhibition profile, and structure-activity relationships to provide insight into the further development of GRK2 inhibitors as drug candidates.
Collapse
Affiliation(s)
- Manuela Guccione
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina , Viale Annunziata, 98168 Messina, Italy
| | - Roberta Ettari
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina , Viale Annunziata, 98168 Messina, Italy
| | - Sabrina Taliani
- Dipartimento di Farmacia, Università di Pisa , Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Federico Da Settimo
- Dipartimento di Farmacia, Università di Pisa , Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Maria Zappalà
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina , Viale Annunziata, 98168 Messina, Italy
| | - Silvana Grasso
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina , Viale Annunziata, 98168 Messina, Italy
| |
Collapse
|
58
|
Zhao Z, Lee RTH, Pusapati GV, Iyu A, Rohatgi R, Ingham PW. An essential role for Grk2 in Hedgehog signalling downstream of Smoothened. EMBO Rep 2016; 17:739-52. [PMID: 27113758 PMCID: PMC5341524 DOI: 10.15252/embr.201541532] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/07/2016] [Indexed: 01/28/2023] Open
Abstract
The G‐protein‐coupled receptor kinase 2 (adrbk2/GRK2) has been implicated in vertebrate Hedgehog (Hh) signalling based on the effects of its transient knock‐down in mammalian cells and zebrafish embryos. Here, we show that the response to Hh signalling is effectively abolished in the absence of Grk2 activity. Zebrafish embryos lacking all Grk2 activity are refractory to both Sonic hedgehog (Shh) and oncogenic Smoothened (Smo) activity, but remain responsive to inhibition of cAMP‐dependent protein kinase (PKA) activity. Mutation of the kinase domain abrogates the rescuing activity of grk2 mRNA, suggesting that Grk2 acts in a kinase‐dependent manner to regulate the response to Hh. Previous studies have suggested that Grk2 potentiates Smo activity by phosphorylating its C‐terminal tail (CTT). In the zebrafish embryo, however, phosphomimetic Smo does not display constitutive activity, whereas phospho‐null mutants retain activity, implying phosphorylation is neither sufficient nor necessary for Smo function. Since Grk2 rescuing activity requires the integrity of domains essential for its interaction with GPCRs, we speculate that Grk2 may regulate Hh pathway activity by downregulation of a GPCR.
Collapse
Affiliation(s)
- Zhonghua Zhao
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore Developmental and Biomedical Genetics Laboratory, Institute of Molecular and Cell Biology, Agency of Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Raymond Teck Ho Lee
- Developmental and Biomedical Genetics Laboratory, Institute of Molecular and Cell Biology, Agency of Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Ganesh V Pusapati
- Departments of Medicine and Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA
| | - Audrey Iyu
- Developmental and Biomedical Genetics Laboratory, Institute of Molecular and Cell Biology, Agency of Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Rajat Rohatgi
- Departments of Medicine and Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA
| | - Philip W Ingham
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore Developmental and Biomedical Genetics Laboratory, Institute of Molecular and Cell Biology, Agency of Science, Technology and Research (A-STAR), Singapore, Singapore
| |
Collapse
|
59
|
Gorojankina T. Hedgehog signaling pathway: a novel model and molecular mechanisms of signal transduction. Cell Mol Life Sci 2016; 73:1317-32. [PMID: 26762301 PMCID: PMC11108571 DOI: 10.1007/s00018-015-2127-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 12/21/2022]
Abstract
The Hedgehog (Hh) signaling pathway has numerous roles in the control of cell proliferation, tissue patterning and stem cell maintenance. In spite of intensive study, the mechanisms of Hh signal transduction are not completely understood. Here I review published data and present a novel model of vertebrate Hh signaling suggesting that Smoothened (Smo) functions as a G-protein-coupled receptor in cilia. This is the first model to propose molecular mechanisms for the major steps of Hh signaling, including inhibition of Smo by Patched, Smo activation, and signal transduction from active Smo to Gli transcription factors. It also suggests a novel role for the negative pathway regulators Sufu and PKA in these processes.
Collapse
Affiliation(s)
- Tatiana Gorojankina
- Neuroscience Paris-Saclay Institute (Neuro-PSI), UMR 9197, CNRS, Université Paris-Sud, Bât. 32/33, CNRS, 91190, Gif-sur-Yvette, France.
- Institut Curie, Centre de Recherche, Orsay, France.
- CNRS UMR3347, 91400, Orsay, France.
- Univ. Paris Sud, Université Paris Saclay, Orsay, France.
- INSERM U1021, 91400, Orsay, France.
| |
Collapse
|
60
|
Pal K, Hwang SH, Somatilaka B, Badgandi H, Jackson PK, DeFea K, Mukhopadhyay S. Smoothened determines β-arrestin-mediated removal of the G protein-coupled receptor Gpr161 from the primary cilium. J Cell Biol 2016; 212:861-75. [PMID: 27002170 PMCID: PMC4810300 DOI: 10.1083/jcb.201506132] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 02/11/2016] [Indexed: 02/08/2023] Open
Abstract
Dynamic changes in membrane protein composition of the primary cilium are central to development and homeostasis, but we know little about mechanisms regulating membrane protein flux. Stimulation of the sonic hedgehog (Shh) pathway in vertebrates results in accumulation and activation of the effector Smoothened within cilia and concomitant disappearance of a negative regulator, the orphan G protein-coupled receptor (GPCR), Gpr161. Here, we describe a two-step process determining removal of Gpr161 from cilia. The first step involves β-arrestin recruitment by the signaling competent receptor, which is facilitated by the GPCR kinase Grk2. An essential factor here is the ciliary trafficking and activation of Smoothened, which by increasing Gpr161-β-arrestin binding promotes Gpr161 removal, both during resting conditions and upon Shh pathway activation. The second step involves clathrin-mediated endocytosis, which functions outside of the ciliary compartment in coordinating Gpr161 removal. Mechanisms determining dynamic compartmentalization of Gpr161 in cilia define a new paradigm for down-regulation of GPCRs during developmental signaling from a specialized subcellular compartment.
Collapse
Affiliation(s)
- Kasturi Pal
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Sun-Hee Hwang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Bandarigoda Somatilaka
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Hemant Badgandi
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Peter K Jackson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Kathryn DeFea
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
61
|
Jung B, Padula D, Burtscher I, Landerer C, Lutter D, Theis F, Messias AC, Geerlof A, Sattler M, Kremmer E, Boldt K, Ueffing M, Lickert H. Pitchfork and Gprasp2 Target Smoothened to the Primary Cilium for Hedgehog Pathway Activation. PLoS One 2016; 11:e0149477. [PMID: 26901434 PMCID: PMC4763541 DOI: 10.1371/journal.pone.0149477] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/31/2016] [Indexed: 01/14/2023] Open
Abstract
The seven-transmembrane receptor Smoothened (Smo) activates all Hedgehog (Hh) signaling by translocation into the primary cilia (PC), but how this is regulated is not well understood. Here we show that Pitchfork (Pifo) and the G protein-coupled receptor associated sorting protein 2 (Gprasp2) are essential components of an Hh induced ciliary targeting complex able to regulate Smo translocation to the PC. Depletion of Pifo or Gprasp2 leads to failure of Smo translocation to the PC and lack of Hh target gene activation. Together, our results identify a novel protein complex that is regulated by Hh signaling and required for Smo ciliary trafficking and Hh pathway activation.
