51
|
Southey BR, Romanova EV, Rodriguez-Zas SL, Sweedler JV. Bioinformatics for Prohormone and Neuropeptide Discovery. Methods Mol Biol 2018; 1719:71-96. [PMID: 29476505 DOI: 10.1007/978-1-4939-7537-2_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neuropeptides and peptide hormones are signaling molecules produced via complex post-translational modifications of precursor proteins known as prohormones. Neuropeptides activate specific receptors and are associated with the regulation of physiological systems and behaviors. The identification of prohormones-and the neuropeptides created by these prohormones-from genomic assemblies has become essential to support the annotation and use of the rapidly growing number of sequenced genomes. Here we describe a methodology for identifying the prohormone complement from genomic assemblies that employs widely available public toolsets and databases. The uncovered prohormone sequences can then be screened for putative neuropeptides to enable accurate proteomic discovery and validation.
Collapse
Affiliation(s)
- Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Elena V Romanova
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sandra L Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jonathan V Sweedler
- Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
52
|
Meng L, Huo X, Feng M, Fang Y, Han B, Hu H, Wu F, Li J. Proteomics Reveals the Molecular Underpinnings of Stronger Learning and Memory in Eastern Compared to Western Bees. Mol Cell Proteomics 2017; 17:255-269. [PMID: 29187519 PMCID: PMC5795390 DOI: 10.1074/mcp.ra117.000159] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/11/2017] [Indexed: 11/06/2022] Open
Abstract
The eastern (Apis cerana cerana, Acc) and western (Apis mellifera ligustica, Aml) honeybee are two major honeybee species. Surprisingly, little is known about the fundamental molecular neurobiology of brain suborgans of Acc and Aml. We characterized and compared the proteomes of mushroom bodies (MBs), antennal lobes (ALs) and optical lobes (OLs) in the brain of both species, and biologically validated the functions related to learning and memory. Acc and Aml have evolved similar proteome signatures in MBs and OLs to drive the domain-specific neural activities. In MBs of both species, commonly enriched and enhanced functional groups related to protein metabolism and Ca2+ transport relative to ALs and OLs, suggests that proteins and Ca2+ are vital for consolidating learning and memory via modulation of synaptic structure and signal transduction. Furthermore, in OLs of both species, the mainly enriched ribonucleoside metabolism suggests its vital role as second messenger in promoting phototransduction. Notably, in ALs of both species, distinct proteome settings have shaped to prime olfactory learning and memory. In ALs of Acc, this is supported by the enriched cytoskeleton organization to sustain olfactory signaling through modulation of plasticity in glomeruli and intracellular transport. In ALs of Aml, however, the enriched functional groups implicated in hydrogen ion transport are indicative of their importance in supporting olfactory processes by regulation of synaptic transmission. The biological confirmation of enhanced activities of protein metabolism and signal transduction in ALs and MBs of Acc relative to in Aml demonstrates that a stronger sense of olfactory learning and memory has evolved in Acc. The reported first in-depth proteome data of honeybee brain suborgans provide a novel insight into the molecular basis of neurobiology, and is potentially useful for further neurological studies in honeybees and other insects.
Collapse
Affiliation(s)
- Lifeng Meng
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Xinmei Huo
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Mao Feng
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Yu Fang
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Bin Han
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Han Hu
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Fan Wu
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Jianke Li
- From the ‡Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| |
Collapse
|
53
|
Top-down characterization of endogenous protein complexes with native proteomics. Nat Chem Biol 2017; 14:36-41. [PMID: 29131144 PMCID: PMC5726920 DOI: 10.1038/nchembio.2515] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/04/2017] [Indexed: 11/08/2022]
Abstract
Protein complexes exhibit great diversity in protein membership, post-translational modifications and noncovalent cofactors, enabling them to function as the actuators of many important biological processes. The exposition of these molecular features using current methods lacks either throughput or molecular specificity, ultimately limiting the use of protein complexes as direct analytical targets in a wide range of applications. Here, we apply native proteomics, enabled by a multistage tandem MS approach, to characterize 125 intact endogenous complexes and 217 distinct proteoforms derived from mouse heart and human cancer cell lines in discovery mode. The native conditions preserved soluble protein-protein interactions, high-stoichiometry noncovalent cofactors, covalent modifications to cysteines, and, remarkably, superoxide ligands bound to the metal cofactor of superoxide dismutase 2. These data enable precise compositional analysis of protein complexes as they exist in the cell and demonstrate a new approach that uses MS as a bridge to structural biology.
Collapse
|
54
|
Zhang J, Liang D, Cheng Q, Cao L, Wu Y, Wang Y, Han S, Yu Z, Cui X, Xu T, Ma D, Hu P, Xu Z. Peptidomic Analysis of Fetal Heart Tissue for Identification of Endogenous Peptides Involved in Tetralogy of Fallot. DNA Cell Biol 2017; 36:451-461. [PMID: 28304193 DOI: 10.1089/dna.2017.3647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Dong Liang
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Qing Cheng
- Department of Obstetrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Li Cao
- Department of Ultrasound, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yun Wu
- Department of Ultrasound, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yan Wang
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Shuping Han
- Department of Pediatrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zhangbin Yu
- Department of Pediatrics, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Xianwei Cui
- Nanjing Maternal and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Tianhui Xu
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Dingyuan Ma
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Ping Hu
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zhengfeng Xu
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| |
Collapse
|
55
|
Robinson SD, Li Q, Bandyopadhyay PK, Gajewiak J, Yandell M, Papenfuss AT, Purcell AW, Norton RS, Safavi-Hemami H. Hormone-like peptides in the venoms of marine cone snails. Gen Comp Endocrinol 2017; 244:11-18. [PMID: 26301480 PMCID: PMC4762756 DOI: 10.1016/j.ygcen.2015.07.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/30/2015] [Accepted: 07/04/2015] [Indexed: 12/13/2022]
Abstract
The venoms of cone snails (genus Conus) are remarkably complex, consisting of hundreds of typically short, disulfide-rich peptides termed conotoxins. These peptides have diverse pharmacological targets, with injection of venom eliciting a range of physiological responses, including sedation, paralysis and sensory overload. Most conotoxins target the prey's nervous system but evidence of venom peptides targeting neuroendocrine processes is emerging. Examples include vasopressin, RFamide neuropeptides and recently also insulin. To investigate the diversity of hormone/neuropeptide-like molecules in the venoms of cone snails we systematically mined the venom gland transcriptomes of several cone snail species and examined secreted venom peptides in dissected and injected venom of the Australian cone snail Conus victoriae. Using this approach we identified several novel hormone/neuropeptide-like toxins, including peptides similar to the bee brain hormone prohormone-4, the mollusc ganglia neuropeptide elevenin, and thyrostimulin, a member of the glycoprotein hormone family, and confirmed the presence of insulin. We confirmed that at least two of these peptides are not only expressed in the venom gland but also form part of the injected venom cocktail, unambiguously demonstrating their role in envenomation. Our findings suggest that hormone/neuropeptide-like toxins are a diverse and integral part of the complex envenomation strategy of Conus. Exploration of this group of venom components offers an exciting new avenue for the discovery of novel pharmacological tools and drug candidates, complementary to conotoxins.
