51
|
|
52
|
Rule S, Brook BW, Haberle SG, Turney CSM, Kershaw AP, Johnson CN. The Aftermath of Megafaunal Extinction: Ecosystem Transformation in Pleistocene Australia. Science 2012; 335:1483-6. [DOI: 10.1126/science.1214261] [Citation(s) in RCA: 214] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Susan Rule
- School of Culture, History and Language, The Australian National University, Canberra ACT 0200, Australia
- School of Marine and Tropical Biology, James Cook University, Townsville, Qld 4811, Australia
| | - Barry W. Brook
- The Environment Institute and School of Earth and Environmental Science, University of Adelaide, Adelaide SA 5005, Australia
| | - Simon G. Haberle
- School of Culture, History and Language, The Australian National University, Canberra ACT 0200, Australia
| | - Chris S. M. Turney
- Climate Change Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - A. Peter Kershaw
- School of Geography and Environmental Science, Monash University, Clayton Vic 3168, Australia
| | | |
Collapse
|
53
|
Abstract
Avian eggshell fragments recovered from both paleontological and archaeological deposits contain a cache of well-preserved ancient DNA. Here, we describe an extraction protocol that has been optimized to maximize the recovery of ancient DNA from fossil eggshell and minimize the co-purification of PCR inhibitors. In this method, fossil eggshell fragments are powdered, then digested and heated to release DNA from the calcite matrix. The digest then undergoes a concentration step before purification and washing using silica columns. The method has been used to recover aDNA from the eggshell of many avian species including moa, elephant birds, and emu, up to 19,000 years old.
Collapse
Affiliation(s)
- Charlotte L Oskam
- Ancient DNA Laboratory, School of Biological Sciences and Biotechnology, Murdoch University, South Street, Perth, 6150, WA, Australia
| | | |
Collapse
|
54
|
Bowman DMJS, Balch J, Artaxo P, Bond WJ, Cochrane MA, D'Antonio CM, DeFries R, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Mack M, Moritz MA, Pyne S, Roos CI, Scott AC, Sodhi NS, Swetnam TW, Whittaker R. The human dimension of fire regimes on Earth. JOURNAL OF BIOGEOGRAPHY 2011; 38:2223-2236. [PMID: 22279247 PMCID: PMC3263421 DOI: 10.1111/j.1365-2699.2011.02595.x] [Citation(s) in RCA: 293] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Humans and their ancestors are unique in being a fire-making species, but 'natural' (i.e. independent of humans) fires have an ancient, geological history on Earth. Natural fires have influenced biological evolution and global biogeochemical cycles, making fire integral to the functioning of some biomes. Globally, debate rages about the impact on ecosystems of prehistoric human-set fires, with views ranging from catastrophic to negligible. Understanding of the diversity of human fire regimes on Earth in the past, present and future remains rudimentary. It remains uncertain how humans have caused a departure from 'natural' background levels that vary with climate change. Available evidence shows that modern humans can increase or decrease background levels of natural fire activity by clearing forests, promoting grazing, dispersing plants, altering ignition patterns and actively suppressing fires, thereby causing substantial ecosystem changes and loss of biodiversity. Some of these contemporary fire regimes cause substantial economic disruptions owing to the destruction of infrastructure, degradation of ecosystem services, loss of life, and smoke-related health effects. These episodic disasters help frame negative public attitudes towards landscape fires, despite the need for burning to sustain some ecosystems. Greenhouse gas-induced warming and changes in the hydrological cycle may increase the occurrence of large, severe fires, with potentially significant feedbacks to the Earth system. Improved understanding of human fire regimes demands: (1) better data on past and current human influences on fire regimes to enable global comparative analyses, (2) a greater understanding of different cultural traditions of landscape burning and their positive and negative social, economic and ecological effects, and (3) more realistic representations of anthropogenic fire in global vegetation and climate change models. We provide an historical framework to promote understanding of the development and diversification of fire regimes, covering the pre-human period, human domestication of fire, and the subsequent transition from subsistence agriculture to industrial economies. All of these phases still occur on Earth, providing opportunities for comparative research.