Collapse
Affiliation(s)
- Bomi Jung
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, München-Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, München-Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Daniela Padula
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, München-Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, München-Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, München-Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, München-Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Cedric Landerer
- Institute of Computational Biology, Helmholtz Zentrum München, München-Neuherberg, Germany
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville TN 37996, United States of America
| | - Dominik Lutter
- Institute of Computational Biology, Helmholtz Zentrum München, München-Neuherberg, Germany
- Institute of Diabetes and Adipositas, Helmholtz Zentrum München, München-Neuherberg, Germany
| | - Fabian Theis
- Institute of Computational Biology, Helmholtz Zentrum München, München-Neuherberg, Germany
| | - Ana C. Messias
- Institute of Structural Biology, Helmholtz Zentrum München, München-Neuherberg, Germany
- Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, 85747 Garching, Germany
| | - Arie Geerlof
- Institute of Structural Biology, Helmholtz Zentrum München, München-Neuherberg, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, München-Neuherberg, Germany
- Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, 85747 Garching, Germany
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, Helmholtz Zentrum München, München-Neuherberg, Germany
| | - Karsten Boldt
- Department of Protein Science, Helmholtz Zentrum München, München-Neuherberg, Germany
- Centre of Ophthalmology, Institute for Ophthalmology Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Marius Ueffing
- Department of Protein Science, Helmholtz Zentrum München, München-Neuherberg, Germany
- Centre of Ophthalmology, Institute for Ophthalmology Research, University of Tuebingen, 72076 Tuebingen, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, München-Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, München-Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
- * E-mail:
| |
Collapse
|
62
|
Xavier GM, Seppala M, Barrell W, Birjandi AA, Geoghegan F, Cobourne MT. Hedgehog receptor function during craniofacial development. Dev Biol 2016; 415:198-215. [PMID: 26875496 DOI: 10.1016/j.ydbio.2016.02.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 01/20/2023]
Abstract
The Hedgehog signalling pathway plays a fundamental role in orchestrating normal craniofacial development in vertebrates. In particular, Sonic hedgehog (Shh) is produced in three key domains during the early formation of the head; neuroectoderm of the ventral forebrain, facial ectoderm and the pharyngeal endoderm; with signal transduction evident in both ectodermal and mesenchymal tissue compartments. Shh signalling from the prechordal plate and ventral midline of the diencephalon is required for appropriate division of the eyefield and forebrain, with mutation in a number of pathway components associated with Holoprosencephaly, a clinically heterogeneous developmental defect characterized by a failure of the early forebrain vesicle to divide into distinct halves. In addition, signalling from the pharyngeal endoderm and facial ectoderm plays an essential role during development of the face, influencing cranial neural crest cells that migrate into the early facial processes. In recent years, the complexity of Shh signalling has been highlighted by the identification of multiple novel proteins that are involved in regulating both the release and reception of this protein. Here, we review the contributions of Shh signalling during early craniofacial development, focusing on Hedgehog receptor function and describing the consequences of disruption for inherited anomalies of this region in both mouse models and human populations.
Collapse
Affiliation(s)
- Guilherme M Xavier
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK; Department of Orthodontics, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK
| | - Maisa Seppala
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK; Department of Orthodontics, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK
| | - William Barrell
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK
| | - Anahid A Birjandi
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK
| | - Finn Geoghegan
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK
| | - Martyn T Cobourne
- Department of Craniofacial Development and Stem Cell Biology, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK; Department of Orthodontics, King's College London Dental Institute, Floor 27, Guy's Hospital, London SE1 9RT, UK.
| |
Collapse
|
63
|
Noman AS, Uddin M, Rahman MZ, Nayeem MJ, Alam SS, Khatun Z, Wahiduzzaman M, Sultana A, Rahman ML, Ali MY, Barua D, Ahmed I, Islam MS, Aboussekhra A, Yeger H, Farhat WA, Islam SS. Overexpression of sonic hedgehog in the triple negative breast cancer: clinicopathological characteristics of high burden breast cancer patients from Bangladesh. Sci Rep 2016; 6:18830. [PMID: 26727947 PMCID: PMC4700415 DOI: 10.1038/srep18830] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 11/27/2015] [Indexed: 12/12/2022] Open
Abstract
Dysregulation of Hedgehog (Hh) signaling pathway has been documented in mammary gland development and breast cancer (BC) progression. Despite the remarkable progress in therapeutic interventions, BC related mortality in Bangladesh increased in the last decade. Triple negative breast cancer (TNBC) still presents a critical therapeutic challenge. Thus effective targeted therapy is urgently needed. In this study, we report the clinicopathological characteristics and prognosis of BC patients from Bangladesh. Routine immunohistochemical analysis and high throughput RNA-Seq data from the TCGA library were used to analyze the expression pattern and association of high and low level of Shh expression in a collection of BC patients with a long-term follow-up. High levels of Shh were observed in a subset of BC tumors with poor prognostic pathological features. Higher level of Shh expression correlated with a significantly poorer overall survival of patients compared with patients whose tumors expressed a low level of Shh. These data support the contention that Shh could be a novel biomarker for breast cancer that is involved in mediating the aggressive phenotype of BC. We propose that BC patients exhibiting a higher level of Shh expression, representing a subset of BC patients, would be amenable to Shh targeted therapy.
Collapse
Affiliation(s)
- A S Noman
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - M Uddin
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - M Z Rahman
- Department of Pathology, Chittagong Medical College Hospital, Chittagong, Bangladesh
| | - M J Nayeem
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - S S Alam
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chittagong, Bangladesh
| | - Z Khatun
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - M Wahiduzzaman
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - A Sultana
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - M L Rahman
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - M Y Ali
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - D Barua
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - I Ahmed
- Department of Pathology, Chittagong Medical College Hospital, Chittagong, Bangladesh
| | - M S Islam
- Department of Pathology, Chittagong Medical College Hospital, Chittagong, Bangladesh
| | - A Aboussekhra
- Cancer Biology and Experimental Therapeutic Section, Division of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, KSA
| | - H Yeger
- Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - W A Farhat
- Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - S S Islam
- Cancer Biology and Experimental Therapeutic Section, Division of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, KSA.,Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
64
|
Jean-Charles PY, Snyder JC, Shenoy SK. Chapter One - Ubiquitination and Deubiquitination of G Protein-Coupled Receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:1-55. [PMID: 27378754 DOI: 10.1016/bs.pmbts.2016.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The seven-transmembrane containing G protein-coupled receptors (GPCRs) constitute the largest family of cell-surface receptors. Transmembrane signaling by GPCRs is fundamental to many aspects of physiology including vision, olfaction, cardiovascular, and reproductive functions as well as pain, behavior and psychomotor responses. The duration and magnitude of signal transduction is tightly controlled by a series of coordinated trafficking events that regulate the cell-surface expression of GPCRs at the plasma membrane. Moreover, the intracellular trafficking profiles of GPCRs can correlate with the signaling efficacy and efficiency triggered by the extracellular stimuli that activate GPCRs. Of the various molecular mechanisms that impart selectivity, sensitivity and strength of transmembrane signaling, ubiquitination of the receptor protein plays an important role because it defines both trafficking and signaling properties of the activated GPCR. Ubiquitination of proteins was originally discovered in the context of lysosome-independent degradation of cytosolic proteins by the 26S proteasome; however a large body of work suggests that ubiquitination also orchestrates the downregulation of membrane proteins in the lysosomes. In the case of GPCRs, such ubiquitin-mediated lysosomal degradation engenders long-term desensitization of transmembrane signaling. To date about 40 GPCRs are known to be ubiquitinated. For many GPCRs, ubiquitination plays a major role in postendocytic trafficking and sorting to the lysosomes. This chapter will focus on the patterns and functional roles of GPCR ubiquitination, and will describe various molecular mechanisms involved in GPCR ubiquitination.
Collapse
Affiliation(s)
- P-Y Jean-Charles
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, NC, United States
| | - J C Snyder
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| | - S K Shenoy
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, NC, United States; Department of Cell Biology, Duke University Medical Center, Durham, NC, United States.
| |
Collapse
|
65
|
Targeting the Hedgehog Pathway in Pediatric Medulloblastoma. Cancers (Basel) 2015; 7:2110-23. [PMID: 26512695 PMCID: PMC4695880 DOI: 10.3390/cancers7040880] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/05/2015] [Accepted: 10/16/2015] [Indexed: 11/17/2022] Open
Abstract
Medulloblastoma (MB), a primitive neuroectomal tumor of the cerebellum, is the most common malignant pediatric brain tumor. The cause of MB is largely unknown, but aberrant activation of Hedgehog (Hh) pathway is responsible for ~30% of MB. Despite aggressive treatment with surgical resection, radiation and chemotherapy, 70%–80% of pediatric medulloblastoma cases can be controlled, but most treated patients suffer devastating side effects. Therefore, developing a new effective treatment strategy is urgently needed. Hh signaling controls transcription of target genes by regulating activities of the three Glioma-associated oncogene (Gli1-3) transcription factors. In this review, we will focus on current clinical treatment options of MB and discuss mechanisms of drug resistance. In addition, we will describe current known molecular pathways which crosstalk with the Hedgehog pathway both in the context of medulloblastoma and non-medulloblastoma cancer development. Finally, we will introduce post-translational modifications that modulate Gli1 activity and summarize the positive and negative regulations of the Hh/Gli1 pathway. Towards developing novel combination therapies for medulloblastoma treatment, current information on interacting pathways and direct regulation of Hh signaling should prove critical.
