51
|
Lidke AK, Bannister S, Löwer AM, Apel DM, Podleschny M, Kollmann M, Ackermann CF, García-Alonso J, Raible F, Rebscher N. 17β-Estradiol induces supernumerary primordial germ cells in embryos of the polychaete Platynereis dumerilii. Gen Comp Endocrinol 2014; 196:52-61. [PMID: 24287341 DOI: 10.1016/j.ygcen.2013.11.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/01/2013] [Accepted: 11/14/2013] [Indexed: 01/14/2023]
Abstract
In the polychaete Platynereis dumerilii exactly four primordial germ cells (PGCs) arise in early development and are subject to a transient mitotic arrest until the animals enter gametogenesis. In order to unravel the mechanisms controlling the number of PGCs in Platynereis, we tested whether the steroid 17β-estradiol (E2) is able to induce PGC proliferation, as it had been described in other species. Our data provide strong support for such a mechanism, showing that E2 significantly increases the occurrence of larvae with supernumerary PGCs in Platynereis in a dose dependent manner. E2 responsiveness is restricted to early developmental stages, when the PGCs are specified. During these stages, embryos exhibit high expression levels of the estradiol receptor (ER). The ER transcript localizes to the yolk-free cytoplasm of unfertilized eggs and segregates into the micromeres during cleavage stages. Nuclear ER protein is found asymmetrically distributed between daughter cells. Neither transcript nor protein is detectable in PGCs at larval stages. Addition of the specific estradiol receptor inhibitor ICI-182,780 (ICI) abolishes the proliferative effect of E2, suggesting that it is mediated by ER signaling. Our study reports for the first time an ER mediated proliferative effect of E2 on PGCs in an invertebrate organism.
Collapse
Affiliation(s)
- Anika K Lidke
- Morphology and Evolution of Invertebrates, Philipps-Universität Marburg, Germany
| | - Stephanie Bannister
- Max F. Perutz Laboratories and Research Platform "Marine Rhythms of Life", University of Vienna, Vienna, Austria
| | - Andreas M Löwer
- Morphology and Evolution of Invertebrates, Philipps-Universität Marburg, Germany
| | - David M Apel
- Morphology and Evolution of Invertebrates, Philipps-Universität Marburg, Germany
| | | | | | | | - Javier García-Alonso
- Biodiversity Group, Centro Universitario Regional Este, Universidad de la República, Maldonado, Uruguay
| | - Florian Raible
- Max F. Perutz Laboratories and Research Platform "Marine Rhythms of Life", University of Vienna, Vienna, Austria
| | - Nicole Rebscher
- Morphology and Evolution of Invertebrates, Philipps-Universität Marburg, Germany.
| |
Collapse
|
52
|
Gérard K, Guilloton E, Arnaud-Haond S, Aurelle D, Bastrop R, Chevaldonné P, Derycke S, Hanel R, Lapègue S, Lejeusne C, Mousset S, Ramšak A, Remerie T, Viard F, Féral JP, Chenuil A. PCR survey of 50 introns in animals: cross-amplification of homologous EPIC loci in eight non-bilaterian, protostome and deuterostome phyla. Mar Genomics 2013; 12:1-8. [PMID: 24184205 DOI: 10.1016/j.margen.2013.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 11/28/2022]
Abstract
Exon Primed Intron Crossing (EPIC) markers provide molecular tools that are susceptible to be variable within species while remaining amplifiable by PCR using potentially universal primers. In this study we tested the possibility of obtaining PCR products from 50 EPIC markers on 23 species belonging to seven different phyla (Porifera, Cnidaria, Arthropoda, Nematoda, Mollusca, Annelida, Echinodermata) using 70 new primer pairs. A previous study had identified and tested those loci in a dozen species, including another phylum, Urochordata (Chenuil et al., 2010). Results were contrasted among species. The best results were achieved with the oyster (Mollusca) where 28 loci provided amplicons susceptible to contain an intron according to their size. This was however not the case with the other mollusk Crepidula fornicata, which seems to have undergone a reduction in intron number or intron size. In the Porifera, 13 loci appeared susceptible to contain an intron, a surprisingly high number for this phylum considering its phylogenetic distance with genomic data used to design the primers. For two cnidarian species, numerous loci (24) were obtained. Ecdysozoan phyla (arthropods and nematodes) proved less successful than others as expected considering reports of their rapid rate of genome evolution and the worst results were obtained for several arthropods. Some general patterns among phyla arose, and we discuss how the results of this EPIC survey may give new insights into genome evolution of the study species. This work confirms that this set of EPIC loci provides an easy-to-use toolbox to identify genetic markers potentially useful for population genetics, phylogeography or phylogenetic studies for a large panel of metazoan species. We then argue that obtaining diploid sequence genotypes for these loci became simple and affordable owing to Next-Generation Sequencing development. Species surveyed in this study belong to several genera (Acanthaster, Alvinocaris, Aplysina, Aurelia, Crepidula, Eunicella, Hediste, Hemimysis, Litoditis, Lophelia, Mesopodopsis, Mya, Ophiocten, Ophioderma, Ostrea, Pelagia, Platynereis, Rhizostoma, Rimicaris), two of them, belonging to the family Vesicomydae and Eunicidae, could not be determined at the genus level.
Collapse
Affiliation(s)
- K Gérard
- Laboratorio Ecología Molecular, las Palmeras 3425, Ñuñoa, Santiago, Chile.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Structural determinants of specificity and catalytic mechanism in mammalian 25-kDa thiamine triphosphatase. Biochim Biophys Acta Gen Subj 2013; 1830:4513-23. [DOI: 10.1016/j.bbagen.2013.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/24/2013] [Accepted: 05/09/2013] [Indexed: 11/24/2022]
|
54
|
Veedin-Rajan VB, Fischer RM, Raible F, Tessmar-Raible K. Conditional and specific cell ablation in the marine annelid Platynereis dumerilii. PLoS One 2013; 8:e75811. [PMID: 24086637 PMCID: PMC3782428 DOI: 10.1371/journal.pone.0075811] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 08/21/2013] [Indexed: 11/18/2022] Open
Abstract
The marine annelid Platynereis dumerilii has become a model system for evo-devo, neurobiology and marine biology. The functional assessment of its cell types, however, has so far been very limited. Here we report on the establishment of a generally applicable, cell type specific ablation technique to overcome this restriction. Using a transgenic strain expressing the bacterial enzyme nitroreductase (ntr) under the control of the worm’s r-opsin1 locus, we show that the demarcated photoreceptor cells can be specifically ablated by the addition of the prodrug metronidazole (mtz). TUNEL staining indicates that ntr expressing cells undergo apoptotic cell death. As we used a transgenic strain co-expressing ntr with enhanced green fluorescent protein (egfp) coding sequence, we were able to validate the ablation of photoreceptors not only in fixed tissue, using r-opsin1 riboprobes, but also by monitoring eGFP+ cells in live animals. The specificity of the ablation was demonstrated by the normal presence of the eye pigment cells, as well as of neuronal markers expressed in other cells of the brain, such as phc2, tyrosine hydroxylase and brn1/2/4. Additional analyses of the position of DAPI stained nuclei, the brain’s overall neuronal scaffold, as well as the positions and projections of serotonergic neurons further confirmed that mtz treatment did not induce general abnormalities in the worm’s brain. As the prodrug is administered by adding it to the water, targeted ablation of specific cell types can be achieved throughout the life of the animal. We show that ablation conditions need to be adjusted to the size of the worms, likely due to differences in the penetration of the prodrug, and establish ablation conditions for worms containing 10 to 55 segments. Our results establish mtz/ntr mediated conditional cell ablation as a powerful functional tool in Platynereis.
Collapse
Affiliation(s)
- Vinoth Babu Veedin-Rajan
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform “Marine Rhythms of Life,” Vienna, Austria
| | - Ruth M. Fischer
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform “Marine Rhythms of Life,” Vienna, Austria
| | - Florian Raible
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform “Marine Rhythms of Life,” Vienna, Austria
| | - Kristin Tessmar-Raible
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform “Marine Rhythms of Life,” Vienna, Austria
- * E-mail:
| |
Collapse
|
55
|
Demilly A, Steinmetz P, Gazave E, Marchand L, Vervoort M. Involvement of the Wnt/β-catenin pathway in neurectoderm architecture in Platynereis dumerilii. Nat Commun 2013; 4:1915. [DOI: 10.1038/ncomms2915] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/19/2013] [Indexed: 12/14/2022] Open
|
56
|
Effects of taxon sampling in reconstructions of intron evolution. Int J Genomics 2013; 2013:671316. [PMID: 23671844 PMCID: PMC3647540 DOI: 10.1155/2013/671316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 01/02/2013] [Indexed: 11/26/2022] Open
Abstract
Introns comprise a considerable portion of eukaryotic genomes; however, their evolution is understudied. Numerous works of the last years largely disagree on many aspects of intron evolution. Interpretation of these differences is hindered because different algorithms and taxon sampling strategies were used. Here, we present the first attempt of a systematic evaluation of the effects of taxon sampling on popular intron evolution estimation algorithms. Using the “taxon jackknife” method, we compared the effect of taxon sampling on the behavior of intron evolution inferring algorithms. We show that taxon sampling can dramatically affect the inferences and identify conditions where algorithms are prone to systematic errors. Presence or absence of some key species is often more important than the taxon sampling size alone. Criteria of representativeness of the taxonomic sampling for reliable reconstructions are outlined. Presence of the deep-branching species with relatively high intron density is more important than sheer number of species. According to these criteria, currently available genomic databases are representative enough to provide reliable inferences of the intron evolution in animals, land plants, and fungi, but they underrepresent many groups of unicellular eukaryotes, including the well-studied Alveolata.