Collapse
Affiliation(s)
- David M J S Bowman
- School of Plant Science, Private Bag 55, University of TasmaniaHobart, Tas., Australia
| | - Jennifer Balch
- NCEAS735 State Street, Suite 300University of Santa BarbaraSanta Barbara, CA, USA
| | - Paulo Artaxo
- Instituto de Física, Universidade de São Paulo 1516Rua do Matão, Travessa R, 187, São Paulo, SP, Brazil
| | - William J Bond
- Botany Department, University of Cape TownRondebosch, South Africa
| | - Mark A Cochrane
- Geographic Information Science Center of Excellence (GIScCE) South Dakota State UniversityBrookings, SD, USA
| | - Carla M D'Antonio
- Environmental Studies Program and Department of Ecology, Evolution and Marine Biology, University of CaliforniaSanta Barbara, CA, USA
| | - Ruth DeFries
- Ecology, Evolution & Environmental Biology, Columbia UniversityNew York, NY, USA
| | - Fay H Johnston
- Menzies Research Institute, University of TasmaniaPrivate Bag 23, Hobart, Tas., Australia
| | - Jon E Keeley
- US Geological Survey, Western Ecological Research Center, Sequoia-Kings Canyon Field StationThree Rivers, CA, USA
- Department of Ecology and Evolutionary Biology, University of CaliforniaLos Angeles, CA, USA
| | - Meg A Krawchuk
- Department of Environmental Science, Policy and Management, University of CaliforniaBerkeley, CA, USA
| | - Christian A Kull
- School of Geography and Environmental Science, Monash UniversityMelbourne, Vic., Australia
| | - Michelle Mack
- Department of Biology, University of FloridaGainesville, FL, USA
| | - Max A Moritz
- Environmental Science, Policy, and Management Department, University of CaliforniaBerkeley, CA, USA
| | - Stephen Pyne
- School of Life Sciences, Arizona State UniversityTempe, AZ, USA
| | - Christopher I Roos
- Department of Anthropology, Southern Methodist UniversityDallas, TX, USA
| | - Andrew C Scott
- Department of Earth Sciences, Royal Holloway University of LondonEgham, UK
| | - Navjot S Sodhi
- Department of Biological Sciences, Faculty of Science, National University of SingaporeSingapore
| | - Thomas W Swetnam
- Laboratory of Tree-Ring Research, The University of ArizonaTucson, AZ, USA
| | - Robert Whittaker
- Laboratory of Tree-Ring Research, The University of ArizonaTucson, AZ, USA
| |
Collapse
|
55
|
Turvey ST, Fritz SA. The ghosts of mammals past: biological and geographical patterns of global mammalian extinction across the Holocene. Philos Trans R Soc Lond B Biol Sci 2011; 366:2564-76. [PMID: 21807737 DOI: 10.1098/rstb.2011.0020] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although the recent historical period is usually treated as a temporal base-line for understanding patterns of mammal extinction, mammalian biodiversity loss has also taken place throughout the Late Quaternary. We explore the spatial, taxonomic and phylogenetic patterns of 241 mammal species extinctions known to have occurred during the Holocene up to the present day. To assess whether our understanding of mammalian threat processes has been affected by excluding these taxa, we incorporate extinct species data into analyses of the impact of body mass on extinction risk. We find that Holocene extinctions have been phylogenetically and spatially concentrated in specific taxa and geographical regions, which are often not congruent with those disproportionately at risk today. Large-bodied mammals have also been more extinction-prone in most geographical regions across the Holocene. Our data support the extinction filter hypothesis, whereby regional faunas from which susceptible species have already become extinct now appear less threatened; they may also suggest that different processes are responsible for driving past and present extinctions. We also find overall incompleteness and inter-regional biases in extinction data from the recent fossil record. Although direct use of fossil data in future projections of extinction risk is therefore not straightforward, insights into extinction processes from the Holocene record are still useful in understanding mammalian threat.
Collapse
Affiliation(s)
- Samuel T Turvey
- Institute of Zoology, Zoological Society of London, Regent's Park, UK.
| | | |
Collapse
|
56
|
Decreases in Fire Spread Probability with Forest Age Promotes Alternative Community States, Reduced Resilience to Climate Variability and Large Fire Regime Shifts. Ecosystems 2011. [DOI: 10.1007/s10021-011-9494-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
57
|
Newsome SD, Miller GH, Magee JW, Fogel ML. Quaternary record of aridity and mean annual precipitation based on δ15N in ratite and dromornithid eggshells from Lake Eyre, Australia. Oecologia 2011; 167:1151-62. [PMID: 21706333 DOI: 10.1007/s00442-011-2046-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 05/31/2011] [Indexed: 10/18/2022]
Abstract
The cause(s) of the late Pleistocene megafauna extinction on the Australian continent remains largely unresolved. Unraveling climatic forcing mechanisms from direct or indirect human agents of ecosystem alteration has proven to be extremely difficult in Australia due to the lack of (1) well-dated vertebrate fossils and (2) paleo-environmental and -ecological records spanning the past approximately 100 ka when regional climatic conditions are known to have significantly varied. We have examined the nitrogen isotope composition (δ(15)N) of modern emu (Dromaius novaehollandiae) eggshells collected along a precipitation gradient in Australia, along with modern climatological data and dietary δ(15)N values. We then used modern patterns to interpret an approximately 130-ka record of δ(15)N values in extant Dromaius and extinct Genyornis newtoni eggshells from Lake Eyre to obtain a novel mean annual precipitation (MAP) record for central Australia spanning the extinction interval. Our data also provide the first detailed information on the trophic ecology and environmental preferences of two closely related taxa, one extant and one extinct. Dromaius eggshell δ(15)N values show a significant shift to higher values during the Last Glacial Maximum and Holocene, which we interpret to indicate more frequent arid conditions (<200 mm MAP), relative to δ(15)N from samples just prior to the megafauna extinction. Genyornis eggshells had δ(15)N values reflecting wetter nesting conditions overall relative to those of coeval Dromaius, perhaps indicating that Genyornis was more reliant on mesic conditions. Lastly, the Dromaius eggshell record shows a significant decrease in δ(13)C values prior to the extinction, whereas the Genyornis record does not. Neither species showed a concomitant change in δ(15)N prior to the extinction, which suggests that a significant change in vegetation surrounding Lake Eyre occurred prior to an increase in local aridity.