Collapse
Affiliation(s)
- Samuel D Robinson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Qing Li
- Eccles Institute of Human Genetics, University of Utah, and School of Medicine, Salt Lake City, UT 84112, USA
| | | | - Joanna Gajewiak
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark Yandell
- Eccles Institute of Human Genetics, University of Utah, and School of Medicine, Salt Lake City, UT 84112, USA
| | - Anthony T Papenfuss
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Anthony W Purcell
- The Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Helena Safavi-Hemami
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA; Department of Biology, Copenhagen Biocenter, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
56
|
Christie AE, Hull JJ, Richer JA, Geib SM, Tassone EE. Prediction of a peptidome for the western tarnished plant bug Lygus hesperus. Gen Comp Endocrinol 2017; 243:22-38. [PMID: 27789347 DOI: 10.1016/j.ygcen.2016.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/08/2016] [Accepted: 10/20/2016] [Indexed: 12/28/2022]
Abstract
Many strategies for controlling insect pests require an understanding of their hormonal signaling agents, peptides being the largest and most diverse single class of these molecules. Lygus hesperus is a pest species of particular concern, as it is responsible for significant damage to a wide variety of commercially important plant crops. At present, little is known about the peptide hormones of L. hesperus. Here, transcriptomic data were used to predict a peptidome for L. hesperus. Fifty-three L. hesperus transcripts encoding peptide precursors were identified, with a subset amplified by PCR for sequence verification. The proteins deduced from these transcripts allowed for the prediction of a 119-sequence peptidome for L. hesperus. The predicted peptides include isoforms of allatostatin A, allatostatin B (AST-B), allatostatin C, allatotropin, bursicon, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/ion transport peptide, diuretic hormone 31, GSEFLamide, insulin-like peptide, myosuppressin, neuroparsin, neuropeptide F, orcokinin, orcomyotropin, pyrokinin, short neuropeptide F, SIFamide, sulfakinin and tachykinin-related peptide. Of note were several isoforms of AST-B that possess -WX7Wamide carboxyl-termini rather than the stereotypical -WX6Wamide (e.g., KWQDMQNPGWamide), an allatotropin ending in -SARGFamide rather than -TARGFamide (GLKNGPLNSARGFamide), a GSEFLamide ending in -GTEFLamide (TVGTEFLamide), several orcokinins with PMDEIDR- rather than NFDEIDR- amino-termini (e.g., PMDEIDRAGFTHFV), and an eight rather than 12 amino acid long isoform of SIFamide (PPFNGSIFamide). Collectively, the L. hesperus peptidome predicted here provides a resource for initiating physiological investigations of peptidergic signaling in this species, including studies directed at the biological control of this agricultural pest.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Josh A Richer
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Scott M Geib
- Tropical Crop and Commodity Protection Research Unit, Daniel K. Inouye Pacific Basin Agricultural Research Center, USDA Agricultural Research Services, Hilo, HI 96720, USA
| | - Erica E Tassone
- Plant Physiology and Genetics Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| |
Collapse
|
57
|
Ons S. Neuropeptides in the regulation of Rhodnius prolixus physiology. JOURNAL OF INSECT PHYSIOLOGY 2017; 97:77-92. [PMID: 27210592 DOI: 10.1016/j.jinsphys.2016.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 04/19/2016] [Accepted: 05/18/2016] [Indexed: 06/05/2023]
Abstract
In the kissing bug Rhodnius prolixus, events such as diuresis, antidiuresis, development and reproduction are triggered by blood feeding. Hence, these events can be accurately timed, facilitating physiological experiments. This, combined with its relatively big size, makes R. prolixus an excellent model in insect neuroendocrinological studies. The importance of R. prolixus as a Chagas' disease vector as much as an insect model has motivated the sequencing of its genome in recent years, facilitating genetic and molecular studies. Most crucial physiological processes are regulated by the neuroendocrine system, composed of neuropeptides and their receptors. The identification and characterization of neuropeptides and their receptors could be the first step to find targets for new insecticides. The sequences of 41 neuropeptide precursor genes and the receptors for most of them were identified in the R. prolixus genome. Functional information about many of these molecules was obtained, whereas many neuroendocrine systems are still unstudied in this model species. This review addresses the knowledge available to date regarding the structure, distribution, expression and physiological effects of neuropeptides in R. prolixus, and points to future directions in this research field.
Collapse
Affiliation(s)
- Sheila Ons
- Laboratory of Insects Neurobiology, National Center for Genomic Studies, Faculty of Exact Sciences, National University of La Plata, Bvd 120 1459, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
58
|
Cunningham CB, Badgett MJ, Meagher RB, Orlando R, Moore AJ. Ethological principles predict the neuropeptides co-opted to influence parenting. Nat Commun 2017; 8:14225. [PMID: 28145404 PMCID: PMC5296637 DOI: 10.1038/ncomms14225] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/08/2016] [Indexed: 01/29/2023] Open
Abstract
Ethologists predicted that parental care evolves by modifying behavioural precursors in the asocial ancestor. As a corollary, we predict that the evolved mechanistic changes reside in genetic pathways underlying these traits. Here we test our hypothesis in female burying beetles, Nicrophorus vespilloides, an insect where caring adults regurgitate food to begging, dependent offspring. We quantify neuropeptide abundance in brains collected from three behavioural states: solitary virgins, individuals actively parenting or post-parenting solitary adults and quantify 133 peptides belonging to 18 neuropeptides. Eight neuropeptides differ in abundance in one or more states, with increased abundance during parenting in seven. None of these eight neuropeptides have been associated with parental care previously, but all have roles in predicted behavioural precursors for parenting. Our study supports the hypothesis that predictable traits and pathways are targets of selection during the evolution of parenting and suggests additional candidate neuropeptides to study in the context of parenting.