Collapse
|
57
|
|
58
|
Backfisch B, Veedin Rajan VB, Fischer RM, Lohs C, Arboleda E, Tessmar-Raible K, Raible F. Stable transgenesis in the marine annelid Platynereis dumerilii sheds new light on photoreceptor evolution. Proc Natl Acad Sci U S A 2013; 110:193-8. [PMID: 23284166 PMCID: PMC3538230 DOI: 10.1073/pnas.1209657109] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Research in eye evolution has mostly focused on eyes residing in the head. In contrast, noncephalic light sensors are far less understood and rather regarded as evolutionary innovations. We established stable transgenesis in the annelid Platynereis, a reference species for evolutionary and developmental comparisons. EGFP controlled by cis-regulatory elements of r-opsin, a characteristic marker for rhabdomeric photoreceptors, faithfully recapitulates known r-opsin expression in the adult eyes, and marks a pair of pigment-associated frontolateral eyelets in the brain. Unexpectedly, transgenic animals revealed an additional series of photoreceptors in the ventral nerve cord as well as photoreceptors that are located in each pair of the segmental dorsal appendages (notopodia) and project into the ventral nerve cord. Consistent with a photosensory function of these noncephalic cells, decapitated animals display a clear photoavoidance response. Molecular analysis of the receptors suggests that they differentiate independent of pax6, a gene involved in early eye development of many metazoans, and that the ventral cells may share origins with the Hesse organs in the amphioxus neural tube. Finally, expression analysis of opn4×-2 and opn4m-2, two zebrafish orthologs of Platynereis r-opsin, reveals that these genes share expression in the neuromasts, known mechanoreceptors of the lateral line peripheral nervous system. Together, this establishes that noncephalic photoreceptors are more widespread than assumed, and may even reflect more ancient aspects of sensory systems. Our study marks significant advance for the understanding of photoreceptor cell (PRC) evolution and development and for Platynereis as a functional lophotrochozoan model system.
Collapse
Affiliation(s)
| | | | - Ruth M. Fischer
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology, and Genetics, University of Vienna, A-1030 Vienna, Austria
| | | | | | - Kristin Tessmar-Raible
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology, and Genetics, University of Vienna, A-1030 Vienna, Austria
| | - Florian Raible
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology, and Genetics, University of Vienna, A-1030 Vienna, Austria
| |
Collapse
|
59
|
Simakov O, Marletaz F, Cho SJ, Edsinger-Gonzales E, Havlak P, Hellsten U, Kuo DH, Larsson T, Lv J, Arendt D, Savage R, Osoegawa K, de Jong P, Grimwood J, Chapman JA, Shapiro H, Aerts A, Otillar RP, Terry AY, Boore JL, Grigoriev IV, Lindberg DR, Seaver EC, Weisblat DA, Putnam NH, Rokhsar DS. Insights into bilaterian evolution from three spiralian genomes. Nature 2012; 493:526-31. [PMID: 23254933 PMCID: PMC4085046 DOI: 10.1038/nature11696] [Citation(s) in RCA: 467] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 10/24/2012] [Indexed: 12/18/2022]
Abstract
Current genomic perspectives on animal diversity neglect two prominent phyla, the molluscs and annelids, that together account for nearly one-third of known marine species and are important both ecologically and as experimental systems in classical embryology1–3. Here we describe the draft genomes of the owl limpet (Lottia gigantea), a marine polychaete (Capitella teleta) and a freshwater leech (Helobdella robusta), and compare them with other animal genomes to investigate the origin and diversification of bilaterians from a genomic perspective. We find that the genome organization, gene structure and functional content of these species are more similar to those of some invertebrate deuterostome genomes (for example, amphioxus and sea urchin) than those of other protostomes that have been sequenced to date (flies, nematodes and flatworms). The conservation of these genomic features enables us to expand the inventory of genes present in the last common bilaterian ancestor, establish the tripartite diversification of bilaterians using multiple genomic characteristics and identify ancient conserved long- and short-range genetic linkages across metazoans. Superimposed on this broadly conserved pan-bilaterian background we find examples of lineage-specific genome evolution, including varying rates of rearrangement, intron gain and loss, expansions and contractions of gene families, and the evolution of clade-specific genes that produce the unique content of each genome.
Collapse
Affiliation(s)
- Oleg Simakov
- European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Hill N, Leow A, Bleidorn C, Groth D, Tiedemann R, Selbig J, Hartmann S. Analysis of phylogenetic signal in protostomial intron patterns using Mutual Information. Theory Biosci 2012; 132:93-104. [DOI: 10.1007/s12064-012-0173-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 11/30/2012] [Indexed: 11/29/2022]
|
61
|
Gallegos ME, Balakrishnan S, Chandramouli P, Arora S, Azameera A, Babushekar A, Bargoma E, Bokhari A, Chava SK, Das P, Desai M, Decena D, Saramma SDD, Dey B, Doss AL, Gor N, Gudiputi L, Guo C, Hande S, Jensen M, Jones S, Jones N, Jorgens D, Karamchedu P, Kamrani K, Kolora LD, Kristensen L, Kwan K, Lau H, Maharaj P, Mander N, Mangipudi K, Menakuru H, Mody V, Mohanty S, Mukkamala S, Mundra SA, Nagaraju S, Narayanaswamy R, Ndungu-Case C, Noorbakhsh M, Patel J, Patel P, Pendem SV, Ponakala A, Rath M, Robles MC, Rokkam D, Roth C, Sasidharan P, Shah S, Tandon S, Suprai J, Truong TQN, Uthayaruban R, Varma A, Ved U, Wang Z, Yu Z. The C. elegans rab family: identification, classification and toolkit construction. PLoS One 2012; 7:e49387. [PMID: 23185324 PMCID: PMC3504004 DOI: 10.1371/journal.pone.0049387] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 10/09/2012] [Indexed: 11/29/2022] Open
Abstract
Rab monomeric GTPases regulate specific aspects of vesicle transport in eukaryotes including coat recruitment, uncoating, fission, motility, target selection and fusion. Moreover, individual Rab proteins function at specific sites within the cell, for example the ER, golgi and early endosome. Importantly, the localization and function of individual Rab subfamily members are often conserved underscoring the significant contributions that model organisms such as Caenorhabditis elegans can make towards a better understanding of human disease caused by Rab and vesicle trafficking malfunction. With this in mind, a bioinformatics approach was first taken to identify and classify the complete C. elegans Rab family placing individual Rabs into specific subfamilies based on molecular phylogenetics. For genes that were difficult to classify by sequence similarity alone, we did a comparative analysis of intron position among specific subfamilies from yeast to humans. This two-pronged approach allowed the classification of 30 out of 31 C. elegans Rab proteins identified here including Rab31/Rab50, a likely member of the last eukaryotic common ancestor (LECA). Second, a molecular toolset was created to facilitate research on biological processes that involve Rab proteins. Specifically, we used Gateway-compatible C. elegans ORFeome clones as starting material to create 44 full-length, sequence-verified, dominant-negative (DN) and constitutive active (CA) rab open reading frames (ORFs). Development of this toolset provided independent research projects for students enrolled in a research-based molecular techniques course at California State University, East Bay (CSUEB).
Collapse
Affiliation(s)
- Maria E Gallegos
- Department of Biological Sciences, California State University East Bay, Hayward, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Simakov O, Larsson TA, Arendt D. Linking micro- and macro-evolution at the cell type level: a view from the lophotrochozoan Platynereis dumerilii. Brief Funct Genomics 2012; 12:430-9. [DOI: 10.1093/bfgp/els049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
63
|
Koonin EV, Csuros M, Rogozin IB. Whence genes in pieces: reconstruction of the exon-intron gene structures of the last eukaryotic common ancestor and other ancestral eukaryotes. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 4:93-105. [PMID: 23139082 DOI: 10.1002/wrna.1143] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In eukaryotes, protein-coding sequences are interrupted by non-coding sequences known as introns. During mRNA maturation, introns are excised by the spliceosome and the coding regions, exons, are spliced to form the mature coding region. The intron densities widely differ between eukaryotic lineages, from 6 to 7 introns per kb of coding sequence in vertebrates, some invertebrates and green plants, to only a few introns across the entire genome in many unicellular eukaryotes. Evolutionary reconstructions using maximum likelihood methods suggest intron-rich ancestors for each major group of eukaryotes. For the last common ancestor of animals, the highest intron density of all extant and extinct eukaryotes was inferred, at 120-130% of the human intron density. Furthermore, an intron density within 53-74% of the human values was inferred for the last eukaryotic common ancestor. Accordingly, evolution of eukaryotic genes in all lines of descent involved primarily intron loss, with substantial gain only at the bases of several branches including plants and animals. These conclusions have substantial biological implications indicating that the common ancestor of all modern eukaryotes was a complex organism with a gene architecture resembling those in multicellular organisms. Alternative splicing most likely initially appeared as an inevitable result of splicing errors and only later was employed to generate structural and functional diversification of proteins.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information NLM/NIH, Bethesda, MD, USA.
| | | | | |
Collapse
|
64
|
Kenny NJ, Shimeld SM. Additive multiple k-mer transcriptome of the keelworm Pomatoceros lamarckii (Annelida; Serpulidae) reveals annelid trochophore transcription factor cassette. Dev Genes Evol 2012; 222:325-39. [PMID: 23053624 DOI: 10.1007/s00427-012-0416-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 09/14/2012] [Indexed: 11/27/2022]
Abstract
Recent advances in both next-generation sequencing and assembly programmes have made the low-cost construction of transcriptome datasets for non-model species feasible, capable of yielding a raft of information even from less well-transcribed genes. Here we present the results of assemblies performed on a 51-bp paired end Illumina dataset derived from a mixed larval sample of the annelid Pomatoceros lamarckii at 24, 48 and 72 h post-fertilization. We used Oases to assemble 36.5 million paired end reads with k-mer sizes from 21 to 29, followed by amalgamation of assemblies, redundancy removal with Vmatch and TGICL and removal of contigs less than 500 bp in length. This resulted in a final assembly of 50,151 contigs, with a mean length of 1,221 bp and covering 61.3 Mbp. A total of 34,846 (69.4 %) of these returned a BlastX hit above a cutoff of 1.0e (-3), and 17,967 (35.8 %) were assigned at least one GO annotation using Blast2GO. We used the assembly to identify genes belonging to the homeobox superclass and the Fox, Sox and Tbx classes, recovering 37, 16, four and three genes, respectively. This included orthologues of genes previously unidentified in lophotrochozoans and protostomes. Our study illustrates the utility of such transcriptomic assembly methods as a gene discovery tool and greatly expands our knowledge of transcription factor genes in annelids in general and in this species in particular.