Collapse
Affiliation(s)
- Seth D Newsome
- Zoology and Physiology Department, University of Wyoming, Laramie, WY 82071, USA.
| | | | | | | |
Collapse
|
58
|
Tanentzap AJ, Coomes DA. Carbon storage in terrestrial ecosystems: do browsing and grazing herbivores matter? Biol Rev Camb Philos Soc 2011; 87:72-94. [DOI: 10.1111/j.1469-185x.2011.00185.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
59
|
Timing and dynamics of Late Pleistocene mammal extinctions in southwestern Australia. Proc Natl Acad Sci U S A 2010; 107:22157-62. [PMID: 21127262 DOI: 10.1073/pnas.1011073107] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Explaining the Late Pleistocene demise of many of the world's larger terrestrial vertebrates is arguably the most enduring and debated topic in Quaternary science. Australia lost >90% of its larger species by around 40 thousand years (ka) ago, but the relative importance of human impacts and increased aridity remains unclear. Resolving the debate has been hampered by a lack of sites spanning the last glacial cycle. Here we report on an exceptional faunal succession from Tight Entrance Cave, southwestern Australia, which shows persistence of a diverse mammal community for at least 100 ka leading up to the earliest regional evidence of humans at 49 ka. Within 10 millennia, all larger mammals except the gray kangaroo and thylacine are lost from the regional record. Stable-isotope, charcoal, and small-mammal records reveal evidence of environmental change from 70 ka, but the extinctions occurred well in advance of the most extreme climatic phase. We conclude that the arrival of humans was probably decisive in the southwestern Australian extinctions, but that changes in climate and fire activity may have played facilitating roles. One-factor explanations for the Pleistocene extinctions in Australia are likely oversimplistic.
Collapse
|
60
|
Oskam CL, Haile J, McLay E, Rigby P, Allentoft ME, Olsen ME, Bengtsson C, Miller GH, Schwenninger JL, Jacomb C, Walter R, Baynes A, Dortch J, Parker-Pearson M, Gilbert MTP, Holdaway RN, Willerslev E, Bunce M. Fossil avian eggshell preserves ancient DNA. Proc Biol Sci 2010; 277:1991-2000. [PMID: 20219731 DOI: 10.1098/rspb.2009.2019] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Owing to exceptional biomolecule preservation, fossil avian eggshell has been used extensively in geochronology and palaeodietary studies. Here, we show, to our knowledge, for the first time that fossil eggshell is a previously unrecognized source of ancient DNA (aDNA). We describe the successful isolation and amplification of DNA from fossil eggshell up to 19 ka old. aDNA was successfully characterized from eggshell obtained from New Zealand (extinct moa and ducks), Madagascar (extinct elephant birds) and Australia (emu and owl). Our data demonstrate excellent preservation of the nucleic acids, evidenced by retrieval of both mitochondrial and nuclear DNA from many of the samples. Using confocal microscopy and quantitative PCR, this study critically evaluates approaches to maximize DNA recovery from powdered eggshell. Our quantitative PCR experiments also demonstrate that moa eggshell has approximately 125 times lower bacterial load than bone, making it a highly suitable substrate for high-throughput sequencing approaches. Importantly, the preservation of DNA in Pleistocene eggshell from Australia and Holocene deposits from Madagascar indicates that eggshell is an excellent substrate for the long-term preservation of DNA in warmer climates. The successful recovery of DNA from this substrate has implications in a number of scientific disciplines; most notably archaeology and palaeontology, where genotypes and/or DNA-based species identifications can add significantly to our understanding of diets, environments, past biodiversity and evolutionary processes.