Collapse
Affiliation(s)
| | - Majors J. Badgett
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | - Richard B. Meagher
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Ron Orlando
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Allen J. Moore
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
59
|
Trapp J, McAfee A, Foster LJ. Genomics, transcriptomics and proteomics: enabling insights into social evolution and disease challenges for managed and wild bees. Mol Ecol 2017; 26:718-739. [DOI: 10.1111/mec.13986] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Judith Trapp
- Department of Biochemistry & Molecular Biology; Michael Smith Laboratories; University of British Columbia; 2125 East Mall Vancouver BC V6T 1Z4 Canada
| | - Alison McAfee
- Department of Biochemistry & Molecular Biology; Michael Smith Laboratories; University of British Columbia; 2125 East Mall Vancouver BC V6T 1Z4 Canada
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology; Michael Smith Laboratories; University of British Columbia; 2125 East Mall Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
60
|
Van Camp KA, Baggerman G, Blust R, Husson SJ. Peptidomics of the zebrafish Danio rerio : In search for neuropeptides. J Proteomics 2017; 150:290-296. [DOI: 10.1016/j.jprot.2016.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/07/2016] [Accepted: 09/27/2016] [Indexed: 12/27/2022]
|
61
|
Traverso L, Sierra I, Sterkel M, Francini F, Ons S. Neuropeptidomics in Triatoma infestans. Comparative transcriptomic analysis among triatomines. ACTA ACUST UNITED AC 2016; 110:83-98. [PMID: 27993629 DOI: 10.1016/j.jphysparis.2016.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 01/02/2023]
Abstract
Chagas' disease, affecting up to 6-7 million people worldwide, is transmitted to humans through the feces of triatomine kissing bugs. From these, Rhodnius prolixus, Triatoma dimidiata, Triatoma infestans and Triatoma pallidipennis are important vectors distributed throughout the Latin American subcontinent. Resistance to pyrethroids has been developed by some triatomine populations, especially T. infestans, obstructing their control. Given their role in the regulation of physiological processes, neuroendocrine-derived factors have been proposed as a source of molecular targets for new-generation insecticides. However, the involvement of neuropeptides in insecticide metabolism and resistance in insects has been poorly studied. In the present work, the sequences of 20 neuropeptide precursor genes in T. infestans, 16 in T. dimidiata, and 13 in T. pallidipennis detected in transcriptomic databases are reported, and a comparative analysis in triatomines is presented. A total of 59 neuropeptides were validated by liquid chromatography-tandem mass spectrometry in brain and nervous ganglia from T. infestans, revealing the existence of differential post-translational modifications, extended and truncated forms. The results suggest a high sequence conservation in some neuropeptide systems in triatomines, whereas remarkable differences occur in several others within the core domains. Comparisons of the basal expression levels for several neuropeptide precursor genes between pyrethroid sensitive and resistant population of T. infestans are also presented here, in order to introduce a proof of concept to test the involvement of neuropeptides in insecticide resistance. From the precursors tested, NVP and ITG peptides are significantly higher expressed in the resistant population. To our knowledge, this is the first report to associate differential neuropeptide expression with insecticide resistance. The information provided here contributes to creating conditions to widely extend functional and genetic studies involving neuropeptides in triatomines.
Collapse
Affiliation(s)
- Lucila Traverso
- Laboratory of Insect Neurobiology, Regional Center for Genomic Studies, Faculty of Exact Sciences, National University of La Plata, Bvd 120 N(o). 1459, CP: 1900, La Plata, Argentina
| | - Ivana Sierra
- Laboratory of Insect Neurobiology, Regional Center for Genomic Studies, Faculty of Exact Sciences, National University of La Plata, Bvd 120 N(o). 1459, CP: 1900, La Plata, Argentina
| | - Marcos Sterkel
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, bloco D. Prédio do CCS, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | - Flavio Francini
- Center of Experimental and Applied Endocrinology, CONICET-CCT La Plata, National University of La Plata, 60 and 120 Street, CP: 1900, La Plata, Argentina
| | - Sheila Ons
- Laboratory of Insect Neurobiology, Regional Center for Genomic Studies, Faculty of Exact Sciences, National University of La Plata, Bvd 120 N(o). 1459, CP: 1900, La Plata, Argentina.
| |
Collapse
|
62
|
Transcriptomic characterization and curation of candidate neuropeptides regulating reproduction in the eyestalk ganglia of the Australian crayfish, Cherax quadricarinatus. Sci Rep 2016; 6:38658. [PMID: 27924858 PMCID: PMC5141488 DOI: 10.1038/srep38658] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/11/2016] [Indexed: 11/17/2022] Open
Abstract
The Australian redclaw crayfish (Cherax quadricarinatus) has recently received attention as an emerging candidate for sustainable aquaculture production in Australia and worldwide. More importantly, C. quadricarinatus serves as a good model organism for the commercially important group of decapod crustaceans as it is distributed worldwide, easy to maintain in the laboratory and its reproductive cycle has been well documented. In order to better understand the key reproduction and development regulating mechanisms in decapod crustaceans, the molecular toolkit available for model organisms such as C. quadricarinatus must be expanded. However, there has been no study undertaken to establish the C. quadricarinatus neuropeptidome. Here we report a comprehensive study of the neuropeptide genes expressed in the eyestalk in the Australian crayfish C. quadricarinatus. We characterised 53 putative neuropeptide-encoding transcripts based on key features of neuropeptides as characterised in other species. Of those, 14 neuropeptides implicated in reproduction regulation were chosen for assessment of their tissue distribution using RT-PCR. Further insights are discussed in relation to current knowledge of neuropeptides in other species and potential follow up studies. Overall, the resulting data lays the foundation for future gene-based neuroendocrinology studies in C. quadricarinatus.
Collapse
|
63
|
Veenstra JA. Neuropeptide Evolution: Chelicerate Neurohormone and Neuropeptide Genes may reflect one or more whole genome duplications. Gen Comp Endocrinol 2016:S0016-6480(15)00248-8. [PMID: 27838380 DOI: 10.1016/j.ygcen.2015.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/16/2015] [Accepted: 07/26/2015] [Indexed: 12/16/2022]
Abstract
Four genomes and two transcriptomes from six Chelicerate species were analyzed for the presence of neuropeptide and neurohormone precursors and their GPCRs. The genome from the spider Stegodyphus mimosarum yielded 87 neuropeptide precursors and 101 neuropeptide GPCRs. High neuropeptide transcripts were also found in the trancriptomes of three other spiders, Latrodectus hesperus, Parasteatoda tepidariorum and Acanthoscurria geniculata. For the scorpion Mesobuthus martensii the numbers are 79 and 74 respectively. The very small genome of the house dust mite, Dermatophagoides farinae, on the other hand contains a much smaller number of such genes. A few new putative Arthropod neuropeptide genes were discovered. Thus, both spiders and the scorpion have an achatin gene and in spiders there are two different genes encoding myosuppressin-like peptides while spiders also have two genes encoding novel LGamides. Another finding is the presence of trissin in spiders and scorpions, while neuropeptide genes that seem to be orthologs of Lottia LFRYamide and Platynereis CCRFamide were also found. Such genes were also found in various insect species, but seem to be lacking from the Holometabola. The Chelicerate neuropeptide and neuropeptide GPCR genes often have paralogs. As the large majority of these are probably not due to local gene duplications, is not impossible that they reflect the effects of one or more ancient whole genome duplications.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA UMR 5287 CNRS, Université de Bordeaux, Pessac, France.