Collapse
Affiliation(s)
- Nathan J Kenny
- Department of Zoology, University of Oxford, Oxford, UK.
| | | |
Collapse
|
65
|
Clarke SL, VanderMeer JE, Wenger AM, Schaar BT, Ahituv N, Bejerano G. Human developmental enhancers conserved between deuterostomes and protostomes. PLoS Genet 2012; 8:e1002852. [PMID: 22876195 PMCID: PMC3410860 DOI: 10.1371/journal.pgen.1002852] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/07/2012] [Indexed: 01/10/2023] Open
Abstract
The identification of homologies, whether morphological, molecular, or genetic, is fundamental to our understanding of common biological principles. Homologies bridging the great divide between deuterostomes and protostomes have served as the basis for current models of animal evolution and development. It is now appreciated that these two clades share a common developmental toolkit consisting of conserved transcription factors and signaling pathways. These patterning genes sometimes show common expression patterns and genetic interactions, suggesting the existence of similar or even conserved regulatory apparatus. However, previous studies have found no regulatory sequence conserved between deuterostomes and protostomes. Here we describe the first such enhancers, which we call bilaterian conserved regulatory elements (Bicores). Bicores show conservation of sequence and gene synteny. Sequence conservation of Bicores reflects conserved patterns of transcription factor binding sites. We predict that Bicores act as response elements to signaling pathways, and we show that Bicores are developmental enhancers that drive expression of transcriptional repressors in the vertebrate central nervous system. Although the small number of identified Bicores suggests extensive rewiring of cis-regulation between the protostome and deuterostome clades, additional Bicores may be revealed as our understanding of cis-regulatory logic and sample of bilaterian genomes continue to grow. Flies and worms have long served as valuable model organisms for the study of human development and health. Despite the great morphological and evolutionary distance between them, humans, flies, and worms share many commonalities. Each develops from three major germ layers and is patterned along the two major spatial axes. At the molecular level, development in these widely diverged species is often controlled by the same signaling pathways activating members of the same transcription factor and target gene families, shared since the common ancestor of humans, flies, and worms. And yet, at the gene regulatory level, humans and flies or worms seem starkly different, with not a single regulatory region shared across the phyla. Here we discover the first two examples of developmental enhancers conserved between deuterostomes (ranging from human to sea urchins) and protostomes (a large clade that includes flies and worms). We show evidence that these ancient regulatory loci retain the capacity to respond to the same signaling pathways in these widely diverged organisms, and we show that they have been co-opted, along with the molecular pathways that control them, to pattern the vertebrate nervous systems. Our screen supports large scale regulatory rewiring, while offering the first intriguing outliers.
Collapse
Affiliation(s)
- Shoa L Clarke
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | | | | | | | | | | |
Collapse
|
66
|
Abstract
Annelids (the segmented worms) have a long history in studies of animal developmental biology, particularly with regards to their cleavage patterns during early development and their neurobiology. With the relatively recent reorganisation of the phylogeny of the animal kingdom, and the distinction of the super-phyla Ecdysozoa and Lophotrochozoa, an extra stimulus for studying this phylum has arisen. As one of the major phyla within Lophotrochozoa, Annelida are playing an important role in deducing the developmental biology of the last common ancestor of the protostomes and deuterostomes, an animal from which >98% of all described animal species evolved.
Collapse
Affiliation(s)
- David E. K. Ferrier
- The Scottish Oceans Institute, the Gatty Marine Laboratory, University of St Andrews, East Sands, St Andrews, Fife, KY16 8LB, UK
| |
Collapse
|
67
|
Rogozin IB, Carmel L, Csuros M, Koonin EV. Origin and evolution of spliceosomal introns. Biol Direct 2012; 7:11. [PMID: 22507701 PMCID: PMC3488318 DOI: 10.1186/1745-6150-7-11] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 03/15/2012] [Indexed: 12/31/2022] Open
Abstract
Evolution of exon-intron structure of eukaryotic genes has been a matter of long-standing, intensive debate. The introns-early concept, later rebranded ‘introns first’ held that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. The introns-late concept held that introns emerged only in eukaryotes and new introns have been accumulating continuously throughout eukaryotic evolution. Analysis of orthologous genes from completely sequenced eukaryotic genomes revealed numerous shared intron positions in orthologous genes from animals and plants and even between animals, plants and protists, suggesting that many ancestral introns have persisted since the last eukaryotic common ancestor (LECA). Reconstructions of intron gain and loss using the growing collection of genomes of diverse eukaryotes and increasingly advanced probabilistic models convincingly show that the LECA and the ancestors of each eukaryotic supergroup had intron-rich genes, with intron densities comparable to those in the most intron-rich modern genomes such as those of vertebrates. The subsequent evolution in most lineages of eukaryotes involved primarily loss of introns, with only a few episodes of substantial intron gain that might have accompanied major evolutionary innovations such as the origin of metazoa. The original invasion of self-splicing Group II introns, presumably originating from the mitochondrial endosymbiont, into the genome of the emerging eukaryote might have been a key factor of eukaryogenesis that in particular triggered the origin of endomembranes and the nucleus. Conversely, splicing errors gave rise to alternative splicing, a major contribution to the biological complexity of multicellular eukaryotes. There is no indication that any prokaryote has ever possessed a spliceosome or introns in protein-coding genes, other than relatively rare mobile self-splicing introns. Thus, the introns-first scenario is not supported by any evidence but exon-intron structure of protein-coding genes appears to have evolved concomitantly with the eukaryotic cell, and introns were a major factor of evolution throughout the history of eukaryotes. This article was reviewed by I. King Jordan, Manuel Irimia (nominated by Anthony Poole), Tobias Mourier (nominated by Anthony Poole), and Fyodor Kondrashov. For the complete reports, see the Reviewers’ Reports section.
Collapse
Affiliation(s)
- Igor B Rogozin
- National Center for Biotechnology Information NLM/NIH, 8600 Rockville Pike, Bldg, 38A, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
68
|
Hui JHL, McDougall C, Monteiro AS, Holland PWH, Arendt D, Balavoine G, Ferrier DEK. Extensive chordate and annelid macrosynteny reveals ancestral homeobox gene organization. Mol Biol Evol 2012; 29:157-65. [PMID: 21727239 DOI: 10.1093/molbev/msr175] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genes with the homeobox motif are crucial in developmental biology and widely implicated in the evolution of development. The Antennapedia (ANTP)-class is one of the two major classes of animal homeobox genes, and includes the Hox genes, renowned for their role in patterning the anterior-posterior axis of animals. The origin and evolution of the ANTP-class genes are a matter of some debate. A principal guiding hypothesis has been the existence of an ancient gene Mega-cluster deep in animal ancestry. This hypothesis was largely established from linkage data from chordates, and the Mega-cluster hypothesis remains to be seriously tested in protostomes. We have thus mapped ANTP-class homeobox genes to the chromosome level in a lophotrochozoan protostome. Our comparison of gene organization in Platynereis dumerilii and chordates indicates that the Mega-cluster, if it did exist, had already been broken up onto four chromosomes by the time of the protostome-deuterostome ancestor (PDA). These results not only elucidate an aspect of the genome organization of the PDA but also reveal high levels of macrosynteny between P. dumerilii and chordates. This implies a very low rate of interchromosomal genome rearrangement in the lineages leading to P. dumerilii and the chordate ancestor since the time of the PDA.
Collapse
Affiliation(s)
- Jerome H L Hui
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
69
|
Rhee JS, Won EJ, Kim RO, Choi BS, Choi IY, Park GS, Shin KH, Lee YM, Lee JS. The polychaete, Perinereis nuntia ESTs and its use to uncover potential biomarker genes for molecular ecotoxicological studies. ENVIRONMENTAL RESEARCH 2012; 112:48-57. [PMID: 22018924 DOI: 10.1016/j.envres.2011.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 09/17/2011] [Accepted: 09/21/2011] [Indexed: 05/31/2023]
Abstract
The polychaete, Perinereis nuntia, has been used as an indicator species to assess the environmental condition of benthic communities in coastal marine environments. Recently, high-throughput sequencing technology has been proven to be a useful method for analyzing expressed sequence tags (ESTs) in non-model species. Thus, we have obtained extensive cDNA information by the pyrosequencing method, to utilize the polychaete species as a test organism for sediment quality monitoring studies. From the total RNA of P. nuntia, cDNA was reversely synthesized and randomly sequenced using a GS-FLX sequencer. In the assembly stage 1, 40,379 transcripts (13,666 contigs and 26,713 singletons) were acquired and showed 47% hitting rate compared with the GenBank non-redundant (NR) amino acid sequence database using BLASTX. After the stage-2 assembly, 21,657 transcripts were identified and showed 28% hitting rate. Finally, we obtained 6 064 unigenes that corresponded to the GenBank NR amino acid sequence database using BLASTX. Of the transcripts obtained in this species, we found a number of stress- and cell defense-related genes (e.g. heat shock protein family, antioxidant-related genes, cytochrome P450 genes) that are potentially useful for sediment monitoring at the molecular level, indicating that the pyrosequencing method is an effective approach to uncover gene families of potential biomarker genes simultaneously, and thus make transcriptomic studies possible. To confirm the usefulness of those potential biomarker genes, we analyzed the comparative profiling of P. nuntia mRNA transcripts between the samples collected from the polychaete aquaculture farm and the southern coast field of South Korea. In this paper, we summarize the expressed cDNA information of P. nuntia and discussed its potential use in environmental genomics and ecotoxicological studies for uncovering the potential molecular mechanisms of environmental stresses and chemical toxicity to the indicator species, P. nuntia in marine sediments.