Collapse
|
66
|
Singh J, Wen X, Scales SJ. The Orphan G Protein-coupled Receptor Gpr175 (Tpra40) Enhances Hedgehog Signaling by Modulating cAMP Levels. J Biol Chem 2015; 290:29663-75. [PMID: 26451044 DOI: 10.1074/jbc.m115.665810] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Indexed: 11/06/2022] Open
Abstract
The Hedgehog (Hh) signaling pathway plays an essential role in vertebrate embryonic tissue patterning of many developing organs. Signaling occurs predominantly in primary cilia and is initiated by the entry of the G protein-coupled receptor (GPCR)-like protein Smoothened into cilia and culminates in gene transcription via the Gli family of transcription factors upon their nuclear entry. Here we identify an orphan GPCR, Gpr175 (also known as Tpra1 or Tpra40: transmembrane protein, adipocyte associated 1 or of 40 kDa), which also localizes to primary cilia upon Hh stimulation and positively regulates Hh signaling. Interaction experiments place Gpr175 at the level of PKA and upstream of the Gαi component of heterotrimeric G proteins, which itself localizes to cilia and can modulate Hh signaling. Gpr175 or Gαi1 depletion leads to increases in cellular cAMP levels and in Gli3 processing into its repressor form. Thus we propose that Gpr175 coupled to Gαi1 normally functions to inhibit the production of cAMP by adenylyl cyclase upon Hh stimulation, thus maximizing signaling by turning off PKA activity and hence Gli3 repressor formation. Taken together our data suggest that Gpr175 is a novel positive regulator of the Hh signaling pathway.
Collapse
Affiliation(s)
- Jaskirat Singh
- From the Department of Molecular Biology, Genentech, South San Francisco, California 94080
| | - Xiaohui Wen
- From the Department of Molecular Biology, Genentech, South San Francisco, California 94080
| | - Suzie J Scales
- From the Department of Molecular Biology, Genentech, South San Francisco, California 94080
| |
Collapse
|
67
|
Arensdorf AM, Marada S, Ogden SK. Smoothened Regulation: A Tale of Two Signals. Trends Pharmacol Sci 2015; 37:62-72. [PMID: 26432668 DOI: 10.1016/j.tips.2015.09.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 02/09/2023]
Abstract
The G protein-coupled receptor (GPCR) Smoothened (Smo) is the signal transducer of the developmentally and therapeutically relevant Hedgehog (Hh) pathway. Although recent structural analyses have advanced our understanding of Smo biology, several questions remain. Chief among them are the identity of its natural ligand, the regulatory processes controlling its activation, and the mechanisms by which it signals to downstream effectors. In this review, we discuss recent discoveries from multiple model systems that have set the stage for solving these mysteries. We focus on the roles of distinct Smo functional domains, post-translational modifications, and trafficking, and conclude by discussing their contributions to signal output.
Collapse
Affiliation(s)
- Angela M Arensdorf
- Department of Cell and Molecular Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place MS#340, Memphis, TN 38105, USA
| | - Suresh Marada
- Department of Cell and Molecular Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place MS#340, Memphis, TN 38105, USA
| | - Stacey K Ogden
- Department of Cell and Molecular Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place MS#340, Memphis, TN 38105, USA.
| |
Collapse
|
68
|
Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and (19)F-NMR. Nat Commun 2015; 6:8202. [PMID: 26347956 PMCID: PMC4569848 DOI: 10.1038/ncomms9202] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/28/2015] [Indexed: 12/25/2022] Open
Abstract
Specific arrestin conformations are coupled to distinct downstream effectors, which underlie the functions of many G-protein-coupled receptors (GPCRs). Here, using unnatural amino acid incorporation and fluorine-19 nuclear magnetic resonance (19F-NMR) spectroscopy, we demonstrate that distinct receptor phospho-barcodes are translated to specific β-arrestin-1 conformations and direct selective signalling. With its phosphate-binding concave surface, β-arrestin-1 ‘reads' the message in the receptor phospho-C-tails and distinct phospho-interaction patterns are revealed by 19F-NMR. Whereas all functional phosphopeptides interact with a common phosphate binding site and induce the movements of finger and middle loops, different phospho-interaction patterns induce distinct structural states of β-arrestin-1 that are coupled to distinct arrestin functions. Only clathrin recognizes and stabilizes GRK2-specific β-arrestin-1 conformations. The identified receptor-phospho-selective mechanism for arrestin conformation and the spacing of the multiple phosphate-binding sites in the arrestin enable arrestin to recognize plethora phosphorylation states of numerous GPCRs, contributing to the functional diversity of receptors. G-protein-coupled receptors (GPCRs) signal via G proteins or arrestin-mediated pathways; the plasticity of arrestin proteins is thought to underlie their function. Here, the authors use NMR to examine how β-arrestin-1 recognizes different GPCR phospho-barcodes, and how this triggers structural rearrangements to fulfill selective functions.
Collapse
|
69
|
Shimaji K, Konishi T, Tanaka S, Yoshida H, Kato Y, Ohkawa Y, Sato T, Suyama M, Kimura H, Yamaguchi M. Genomewide identification of target genes of histone methyltransferase dG9a duringDrosophilaembryogenesis. Genes Cells 2015; 20:902-14. [DOI: 10.1111/gtc.12281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 07/22/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Kouhei Shimaji
- Department of Applied Biology; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
- Insect Biomedical Research Center; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
| | - Takahiro Konishi
- Department of Applied Biology; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
- Insect Biomedical Research Center; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
| | - Shintaro Tanaka
- Department of Applied Biology; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
- Insect Biomedical Research Center; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
| | - Hideki Yoshida
- Department of Applied Biology; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
- Insect Biomedical Research Center; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
| | - Yasuko Kato
- Department of Applied Biology; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
- Insect Biomedical Research Center; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
| | - Yasuyuki Ohkawa
- Department of Advanced Medical Initiatives; Faculty of Medicine; Kyushu University; Maidashi Fukuoka 812-8582 Japan
| | - Tetsuya Sato
- Division of Bioinformatics; Medical Institute of Bioregulation; Kyushu University; Maidashi Fukuoka 812-8582 Japan
| | - Mikita Suyama
- Division of Bioinformatics; Medical Institute of Bioregulation; Kyushu University; Maidashi Fukuoka 812-8582 Japan
| | - Hiroshi Kimura
- Department of Biological Sciences; Graduate School of Bioscience and Biotechnology; Tokyo Institute of Technology; Nagatsuta Midori-ku Yokohama 226-8501 Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
- Insect Biomedical Research Center; Kyoto Institute of Technology; Matsugasaki Sakyo-ku Kyoto 606-8585 Japan
| |
Collapse
|
70
|
Cochrane CR, Szczepny A, Watkins DN, Cain JE. Hedgehog Signaling in the Maintenance of Cancer Stem Cells. Cancers (Basel) 2015; 7:1554-85. [PMID: 26270676 PMCID: PMC4586784 DOI: 10.3390/cancers7030851] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs) represent a rare population of cells with the capacity to self-renew and give rise to heterogeneous cell lineages within a tumour. Whilst the mechanisms underlying the regulation of CSCs are poorly defined, key developmental signaling pathways required for normal stem and progenitor functions have been strongly implicated. Hedgehog (Hh) signaling is an evolutionarily-conserved pathway essential for self-renewal and cell fate determination. Aberrant Hh signaling is associated with the development and progression of various types of cancer and is implicated in multiple aspects of tumourigenesis, including the maintenance of CSCs. Here, we discuss the mounting evidence suggestive of Hh-driven CSCs in the context of haematological malignancies and solid tumours and the novel strategies that hold the potential to block many aspects of the transformation attributed to the CSC phenotype, including chemotherapeutic resistance, relapse and metastasis.