Collapse
Affiliation(s)
- Charlotte L Oskam
- Ancient DNA Laboratory, School of Biological Sciences, Murdoch University, Perth, Western Australia, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Daniau AL, d'Errico F, Sánchez Goñi MF. Testing the hypothesis of fire use for ecosystem management by neanderthal and upper palaeolithic modern human populations. PLoS One 2010; 5:e9157. [PMID: 20161786 PMCID: PMC2820084 DOI: 10.1371/journal.pone.0009157] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 01/18/2010] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND It has been proposed that a greater control and more extensive use of fire was one of the behavioral innovations that emerged in Africa among early Modern Humans, favouring their spread throughout the world and determining their eventual evolutionary success. We would expect, if extensive fire use for ecosystem management were a component of the modern human technical and cognitive package, as suggested for Australia, to find major disturbances in the natural biomass burning variability associated with the colonisation of Europe by Modern Humans. METHODOLOGY/PRINCIPAL FINDINGS Analyses of microcharcoal preserved in two deep-sea cores located off Iberia and France were used to reconstruct changes in biomass burning between 70 and 10 kyr cal BP. Results indicate that fire regime follows the Dansgaard-Oeschger climatic variability and its impacts on fuel load. No major disturbance in natural fire regime variability is observed at the time of the arrival of Modern Humans in Europe or during the remainder of the Upper Palaeolithic (40-10 kyr cal BP). CONCLUSIONS/SIGNIFICANCE Results indicate that either Neanderthals and Modern humans did not influence fire regime or that, if they did, their respective influence was comparable at a regional scale, and not as pronounced as that observed in the biomass burning history of Southeast Asia.
Collapse
|
62
|
Affiliation(s)
- Richard G. Roberts
- Centre for Archaeological Science, School of Earth and Environmental Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Barry W. Brook
- The Environment Institute, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
63
|
Extinction implications of a chenopod browse diet for a giant Pleistocene kangaroo. Proc Natl Acad Sci U S A 2009; 106:11646-50. [PMID: 19556539 DOI: 10.1073/pnas.0900956106] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kangaroos are the world's most diverse group of herbivorous marsupials. Following late-Miocene intensification of aridity and seasonality, they radiated across Australia, becoming the continent's ecological equivalents of the artiodactyl ungulates elsewhere. Their diversity peaked during the Pleistocene, but by approximately 45,000 years ago, 90% of larger kangaroos were extinct, along with a range of other giant species. Resolving whether climate change or human arrival was the principal extinction cause remains highly contentious. Here we combine craniodental morphology, stable-isotopic, and dental microwear data to reveal that the largest-ever kangaroo, Procoptodon goliah, was a chenopod browse specialist, which may have had a preference for Atriplex (saltbushes), one of a few dicots using the C(4) photosynthetic pathway. Furthermore, oxygen isotope signatures of P. goliah tooth enamel show that it drank more in low-rainfall areas than its grazing contemporaries, similar to modern saltbush feeders. Saltbushes and chenopod shrublands in general are poorly flammable, so landscape burning by humans is unlikely to have caused a reduction in fodder driving the species to extinction. Aridity is discounted as a primary cause because P. goliah evolved in response to increased aridity and disappeared during an interval wetter than many it survived earlier. Hunting by humans, who were also bound to water, may have been a more decisive factor in the extinction of this giant marsupial.
Collapse
|
64
|
Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D'Antonio CM, Defries RS, Doyle JC, Harrison SP, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Marston JB, Moritz MA, Prentice IC, Roos CI, Scott AC, Swetnam TW, van der Werf GR, Pyne SJ. Fire in the Earth system. Science 2009; 324:481-4. [PMID: 19390038 DOI: 10.1126/science.1163886] [Citation(s) in RCA: 759] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.
Collapse
|
65
|
Johnson CN. Ecological consequences of Late Quaternary extinctions of megafauna. Proc Biol Sci 2009; 276:2509-19. [PMID: 19324773 DOI: 10.1098/rspb.2008.1921] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Large herbivorous vertebrates have strong interactions with vegetation, affecting the structure, composition and dynamics of plant communities in many ways. Living large herbivores are a small remnant of the assemblages of giants that existed in most terrestrial ecosystems 50,000 years ago. The extinction of so many large herbivores may well have triggered large changes in plant communities. In several parts of the world, palaeoecological studies suggest that extinct megafauna once maintained vegetation openness, and in wooded landscapes created mosaics of different structural types of vegetation with high habitat and species diversity. Following megafaunal extinction, these habitats reverted to more dense and uniform formations. Megafaunal extinction also led to changes in fire regimes and increased fire frequency due to accumulation of uncropped plant material, but there is a great deal of variation in post-extinction changes in fire. Plant communities that once interacted with extinct large herbivores still contain many species with obsolete defences against browsing and non-functional adaptations for seed dispersal. Such plants may be in decline, and, as a result, many plant communities may be in various stages of a process of relaxation from megafauna-conditioned to megafauna-naive states. Understanding the past role of giant herbivores provides fundamental insight into the history, dynamics and conservation of contemporary plant communities.