Collapse
Affiliation(s)
- Jae-Sung Rhee
- Department of Molecular and Environmental Bioscience, Graduate School, Hanyang University, Seoul 133-791, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
McDougall C, Korchagina N, Tobin JL, Ferrier DE. Annelid Distal-less/Dlx duplications reveal varied post-duplication fates. BMC Evol Biol 2011; 11:241. [PMID: 21846345 PMCID: PMC3199776 DOI: 10.1186/1471-2148-11-241] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 08/16/2011] [Indexed: 11/24/2022] Open
Abstract
Background Dlx (Distal-less) genes have various developmental roles and are widespread throughout the animal kingdom, usually occurring as single copy genes in non-chordates and as multiple copies in most chordate genomes. While the genomic arrangement and function of these genes is well known in vertebrates and arthropods, information about Dlx genes in other organisms is scarce. We investigate the presence of Dlx genes in several annelid species and examine Dlx gene expression in the polychaete Pomatoceros lamarckii. Results Two Dlx genes are present in P. lamarckii, Capitella teleta and Helobdella robusta. The C. teleta Dlx genes are closely linked in an inverted tail-to-tail orientation, reminiscent of the arrangement of vertebrate Dlx pairs, and gene conversion appears to have had a role in their evolution. The H. robusta Dlx genes, however, are not on the same genomic scaffold and display divergent sequences, while, if the P. lamarckii genes are linked in a tail-to-tail orientation they are a minimum of 41 kilobases apart and show no sign of gene conversion. No expression in P. lamarckii appendage development has been observed, which conflicts with the supposed conserved role of these genes in animal appendage development. These Dlx duplications do not appear to be annelid-wide, as the polychaete Platynereis dumerilii likely possesses only one Dlx gene. Conclusions On the basis of the currently accepted annelid phylogeny, we hypothesise that one Dlx duplication occurred in the annelid lineage after the divergence of P. dumerilii from the other lineages and these duplicates then had varied evolutionary fates in different species. We also propose that the ancestral role of Dlx genes is not related to appendage development.
Collapse
Affiliation(s)
- Carmel McDougall
- The Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews KY168LB, UK.
| | | | | | | |
Collapse
|
71
|
Chavali S, Morais DADL, Gough J, Babu MM. Evolution of eukaryotic genome architecture: Insights from the study of a rapidly evolving metazoan, Oikopleura dioica: Non-adaptive forces such as elevated mutation rates may influence the evolution of genome architecture. Bioessays 2011; 33:592-601. [PMID: 21681984 DOI: 10.1002/bies.201100034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recent sequencing of the metazoan Oikopleura dioica genome has provided important insights, which challenges the current understanding of eukaryotic genome evolution. Many genomic features of O. dioica show deviation from the commonly observed trends in other eukaryotic genomes. For instance, O. dioica has a rapidly evolving, highly compact genome with a divergent intron-exon organization. Additionally, O. dioica lacks the minor spliceosome and key DNA repair pathway genes. Even with a compact genome, O. dioica contains tandem repeats, comparable to other eukaryotes, and shows lineage-specific expansion of certain protein domains. Here, we review its genomic features in the context of current knowledge, discuss implications for contemporary biology and identify areas for further research. Analysis of the O. dioica genome suggests that non-adaptive forces such as elevated mutation rates might influence the evolution of genome architecture. The knowledge of unique genomic features and splicing mechanisms in O. dioica may be exploited for synthetic biology applications, such as generation of orthogonal splicing systems.
Collapse
|
72
|
Niu DK, Yang YF. Why eukaryotic cells use introns to enhance gene expression: splicing reduces transcription-associated mutagenesis by inhibiting topoisomerase I cutting activity. Biol Direct 2011; 6:24. [PMID: 21592350 PMCID: PMC3118952 DOI: 10.1186/1745-6150-6-24] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/18/2011] [Indexed: 11/10/2022] Open
Abstract
Background The costs and benefits of spliceosomal introns in eukaryotes have not been established. One recognized effect of intron splicing is its known enhancement of gene expression. However, the mechanism regulating such splicing-mediated expression enhancement has not been defined. Previous studies have shown that intron splicing is a time-consuming process, indicating that splicing may not reduce the time required for transcription and processing of spliced pre-mRNA molecules; rather, it might facilitate the later rounds of transcription. Because the densities of active RNA polymerase II on most genes are less than one molecule per gene, direct interactions between the splicing apparatus and transcriptional complexes (from the later rounds of transcription) are infrequent, and thus unlikely to account for splicing-mediated gene expression enhancement. Presentation of the hypothesis The serine/arginine-rich protein SF2/ASF can inhibit the DNA topoisomerase I activity that removes negative supercoiling of DNA generated by transcription. Consequently, splicing could make genes more receptive to RNA polymerase II during the later rounds of transcription, and thus affect the frequency of gene transcription. Compared with the transcriptional enhancement mediated by strong promoters, intron-containing genes experience a lower frequency of cut-and-paste processes. The cleavage and religation activity of DNA strands by DNA topoisomerase I was recently shown to account for transcription-associated mutagenesis. Therefore, intron-mediated enhancement of gene expression could reduce transcription-associated genome instability. Testing the hypothesis Experimentally test whether transcription-associated mutagenesis is lower in intron-containing genes than in intronless genes. Use bioinformatic analysis to check whether exons flanking lost introns have higher frequencies of short deletions. Implications of the hypothesis The mechanism of intron-mediated enhancement proposed here may also explain the positive correlation observed between intron size and gene expression levels in unicellular organisms, and the greater number of intron containing genes in higher organisms. Reviewers This article was reviewed by Dr Arcady Mushegian, Dr Igor B Rogozin (nominated by Dr I King Jordan) and Dr Alexey S Kondrashov. For the full reviews, please go to the Reviewer's Reports section.
Collapse
Affiliation(s)
- Deng-Ke Niu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| | | |
Collapse
|
73
|
Da Lage JL, Maczkowiak F, Cariou ML. Phylogenetic distribution of intron positions in alpha-amylase genes of bilateria suggests numerous gains and losses. PLoS One 2011; 6:e19673. [PMID: 21611157 PMCID: PMC3096672 DOI: 10.1371/journal.pone.0019673] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 04/03/2011] [Indexed: 11/19/2022] Open
Abstract
Most eukaryotes have at least some genes interrupted by introns. While it is well accepted that introns were already present at moderate density in the last eukaryote common ancestor, the conspicuous diversity of intron density among genomes suggests a complex evolutionary history, with marked differences between phyla. The question of the rates of intron gains and loss in the course of evolution and factors influencing them remains controversial. We have investigated a single gene family, alpha-amylase, in 55 species covering a variety of animal phyla. Comparison of intron positions across phyla suggests a complex history, with a likely ancestral intronless gene undergoing frequent intron loss and gain, leading to extant intron/exon structures that are highly variable, even among species from the same phylum. Because introns are known to play no regulatory role in this gene and there is no alternative splicing, the structural differences may be interpreted more easily: intron positions, sizes, losses or gains may be more likely related to factors linked to splicing mechanisms and requirements, and to recognition of introns and exons, or to more extrinsic factors, such as life cycle and population size. We have shown that intron losses outnumbered gains in recent periods, but that "resets" of intron positions occurred at the origin of several phyla, including vertebrates. Rates of gain and loss appear to be positively correlated. No phase preference was found. We also found evidence for parallel gains and for intron sliding. Presence of introns at given positions was correlated to a strong protosplice consensus sequence AG/G, which was much weaker in the absence of intron. In contrast, recent intron insertions were not associated with a specific sequence. In animal Amy genes, population size and generation time seem to have played only minor roles in shaping gene structures.
Collapse
Affiliation(s)
- Jean-Luc Da Lage
- Laboratoire Evolution, génomes et spéciation, UPR 9034 CNRS, Gif sur Yvette, France.
| | | | | |
Collapse
|
74
|
Perina D, Bosnar MH, Mikoč A, Müller WEG, Cetković H. Characterization of Nme6-like gene/protein from marine sponge Suberites domuncula. Naunyn Schmiedebergs Arch Pharmacol 2011; 384:451-60. [PMID: 21533994 DOI: 10.1007/s00210-011-0635-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 04/05/2011] [Indexed: 11/26/2022]
Abstract
Nucleoside diphosphate kinases (NDPKs) are evolutionarily conserved enzymes involved in many biological processes such as metastasis, proliferation, development, differentiation, ciliary functions, vesicle transport and apoptosis in vertebrates. Biochemical mechanisms of these processes are still largely unknown. Sponges (Porifera) are simple metazoans without tissues, closest to the common ancestor of all animals. They changed little during evolution and probably provide the best insight into the metazoan ancestors' genomic features. The purpose of this study was to address structural and functional properties of group II Nme6 gene/protein ortholog from the marine sponge Suberites domuncula, Nme6, in order to elucidate its evolutionary history. Sponge Nme6 gene and promoter were sequenced and analysed with various bioinformatical tools. Nme6 and Nme6Δ31 proteins were produced in E. coli strain BL21 and NDPK activity was measured using a coupled pyruvate kinase-lactate dehydrogenase assay. Subcellular localization in human tumour cells was examined by confocal scanning microscopy. Our results show that the sponge Nme6 compared to human Nme6 does not possess NDPK activity, does not localize in mitochondria at least in human cells although it has a putative mitochondrial signal sequence, lacks two recent introns that comprise miRNAs and have different transcriptional binding sites in the promoter region. Therefore, we conclude that the structure of Nme6 gene has changed during metazoan evolution possibly in correlation with the function of the protein.