| |
Collapse
|
64
|
Schmitt F, Vanselow JT, Schlosser A, Wegener C, Rössler W. Neuropeptides in the desert antCataglyphis fortis: Mass spectrometric analysis, localization, and age-related changes. J Comp Neurol 2016; 525:901-918. [DOI: 10.1002/cne.24109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/10/2016] [Accepted: 08/24/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Franziska Schmitt
- Behavioral Physiology and Sociobiology, Theodor-Boveri-Institute, Biocenter; University of Würzburg; D-97074 Würzburg Germany
| | - Jens T. Vanselow
- Rudolf Virchow Center for Experimental Biomedicine; University of Würzburg; D-97080 Würzburg Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine; University of Würzburg; D-97080 Würzburg Germany
| | - Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter; University of Würzburg; D-97074 Würzburg Germany
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology, Theodor-Boveri-Institute, Biocenter; University of Würzburg; D-97074 Würzburg Germany
| |
Collapse
|
65
|
Micas AFD, Ferreira GA, Laure HJ, Rosa JC, Bitondi MMG. PROTEINS OF THE INTEGUMENTARY SYSTEM OF THE HONEYBEE, Apis mellifera. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 93:3-24. [PMID: 27160491 DOI: 10.1002/arch.21336] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The integument of insects and other arthropods is composed of an inner basal lamina coated by the epidermis, which secretes the bulk of the outer integument layer, the cuticle. The genome sequencing of several insect species has allowed predicting classes of proteins integrating the cuticle. However, only a small proportion of them, as well as other proteins in the integumentary system, have been validated. Using two-dimensional gel electrophoresis coupled with mass spectrometry, we identified 45 different proteins in a total of 112 selected gel spots derived from thoracic integument samples of developing honeybee workers, including 14 cuticular proteins (AmelCPR 3, AmelCPR 12, AmelCPR 16, AmelCPR 27, apidermin 2, apidermin 3, endocuticle structural glycoprotein SgAbd-8-like, LOC100577363, LOC408365, LOC413679, LOC725454, LOC100576916, LOC725838, and peritrophin 3-C analogous). Gene ontology functional analysis revealed that the higher proportions of the identified proteins have molecular functions related to catalytic and structural molecule activities, are involved in metabolic biological processes, and pertain to the protein class of structural or cytoskeletal proteins and hydrolases. It is noteworthy that 26.7% of the identified proteins, including five cuticular proteins, were revealed as protein species resulting from allelic isoforms or derived from posttranslational modifications. Also, 66.7% of the identified cuticular proteins were expressed in more than one developmental phase, thus indicating that they are part of the larval, pupal, and adult cuticle. Our data provide experimental support for predicted honeybee gene products and new information on proteins expressed in the developing integument.
Collapse
Affiliation(s)
- André Fernando Ditondo Micas
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Germano Aguiar Ferreira
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Centro de Química de Proteínas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Helen Julie Laure
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Centro de Química de Proteínas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - José Cesar Rosa
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Centro de Química de Proteínas, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Márcia Maria Gentile Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
66
|
Desmedt L, Hotier L, Giurfa M, Velarde R, de Brito Sanchez MG. Absence of food alternatives promotes risk-prone feeding of unpalatable substances in honey bees. Sci Rep 2016; 6:31809. [PMID: 27534586 PMCID: PMC4989156 DOI: 10.1038/srep31809] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/26/2016] [Indexed: 11/28/2022] Open
Abstract
The question of why animals sometimes ingest noxious substances is crucial to understand unknown determinants of feeding behaviour. Research on risk-prone feeding behaviour has largely focused on energy budgets as animals with low energy budgets tend to ingest more aversive substances. A less explored possibility is that risk-prone feeding arises from the absence of alternative feeding options, irrespectively of energy budgets. Here we contrasted these two hypotheses in late-fall and winter honey bees. We determined the toxicity of various feeding treatments and showed that when bees can choose between sucrose solution and a mixture of this sucrose solution and a noxious/unpalatable substance, they prefer the pure sucrose solution and reject the mixtures, irrespective of their energy budget. Yet, when bees were presented with a single feeding option and their escape possibilities were reduced, they consumed unexpectedly some of the previously rejected mixtures, independently of their energy budget. These findings are interpreted as a case of feeding helplessness, in which bees behave as if it were utterly helpless to avoid the potentially noxious food and consume it. They suggest that depriving bees of variable natural food sources may have the undesired consequence of increasing their acceptance of food that would be otherwise rejected.
Collapse
Affiliation(s)
- Lucie Desmedt
- Research Centre on Animal Cognition, Center for Integrative Biology, University of Toulouse; CNRS, UPS, 118 route de Narbonne, 31062 Toulouse cedex 09, France
| | - Lucie Hotier
- Research Centre on Animal Cognition, Center for Integrative Biology, University of Toulouse; CNRS, UPS, 118 route de Narbonne, 31062 Toulouse cedex 09, France
| | - Martin Giurfa
- Research Centre on Animal Cognition, Center for Integrative Biology, University of Toulouse; CNRS, UPS, 118 route de Narbonne, 31062 Toulouse cedex 09, France
| | - Rodrigo Velarde
- Departamento de Biodiversidad y Biología Experimental, Grupo de Estudio de Insectos Sociales, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria (C1428EHA), Buenos Aires, Argentina
| | - Maria Gabriela de Brito Sanchez
- Research Centre on Animal Cognition, Center for Integrative Biology, University of Toulouse; CNRS, UPS, 118 route de Narbonne, 31062 Toulouse cedex 09, France
| |
Collapse
|
67
|
Arlian LG, Morgan MS, Rider SD. Sarcoptes scabiei: genomics to proteomics to biology. Parasit Vectors 2016; 9:380. [PMID: 27371026 PMCID: PMC4930577 DOI: 10.1186/s13071-016-1663-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The common scabies mite, Sarcoptes scabiei is a cosmopolitan parasite of humans and other mammals. An annotated genome of Sarcoptes scabiei var. canis has been deposited in the National Center for Biotechnology Information (NCBI) and VectorBase and a proteomic analysis of proteins in extracts of mite bodies and eggs from this strain has been reported. Here we mined the data to identify predicted proteins that are known to be involved in specific biological processes in other animals. RESULTS We identified predicted proteins that are associated with immunomodulation of the host defense system, and biological processes of the mite including oxygen procurement and aerobic respiration, oxidative metabolism, sensory reception and locating a host, neuronal transmission, stressors (heat shock proteins), molting, movement, nutrient procurement and digestion, and excretion and water balance. We used these data to speculate that certain biological processes may occur in scabies mites. CONCLUSION This analysis helps understand the biology of Sarcoptes scabiei var. canis and adds to the data already available in NCBI and VectorBase.