Collapse
Affiliation(s)
- C N Johnson
- School of Marine and Tropical Biology, James Cook University, Townsville, Queensland 4811, Australia.
| |
Collapse
|
66
|
Wolverton S, Lyman RL, Kennedy JH, La Point TW. The Terminal Pleistocene Extinctions in North America, Hypermorphic Evolution, and the Dynamic Equilibrium Model. J ETHNOBIOL 2009. [DOI: 10.2993/0278-0771-29.1.28] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
67
|
Mackey BG, Watson JE, Hope G, Gilmore S. Climate change, biodiversity conservation, and the role of protected areas: An Australian perspective. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/14888386.2008.9712902] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
68
|
Bliege Bird R, Bird DW, Codding BF, Parker CH, Jones JH. The "fire stick farming" hypothesis: Australian Aboriginal foraging strategies, biodiversity, and anthropogenic fire mosaics. Proc Natl Acad Sci U S A 2008; 105:14796-801. [PMID: 18809925 PMCID: PMC2567447 DOI: 10.1073/pnas.0804757105] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Indexed: 11/18/2022] Open
Abstract
Aboriginal burning in Australia has long been assumed to be a "resource management" strategy, but no quantitative tests of this hypothesis have ever been conducted. We combine ethnographic observations of contemporary Aboriginal hunting and burning with satellite image analysis of anthropogenic and natural landscape structure to demonstrate the processes through which Aboriginal burning shapes arid-zone vegetational diversity. Anthropogenic landscapes contain a greater diversity of successional stages than landscapes under a lightning fire regime, and differences are of scale, not of kind. Landscape scale is directly linked to foraging for small, burrowed prey (monitor lizards), which is a specialty of Aboriginal women. The maintenance of small-scale habitat mosaics increases small-animal hunting productivity. These results have implications for understanding the unique biodiversity of the Australian continent, through time and space. In particular, anthropogenic influences on the habitat structure of paleolandscapes are likely to be spatially localized and linked to less mobile, "broad-spectrum" foraging economies.
Collapse
Affiliation(s)
- R Bliege Bird
- Department of Anthropology, Stanford University, CA 94305, USA.
| | | | | | | | | |
Collapse
|
69
|
Late-surviving megafauna in Tasmania, Australia, implicate human involvement in their extinction. Proc Natl Acad Sci U S A 2008; 105:12150-3. [PMID: 18719103 DOI: 10.1073/pnas.0801360105] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Establishing the cause of past extinctions is critical if we are to understand better what might trigger future occurrences and how to prevent them. The mechanisms of continental late Pleistocene megafaunal extinction, however, are still fiercely contested. Potential factors contributing to their demise include climatic change, human impact, or some combination. On the Australian mainland, 90% of the megafauna became extinct by approximately 46 thousand years (ka) ago, soon after the first archaeological evidence for human colonization of the continent. Yet, on the neighboring island of Tasmania (which was connected to the mainland when sea levels were lower), megafaunal extinction appears to have taken place before the initial human arrival between 43 and 40 ka, which would seem to exonerate people as a contributing factor in the extirpation of the island megafauna. Age estimates for the last megafauna, however, are poorly constrained. Here, we show, by direct dating of fossil remains and their associated sediments, that some Tasmanian megafauna survived until at least 41 ka (i.e., after their extinction on the Australian mainland) and thus overlapped with humans. Furthermore, a vegetation record for Tasmania spanning the last 130 ka shows that no significant regional climatic or environmental change occurred between 43 and 37 ka, when a land bridge existed between Tasmania and the mainland. Our results are consistent with a model of human-induced extinction for the Tasmanian megafauna, most probably driven by hunting, and they reaffirm the value of islands adjacent to continental landmasses as tests of competing hypotheses for late Quaternary megafaunal extinctions.
Collapse
|
70
|
|
71
|
Colloquium paper: Megafauna biomass tradeoff as a driver of Quaternary and future extinctions. Proc Natl Acad Sci U S A 2008; 105 Suppl 1:11543-8. [PMID: 18695222 DOI: 10.1073/pnas.0801918105] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Earth's most recent major extinction episode, the Quaternary Megafauna Extinction, claimed two-thirds of mammal genera and one-half of species that weighed >44 kg between approximately 50,000 and 3,000 years ago. Estimates of megafauna biomass (including humans as a megafauna species) for before, during, and after the extinction episode suggest that growth of human biomass largely matched the loss of non-human megafauna biomass until approximately 12,000 years ago. Then, total megafauna biomass crashed, because many non-human megafauna species suddenly disappeared, whereas human biomass continued to rise. After the crash, the global ecosystem gradually recovered into a new state where megafauna biomass was concentrated around one species, humans, instead of being distributed across many species. Precrash biomass levels were finally reached just before the Industrial Revolution began, then skyrocketed above the precrash baseline as humans augmented the energy available to the global ecosystem by mining fossil fuels. Implications include (i) an increase in human biomass (with attendant hunting and other impacts) intersected with climate change to cause the Quaternary Megafauna Extinction and an ecological threshold event, after which humans became dominant in the global ecosystem; (ii) with continued growth of human biomass and today's unprecedented global warming, only extraordinary and stepped-up conservation efforts will prevent a new round of extinctions in most body-size and taxonomic spectra; and (iii) a near-future biomass crash that will unfavorably impact humans and their domesticates and other species is unavoidable unless alternative energy sources are developed to replace dwindling supplies of fossil fuels.