Collapse
Affiliation(s)
- Drago Perina
- Laboratory of Molecular Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, P.P. 180, 10002, Zagreb, Croatia
| | | | | | | | | |
Collapse
|
75
|
Kim WJ, Jung H, Gaffney PM. Development of type I genetic markers from expressed sequence tags in highly polymorphic species. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:127-132. [PMID: 20309599 DOI: 10.1007/s10126-010-9280-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 01/19/2010] [Indexed: 05/29/2023]
Abstract
Expressed sequence tag (EST) databases provide a primary source of nuclear DNA sequences for genetic marker development in non-model organisms. To date, the process has been relatively inefficient for several reasons: 1) priming site polymorphism in the template leads to inferior or erratic amplification; 2) introns in the target amplicon are too large and/or numerous to allow effective amplification under standard screening conditions; and 3) at least occasionally, a PCR primer straddles an exon-intron junction and is unable to bind to genomic DNA template. The first is only a minor issue for species or strains with low heterozygosity but becomes a significant problem for species with high genomic variation, such as marine organisms with extremely large effective population sizes. Problems arising from unanticipated introns are unavoidable but are most pronounced in intron-rich species, such as vertebrates and lophotrochozoans. We present an approach to marker development in the Pacific oyster Crassostrea gigas, a highly polymorphic and intron-rich species, which minimizes these problems, and should be applicable to other non-model species for which EST databases are available. Placement of PCR primers in the 3' end of coding sequence and 3' UTR improved PCR success rate from 51% to 97%. Almost all (37 of 39) markers developed for the Pacific oyster were polymorphic in a small test panel of wild and domesticated oysters.
Collapse
Affiliation(s)
- Woo-Jin Kim
- Biotechnology Research Institute, National Fisheries Research and Development Institute, 408-1 Sirang-ri, Gijang-eup, Gijang-gun, Busan, 619-705, South Korea
| | | | | |
Collapse
|
76
|
Struck TH, Paul C, Hill N, Hartmann S, Hösel C, Kube M, Lieb B, Meyer A, Tiedemann R, Purschke G, Bleidorn C. Phylogenomic analyses unravel annelid evolution. Nature 2011; 471:95-8. [DOI: 10.1038/nature09864] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 01/18/2011] [Indexed: 11/09/2022]
|
77
|
Abstract
The marine ecosystem is governed by a multitude of environmental cycles, all of which are linked to the periodical recurrence of the sun or the moon. In accordance with these cycles, marine species exhibit a variety of biological rhythms, ranging from circadian and circatidal rhythms to circalunar and seasonal rhythms. However, our current molecular understanding of biological rhythms and clocks is largely restricted to solar-controlled circadian and seasonal rhythms in land model species. Here, we discuss the first molecular data emerging for circalunar and circatidal rhythms and present selected species suitable for further molecular analyses. We argue that a re-focus on marine species will be crucial to understand the principles, interactions and evolution of rhythms that govern a broad range of eukaryotes, including ourselves.
Collapse
Affiliation(s)
| | - Florian Raible
- Max F. Perutz Laboratories, University of ViennaVienna, Austria
| | | |
Collapse
|
78
|
Ragg H. Intron creation and DNA repair. Cell Mol Life Sci 2011; 68:235-42. [PMID: 20853128 PMCID: PMC11115024 DOI: 10.1007/s00018-010-0532-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 09/07/2010] [Accepted: 09/07/2010] [Indexed: 10/19/2022]
Abstract
The genesis of the exon-intron patterns of eukaryotic genes persists as one of the most enigmatic questions in molecular genetics. In particular, the origin and mechanisms responsible for creation of spliceosomal introns have remained controversial. Now the issue appears to have taken a turn. The formation of novel introns in eukaryotes, including some vertebrate lineages, is not as rare as commonly assumed. Moreover, introns appear to have been gained in parallel at closely spaced sites and even repeatedly at the same position. Based on these discoveries, novel hypotheses of intron creation have been developed. The new concepts posit that DNA repair processes are a major source of intron formation. Here, after summarizing the current views of intron gain mechanisms, I review findings in support of the DNA repair hypothesis that provides a global mechanistic scenario for intron creation. Some implications on our perception of the mosaic structure of eukaryotic genes are also discussed.
Collapse
Affiliation(s)
- Hermann Ragg
- Department of Biotechnology, University of Bielefeld, Germany.
| |
Collapse
|
79
|
Fischer AHL, Henrich T, Arendt D. The normal development of Platynereis dumerilii (Nereididae, Annelida). Front Zool 2010; 7:31. [PMID: 21192805 PMCID: PMC3027123 DOI: 10.1186/1742-9994-7-31] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 12/30/2010] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The polychaete annelid Platynereis dumerilii is an emerging model organism for the study of molecular developmental processes, evolution, neurobiology and marine biology. Annelids belong to the Lophotrochozoa, the so far understudied third major branch of bilaterian animals besides deuterostomes and ecdysozoans. P. dumerilii has proven highly relevant to explore ancient bilaterian conditions via comparison to the deuterostomes, because it has accumulated less evolutionary change than conventional ecdysozoan models. Previous staging was mainly referring to hours post fertilization but did not allow matching stages between studies performed at (even slightly) different temperatures. To overcome this, and to provide a first comprehensive description of P. dumerilii normal development, a temperature-independent staging system is needed. RESULTS Platynereis dumerilii normal development is subdivided into 16 stages, starting with the zygote and ending with the death of the mature worms after delivering their gametes. The stages described can be easily identified by conventional light microscopy or even by dissecting scope. Developmental landmarks such as the beginning of phototaxis, the visibility of the stomodeal opening and of the chaetae, the first occurrence of the ciliary bands, the formation of the parapodia, the extension of antennae and cirri, the onset of feeding and other characteristics are used to define different developmental stages. The morphology of all larval stages as well as of juveniles and adults is documented by light microscopy. We also provide an overview of important steps in the development of the nervous system and of the musculature, using fluorescent labeling techniques and confocal laser-scanning microscopy. Timing of each developmental stage refers to hours post fertilization at 18 ± 0.1°C. For comparison, we determined the pace of development of larvae raised at 14°C, 16°C, 20°C, 25°C, 28°C and 30°C. A staging ontology representing the comprehensive list of developmental stages of P. dumerilii is available online. CONCLUSIONS Our atlas of Platynereis dumerilii normal development represents an important resource for the growing Platynereis community and can also be applied to other nereidid annelids.
Collapse
Affiliation(s)
- Antje HL Fischer
- Developmental Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Thorsten Henrich
- Developmental Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
- International College, Osaka University, A217 School of Science Main Building 1-1, Machikaneyama-machi, Toyonaka, Osaka, 560-0043, Japan
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| |
Collapse
|
80
|
Zimek A, Weber K. Flanking genes of an essential gene give information about the evolution of metazoa. Eur J Cell Biol 2010; 90:356-64. [PMID: 21163549 DOI: 10.1016/j.ejcb.2010.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/06/2010] [Accepted: 10/08/2010] [Indexed: 10/18/2022] Open
Abstract
We collected as much information as possible on new lamin genes and their flanking genes. The number of lamin genes varies from 1 to 4 depending more or less on the phylogenetic position of the species. Strong genome drift is recognised by fewer and unusually placed introns and a change in flanking genes. This applies to the nematode Caenorhabditis elegans, the insect Drosophila melanogaster, the urochordate Ciona intestinalis, the annelid Capitella teleta and the planaria Schmidtea mediterranea. In contrast stable genomes show astonishing conservation of the flanking genes. These are identical in the sea anemone Nematostella vectensis and the cephalochordate Branchiostoma floridae lamin B1 gene. Even in the lamin B1 genes from Xenopus tropicalis and man one of the flanking genes is conserved. Finally our analysis forms the basis for a molecular analysis of metazoan phylogeny.
Collapse
Affiliation(s)
- Alexander Zimek
- Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany.