Collapse
Affiliation(s)
- Larry G Arlian
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA.
| | - Marjorie S Morgan
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA
| | - S Dean Rider
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA
| |
Collapse
|
68
|
Xu G, Gu GX, Teng ZW, Wu SF, Huang J, Song QS, Ye GY, Fang Q. Identification and expression profiles of neuropeptides and their G protein-coupled receptors in the rice stem borer Chilo suppressalis. Sci Rep 2016; 6:28976. [PMID: 27353701 PMCID: PMC4926255 DOI: 10.1038/srep28976] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 06/08/2016] [Indexed: 01/16/2023] Open
Abstract
In insects, neuropeptides play important roles in the regulation of multiple physiological processes by binding to their corresponding receptors, which are primarily G protein-coupled receptors (GPCRs). The genes encoding neuropeptides and their associated GPCRs in the rice stem borer Chilo suppressalis were identified by a transcriptomic analysis and were used to identify potential targets for the disruption of physiological processes and the protection of crops. Forty-three candidate genes were found to encode the neuropeptide precursors for all known insect neuropeptides except for arginine-vasopressin-like peptide (AVLP), CNMamide, neuropeptide-like precursors 2-4 (NPLP2-4), and proctolin. In addition, novel alternative splicing variants of three neuropeptide genes (allatostatin CC, CCHamide 1, and short neuropeptide F) are reported for the first time, and 51 putative neuropeptide GPCRs were identified. Phylogenetic analyses demonstrated that 44 of these GPCRs belong to the A-family (or rhodopsin-like), 5 belong to the B-family (or secretin-like), and 2 are leucine-rich repeat-containing GPCRs. These GPCRs and their likely ligands were also described. qRT-PCR analyses revealed the expression profiles of the neuropeptide precursors and GPCR genes in various tissues of C. suppressalis. Our study provides fundamental information that may further our understanding of neuropeptidergic signaling systems in Lepidoptera and aid in the design of peptidomimetics, pseudopeptides or small molecules capable of disrupting the physiological processes regulated by these signaling molecules and their receptors.
Collapse
Affiliation(s)
- Gang Xu
- State Key Laboratory of Rice Biology &Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gui-Xiang Gu
- State Key Laboratory of Rice Biology &Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zi-Wen Teng
- State Key Laboratory of Rice Biology &Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shun-Fan Wu
- State Key Laboratory of Rice Biology &Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.,College of Plant Protection, State &Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia Huang
- State Key Laboratory of Rice Biology &Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi-Sheng Song
- Division of Plant Sciences, Missouri University, Columbia, MO 65211, USA
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology &Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Fang
- State Key Laboratory of Rice Biology &Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
69
|
Strand MR, Brown MR, Vogel KJ. Mosquito Peptide Hormones: Diversity, Production, and Function. ADVANCES IN INSECT PHYSIOLOGY 2016; 51:145-188. [PMID: 30662099 PMCID: PMC6338476 DOI: 10.1016/bs.aiip.2016.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mosquitoes, like other insects, produce a diversity of peptide hormones that are processed from different precursor proteins and have a range of activities. Early studies relied on purification of bioactive peptides for hormone identification, but more recently genomic data have provided the information needed to more comprehensively identify peptide hormone genes and associated receptors. The first part of this chapter summarizes the known or predicted peptide hormones that are produced by mosquitoes. The second part of this chapter discusses the sources of these molecules and their functions.
Collapse
Affiliation(s)
- M R Strand
- University of Georgia, Athens, GA, United States
| | - M R Brown
- University of Georgia, Athens, GA, United States
| | - K J Vogel
- University of Georgia, Athens, GA, United States
| |
Collapse
|
70
|
Buček A, Brabcová J, Vogel H, Prchalová D, Kindl J, Valterová I, Pichová I. Exploring complex pheromone biosynthetic processes in the bumblebee male labial gland by RNA sequencing. INSECT MOLECULAR BIOLOGY 2016; 25:295-314. [PMID: 26945888 DOI: 10.1111/imb.12221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Male marking pheromones (MPs) are used by the majority of bumblebee species (Hymenoptera: Apidae), including a commercially important greenhouse pollinator, the buff-tailed bumblebee (Bombus terrestris), to attract conspecific females. MP biosynthetic processes in the cephalic part of the bumblebee male labial gland (LG) are of extraordinary complexity, involving enzymes of fatty acid and isoprenoid biosynthesis, which jointly produce more than 50 compounds. We employed a differential transcriptomic approach to identify candidate genes involved in MP biosynthesis by sequencing Bombus terrestris LG and fat body (FB) transcriptomes. We identified 12 454 abundantly expressed gene products (reads per kilobase of exon model per million mapped reads value > 1) that had significant hits in the GenBank nonredundant database. Of these, 876 were upregulated in the LG (> 4-fold difference). We identified more than 140 candidate genes potentially involved in MP biosynthesis, including esterases, fatty acid reductases, lipases, enzymes involved in limited fatty acid chain shortening, neuropeptide receptors and enzymes involved in biosynthesis of triacylglycerols, isoprenoids and fatty acids. For selected candidates, we confirmed their abundant expression in LG using quantitative real-time reverse transcription-PCR (qRT-PCR). Our study shows that the Bombus terrestris LG transcriptome reflects both fatty acid and isoprenoid MP biosynthetic processes and identifies rational gene targets for future studies to disentangle the molecular basis of MP biosynthesis. Additionally, LG and FB transcriptomes enrich the available transcriptomic resources for Bombus terrestris.