Collapse
Affiliation(s)
- Catherine R Cochrane
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia.
| | - Anette Szczepny
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia.
| | - D Neil Watkins
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.
- UNSW Faculty of Medicine, Randwick, New South Wales 2031, Australia.
- Department of Thoracic Medicine, St Vincent's Hospital, Darlinghurst, New South Wales 2010, Australia.
| | - Jason E Cain
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia.
| |
Collapse
|
71
|
Singh N, Dutka T, Devenney BM, Kawasaki K, Reeves RH, Richtsmeier JT. Acute upregulation of hedgehog signaling in mice causes differential effects on cranial morphology. Dis Model Mech 2014; 8:271-9. [PMID: 25540129 PMCID: PMC4348564 DOI: 10.1242/dmm.017889] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hedgehog (HH) signaling, and particularly signaling by sonic hedgehog (SHH), is implicated in several essential activities during morphogenesis, and its misexpression causes a number of developmental disorders in humans. In particular, a reduced mitogenic response of cerebellar granule cell precursors to SHH signaling in a mouse model for Down syndrome (DS), Ts65Dn, is substantially responsible for reduced cerebellar size. A single treatment of newborn trisomic mice with an agonist of the SHH pathway (SAG) normalizes cerebellar morphology and restores some cognitive deficits, suggesting a possible therapeutic application of SAG for treating the cognitive impairments of DS. Although the beneficial effects on the cerebellum are compelling, inappropriate activation of the HH pathway causes anomalies elsewhere in the head, particularly in the formation and patterning of the craniofacial skeleton. To determine whether an acute treatment of SAG has an effect on craniofacial morphology, we quantitatively analyzed the cranial form of adult euploid and Ts65Dn mice that were injected with either SAG or vehicle at birth. We found significant deformation of adult craniofacial shape in some animals that had received SAG at birth. The most pronounced differences between the treated and untreated mice were in the midline structures of the facial skeleton. The SAG-driven craniofacial dysmorphogenesis was dose-dependent and possibly incompletely penetrant at lower concentrations. Our findings illustrate that activation of HH signaling, even with an acute postnatal stimulation, can lead to localized dysmorphology of the skull by generating modular shape changes in the facial skeleton. These observations have important implications for translating HH-agonist-based treatments for DS.
Collapse
Affiliation(s)
- Nandini Singh
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| | - Tara Dutka
- Johns Hopkins University School of Medicine, Institute of Genetic Medicine, Baltimore, MD 21287, USA
| | - Benjamin M Devenney
- Johns Hopkins University School of Medicine, Department of Physiology, Baltimore, MD 21205, USA
| | - Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| | - Roger H Reeves
- Johns Hopkins University School of Medicine, Institute of Genetic Medicine, Baltimore, MD 21287, USA Johns Hopkins University School of Medicine, Department of Physiology, Baltimore, MD 21205, USA
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
72
|
McCabe JM, Leahy DJ. Smoothened goes molecular: new pieces in the hedgehog signaling puzzle. J Biol Chem 2014; 290:3500-7. [PMID: 25519909 DOI: 10.1074/jbc.r114.617936] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A general aim of studies of signal transduction is to identify mediators of specific signals, order them into pathways, and understand the nature of interactions between individual components and how these interactions alter pathway behavior. Despite years of intensive study and its central importance to animal development and human health, our understanding of the Hedgehog (Hh) signaling pathway remains riddled with gaps, question marks, assumptions, and poorly understood connections. In particular, understanding how interactions between Hh and Patched (Ptc), a 12-pass integral membrane protein, lead to modulation of the function of Smoothened (Smo), a 7-pass integral membrane protein, has defied standard biochemical characterization. Recent structural and biochemical characterizations of Smoothened domains have begun to unlock this riddle, however, and lay the groundwork for improved cancer therapies.
Collapse
Affiliation(s)
- Jacqueline M McCabe
- From the Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Daniel J Leahy
- From the Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
73
|
Yue S, Tang LY, Tang Y, Tang Y, Shen QH, Ding J, Chen Y, Zhang Z, Yu TT, Zhang YE, Cheng SY. Requirement of Smurf-mediated endocytosis of Patched1 in sonic hedgehog signal reception. eLife 2014; 3. [PMID: 24925320 PMCID: PMC4080449 DOI: 10.7554/elife.02555] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 06/10/2014] [Indexed: 01/17/2023] Open
Abstract
Cell surface reception of Sonic hedgehog (Shh) must ensure that the graded morphogenic signal is interpreted accordingly in neighboring cells to specify tissue patterns during development. Here, we report endocytic sorting signals for the receptor Patched1 (Ptch1), comprising two 'PPXY' motifs, that direct it to degradation in lysosomes. These signals are recognized by two HECT-domain ubiquitin E3 ligases, Smurf1 and Smurf2, which are induced by Shh and become enriched in Caveolin-1 lipid rafts in association with Ptch1. Smurf-mediated endocytic turnover of Ptch1 is essential for its clearance from the primary cilium and pathway activation. Removal of both Smurfs completely abolishes the ability of Shh to sustain the proliferation of postnatal granule cell precursors in the cerebellum. These findings reveal a novel step in the Shh pathway activation as part of the Ptch1 negative feedback loop that precisely controls the signaling output in response to Shh gradient signal.
Collapse
Affiliation(s)
- Shen Yue
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Liu-Ya Tang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, United States
| | - Ying Tang
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yi Tang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, United States
| | - Qiu-Hong Shen
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Jie Ding
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yan Chen
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Zengdi Zhang
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Ting-Ting Yu
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Ying E Zhang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, United States
| | - Steven Y Cheng
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| |
Collapse
|
74
|
Teperino R, Aberger F, Esterbauer H, Riobo N, Pospisilik JA. Canonical and non-canonical Hedgehog signalling and the control of metabolism. Semin Cell Dev Biol 2014; 33:81-92. [PMID: 24862854 DOI: 10.1016/j.semcdb.2014.05.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 02/07/2023]
Abstract
Obesity and diabetes represent key healthcare challenges of our day, affecting upwards of one billion people worldwide. These individuals are at higher risk for cancer, stroke, blindness, heart and cardiovascular disease, and to date, have no effective long-term treatment options available. Recent and accumulating evidence has implicated the developmental morphogen Hedgehog and its downstream signalling in metabolic control. Generally thought to be quiescent in adults, Hedgehog is associated with several human cancers, and as such, has already emerged as a therapeutic target in oncology. Here, we attempt to give a comprehensive overview of the key signalling events associated with both canonical and non-canonical Hedgehog signalling, and highlight the increasingly complex regulatory modalities that appear to link Hedgehog and control metabolism. We highlight these key findings and discuss their impact for therapeutic development, cancer and metabolic disease.