| | | |
Collapse
|
81
|
Janssen R, Le Gouar M, Pechmann M, Poulin F, Bolognesi R, Schwager EE, Hopfen C, Colbourne JK, Budd GE, Brown SJ, Prpic NM, Kosiol C, Vervoort M, Damen WGM, Balavoine G, McGregor AP. Conservation, loss, and redeployment of Wnt ligands in protostomes: implications for understanding the evolution of segment formation. BMC Evol Biol 2010; 10:374. [PMID: 21122121 PMCID: PMC3003278 DOI: 10.1186/1471-2148-10-374] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 12/01/2010] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The Wnt genes encode secreted glycoprotein ligands that regulate a wide range of developmental processes, including axis elongation and segmentation. There are thirteen subfamilies of Wnt genes in metazoans and this gene diversity appeared early in animal evolution. The loss of Wnt subfamilies appears to be common in insects, but little is known about the Wnt repertoire in other arthropods, and moreover the expression and function of these genes have only been investigated in a few protostomes outside the relatively Wnt-poor model species Drosophila melanogaster and Caenorhabditis elegans. To investigate the evolution of this important gene family more broadly in protostomes, we surveyed the Wnt gene diversity in the crustacean Daphnia pulex, the chelicerates Ixodes scapularis and Achaearanea tepidariorum, the myriapod Glomeris marginata and the annelid Platynereis dumerilii. We also characterised Wnt gene expression in the latter three species, and further investigated expression of these genes in the beetle Tribolium castaneum. RESULTS We found that Daphnia and Platynereis both contain twelve Wnt subfamilies demonstrating that the common ancestors of arthropods, ecdysozoans and protostomes possessed all members of all Wnt subfamilies except Wnt3. Furthermore, although there is striking loss of Wnt genes in insects, other arthropods have maintained greater Wnt gene diversity. The expression of many Wnt genes overlap in segmentally reiterated patterns and in the segment addition zone, and while these patterns can be relatively conserved among arthropods and the annelid, there have also been changes in the expression of some Wnt genes in the course of protostome evolution. Nevertheless, our results strongly support the parasegment as the primary segmental unit in arthropods, and suggest further similarities between segmental and parasegmental regulation by Wnt genes in annelids and arthropods respectively. CONCLUSIONS Despite frequent losses of Wnt gene subfamilies in lineages such as insects, nematodes and leeches, most protostomes have probably maintained much of their ancestral repertoire of twelve Wnt genes. The maintenance of a large set of these ligands could be in part due to their combinatorial activity in various tissues rather than functional redundancy. The activity of such Wnt 'landscapes' as opposed to the function of individual ligands could explain the patterns of conservation and redeployment of these genes in important developmental processes across metazoans. This requires further analysis of the expression and function of these genes in a wider range of taxa.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Villavägen 16, SE-75236 Uppsala, Sweden
| | - Martine Le Gouar
- Centre de Génétique Moléculaire du CNRS, FRE 3144, avenue de la Terrasse 91198 Gif-sur-Yvette, France
| | - Matthias Pechmann
- Georg-August-Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung Entwicklungsbiologie, GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Francis Poulin
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Genzyme Corporation, One The Mountain Road, Framingham, MA 01701, USA
| | - Renata Bolognesi
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
- Monsanto Company, St. Louis, MO, 63107, USA
| | - Evelyn E Schwager
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave, Cambridge MA 02138, USA
| | - Corinna Hopfen
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210, Vienna, Austria
| | - John K Colbourne
- The Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Villavägen 16, SE-75236 Uppsala, Sweden
| | - Susan J Brown
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Nikola-Michael Prpic
- Georg-August-Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung Entwicklungsbiologie, GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Carolin Kosiol
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210, Vienna, Austria
| | - Michel Vervoort
- Centre de Génétique Moléculaire du CNRS, FRE 3144, avenue de la Terrasse 91198 Gif-sur-Yvette, France
- Institut Jacques Monod, CNRS/Université Paris-Diderot, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Wim GM Damen
- Friedrich-Schiller-University Jena, Department of Genetics, Philosophenweg 12, 07743 Jena, Germany
| | - Guillaume Balavoine
- Centre de Génétique Moléculaire du CNRS, FRE 3144, avenue de la Terrasse 91198 Gif-sur-Yvette, France
- Institut Jacques Monod, CNRS/Université Paris-Diderot, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Alistair P McGregor
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210, Vienna, Austria
| |
Collapse
|
82
|
Gagnière N, Jollivet D, Boutet I, Brélivet Y, Busso D, Da Silva C, Gaill F, Higuet D, Hourdez S, Knoops B, Lallier F, Leize-Wagner E, Mary J, Moras D, Perrodou E, Rees JF, Segurens B, Shillito B, Tanguy A, Thierry JC, Weissenbach J, Wincker P, Zal F, Poch O, Lecompte O. Insights into metazoan evolution from Alvinella pompejana cDNAs. BMC Genomics 2010; 11:634. [PMID: 21080938 PMCID: PMC3018142 DOI: 10.1186/1471-2164-11-634] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 11/16/2010] [Indexed: 11/29/2022] Open
Abstract
Background Alvinella pompejana is a representative of Annelids, a key phylum for evo-devo studies that is still poorly studied at the sequence level. A. pompejana inhabits deep-sea hydrothermal vents and is currently known as one of the most thermotolerant Eukaryotes in marine environments, withstanding the largest known chemical and thermal ranges (from 5 to 105°C). This tube-dwelling worm forms dense colonies on the surface of hydrothermal chimneys and can withstand long periods of hypo/anoxia and long phases of exposure to hydrogen sulphides. A. pompejana specifically inhabits chimney walls of hydrothermal vents on the East Pacific Rise. To survive, Alvinella has developed numerous adaptations at the physiological and molecular levels, such as an increase in the thermostability of proteins and protein complexes. It represents an outstanding model organism for studying adaptation to harsh physicochemical conditions and for isolating stable macromolecules resistant to high temperatures. Results We have constructed four full length enriched cDNA libraries to investigate the biology and evolution of this intriguing animal. Analysis of more than 75,000 high quality reads led to the identification of 15,858 transcripts and 9,221 putative protein sequences. Our annotation reveals a good coverage of most animal pathways and networks with a prevalence of transcripts involved in oxidative stress resistance, detoxification, anti-bacterial defence, and heat shock protection. Alvinella proteins seem to show a slow evolutionary rate and a higher similarity with proteins from Vertebrates compared to proteins from Arthropods or Nematodes. Their composition shows enrichment in positively charged amino acids that might contribute to their thermostability. The gene content of Alvinella reveals that an important pool of genes previously considered to be specific to Deuterostomes were in fact already present in the last common ancestor of the Bilaterian animals, but have been secondarily lost in model invertebrates. This pool is enriched in glycoproteins that play a key role in intercellular communication, hormonal regulation and immunity. Conclusions Our study starts to unravel the gene content and sequence evolution of a deep-sea annelid, revealing key features in eukaryote adaptation to extreme environmental conditions and highlighting the proximity of Annelids and Vertebrates.
Collapse
Affiliation(s)
- Nicolas Gagnière
- Department of Structural Biology and Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CERBM F-67400 Illkirch, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
By combining gene expression profiling with image registration, Tomer et al. (2010) find that the mushroom body of the segmented worm Platynereis dumerilii shares many features with the mammalian cerebral cortex. The authors propose that the mushroom body and cortex evolved from the same structure in the common ancestor of vertebrates and invertebrates.
Collapse
Affiliation(s)
- Lora B Sweeney
- Neurosciences Program, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
84
|
Chenuil A, Hoareau TB, Egea E, Penant G, Rocher C, Aurelle D, Mokhtar-Jamai K, Bishop JDD, Boissin E, Diaz A, Krakau M, Luttikhuizen PC, Patti FP, Blavet N, Mousset S. An efficient method to find potentially universal population genetic markers, applied to metazoans. BMC Evol Biol 2010; 10:276. [PMID: 20836842 PMCID: PMC2949868 DOI: 10.1186/1471-2148-10-276] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 09/13/2010] [Indexed: 12/27/2022] Open
Abstract
Background Despite the impressive growth of sequence databases, the limited availability of nuclear markers that are sufficiently polymorphic for population genetics and phylogeography and applicable across various phyla restricts many potential studies, particularly in non-model organisms. Numerous introns have invariant positions among kingdoms, providing a potential source for such markers. Unfortunately, most of the few known EPIC (Exon Primed Intron Crossing) loci are restricted to vertebrates or belong to multigenic families. Results In order to develop markers with broad applicability, we designed a bioinformatic approach aimed at avoiding multigenic families while identifying intron positions conserved across metazoan phyla. We developed a program facilitating the identification of EPIC loci which allowed slight variation in intron position. From the Homolens databases we selected 29 gene families which contained 52 promising introns for which we designed 93 primer pairs. PCR tests were performed on several ascidians, echinoderms, bivalves and cnidarians. On average, 24 different introns per genus were amplified in bilaterians. Remarkably, five of the introns successfully amplified in all of the metazoan genera tested (a dozen genera, including cnidarians). The influence of several factors on amplification success was investigated. Success rate was not related to the phylogenetic relatedness of a taxon to the groups that most influenced primer design, showing that these EPIC markers are extremely conserved in animals. Conclusions Our new method now makes it possible to (i) rapidly isolate a set of EPIC markers for any phylum, even outside the animal kingdom, and thus, (ii) compare genetic diversity at potentially homologous polymorphic loci between divergent taxa.
Collapse
Affiliation(s)
- Anne Chenuil
- Aix-Marseille Université, Laboratoire DIMAR, CNRS UMR6540, rue de la batterie des Lions, 13007 Marseille, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Yuan S, Burrell BD. Endocannabinoid-dependent LTD in a nociceptive synapse requires activation of a presynaptic TRPV-like receptor. J Neurophysiol 2010; 104:2766-77. [PMID: 20884761 DOI: 10.1152/jn.00491.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies have found that some forms of endocannabinoid-dependent synaptic plasticity in the hippocampus are mediated through activation of transient potential receptor vanilloid (TRPV) receptors instead of cannabinoid receptors CB1 or CB2. The potential role for synaptic localization of TRPV receptors during endocannabinoid modulation of nociceptive synapses was examined in the leech CNS where it is possible to record from the same pair of neurons from one preparation to the next. Long-term depression (LTD) in the monosynaptic connection between the nociceptive (N) sensory neuron and the longitudinal (L) motor neuron was found to be endocannabinoid-dependent given that this depression was blocked by RHC-80267, an inhibitor of DAG lipase that is required for 2-arachidonoyl glycerol (2AG) synthesis. Intracellular injection of a second DAG lipase inhibitor, tetrahyrdolipstatin (THL) was also able to block this endocannabinoid-dependent LTD (ecLTD) when injected postsynaptically but not presynaptically. N-to-L ecLTD was also inhibited by the TRPV1 antagonists capsazepine and SB 366791. Bath application of 2AG or the TRPV1 agonists capsaicin and resiniferatoxin mimicked LTD and both capsaicin- and 2AG-induced depression were blocked by capsazepine. In addition, pretreatment with 2AG or capsaicin occluded subsequent expression of LTD induced by repetitive activity. Presynaptic, but not postsynaptic, intracellular injection of capsazepine blocked both activity- and 2AG-induced ecLTD, suggesting that a presynaptic TRPV-like receptor in the leech mediated this form of synaptic plasticity. These findings potentially extend the role ecLTD to nociceptive synapses and suggest that invertebrate synapses, which are thought to lack CB1/CB2 receptor orthologues, utilize a TRPV-like protein as an endocannabinoid receptor.