Collapse
Affiliation(s)
- A Buček
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - J Brabcová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - H Vogel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - D Prchalová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - J Kindl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - I Valterová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - I Pichová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
71
|
Veenstra JA. Neuropeptide evolution: Chelicerate neurohormone and neuropeptide genes may reflect one or more whole genome duplications. Gen Comp Endocrinol 2016; 229:41-55. [PMID: 26928473 DOI: 10.1016/j.ygcen.2015.11.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/20/2015] [Accepted: 11/29/2015] [Indexed: 01/08/2023]
Abstract
Four genomes and two transcriptomes from six Chelicerate species were analyzed for the presence of neuropeptide and neurohormone precursors and their GPCRs. The genome from the spider Stegodyphus mimosarum yielded 87 neuropeptide precursors and 120 neuropeptide GPCRs. Many neuropeptide transcripts were also found in the transcriptomes of three other spiders, Latrodectus hesperus, Parasteatoda tepidariorum and Acanthoscurria geniculata. For the scorpion Mesobuthus martensii the numbers are 79 and 93 respectively. The very small genome of the house dust mite, Dermatophagoides farinae, on the other hand contains a much smaller number of such genes. A few new putative Arthropod neuropeptide genes were discovered. Thus, both spiders and the scorpion have an achatin gene and in spiders there are two different genes encoding myosuppressin-like peptides while spiders also have two genes encoding novel LGamides. Another finding is the presence of trissin in spiders and scorpions, while neuropeptide genes that seem to be orthologs of Lottia LFRYamide and Platynereis CCRFamide were also found. Such genes were also found in various insect species, but seem to be lacking from the Holometabola. The Chelicerate neuropeptide and neuropeptide GPCR genes often have paralogs. As the large majority of these are probably not due to local gene duplications, is plausible that they reflect the effects of one or more ancient whole genome duplications.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA UMR 5287 CNRS, Université de Bordeaux, Pessac, France.
| |
Collapse
|
72
|
Neasta J, Valmalle C, Coyne A, Carnazzi E, Subra G, Galleyrand J, Gagne D, M'Kadmi C, Bernad N, Bergé G, Cantel S, Marin P, Marie J, Banères J, Kemel M, Daugé V, Puget K, Martinez J. The novel nonapeptide acein targets angiotensin converting enzyme in the brain and induces dopamine release. Br J Pharmacol 2016; 173:1314-28. [PMID: 27027724 PMCID: PMC4940823 DOI: 10.1111/bph.13424] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 12/20/2016] [Accepted: 01/08/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND AND PURPOSE Using an in-house bioinformatics programme, we identified and synthesized a novel nonapeptide, H-Pro-Pro-Thr-Thr-Thr-Lys-Phe-Ala-Ala-OH. Here, we have studied its biological activity, in vitro and in vivo, and have identified its target in the brain. EXPERIMENTAL APPROACH The affinity of the peptide was characterized using purified whole brain and striatal membranes from guinea pigs and rats . Its effect on behaviour in rats following intra-striatal injection of the peptide was investigated. A photoaffinity UV cross-linking approach combined with subsequent affinity purification of the ligand covalently bound to its receptor allowed identification of its target. KEY RESULTS The peptide bound with high affinity to a single class of binding sites, specifically localized in the striatum and substantia nigra of brains from guinea pigs and rats. When injected within the striatum of rats, the peptide stimulated in vitro and in vivo dopamine release and induced dopamine-like motor effects. We purified the target of the peptide, a ~151 kDa protein that was identified by MS/MS as angiotensin converting enzyme (ACE I). Therefore, we decided to name the peptide acein. CONCLUSION AND IMPLICATIONS The synthetic nonapeptide acein interacted with high affinity with brain membrane-bound ACE. This interaction occurs at a different site from the active site involved in the well-known peptidase activity, without modifying the peptidase activity. Acein, in vitro and in vivo, significantly increased stimulated release of dopamine from the brain. These results suggest a more important role for brain ACE than initially suspected.
Collapse
Affiliation(s)
- Jérémie Neasta
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Charlène Valmalle
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Anne‐Claire Coyne
- INSERM UMR 952, Physiopathologie des Maladies du Système Nerveux CentralParisFrance
| | - Eric Carnazzi
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Gilles Subra
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Jean‐Claude Galleyrand
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Didier Gagne
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Céline M'Kadmi
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Nicole Bernad
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Gilbert Bergé
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Sonia Cantel
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Philippe Marin
- Institut de Génomique Fonctionnelle, UMR5203, INSERM U661, Rue de la CardonilleUniversité de MontpellierMontpellierFrance
| | - Jacky Marie
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Jean‐Louis Banères
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Marie‐Lou Kemel
- CIRB, Collège de France, 11, Place Marcelin BerthelotParisFrance
| | - Valérie Daugé
- INSERM UMR 952, Physiopathologie des Maladies du Système Nerveux CentralParisFrance
| | - Karine Puget
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| | - Jean Martinez
- Faculté de Pharmacie, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247Université de Montpellier, CNRS, ENSCMMontpellierFrance
| |
Collapse
|
73
|
Lee JE. Neuropeptidomics: Mass Spectrometry-Based Identification and Quantitation of Neuropeptides. Genomics Inform 2016; 14:12-9. [PMID: 27103886 PMCID: PMC4838524 DOI: 10.5808/gi.2016.14.1.12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/23/2022] Open
Abstract
Neuropeptides produced from prohormones by selective action of endopeptidases are vital signaling molecules, playing a critical role in a variety of physiological processes, such as addiction, depression, pain, and circadian rhythms. Neuropeptides bind to post-synaptic receptors and elicit cellular effects like classical neurotransmitters. While each neuropeptide could have its own biological function, mass spectrometry (MS) allows for the identification of the precise molecular forms of each peptide without a priori knowledge of the peptide identity and for the quantitation of neuropeptides in different conditions of the samples. MS-based neuropeptidomics approaches have been applied to various animal models and conditions to characterize and quantify novel neuropeptides, as well as known neuropeptides, advancing our understanding of nervous system function over the past decade. Here, we will present an overview of neuropeptides and MS-based neuropeptidomic strategies for the identification and quantitation of neuropeptides.