Collapse
Affiliation(s)
- Raffaele Teperino
- Department of Epigenetics, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Fritz Aberger
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Natalia Riobo
- Department of Biochemistry and Molecular Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - John Andrew Pospisilik
- Department of Epigenetics, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
75
|
Kotula JW, Sun J, Li M, Pratico ED, Fereshteh MP, Ahrens DP, Sullenger BA, Kovacs JJ. Targeted disruption of β-arrestin 2-mediated signaling pathways by aptamer chimeras leads to inhibition of leukemic cell growth. PLoS One 2014; 9:e93441. [PMID: 24736311 PMCID: PMC3988186 DOI: 10.1371/journal.pone.0093441] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 03/04/2014] [Indexed: 01/14/2023] Open
Abstract
β-arrestins, ubiquitous cellular scaffolding proteins that act as signaling mediators of numerous critical cellular pathways, are attractive therapeutic targets because they promote tumorigenesis in several tumor models. However, targeting scaffolding proteins with traditional small molecule drugs has been challenging. Inhibition of β-arrestin 2 with a novel aptamer impedes multiple oncogenic signaling pathways simultaneously. Additionally, delivery of the β-arrestin 2-targeting aptamer into leukemia cells through coupling to a recently described cancer cell-specific delivery aptamer, inhibits multiple β-arrestin-mediated signaling pathways known to be required for chronic myelogenous leukemia (CML) disease progression, and impairs tumorigenic growth in CML patient samples. The ability to target scaffolding proteins such as β-arrestin 2 with RNA aptamers may prove beneficial as a therapeutic strategy. Highlights
Collapse
Affiliation(s)
- Jonathan W. Kotula
- Departments of Surgery and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jinpeng Sun
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Margie Li
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Elizabeth D. Pratico
- Departments of Surgery and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Mark P. Fereshteh
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Douglas P. Ahrens
- b3 bio, Inc. Research Triangle Park, North Carolina, United States of America
| | - Bruce A. Sullenger
- Departments of Surgery and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jeffrey J. Kovacs
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
- b3 bio, Inc. Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
76
|
Yin W, Liu H, Peng Z, Chen D, Li J, Li JD. Mechanisms that underlie the internalization and extracellular signal regulated kinase 1/2 activation by PKR2 receptor. Cell Signal 2014; 26:1118-24. [PMID: 24509228 DOI: 10.1016/j.cellsig.2014.01.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/16/2014] [Accepted: 01/26/2014] [Indexed: 01/17/2023]
Abstract
Prokineticins (PKs) are a pair of signal factors involved in many physiological processes by binding to two closely related G-protein-coupled receptors (GPCRs), PKR1 and PKR2. We recently demonstrated that PKR2 undergoes rapid ligand-induced endocytosis, and PKR2 recycles back to the plasma membrane after the removal of ligand. However, little is known about the molecular mechanisms underlying the PKR2 endocytosis. Here, we studied the involvement of GPCR kinase 2 (GRK2), β-arrestins, clathrin and protein kinase C (PKC) in the PKR2 endocytosis. Our results indicated that PK2-induced PKR2 endocytosis is GRK2- and clathrin-dependent, but β-arrestin-independent. PKC activation also induced PKR2 endocytosis; however, PKC activation is not necessary for the PK2-induced PKR2 endocytosis. PK2 stimulation induced a transient activation of extracellular signal regulated kinase 1/2 (ERK1/2) on PKR2 expressing cells. The internalization and PKC activation are not required for the PK2-induced ERK1/2 activation. Our results indicated that PK2-induced ERK1/2 activation may involve the released βγ subunits of G-protein, phospholipase C β and MEK activation.
Collapse
Affiliation(s)
- Wenqing Yin
- The Second Xiangya Hospital, State Key Laboratory of Medical Genetics, Changsha, Hunan, China
| | - Huadie Liu
- The Second Xiangya Hospital, State Key Laboratory of Medical Genetics, Changsha, Hunan, China
| | - Zhen Peng
- The Second Xiangya Hospital, State Key Laboratory of Medical Genetics, Changsha, Hunan, China
| | - Danna Chen
- The Second Xiangya Hospital, State Key Laboratory of Medical Genetics, Changsha, Hunan, China
| | - Jie Li
- School of Life Sciences, Central South University, Changsha, Hunan, China.
| | - Jia-Da Li
- The Second Xiangya Hospital, State Key Laboratory of Medical Genetics, Changsha, Hunan, China; School of Life Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
77
|
Tikhonova IG, Selvam B, Ivetac A, Wereszczynski J, McCammon JA. Simulations of biased agonists in the β(2) adrenergic receptor with accelerated molecular dynamics. Biochemistry 2013; 52:5593-603. [PMID: 23879802 PMCID: PMC3763781 DOI: 10.1021/bi400499n] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The biased agonism of the G protein-coupled receptors (GPCRs), where in addition to a traditional G protein-signaling pathway a GPCR promotes intracellular signals though β-arrestin, is a novel paradigm in pharmacology. Biochemical and biophysical studies have suggested that a GPCR forms a distinct ensemble of conformations signaling through the G protein and β-arrestin. Here we report on the dynamics of the β2 adrenergic receptor bound to the β-arrestin and G protein-biased agonists and the empty receptor to further characterize the receptor conformational changes caused by biased agonists. We use conventional and accelerated molecular dynamics (aMD) simulations to explore the conformational transitions of the GPCR from the active state to the inactive state. We found that aMD simulations enable monitoring of the transition within the nanosecond time scale while capturing the known microscopic characteristics of the inactive states, such as the ionic lock, the inward position of F6.44, and water clusters. Distinct conformational states are shown to be stabilized by each biased agonist. In particular, in simulations of the receptor with the β-arrestin-biased agonist N-cyclopentylbutanepherine, we observe a different pattern of motions in helix 7 when compared to simulations with the G protein-biased agonist salbutamol that involves perturbations of the network of interactions within the NPxxY motif. Understanding the network of interactions induced by biased ligands and the subsequent receptor conformational shifts will lead to development of more efficient drugs.
Collapse
Affiliation(s)
- Irina G Tikhonova
- Molecular Therapeutics, School of Pharmacy, Medical Biology Centre, Queen's University, Belfast BT9 7BL, Northern Ireland, UK.
| | | | | | | | | |
Collapse
|
78
|
Michelotti GA, Xie G, Swiderska M, Choi SS, Karaca G, Krüger L, Premont R, Yang L, Syn WK, Metzger D, Diehl AM. Smoothened is a master regulator of adult liver repair. J Clin Invest 2013; 123:2380-94. [PMID: 23563311 DOI: 10.1172/jci66904] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 02/12/2013] [Indexed: 12/16/2022] Open
Abstract
When regenerative processes cannot keep pace with cell death, functional epithelia are replaced by scar. Scarring is characterized by both excessive accumulation of fibrous matrix and persistent outgrowth of cell types that accumulate transiently during successful wound healing, including myofibroblasts (MFs) and progenitors. This suggests that signaling that normally directs these cells to repair injured epithelia is deregulated. To evaluate this possibility, we examined liver repair during different types of liver injury after Smoothened (SMO), an obligate intermediate in the Hedgehog (Hh) signaling pathway, was conditionally deleted in cells expressing the MF-associated gene, αSMA. Surprisingly, blocking canonical Hh signaling in MFs not only inhibited liver fibrosis but also prevented accumulation of liver progenitors. Hh-sensitive, hepatic stellate cells (HSCs) were identified as the source of both MFs and progenitors by lineage-tracing studies in 3 other strains of mice, coupled with analysis of highly pure HSC preparations using flow cytometry, immunofluorescence confocal microscopy, RT-PCR, and in situ hybridization. The results identify SMO as a master regulator of hepatic epithelial regeneration based on its ability to promote mesenchymal-to-epithelial transitions in a subpopulation of HSC-derived MFs with features of multipotent progenitors.
Collapse
Affiliation(s)
- Gregory A Michelotti
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Briscoe J, Thérond PP. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 2013; 14:416-29. [DOI: 10.1038/nrm3598] [Citation(s) in RCA: 1212] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
80
|
Wang C, Wu H, Katritch V, Han GW, Huang XP, Liu W, Siu FY, Roth BL, Cherezov V, Stevens RC. Structure of the human smoothened receptor bound to an antitumour agent. Nature 2013; 497:338-43. [PMID: 23636324 DOI: 10.1038/nature12167] [Citation(s) in RCA: 366] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/12/2013] [Indexed: 12/15/2022]
Abstract
The smoothened (SMO) receptor, a key signal transducer in the hedgehog signalling pathway, is responsible for the maintenance of normal embryonic development and is implicated in carcinogenesis. It is classified as a class frizzled (class F) G-protein-coupled receptor (GPCR), although the canonical hedgehog signalling pathway involves the GLI transcription factors and the sequence similarity with class A GPCRs is less than 10%. Here we report the crystal structure of the transmembrane domain of the human SMO receptor bound to the small-molecule antagonist LY2940680 at 2.5 Å resolution. Although the SMO receptor shares the seven-transmembrane helical fold, most of the conserved motifs for class A GPCRs are absent, and the structure reveals an unusually complex arrangement of long extracellular loops stabilized by four disulphide bonds. The ligand binds at the extracellular end of the seven-transmembrane-helix bundle and forms extensive contacts with the loops.