Collapse
|
72
|
Rubin BK. Editorial overview: the value of FeNO measurement in asthma management Fire sticks and burning bushes--maybe NO, but perhaps yes. Paediatr Respir Rev 2008; 9:132-3. [PMID: 18513674 DOI: 10.1016/j.prrv.2007.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
73
|
Luck GW. A review of the relationships between human population density and biodiversity. Biol Rev Camb Philos Soc 2007; 82:607-45. [PMID: 17944620 DOI: 10.1111/j.1469-185x.2007.00028.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To explore the impacts of increasing human numbers on nature, many studies have examined relationships between human population density (HPD) and biodiversity change. The implicit assumption in many of these studies is that as population density increases so does the threat to biodiversity. The implications of this assumption are compounded by recent research showing that species richness for many taxonomic groups is often highest in areas with high HPD. If increasing HPD is a threat to conservation, this threat may be magnified owing to the spatial congruence between people and species richness. Here, I review the relationships between HPD and measures of biodiversity status focussing in particular on evidence for the spatial congruence between people and species richness and the threat that increasing HPD may pose to biodiversity conservation. The review is split into two major sections: (i) a quantitative assessment of 85 studies covering 401 analyses, including meta-analyses on discrete relationships; and (ii) a discussion of the implications of the quantitative analyses and major issues raised in the literature. Our understanding of the relationships between HPD and biodiversity is skewed by geographic and taxonomic biases in the literature. Most research has been conducted in the Northern Hemisphere and focussed primarily on birds and mammals, largely ignoring relationships with other taxonomic groups. A total of 127 analyses compared HPD with the species richness of particular taxonomic groups. A meta-analysis of these results found a significant positive population correlation indicating that, on average, species-rich regions and human settlements co-occur. However, there was substantial unexplained heterogeneity in these data. Some of this heterogeneity was explained by the size of the sampling unit used by researchers - as this increased so did the strength of the correlation between HPD and species richness. The most convincing result for a taxonomic group was a significant positive population correlation between HPD and bird species richness. Significant positive population correlations were also found for HPD versus the richness of threatened and geographically restricted species. Hence, there is reasonably good evidence for spatial congruence between people and species-rich regions. The reasons for this congruence are only just beginning to be explored, but key mutual drivers appear to include available energy and elevation. The evidence for increasing HPD as a threat to conservation was weak, owing primarily to the extreme heterogeneity in the approaches used to address this issue. There was some suggestion of a positive relationship between HPD and species extinction, but this result should be interpreted with caution owing to the wide diversity of approaches used to measure extinction. Identifying strong links between human development and species extinction is hampered in part by the difficulty of recording extinction events. The most convincing indication of the negative impact of increasing HPD was a significant negative population correlation between density and the size of protected areas. The magnitude and implications of spatial congruence between people and biodiversity are now being explored using the principles of complementarity and irreplaceability. Human development as a threat to conservation is usually assessed within a complex, interdisciplinary modelling framework, although population size is still considered a key factor. Future population growth and expansion of human settlements will present increasing challenges for conserving species-rich regions and maximising the benefits humans gain from nature.
Collapse
Affiliation(s)
- Gary W Luck
- Institute for Land, Water and Society, Charles Sturt University, PO Box 789, Albury, NSW, 2640 Australia.
| |
Collapse
|
74
|
Waldram MS, Bond WJ, Stock WD. Ecological Engineering by a Mega-Grazer: White Rhino Impacts on a South African Savanna. Ecosystems 2007. [DOI: 10.1007/s10021-007-9109-9] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
75
|
Abstract
Debate around the ecologically noble savage represents two markedly different research threads. The first addresses the issue of conservation among native peoples and narrowly focuses on case studies of resource use of ethnographic, archaeological, or historic sources. The second thread is broader and more humanistic and political in orientation and considers the concept of ecological nobility in terms of identity, ecological knowledge, ideology, and the deployment of ecological nobility as a political tool by native peoples and conservation groups.