Collapse
Affiliation(s)
- Ji Eun Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea
| |
Collapse
|
74
|
Derst C, Dircksen H, Meusemann K, Zhou X, Liu S, Predel R. Evolution of neuropeptides in non-pterygote hexapods. BMC Evol Biol 2016; 16:51. [PMID: 26923142 PMCID: PMC4770511 DOI: 10.1186/s12862-016-0621-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/15/2016] [Indexed: 01/29/2023] Open
Abstract
Background Neuropeptides are key players in information transfer and act as important regulators of development, growth, metabolism, and reproduction within multi-cellular animal organisms (Metazoa). These short protein-like substances show a high degree of structural variability and are recognized as the most diverse group of messenger molecules. We used transcriptome sequences from the 1KITE (1K Insect Transcriptome Evolution) project to search for neuropeptide coding sequences in 24 species from the non-pterygote hexapod lineages Protura (coneheads), Collembola (springtails), Diplura (two-pronged bristletails), Archaeognatha (jumping bristletails), and Zygentoma (silverfish and firebrats), which are often referred to as “basal” hexapods. Phylogenetically, Protura, Collembola, Diplura, and Archaeognatha are currently placed between Remipedia and Pterygota (winged insects); Zygentoma is the sistergroup of Pterygota. The Remipedia are assumed to be among the closest relatives of all hexapods and belong to the crustaceans. Results We identified neuropeptide precursor sequences within whole-body transcriptome data from these five hexapod groups and complemented this dataset with homologous sequences from three crustaceans (including Daphnia pulex), three myriapods, and the fruit fly Drosophila melanogaster. Our results indicate that the reported loss of several neuropeptide genes in a number of winged insects, particularly holometabolous insects, is a trend that has occurred within Pterygota. The neuropeptide precursor sequences of the non-pterygote hexapods show numerous amino acid substitutions, gene duplications, variants following alternative splicing, and numbers of paracopies. Nevertheless, most of these features fall within the range of variation known from pterygote insects. However, the capa/pyrokinin genes of non-pterygote hexapods provide an interesting example of rapid evolution, including duplication of a neuropeptide gene encoding different ligands. Conclusions Our findings delineate a basic pattern of neuropeptide sequences that existed before lineage-specific developments occurred during the evolution of pterygote insects. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0621-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christian Derst
- Institute for Zoology, Functional Peptidomics Group, University of Cologne, D-50674, Cologne, Germany.
| | - Heinrich Dircksen
- Department of Zoology, Stockholm University, S-10691, Stockholm, Sweden.
| | - Karen Meusemann
- Center for Molecular Biodiversity Research, Zoological Research Museum A. Koenig, D-53113, Bonn, Germany. .,Australian National Insect Collection, CSIRO National Research Collections Australia, Acton, ACT, 2601, Canberra, Australia.
| | - Xin Zhou
- China National GeneBank, BGI-Shenzhen, Shenzhen, Guangdong Province, 518083, China.
| | - Shanlin Liu
- China National GeneBank, BGI-Shenzhen, Shenzhen, Guangdong Province, 518083, China.
| | - Reinhard Predel
- Institute for Zoology, Functional Peptidomics Group, University of Cologne, D-50674, Cologne, Germany.
| |
Collapse
|
75
|
Verdonck R, De Haes W, Cardoen D, Menschaert G, Huhn T, Landuyt B, Baggerman G, Boonen K, Wenseleers T, Schoofs L. Fast and Reliable Quantitative Peptidomics with labelpepmatch. J Proteome Res 2016; 15:1080-9. [DOI: 10.1021/acs.jproteome.5b00845] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Gerben Menschaert
- Research
Group of Bio-informatics and Computational Genomics, Ghent University, Ghent, Belgium
| | - Thomas Huhn
- Chemistry
Department, University of Konstanz, Konstanz, Germany
| | | | - Geert Baggerman
- CFP/CeProMa, Antwerp University, Antwerp, Belgium
- Applied Bio & Molecular Systems, Vito, Mol, Belgium
| | - Kurt Boonen
- Biology
Department, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
76
|
Kapheim KM. Genomic sources of phenotypic novelty in the evolution of eusociality in insects. CURRENT OPINION IN INSECT SCIENCE 2016; 13:24-32. [PMID: 27436550 DOI: 10.1016/j.cois.2015.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/13/2015] [Accepted: 10/28/2015] [Indexed: 06/06/2023]
Abstract
Genomic resources are now available for closely related species that vary in social behavior, providing insight on the genomics of social evolution. Changes in the architecture of gene regulatory networks likely influence the evolutionary trajectory of social traits. Evolutionarily novel genes are likely important in the evolution of social diversity among insects, but it is unclear whether new genes played a driving role in the advent or elaboration of eusociality or if they were instead a result of other genomic features of eusociality. The worker phenotype appears to be the center of genetic novelty, but the mechanisms for this remain unresolved. Future studies are needed to understand how genetic novelty arises, becomes incorporated into existing gene regulatory networks, and the effects this has on the evolution of social traits in closely related social and solitary species.
Collapse
Affiliation(s)
- Karen M Kapheim
- Utah State University, Department of Biology, 5305 Old Main Hill, Logan UT 84322, USA.
| |
Collapse
|
77
|
Roller L, Čižmár D, Gáliková Z, Bednár B, Daubnerová I, Žitňan D. Molecular cloning, expression and identification of the promoter regulatory region for the neuropeptide trissin in the nervous system of the silkmoth Bombyx mori. Cell Tissue Res 2016; 364:499-512. [PMID: 26809512 DOI: 10.1007/s00441-015-2352-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/15/2015] [Indexed: 12/13/2022]
Abstract
Trissin has recently been identified as a conserved insect neuropeptide, but its cellular expression and function is unknown. We detected the presence of this neuropeptide in the silkworm Bombyx mori using in silico search and molecular cloning. In situ hybridisation was used to examine trissin expression in the entire central nervous system (CNS) and gut of larvae, pupae and adults. Surprisingly, its expression is restricted to only two pairs of small protocerebral interneurons and four to five large neurons in the frontal ganglion (FG). These neurons were further characterised by subsequent multiple staining with selected antibodies against insect neuropeptides. The brain interneurons innervate edges of the mushroom bodies and co-express trissin with myoinhibitory peptides (MIP) and CRF-like diuretic hormones (CRF-DH). In the FG, one pair of neurons co-express trissin with calcitonin-like diuretic hormone (CT-DH), short neuropeptide F (sNPF) and MIP. These neurons innervate the brain tritocerebrum and musculature of the anterior midgut. The other pair of trissin neurons in the FG co-express sNPF and project axons to the tritocerebrum and midgut. We also used the baculovirus expression system to identify the promoter regulatory region of the trissin gene for targeted expression of various molecular markers in these neurons. Dominant expression of trissin in the FG indicates its possible role in the regulation of foregut-midgut contractions and food intake.