Collapse
Affiliation(s)
- Chong Wang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Gallinari P, Filocamo G, Jones P, Pazzaglia S, Steinkühler C. Smoothened antagonists: a promising new class of antitumor agents. Expert Opin Drug Discov 2013; 4:525-44. [PMID: 23485085 DOI: 10.1517/17460440902852686] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Hedgehog signaling is essential for the development of most metazoans. In recent years, evidence has accumulated showing that many human tumors aberrantly re-activate this developmental signaling pathway and that interfering with it may provide a new strategy for the development of novel anti-cancer therapeutics. Smoothened is a G-protein coupled receptor-like protein that is essentially involved in hedgehog signal transduction and small molecule antagonists of Smoothened have started to show antitumor activity in preclinical models and in clinical trials. OBJECTIVE We critically review the role of hedgehog signaling in normal development and in human malignancies, the available drug discovery tools and the classes of small molecule inhibitors that are in development. We further aim to address the potential impact that pathway antagonists may have on the treatment options of cancer patients. METHODS Literature, patents and clinical trial results from the past 5 years were analyzed. CONCLUSIONS 1) A large body of evidence suggests a frequent reactivation of hedgehog signaling in human cancer. 2) Smoothened is an attractive, highly druggable target with extensive preclinical and initial clinical validation in basal cell carcinoma. Several promising novel classes of Smoothened antagonists have been discovered and are being developed as anticancer agents. 3) Our knowledge of the biology of hedgehog signaling in cancer is still very incomplete and significant efforts will be required to understand how to use the emerging novel agents in the clinic.
Collapse
Affiliation(s)
- Paola Gallinari
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, Department of Oncology, IRBM- Merck Research Laboratories Rome, Via Pontina Km 30,600, 00040 Pomezia, Italy +39 06 91093232 ; +39 06 91093549 ;
| | | | | | | | | |
Collapse
|
82
|
Johnson KE, Mitra S, Katoch P, Kelsey LS, Johnson KR, Mehta PP. Phosphorylation on Ser-279 and Ser-282 of connexin43 regulates endocytosis and gap junction assembly in pancreatic cancer cells. Mol Biol Cell 2013; 24:715-33. [PMID: 23363606 PMCID: PMC3596244 DOI: 10.1091/mbc.e12-07-0537] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The molecular mechanisms regulating the assembly of connexins (Cxs) into gap junctions are poorly understood. Using human pancreatic tumor cell lines BxPC3 and Capan-1, which express Cx26 and Cx43, we show that, upon arrival at the cell surface, the assembly of Cx43 is impaired. Connexin43 fails to assemble, because it is internalized by clathrin-mediated endocytosis. Assembly is restored upon expressing a sorting-motif mutant of Cx43, which does not interact with the AP2 complex, and by expressing mutants that cannot be phosphorylated on Ser-279 and Ser-282. The mutants restore assembly by preventing clathrin-mediated endocytosis of Cx43. Our results also document that the sorting-motif mutant is assembled into gap junctions in cells in which the expression of endogenous Cx43 has been knocked down. Remarkably, Cx43 mutants that cannot be phosphorylated on Ser-279 or Ser-282 are assembled into gap junctions only when connexons are composed of Cx43 forms that can be phosphorylated on these serines and forms in which phosphorylation on these serines is abolished. Based on the subcellular fate of Cx43 in single and contacting cells, our results document that the endocytic itinerary of Cx43 is altered upon cell-cell contact, which causes Cx43 to traffic by EEA1-negative endosomes en route to lysosomes. Our results further show that gap-junctional plaques formed of a sorting motif-deficient mutant of Cx43, which is unable to be internalized by the clathrin-mediated pathway, are predominantly endocytosed in the form of annular junctions. Thus the differential phosphorylation of Cx43 on Ser-279 and Ser-282 is fine-tuned to control Cx43's endocytosis and assembly into gap junctions.
Collapse
Affiliation(s)
- Kristen E Johnson
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | | | | | | |
Collapse
|
83
|
Abstract
Hedgehog (Hh) signaling plays pivotal roles in embryonic development and adult tissue homeostasis, and its deregulation leads to numerous human disorders including cancer. Binding of Hh to Patched (Ptc), a twelve-transmembrane protein, alleviates its inhibition of Smoothened (Smo), a seven-transmembrane protein related to G-protein-coupled receptors (GPCRs), leading to Smo phosphorylation and activation. Smo acts through intracellular signaling complexes to convert the latent transcription factor Cubitus interruptus (Ci)/Gli from a truncated repressor to a full-length activator, leading to derepression/activation of Hh target genes. Increasing evidence suggests that phosphorylation participates in almost every step in the signal relay from Smo to Ci/Gli, and that differential phosphorylation of several key pathway components may be crucial for translating the Hh morphogen gradient into graded pathway activities. In this review, we focus on the multifaceted roles that phosphorylation plays in Hh signal transduction, and discuss the conservation and difference between Drosophila and mammalian Hh signaling mechanisms.
Collapse
|
84
|
Sobolesky PM, Moussa O. The Role of β-Arrestins in Cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:395-411. [DOI: 10.1016/b978-0-12-394440-5.00015-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
85
|
Abstract
β-Arrestins regulate G protein-coupled receptors through receptor desensitization while also acting as signaling scaffolds to facilitate numerous effector pathways. Recent studies have provided evidence that β-arrestins play a key role in inflammatory responses. Here, we summarize these advances on the roles of β-arrestins in immune regulation and inflammatory responses under physiological and pathological conditions, with an emphasis on translational implications of β-arrestins on human diseases.
Collapse
|
86
|
The Role of Arrestins in Development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:225-42. [DOI: 10.1016/b978-0-12-394440-5.00009-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
87
|
Lefkowitz RJ. Arrestins Come of Age. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:3-18. [DOI: 10.1016/b978-0-12-394440-5.00001-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
88
|
Abstract
Hedgehog (Hh) proteins regulate the development of a wide range of metazoan embryonic and adult structures, and disruption of Hh signaling pathways results in various human diseases. Here, we provide a comprehensive review of the signaling pathways regulated by Hh, consolidating data from a diverse array of organisms in a variety of scientific disciplines. Similar to the elucidation of many other signaling pathways, our knowledge of Hh signaling developed in a sequential manner centered on its earliest discoveries. Thus, our knowledge of Hh signaling has for the most part focused on elucidating the mechanism by which Hh regulates the Gli family of transcription factors, the so-called "canonical" Hh signaling pathway. However, in the past few years, numerous studies have shown that Hh proteins can also signal through Gli-independent mechanisms collectively referred to as "noncanonical" signaling pathways. Noncanonical Hh signaling is itself subdivided into two distinct signaling modules: (i) those not requiring Smoothened (Smo) and (ii) those downstream of Smo that do not require Gli transcription factors. Thus, Hh signaling is now proposed to occur through a variety of distinct context-dependent signaling modules that have the ability to crosstalk with one another to form an interacting, dynamic Hh signaling network.