Collapse
Affiliation(s)
- Hames Raymond
- Department of Anthropology and Geography, University of Nebraska, Lincoln, Nebraska 68588
| |
Collapse
|
76
|
Raven PH, Yeates DK. Australian biodiversity: threats for the present, opportunities for the future. ACTA ACUST UNITED AC 2007. [DOI: 10.1111/j.1440-6055.2007.00601.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
77
|
Orians GH, Milewski AV. Ecology of Australia: the effects of nutrient-poor soils and intense fires. Biol Rev Camb Philos Soc 2007; 82:393-423. [PMID: 17624961 DOI: 10.1111/j.1469-185x.2007.00017.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Australia, the flattest, driest, and geologically oldest vegetated continent, has a uniquely high proportion of nutrient-poor soils. We develop a "Nutrient-Poverty/Intense-Fire Theory," which postulates that most anomalous features of organisms and ecosystems of Australia are the evolutionary consequences of adaptations to nutrient poverty, compounded by intense fire that tends to occur as a result of nutrient poverty. The fundamental tenet of the theory is that plants growing in environments with plentiful light and periodic adequate moisture, but on soils poor in phosphorus, zinc, and other indispensible nutrients, can synthesize carbohydrates in excess of the amount that can be combined with, or catalyzed by, these nutrients for metabolism and production of nutrient-rich foliage and reproductive tissues. They use this "expendable energy" to produce well-defended foliage, large quantities of lignified tissues, and readily digestible exudates. Rapid accumulation of nutrient-poor biomass, a result of low rates of herbivory, provides fuel for intense fire. Intense fire exacerbates nutrient poverty by volatilizing certain micronutrients critical for animals. Anomalous features of organisms of Australia that can be explained by this theory, rather than by climate or phylogenetic history alone, include the following: most woody plants have long-lived, durable foliage; plants defend their tissues primarily with carbon-rich but nutrient-poor compounds; an unusually high proportion of plants protects seeds from fire and granivores in sturdy, woody capsules or follicles; plants allocate unusually large amounts of expendable energy to production of carbon-based exudates, such as nectar and gums; an unusually high proportion of plant species is pollinated by vertebrates that average larger size than pollinators on other continents; herbivores are small and have slow metabolism; there are no ruminants, mammals that eat mainly subterranean plant matter, or fungus-culturing termites and ants; vegetation dominated by leaf-spinescent plants is more extensive than vegetation dominated by stem-spinescent plants; nitrogen-fixing plants are major components of most vegetation types; there is a higher proportion of myrmecochorous plant species than on any other continent; there are hardly any stem-succulent and few leaf-succulent, perennial, non-halophytic plant species; and an unusually high proportion of bird species breeds cooperatively. Although the Nutrient-Poverty/Intense-Fire Theory can provide plausible explanations for these anomalous features, some puzzles remain, among them the great success of introduced herbivores, the lack of grazers on extensive grasslands on cracking clays, the apparently low productivity of ants, and the prominence of the parasitic plants of Australia. By examining the ratios of available energy to nutrients, particularly scarce nutrients, ecologists may identify processes not previously recognized as important for life forms or biotic adaptation on other continents.
Collapse
Affiliation(s)
- Gordon H Orians
- Department of Biology, Box 351800, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
78
|
Prideaux GJ, Long JA, Ayliffe LK, Hellstrom JC, Pillans B, Boles WE, Hutchinson MN, Roberts RG, Cupper ML, Arnold LJ, Devine PD, Warburton NM. An arid-adapted middle Pleistocene vertebrate fauna from south-central Australia. Nature 2007; 445:422-5. [PMID: 17251978 DOI: 10.1038/nature05471] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 11/21/2006] [Indexed: 11/09/2022]
Abstract
How well the ecology, zoogeography and evolution of modern biotas is understood depends substantially on knowledge of the Pleistocene. Australia has one of the most distinctive, but least understood, Pleistocene faunas. Records from the western half of the continent are especially rare. Here we report on a diverse and exceptionally well preserved middle Pleistocene vertebrate assemblage from caves beneath the arid, treeless Nullarbor plain of south-central Australia. Many taxa are represented by whole skeletons, which together serve as a template for identifying fragmentary, hitherto indeterminate, remains collected previously from Pleistocene sites across southern Australia. A remarkable eight of the 23 Nullarbor kangaroos are new, including two tree-kangaroos. The diverse herbivore assemblage implies substantially greater floristic diversity than that of the modern shrub steppe, but all other faunal and stable-isotope data indicate that the climate was very similar to today. Because the 21 Nullarbor species that did not survive the Pleistocene were well adapted to dry conditions, climate change (specifically, increased aridity) is unlikely to have been significant in their extinction.