Collapse
Affiliation(s)
- Sharleen Yuan
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | | |
Collapse
|
86
|
Tomer R, Denes AS, Tessmar-Raible K, Arendt D. Profiling by Image Registration Reveals Common Origin of Annelid Mushroom Bodies and Vertebrate Pallium. Cell 2010; 142:800-9. [DOI: 10.1016/j.cell.2010.07.043] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 05/22/2010] [Accepted: 07/14/2010] [Indexed: 01/08/2023]
|
87
|
Andreakis N, D'Aniello S, Albalat R, Patti FP, Garcia-Fernàndez J, Procaccini G, Sordino P, Palumbo A. Evolution of the nitric oxide synthase family in metazoans. Mol Biol Evol 2010; 28:163-79. [PMID: 20639231 DOI: 10.1093/molbev/msq179] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nitric oxide (NO) is essential to many physiological functions and operates in several signaling pathways. It is not understood how and when the different isoforms of nitric oxide synthase (NOS), the enzyme responsible for NO production, evolved in metazoans. This study investigates the number and structure of metazoan NOS enzymes by genome data mining and direct cloning of Nos genes from the lamprey. In total, 181 NOS proteins are analyzed from 33 invertebrate and 63 vertebrate species. Comparisons among protein and gene structures, combined with phylogenetic and syntenic studies, provide novel insights into how NOS isoforms arose and diverged. Protein domains and gene organization--that is, intron positions and phases--of animal NOS are remarkably conserved across all lineages, even in fast-evolving species. Phylogenetic and syntenic analyses support the view that a proto-NOS isoform was recurrently duplicated in different lineages, acquiring new structural configurations through gains and losses of protein motifs. We propose that in vertebrates a first duplication took place after the agnathan-gnathostome split followed by a paralog loss. A second duplication occurred during early tetrapod evolution, giving rise to the three isoforms--I, II, and III--in current mammals. Overall, NOS family evolution was the result of multiple gene and genome duplication events together with changes in protein architecture.
Collapse
Affiliation(s)
- Nikos Andreakis
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Harcet M, Roller M, Cetković H, Perina D, Wiens M, Müller WEG, Vlahovicek K. Demosponge EST sequencing reveals a complex genetic toolkit of the simplest metazoans. Mol Biol Evol 2010; 27:2747-56. [PMID: 20621960 PMCID: PMC2981516 DOI: 10.1093/molbev/msq174] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Sponges (Porifera) are among the simplest living and the earliest branching metazoans. They hold a pivotal role for studying genome evolution of the entire metazoan branch, both as an outgroup to Eumetazoa and as the closest branching phylum to the common ancestor of all multicellular animals (Urmetazoa). In order to assess the transcription inventory of sponges, we sequenced expressed sequence tag libraries of two demosponge species, Suberites domuncula and Lubomirskia baicalensis, and systematically analyzed the assembled sponge transcripts against their homologs from complete proteomes of six well-characterized metazoans--Nematostella vectensis, Caenorhabditis elegans, Drosophila melanogaster, Strongylocentrotus purpuratus, Ciona intestinalis, and Homo sapiens. We show that even the earliest metazoan species already have strikingly complex genomes in terms of gene content and functional repertoire and that the rich gene repertoire existed even before the emergence of true tissues, therefore further emphasizing the importance of gene loss and spatio-temporal changes in regulation of gene expression in shaping the metazoan genomes. Our findings further indicate that sponge and human genes generally show similarity levels higher than expected from their respective positions in metazoan phylogeny, providing direct evidence for slow rate of evolution in both "basal" and "apical" metazoan genome lineages. We propose that the ancestor of all metazoans had already had an unusually complex genome, thereby shifting the origins of genome complexity from Urbilateria to Urmetazoa.
Collapse
Affiliation(s)
- Matija Harcet
- Department of Molecular Biology, Rudjer Boskovic Institute, Zagreb, Croatia.
| | | | | | | | | | | | | |
Collapse
|
89
|
Macagno ER, Gaasterland T, Edsall L, Bafna V, Soares MB, Scheetz T, Casavant T, Da Silva C, Wincker P, Tasiemski A, Salzet M. Construction of a medicinal leech transcriptome database and its application to the identification of leech homologs of neural and innate immune genes. BMC Genomics 2010; 11:407. [PMID: 20579359 PMCID: PMC2996935 DOI: 10.1186/1471-2164-11-407] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 06/25/2010] [Indexed: 11/17/2022] Open
Abstract
Background The medicinal leech, Hirudo medicinalis, is an important model system for the study of nervous system structure, function, development, regeneration and repair. It is also a unique species in being presently approved for use in medical procedures, such as clearing of pooled blood following certain surgical procedures. It is a current, and potentially also future, source of medically useful molecular factors, such as anticoagulants and antibacterial peptides, which may have evolved as a result of its parasitizing large mammals, including humans. Despite the broad focus of research on this system, little has been done at the genomic or transcriptomic levels and there is a paucity of openly available sequence data. To begin to address this problem, we constructed whole embryo and adult central nervous system (CNS) EST libraries and created a clustered sequence database of the Hirudo transcriptome that is available to the scientific community. Results A total of ~133,000 EST clones from two directionally-cloned cDNA libraries, one constructed from mRNA derived from whole embryos at several developmental stages and the other from adult CNS cords, were sequenced in one or both directions by three different groups: Genoscope (French National Sequencing Center), the University of Iowa Sequencing Facility and the DOE Joint Genome Institute. These were assembled using the phrap software package into 31,232 unique contigs and singletons, with an average length of 827 nt. The assembled transcripts were then translated in all six frames and compared to proteins in NCBI's non-redundant (NR) and to the Gene Ontology (GO) protein sequence databases, resulting in 15,565 matches to 11,236 proteins in NR and 13,935 matches to 8,073 proteins in GO. Searching the database for transcripts of genes homologous to those thought to be involved in the innate immune responses of vertebrates and other invertebrates yielded a set of nearly one hundred evolutionarily conserved sequences, representing all known pathways involved in these important functions. Conclusions The sequences obtained for Hirudo transcripts represent the first major database of genes expressed in this important model system. Comparison of translated open reading frames (ORFs) with the other openly available leech datasets, the genome and transcriptome of Helobdella robusta, shows an average identity at the amino acid level of 58% in matched sequences. Interestingly, comparison with other available Lophotrochozoans shows similar high levels of amino acid identity, where sequences match, for example, 64% with Capitella capitata (a polychaete) and 56% with Aplysia californica (a mollusk), as well as 58% with Schistosoma mansoni (a platyhelminth). Phylogenetic comparisons of putative Hirudo innate immune response genes present within the Hirudo transcriptome database herein described show a strong resemblance to the corresponding mammalian genes, indicating that this important physiological response may have older origins than what has been previously proposed.
Collapse
Affiliation(s)
- Eduardo R Macagno
- Division of Biological Sciences, University of California, San Diego, CA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Hasse C, Rebscher N, Reiher W, Sobjinski K, Moerschel E, Beck L, Tessmar-Raible K, Arendt D, Hassel M. Three consecutive generations of nephridia occur during development of Platynereis dumerilii (Annelida, Polychaeta). Dev Dyn 2010; 239:1967-76. [DOI: 10.1002/dvdy.22331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
91
|
Abstract
Expressed sequence tag analyses of the annelid Pomatoceros lamarckii, recently published in BMC Evolutionary Biology, are consistent with less extensive gene loss in the Lophotrochozoa than in the Ecdysozoa, but it would be premature to generalize about patterns of gene loss on the basis of the limited data available. See research article http://www.biomedcentral.com/1471-2148/9/240.
Collapse
Affiliation(s)
- David J Miller
- ARC Centre of Excellence for Coral Reef Studies and Comparative Genomics Centre, James Cook University, Townsville, Queensland 4811, Australia.
| | | |
Collapse
|
92
|
Lin CF, Mount SM, Jarmołowski A, Makałowski W. Evolutionary dynamics of U12-type spliceosomal introns. BMC Evol Biol 2010; 10:47. [PMID: 20163699 PMCID: PMC2831892 DOI: 10.1186/1471-2148-10-47] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 02/17/2010] [Indexed: 02/05/2023] Open
Abstract
Background Many multicellular eukaryotes have two types of spliceosomes for the removal of introns from messenger RNA precursors. The major (U2) spliceosome processes the vast majority of introns, referred to as U2-type introns, while the minor (U12) spliceosome removes a small fraction (less than 0.5%) of introns, referred to as U12-type introns. U12-type introns have distinct sequence elements and usually occur together in genes with U2-type introns. A phylogenetic distribution of U12-type introns shows that the minor splicing pathway appeared very early in eukaryotic evolution and has been lost repeatedly. Results We have investigated the evolution of U12-type introns among eighteen metazoan genomes by analyzing orthologous U12-type intron clusters. Examination of gain, loss, and type switching shows that intron type is remarkably conserved among vertebrates. Among 180 intron clusters, only eight show intron loss in any vertebrate species and only five show conversion between the U12 and the U2-type. Although there are only nineteen U12-type introns in Drosophila melanogaster, we found one case of U2 to U12-type conversion, apparently mediated by the activation of cryptic U12 splice sites early in the dipteran lineage. Overall, loss of U12-type introns is more common than conversion to U2-type and the U12 to U2 conversion occurs more frequently among introns of the GT-AG subtype than among introns of the AT-AC subtype. We also found support for natural U12-type introns with non-canonical terminal dinucleotides (CT-AC, GG-AG, and GA-AG) that have not been previously reported. Conclusions Although complete loss of the U12-type spliceosome has occurred repeatedly, U12 introns are extremely stable in some taxa, including eutheria. Loss of U12 introns or the genes containing them is more common than conversion to the U2-type. The degeneracy of U12-type terminal dinucleotides among natural U12-type introns is higher than previously thought.
Collapse
Affiliation(s)
- Chiao-Feng Lin
- Institute of Bioinformatics, University of Muenster, Muenster, Germany
| | | | | | | |
Collapse
|
93
|
Ancient animal microRNAs and the evolution of tissue identity. Nature 2010; 463:1084-8. [PMID: 20118916 DOI: 10.1038/nature08744] [Citation(s) in RCA: 229] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 12/04/2009] [Indexed: 12/13/2022]
Abstract
The spectacular escalation in complexity in early bilaterian evolution correlates with a strong increase in the number of microRNAs. To explore the link between the birth of ancient microRNAs and body plan evolution, we set out to determine the ancient sites of activity of conserved bilaterian microRNA families in a comparative approach. We reason that any specific localization shared between protostomes and deuterostomes (the two major superphyla of bilaterian animals) should probably reflect an ancient specificity of that microRNA in their last common ancestor. Here, we investigate the expression of conserved bilaterian microRNAs in Platynereis dumerilii, a protostome retaining ancestral bilaterian features, in Capitella, another marine annelid, in the sea urchin Strongylocentrotus, a deuterostome, and in sea anemone Nematostella, representing an outgroup to the bilaterians. Our comparative data indicate that the oldest known animal microRNA, miR-100, and the related miR-125 and let-7 were initially active in neurosecretory cells located around the mouth. Other sets of ancient microRNAs were first present in locomotor ciliated cells, specific brain centres, or, more broadly, one of four major organ systems: central nervous system, sensory tissue, musculature and gut. These findings reveal that microRNA evolution and the establishment of tissue identities were closely coupled in bilaterian evolution. Also, they outline a minimum set of cell types and tissues that existed in the protostome-deuterostome ancestor.