Collapse
Affiliation(s)
- David J Robbins
- Molecular Oncology Program, Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| | | | | |
Collapse
|
89
|
Wang J, Mook RA, Lu J, Gooden DM, Ribeiro A, Guo A, Barak LS, Lyerly HK, Chen W. Identification of a novel Smoothened antagonist that potently suppresses Hedgehog signaling. Bioorg Med Chem 2012; 20:6751-7. [PMID: 23063522 DOI: 10.1016/j.bmc.2012.09.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/31/2012] [Accepted: 09/10/2012] [Indexed: 12/21/2022]
Abstract
The Hedgehog signaling pathway plays an essential role in embryo development and adult tissue homeostasis, in regulating stem cells and is abnormally activated in many cancers. Given the importance of this signaling pathway, we developed a novel and versatile high-throughput, cell-based screening platform using confocal imaging, based on the role of β-arrestin in Hedgehog signal transduction, that can identify agonists or antagonist of the pathway by a simple change to the screening protocol. Here we report the use of this assay in the antagonist mode to identify novel antagonists of Smoothened, including a compound (A8) with low nanomolar activity against wild-type Smo also capable of binding the Smo point mutant D473H associated with clinical resistance in medulloblastoma. Our data validate this novel screening approach in the further development of A8 and related congeners to treat Hedgehog related diseases, including the treatment of basal cell carcinoma and medulloblastoma.
Collapse
Affiliation(s)
- Jiangbo Wang
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
β-Arrestin2 mediates the initiation and progression of myeloid leukemia. Proc Natl Acad Sci U S A 2012; 109:12532-7. [PMID: 22773819 DOI: 10.1073/pnas.1209815109] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
β-Arrestins were initially discovered as negative regulators of G protein-coupled receptor signaling. Although β-arrestins have more recently been implicated as scaffold proteins that interact with various mitogenic and developmental signals, the genetic role of β-arrestins in driving oncogenesis is not known. Here we have investigated the role of β-arrestin in hematologic malignancies and have found that although both β-arrestin1 and -2 are expressed in the hematopoietic system, loss of β-arrestin2 preferentially leads to a severe impairment in the establishment and propagation of the chronic and blast crisis phases of chronic myelogenous leukemia (CML). These defects are linked to a reduced frequency, as well as defective self-renewal capacity of the cancer stem-cell population, in mouse models and in human CML patient samples. At a molecular level, the loss of β-arrestin2 leads to a significant inhibition of β-catenin stabilization, and ectopic activation of Wnt signaling reverses the defects observed in the β-arrestin2 mutant cells. These data cumulatively show that β-arrestin2 is essential for CML disease propagation and indicate that β-arrestins and the Wnt/β-catenin pathway lie in a signaling hierarchy in the context of CML cancer stem cell maintenance.
Collapse
|
91
|
Maier D, Cheng S, Hipfner DR. The complexities of G-protein-coupled receptor kinase function in Hedgehog signaling. Fly (Austin) 2012; 6:135-41. [PMID: 22653052 DOI: 10.4161/fly.20245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hedgehog (Hh) signaling is essential for proper tissue patterning and maintenance and has a substantial impact on human disease. While many of the main components and mechanisms involved in transduction of the Hh signal have been identified, the details of how the pathway functions are continually being refined. One aspect that has attracted much attention recently is the involvement of G-protein-coupled receptor kinases (GRKs) in the pathway. These regulators of G-protein-coupled receptor (GPCR) signaling have an evolutionarily-conserved function in promoting high-threshold Hh target gene expression through regulation of Smoothened (Smo), a GPCR family member that activates intracellular Hh signaling. Several models of how GRKs impact on Smo to increase downstream signaling have been proposed. Recently, we demonstrated that these kinases have surprisingly complex and conflicting roles, acting to limit signaling through the pathway while also promoting Smo activity. In addition to the previously described direct effects of Gprk2 on Smo activation, Gprk2 also indirectly affects Hh signaling by controlling production of the second messenger cyclic AMP to influence Protein kinase A activity.
Collapse
Affiliation(s)
- Dominic Maier
- Institut de recherches cliniques de Montréal; Montreal, QC Canada
| | | | | |
Collapse
|
92
|
Wang J, Lu J, Mook RA, Zhang M, Zhao S, Barak LS, Freedman JH, Lyerly HK, Chen W. The insecticide synergist piperonyl butoxide inhibits hedgehog signaling: assessing chemical risks. Toxicol Sci 2012; 128:517-23. [PMID: 22552772 DOI: 10.1093/toxsci/kfs165] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The spread of chemicals, including insecticides, into the environment often raises public health concerns, as exemplified by a recent epidemiologic study associating in utero piperonyl butoxide (PBO) exposure with delayed mental development. The insecticide synergist PBO is listed among the top 10 chemicals detected in indoor dust; a systematic assessment of risks from PBO exposure, as for many toxicants unfortunately, may be underdeveloped when important biological targets that can cause toxicity are unknown. Hedgehog/Smoothened signaling is critical in neurological development. This study was designed to use novel high-throughput in vitro drug screening technology to identify modulators of Hedgehog signaling in environmental chemicals to assist the assessment of their potential risks. A directed library of 1408 environmental toxicants was screened for Hedgehog/Smoothened antagonist activity using a high-content assay that evaluated the interaction between Smoothened and βarrestin2 green fluorescent protein. PBO was identified as a Hedgehog/Smoothened antagonist capable of inhibiting Hedgehog signaling. We found that PBO bound Smoothened and blocked Smoothened overexpression-induced Gli-luciferase reporter activity but had no effect on Gli-1 downstream transcriptional factor-induced Gli activity. PBO inhibited Sonic Hedgehog ligand-induced Gli signaling and mouse cerebellar granular precursor cell proliferation. Moreover, PBO disrupted zebrafish development. Our findings demonstrate the value of high-throughput target-based screening strategies that can successfully evaluate large numbers of environmental toxicants and identify key targets and unknown biological activity that is helpful in properly assessing potential risks.
Collapse
Affiliation(s)
- Jiangbo Wang
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Patwari P, Lee RT. An expanded family of arrestins regulate metabolism. Trends Endocrinol Metab 2012; 23:216-22. [PMID: 22520962 PMCID: PMC3348262 DOI: 10.1016/j.tem.2012.03.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/13/2012] [Accepted: 03/13/2012] [Indexed: 11/24/2022]
Abstract
The classical visual and β-arrestins belong to a larger family of proteins that likely share structural similarity. Humans have an additional six related proteins sometimes termed the α-arrestins, whose functions are now emerging. Surprisingly, several α-arrestins play prominent roles in the regulation of metabolism and obesity. One α-arrestin, thioredoxin-interacting protein (Txnip), has crucial functions in regulating glucose uptake and glycolytic flux through the mitochondria. Another α-arrestin, Arrdc3, is linked to obesity in men and was recently identified in mice as a regulator of body mass, adiposity, and energy expenditure. Here we discuss recent evidence suggesting potential common themes for all arrestins, including physiological roles for classical arrestins in metabolism and the functions of α-arrestins in receptor signaling and endocytosis.
Collapse
Affiliation(s)
- Parth Patwari
- Harvard Stem Cell Institute and the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA 02139, USA
| | | |
Collapse
|
94
|
Ryan KE, Chiang C. Hedgehog secretion and signal transduction in vertebrates. J Biol Chem 2012; 287:17905-13. [PMID: 22474285 DOI: 10.1074/jbc.r112.356006] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signaling by the Hedgehog (Hh) family of secreted proteins is essential for proper embryonic patterning and development. Dysregulation of Hh signaling is associated with a variety of human diseases ranging from developmental disorders such as holoprosencephaly to certain forms of cancer, including medulloblastoma and basal cell carcinoma. Genetic studies in flies and mice have shaped our understanding of Hh signaling and revealed that nearly all core components of the pathway are highly conserved. Although many aspects of the Drosophila Hh pathway are conserved in vertebrates, mechanistic differences between the two species have begun to emerge. Perhaps the most striking divergence in vertebrate Hh signaling is its dependence on the primary cilium, a vestigial organelle that is largely absent in flies. This minireview will provide an overview of Hh signaling and present recent insights into vertebrate Hh secretion, receptor binding, and signal transduction.