Collapse
Affiliation(s)
- Gavin J Prideaux
- Department of Earth and Planetary Sciences, Western Australian Museum, Perth, Western Australia 6000, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Changing views of Late Quaternary human adaptation in arid China. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s1571-0866(07)09014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
80
|
Koch PL, Barnosky AD. Late Quaternary Extinctions: State of the Debate. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2006. [DOI: 10.1146/annurev.ecolsys.34.011802.132415] [Citation(s) in RCA: 588] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paul L. Koch
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, California 95064;
| | - Anthony D. Barnosky
- Department of Integrative Biology and Museums of Paleontology and Vertebrate Zoology, University of California, Berkeley, California 74720;
| |
Collapse
|
81
|
Josh Donlan C, Berger J, Bock CE, Bock JH, Burney DA, Estes JA, Foreman D, Martin PS, Roemer GW, Smith FA, Soulé ME, Greene HW. Pleistocene Rewilding: An Optimistic Agenda for Twenty‐First Century Conservation. Am Nat 2006; 168:660-81. [PMID: 17080364 DOI: 10.1086/508027] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 06/06/2006] [Indexed: 11/04/2022]
Abstract
Large vertebrates are strong interactors in food webs, yet they were lost from most ecosystems after the dispersal of modern humans from Africa and Eurasia. We call for restoration of missing ecological functions and evolutionary potential of lost North American megafauna using extant conspecifics and related taxa. We refer to this restoration as Pleistocene rewilding; it is conceived as carefully managed ecosystem manipulations whereby costs and benefits are objectively addressed on a case-by-case and locality-by-locality basis. Pleistocene rewilding would deliberately promote large, long-lived species over pest and weed assemblages, facilitate the persistence and ecological effectiveness of megafauna on a global scale, and broaden the underlying premise of conservation from managing extinction to encompass restoring ecological and evolutionary processes. Pleistocene rewilding can begin immediately with species such as Bolson tortoises and feral horses and continue through the coming decades with elephants and Holarctic lions. Our exemplar taxa would contribute biological, economic, and cultural benefits to North America. Owners of large tracts of private land in the central and western United States could be the first to implement this restoration. Risks of Pleistocene rewilding include the possibility of altered disease ecology and associated human health implications, as well as unexpected ecological and sociopolitical consequences of reintroductions. Establishment of programs to monitor suites of species interactions and their consequences for biodiversity and ecosystem health will be a significant challenge. Secure fencing would be a major economic cost, and social challenges will include acceptance of predation as an overriding natural process and the incorporation of pre-Columbian ecological frameworks into conservation strategies.
Collapse
Affiliation(s)
- C Josh Donlan
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA. cjd34cornell.edu
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Borregaard MK, Rahbek C. Prevalence of intraspecific relationships between range size and abundance in Danish birds. DIVERS DISTRIB 2006. [DOI: 10.1111/j.1366-9516.2006.00258.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
83
|
|
84
|
Pittock B, Abbs D, Suppiah R, Jones R. Climatic Background to Past and Future Floods in Australia. ADV ECOL RES 2006. [DOI: 10.1016/s0065-2504(06)39002-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
85
|
Helgen KM, Wells RT, Kear BP, Gerdtz WR, Flannery TF. Ecological and evolutionary significance of sizes of giant extinct kangaroos. AUST J ZOOL 2006. [DOI: 10.1071/zo05077] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A method, based on femoral circumference, allowed us to develop body mass estimates for 11 extinct Pleistocene megafaunal species of macropodids (Protemnodon anak, P. brehus, P. hopei, P. roechus, Procoptodon goliah, ‘P.’ gilli, Simosthenurus maddocki, S. occidentalis, Sthenurus andersoni, S. stirlingi and S. tindalei) and three fossil populations of the extant eastern grey kangaroo (Macropus giganteus). With the possible exception of P. goliah, the extinct taxa were browsers, among which sympatric, congeneric species sort into size classes separated by body mass increments of 20–75%. None show evidence of size variation through time, and only the smallest (‘P.’ gilli) exhibits evidence suggestive of marked sexual dimorphism. The largest surviving macropodids (five species of Macropus) are grazers which, although sympatric, do not differ greatly in body mass today, but at least one species (M. giganteus) fluctuated markedly in body size over the course of the Pleistocene. Sexual dimorphism in these species is marked, and may have varied through time. There is some mass overlap between the extinct and surviving macropodid taxa. With a mean estimated body mass of 232 kg, Procoptodon goliah was the largest hopping mammal ever to exist.
Collapse
|
86
|
Affiliation(s)
- Christopher N Johnson
- School of Tropical Biology, James Cook University, Townsville, Queensland 4811, Australia.
| |
Collapse
|
87
|
Hopkin M. Fire-starters blamed for Australian extinctions. Nature 2005. [DOI: 10.1038/news050704-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|