Collapse
|
94
|
Ogino K, Tsuneki K, Furuya H. Unique genome of dicyemid mesozoan: Highly shortened spliceosomal introns in conservative exon/intron structure. Gene 2010; 449:70-6. [DOI: 10.1016/j.gene.2009.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 01/08/2023]
|
95
|
Tasiemski A, Salzet M. Leech Immunity: From Brain to Peripheral Responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 708:80-104. [DOI: 10.1007/978-1-4419-8059-5_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
96
|
Han ZG, Brindley PJ, Wang SY, Chen Z. Schistosoma genomics: new perspectives on schistosome biology and host-parasite interaction. Annu Rev Genomics Hum Genet 2009; 10:211-40. [PMID: 19630560 DOI: 10.1146/annurev-genom-082908-150036] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Schistosomiasis, caused mainly by Schistosoma japonicum, S. mansoni, and S. hematobium, remains one of the most prevalent and serious parasitic diseases worldwide. The blood flukes have a complex life cycle requiring adaptation for survival in fresh water as free-living forms and as parasites in snail intermediate and vertebrate definitive hosts. Functional genomics analyses, including transcriptomic and proteomic approaches, have been performed on schistosomes, in particular S. mansoni and S. japonicum, using powerful high-throughput methodologies. These investigations have not only chartered gene expression profiles across genders and developmental stages within mammalian and snail hosts, but have also characterized the features of the surface tegument, the eggshell and excretory-secretory proteomes of schistosomes. The integration of the genomic, transcriptomic, and proteomic information, together with genetic manipulation on individual genes, will provide a global insight into the molecular architecture of the biology, pathogenesis, and host-parasite interactions of the human blood flukes. Importantly, these functional genomics analyses lay a foundation on which to develop new antischistosome vaccines as well as drug targets and diagnostic markers for treatment and control of schistosomiasis.
Collapse
Affiliation(s)
- Ze-Guang Han
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China.
| | | | | | | |
Collapse
|
97
|
Rebscher N, Deichmann C, Sudhop S, Fritzenwanker JH, Green S, Hassel M. Conserved intron positions in FGFR genes reflect the modular structure of FGFR and reveal stepwise addition of domains to an already complex ancestral FGFR. Dev Genes Evol 2009; 219:455-68. [PMID: 20016912 DOI: 10.1007/s00427-009-0309-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 11/22/2009] [Indexed: 11/26/2022]
Abstract
We have analyzed the evolution of fibroblast growth factor receptor (FGFR) tyrosine kinase genes throughout a wide range of animal phyla. No evidence for an FGFR gene was found in Porifera, but we tentatively identified an FGFR gene in the placozoan Trichoplax adhaerens. The gene encodes a protein with three immunoglobulin-like domains, a single-pass transmembrane, and a split tyrosine kinase domain. By superimposing intron positions of 20 FGFR genes from Placozoa, Cnidaria, Protostomia, and Deuterostomia over the respective protein domain structure, we identified ten ancestral introns and three conserved intron groups. Our analysis shows (1) that the position of ancestral introns correlates to the modular structure of FGFRs, (2) that the acidic domain very likely evolved in the last common ancestor of triploblasts, (3) that splicing of IgIII was enabled by a triploblast-specific insertion, and (4) that IgI is subject to substantial loss or duplication particularly in quickly evolving genomes. Moreover, intron positions in the catalytic domain of FGFRs map to the borders of protein subdomains highly conserved in other serine/threonine kinases. Nevertheless, these introns were introduced in metazoan receptor tyrosine kinases exclusively. Our data support the view that protein evolution dating back to the Cambrian explosion took place in such a short time window that only subtle changes in the domain structure are detectable in extant representatives of animal phyla. We propose that the first multidomain FGFR originated in the last common ancestor of Placozoa, Cnidaria, and Bilateria. Additional domains were introduced mainly in the ancestor of triploblasts and in the Ecdysozoa.
Collapse
Affiliation(s)
- Nicole Rebscher
- FB 17, Morphology and Evolution of Invertebrates, Philipps Universitaet Marburg, Karl von Frisch Str. 8, 35032, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
98
|
Takahashi T, McDougall C, Troscianko J, Chen WC, Jayaraman-Nagarajan A, Shimeld SM, Ferrier DEK. An EST screen from the annelid Pomatoceros lamarckii reveals patterns of gene loss and gain in animals. BMC Evol Biol 2009; 9:240. [PMID: 19781084 PMCID: PMC2762978 DOI: 10.1186/1471-2148-9-240] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 09/25/2009] [Indexed: 01/06/2023] Open
Abstract
Background Since the drastic reorganisation of the phylogeny of the animal kingdom into three major clades of bilaterians; Ecdysozoa, Lophotrochozoa and Deuterostomia, it became glaringly obvious that the selection of model systems with extensive molecular resources was heavily biased towards only two of these three clades, namely the Ecdysozoa and Deuterostomia. Increasing efforts have been put towards redressing this imbalance in recent years, and one of the principal phyla in the vanguard of this endeavour is the Annelida. Results In the context of this effort we here report our characterisation of an Expressed Sequence Tag (EST) screen in the serpulid annelid, Pomatoceros lamarckii. We have sequenced over 5,000 ESTs which consolidate into over 2,000 sequences (clusters and singletons). These sequences are used to build phylogenetic trees to estimate relative branch lengths amongst different taxa and, by comparison to genomic data from other animals, patterns of gene retention and loss are deduced. Conclusion The molecular phylogenetic trees including the P. lamarckii sequences extend early observations that polychaetes tend to have relatively short branches in such trees, and hence are useful taxa with which to reconstruct gene family evolution. Also, with the availability of lophotrochozoan data such as that of P. lamarckii, it is now possible to make much more accurate reconstructions of the gene complement of the ancestor of the bilaterians than was previously possible from comparisons of ecdysozoan and deuterostome genomes to non-bilaterian outgroups. It is clear that the traditional molecular model systems for protostomes (e.g. Drosophila melanogaster and Caenorhabditis elegans), which are restricted to the Ecdysozoa, have undergone extensive gene loss during evolution. These ecdysozoan systems, in terms of gene content, are thus more derived from the bilaterian ancestral condition than lophotrochozoan systems like the polychaetes, and thus cannot be used as good, general representatives of protostome genomes. Currently sequenced insect and nematode genomes are less suitable models for deducing bilaterian ancestral states than lophotrochozoan genomes, despite the array of powerful genetic and mechanistic manipulation techniques in these ecdysozoans. A distinct category of genes that includes those present in non-bilaterians and lophotrochozoans, but which are absent from ecdysozoans and deuterostomes, highlights the need for further lophotrochozoan data to gain a more complete understanding of the gene complement of the bilaterian ancestor.
Collapse
Affiliation(s)
- Tokiharu Takahashi
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, UK.
| | | | | | | | | | | | | |
Collapse
|
99
|
Kerner P, Simionato E, Le Gouar M, Vervoort M. Orthologs of key vertebrate neural genes are expressed during neurogenesis in the annelidPlatynereis dumerilii. Evol Dev 2009; 11:513-24. [DOI: 10.1111/j.1525-142x.2009.00359.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
100
|
Ragg H, Kumar A, Köster K, Bentele C, Wang Y, Frese MA, Prib N, Krüger O. Multiple gains of spliceosomal introns in a superfamily of vertebrate protease inhibitor genes. BMC Evol Biol 2009; 9:208. [PMID: 19698129 PMCID: PMC2746811 DOI: 10.1186/1471-2148-9-208] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 08/22/2009] [Indexed: 01/13/2023] Open
Abstract
Background Intron gains reportedly are very rare during evolution of vertebrates, and the mechanisms underlying their creation are largely unknown. Previous investigations have shown that, during metazoan radiation, the exon-intron patterns of serpin superfamily genes were subject to massive changes, in contrast to many other genes. Results Here we investigated intron dynamics in the serpin superfamily in lineages pre- and postdating the split of vertebrates. Multiple intron gains were detected in a group of ray-finned fishes, once the canonical groups of vertebrate serpins had been established. In two genes, co-occurrence of non-standard introns was observed, implying that intron gains in vertebrates may even happen concomitantly or in a rapidly consecutive manner. DNA breakage/repair processes associated with genome compaction are introduced as a novel factor potentially favoring intron gain, since all non-canonical introns were found in a lineage of ray-finned fishes that experienced genomic downsizing. Conclusion Multiple intron acquisitions were identified in serpin genes of a lineage of ray-finned fishes, but not in any other vertebrates, suggesting that insertion rates for introns may be episodically increased. The co-occurrence of non-standard introns within the same gene discloses the possibility that introns may be gained simultaneously. The sequences flanking the intron insertion points correspond to the proto-splice site consensus sequence MAG↑N, previously proposed to serve as intron insertion site. The association of intron gains in the serpin superfamily with a group of fishes that underwent genome compaction may indicate that DNA breakage/repair processes might foster intron birth.
Collapse
Affiliation(s)
- Hermann Ragg
- Department of Biotechnology, Faculty of Technology and Center for Biotechnology, University of Bielefeld, D-33501 Bielefeld, Germany.
| | | | | | | | | | | | | | | |
Collapse
|