Collapse
Affiliation(s)
- Kaitlyn E Ryan
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
95
|
Developmental pathways in breast cancer and breast tumor-initiating cells: Therapeutic implications. Cancer Lett 2012; 317:115-26. [DOI: 10.1016/j.canlet.2011.11.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 11/20/2011] [Indexed: 12/13/2022]
|
96
|
Carroll CE, Marada S, Stewart DP, Ouyang JX, Ogden SK. The extracellular loops of Smoothened play a regulatory role in control of Hedgehog pathway activation. Development 2012; 139:612-21. [PMID: 22223683 DOI: 10.1242/dev.075614] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The Hedgehog (Hh) signaling pathway plays an instructional role during development, and is frequently activated in cancer. Ligand-induced pathway activation requires signaling by the transmembrane protein Smoothened (Smo), a member of the G-protein-coupled receptor (GPCR) superfamily. The extracellular (EC) loops of canonical GPCRs harbor cysteine residues that engage in disulfide bonds, affecting active and inactive signaling states through regulating receptor conformation, dimerization and/or ligand binding. Although a functional importance for cysteines localized to the N-terminal extracellular cysteine-rich domain has been described, a functional role for a set of conserved cysteines in the EC loops of Smo has not yet been established. In this study, we mutated each of the conserved EC cysteines, and tested for effects on Hh signal transduction. Cysteine mutagenesis reveals that previously uncharacterized functional roles exist for Smo EC1 and EC2. We provide in vitro and in vivo evidence that EC1 cysteine mutation induces significant Hh-independent Smo signaling, triggering a level of pathway activation similar to that of a maximal Hh response in Drosophila and mammalian systems. Furthermore, we show that a single amino acid change in EC2 attenuates Hh-induced Smo signaling, whereas deletion of the central region of EC2 renders Smo fully active, suggesting that the conformation of EC2 is crucial for regulated Smo activity. Taken together, these findings are consistent with loop cysteines engaging in disulfide bonds that facilitate a Smo conformation that is silent in the absence of Hh, but can transition to a fully active state in response to ligand.
Collapse
Affiliation(s)
- Candace E Carroll
- Department of Biochemistry, St Jude Children's Research Hospital, 262 Danny Thomas Place, MS 340, Memphis, TN 38105, USA
| | | | | | | | | |
Collapse
|
97
|
Evron T, Daigle TL, Caron MG. GRK2: multiple roles beyond G protein-coupled receptor desensitization. Trends Pharmacol Sci 2012; 33:154-64. [PMID: 22277298 DOI: 10.1016/j.tips.2011.12.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 01/08/2023]
Abstract
G protein-coupled receptor kinases (GRKs) regulate numerous G protein-coupled receptors (GPCRs) by phosphorylating the intracellular domain of the active receptor, resulting in receptor desensitization and internalization. GRKs also regulate GPCR trafficking in a phosphorylation-independent manner via direct protein-protein interactions. Emerging evidence suggests that GRK2, the most widely studied member of this family of kinases, modulates multiple cellular responses in various physiological contexts by either phosphorylating non-receptor substrates or interacting directly with signaling molecules. In this review, we discuss traditional and newly discovered roles of GRK2 in receptor internalization and signaling as well as its impact on non-receptor substrates. We also discuss novel exciting roles of GRK2 in the regulation of dopamine receptor signaling and in the activation and trafficking of the atypical GPCR, Smoothened (Smo).
Collapse
Affiliation(s)
- Tama Evron
- Department of Cell Biology, Medicine and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
98
|
Shi S, Deng YZ, Zhao JS, Ji XD, Shi J, Feng YX, Li G, Li JJ, Zhu D, Koeffler HP, Zhao Y, Xie D. RACK1 promotes non-small-cell lung cancer tumorigenicity through activating sonic hedgehog signaling pathway. J Biol Chem 2012; 287:7845-58. [PMID: 22262830 DOI: 10.1074/jbc.m111.315416] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a deadly disease due to lack of effective diagnosis biomarker and therapeutic target. Much effort has been made in defining gene defects in NSCLC, but its full molecular pathogenesis remains unexplored. Here, we found RACK1 (receptor of activated kinase 1) was elevated in most NSCLC, and its expression level correlated with key pathological characteristics including tumor differentiation, stage, and metastasis. In addition, RACK1 activated sonic hedgehog signaling pathway by interacting with and activating Smoothened to mediate Gli1-dependent transcription in NSCLC cells. And silencing RACK1 dramatically inhibited in vivo tumor growth and metastasis by blocking the sonic hedgehog signaling pathway. These results suggest that RACK1 represents a new promising diagnosis biomarker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Shuo Shi
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Xia R, Jia H, Fan J, Liu Y, Jia J. USP8 promotes smoothened signaling by preventing its ubiquitination and changing its subcellular localization. PLoS Biol 2012; 10:e1001238. [PMID: 22253573 PMCID: PMC3254663 DOI: 10.1371/journal.pbio.1001238] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 11/23/2011] [Indexed: 01/15/2023] Open
Abstract
Hedgehog regulates the activity of its signal transducer Smoothened by enhancing its interaction with the deubiquitinase USP8, thereby promoting Smoothened translocation to the cell surface and so enhancing Hh signaling. The seven transmembrane protein Smoothened (Smo) is a critical component of the Hedgehog (Hh) signaling pathway and is regulated by phosphorylation, dimerization, and cell-surface accumulation upon Hh stimulation. However, it is not clear how Hh regulates Smo accumulation on the cell surface or how Hh regulates the intracellular trafficking of Smo. In addition, little is known about whether ubiquitination is involved in Smo regulation. In this study, we demonstrate that Smo is multi-monoubiquitinated and that Smo ubiquitination is inhibited by Hh and by phosphorylation. Using an in vivo RNAi screen, we identified ubiquitin-specific protease 8 (USP8) as a deubiquitinase that down-regulates Smo ubiquitination. Inactivation of USP8 increases Smo ubiquitination and attenuates Hh-induced Smo accumulation, leading to decreased Hh signaling activity. Moreover, overexpression of USP8 prevents Smo ubiquitination and elevates Smo accumulation, leading to increased Hh signaling activity. Mechanistically, we show that Hh promotes the interaction of USP8 with Smo aa625–753, which covers the three PKA and CK1 phosphorylation clusters. Finally, USP8 promotes the accumulation of Smo at the cell surface and prevents localization to the early endosomes, presumably by deubiquitinating Smo. Our studies identify USP8 as a positive regulator in Hh signaling by down-regulating Smo ubiquitination and thereby mediating Smo intracellular trafficking. The Hedgehog (Hh) signaling pathway is well known for its role in directing processes such as cell growth, proliferation, and differentiation during embryogenesis. The signal initiated by Hh binding to its receptor, Patched, is transduced by another protein called Smoothened (Smo), which moves from membranes inside the cell to accumulate on the cell surface when Hh binds. This accumulation of Smo on the cell surface is thought to play a central role in maintaining Hh signaling. In this study, we investigated how Hh controls the stability and movement of Smo inside the cell. We found that Smo is modified by addition of a small protein called ubiquitin (Ub), and that Hh regulates the ubiquitination of Smo. We identified an enzyme called USP8 that can remove the ubiquitin modification from Smo, thereby enhancing its signaling activity. Furthermore we show that Hh can enhance the interaction between Smo and USP8. Finally, we discovered that USP8 promotes the movement of Smo from inside the cell to the cell surface. We conclude that Hh promotes the deubiquitination of Smo by USP8, resulting in the relocation of Smo to the cell surface where it enhances Hh signaling.
Collapse
Affiliation(s)
- Ruohan Xia
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| | | | | | | | | |
Collapse
|
100
|
Abstract
The study of posttranslational regulation of proteins has occupied biochemists for well over a half century. Understanding balanced phosphorylation and dephosphorylation of the proteins may be the key to meeting some of the most pressing scientific challenges. A detailed examination of the phosphorylation of many components in the Hedgehog (Hh) pathway leads to a better understanding of the Hh signaling mechanisms. This chapter describes the precise phosphorylation that evolves during the phosphorylation/dephosphorylation of players in the Hh signaling cascade, including the signal transducer Smoothened and the transcription factor Ci/Gli.
Collapse
Affiliation(s)
- Jianhang Jia
- Department of Molecular and Cellular Biochemistry, Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|