Collapse
Affiliation(s)
- Ladislav Roller
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Daniel Čižmár
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Zuzana Gáliková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Branislav Bednár
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Ivana Daubnerová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Dušan Žitňan
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia.
| |
Collapse
|
78
|
Urlacher E, Soustelle L, Parmentier ML, Verlinden H, Gherardi MJ, Fourmy D, Mercer AR, Devaud JM, Massou I. Honey Bee Allatostatins Target Galanin/Somatostatin-Like Receptors and Modulate Learning: A Conserved Function? PLoS One 2016; 11:e0146248. [PMID: 26741132 PMCID: PMC4704819 DOI: 10.1371/journal.pone.0146248] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/15/2015] [Indexed: 12/21/2022] Open
Abstract
Sequencing of the honeybee genome revealed many neuropeptides and putative neuropeptide receptors, yet functional characterization of these peptidic systems is scarce. In this study, we focus on allatostatins, which were first identified as inhibitors of juvenile hormone synthesis, but whose role in the adult honey bee (Apis mellifera) brain remains to be determined. We characterize the bee allatostatin system, represented by two families: allatostatin A (Apime-ASTA) and its receptor (Apime-ASTA-R); and C-type allatostatins (Apime-ASTC and Apime-ASTCC) and their common receptor (Apime-ASTC-R). Apime-ASTA-R and Apime-ASTC-R are the receptors in bees most closely related to vertebrate galanin and somatostatin receptors, respectively. We examine the functional properties of the two honeybee receptors and show that they are transcriptionally expressed in the adult brain, including in brain centers known to be important for learning and memory processes. Thus we investigated the effects of exogenously applied allatostatins on appetitive olfactory learning in the bee. Our results show that allatostatins modulate learning in this insect, and provide important insights into the evolution of somatostatin/allatostatin signaling.
Collapse
Affiliation(s)
- Elodie Urlacher
- Department of Zoology, Dunedin, Otago, New Zealand
- Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale (UMR 5169), Toulouse, France
- Université de Toulouse, UPS Centre de Recherches sur la Cognition Animale (UMR 5169), Toulouse, France
- * E-mail:
| | - Laurent Soustelle
- CNRS, UMR 5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM, U1191, Montpellier, France
- Université de Montpellier, UMR 5203, Montpellier, France
| | - Marie-Laure Parmentier
- CNRS, UMR 5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM, U1191, Montpellier, France
- Université de Montpellier, UMR 5203, Montpellier, France
| | - Heleen Verlinden
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Leuven, Belgium
| | - Marie-Julie Gherardi
- EA 4552 Réceptorologie et ciblage thérapeutique en cancérologie, Université de Toulouse, UPS, Toulouse, France
| | - Daniel Fourmy
- EA 4552 Réceptorologie et ciblage thérapeutique en cancérologie, Université de Toulouse, UPS, Toulouse, France
| | | | - Jean-Marc Devaud
- Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale (UMR 5169), Toulouse, France
- Université de Toulouse, UPS Centre de Recherches sur la Cognition Animale (UMR 5169), Toulouse, France
| | - Isabelle Massou
- Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale (UMR 5169), Toulouse, France
- Université de Toulouse, UPS Centre de Recherches sur la Cognition Animale (UMR 5169), Toulouse, France
| |
Collapse
|
79
|
Twiss JL, Fainzilber M. Neuroproteomics: How Many Angels can be Identified in an Extract from the Head of a Pin? Mol Cell Proteomics 2016; 15:341-3. [PMID: 26729708 DOI: 10.1074/mcp.e116.057828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jeffery L Twiss
- From the ‡Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208;
| | - Mike Fainzilber
- §Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
80
|
Sturm S, Ramesh D, Brockmann A, Neupert S, Predel R. Agatoxin-like peptides in the neuroendocrine system of the honey bee and other insects. J Proteomics 2016; 132:77-84. [DOI: 10.1016/j.jprot.2015.11.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/13/2015] [Accepted: 11/21/2015] [Indexed: 02/04/2023]
|
81
|
Prchalová D, Buček A, Brabcová J, Žáček P, Kindl J, Valterová I, Pichová I. Regulation of Isoprenoid Pheromone Biosynthesis in Bumblebee Males. Chembiochem 2015; 17:260-7. [PMID: 26632352 DOI: 10.1002/cbic.201500415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Indexed: 11/08/2022]
Abstract
Males of the closely related species Bombus terrestris and Bombus lucorum attract conspecific females by completely different marking pheromones. MP of B. terrestris and B. lucorum pheromones contain mainly isoprenoid (ISP) compounds and fatty acid derivatives, respectively. Here, we studied the regulation of ISP biosynthesis in both bumblebees. RNA-seq and qRT-PCR analyses indicated that acetoacetyl-CoA thiolase (AACT), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), and farnesyl diphosphate synthase (FPPS) transcripts are abundant in the B. terrestris labial gland. Maximal abundance of these transcripts correlated well with AACT enzymatic activity detected in the LG extracts. In contrast, transcript abundances of AACT, HMGR, and FPPS in B. lucorum were low, and AACT activity was not detected in LGs. These results suggest that transcriptional regulation plays a key role in the control of ISP biosynthetic gene expression and ISP pheromone biosynthesis in bumblebee males.
Collapse
Affiliation(s)
- Darina Prchalová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. Flemingovo n. 2, 166 10, Prague 6, Czech Republic
| | - Aleš Buček
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. Flemingovo n. 2, 166 10, Prague 6, Czech Republic
| | - Jana Brabcová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. Flemingovo n. 2, 166 10, Prague 6, Czech Republic
| | - Petr Žáček
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. Flemingovo n. 2, 166 10, Prague 6, Czech Republic
| | - Jiří Kindl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. Flemingovo n. 2, 166 10, Prague 6, Czech Republic
| | - Irena Valterová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. Flemingovo n. 2, 166 10, Prague 6, Czech Republic
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. Flemingovo n. 2, 166 10, Prague 6, Czech Republic.
| |
Collapse
|
82
|
Christie AE, Chi M. Identification of the first neuropeptides from the enigmatic hexapod order Protura. Gen Comp Endocrinol 2015; 224:18-37. [PMID: 26055220 DOI: 10.1016/j.ygcen.2015.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 10/23/2022]
Abstract
The Hexapoda consists of two classes, the Entognatha and the Insecta, with the former group considered basal to the latter. The Protura is a basal order within the Entognatha, the members of which are minute soil dwellers first identified in the early 20th century. Recently, a transcriptome shotgun assembly (TSA) was generated for the proturan Acerentomon sp., providing the first significant molecular resource for this enigmatic hexapod order. As part of an ongoing effort to predict peptidomes for little studied members of the Arthropoda, we have mined this TSA dataset for transcripts encoding putative neuropeptide precursors and predicted the structures of mature peptides from the deduced proteins. Forty-seven peptide-encoding transcripts were mined from the Acerentomon TSA dataset, with 202 distinct peptides predicted from them. The peptides identified included isoforms of adipokinetic hormone, adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin B, allatostatin C, allatotropin, bursicon α, bursicon β, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/ion transport peptide, diuretic hormone 31, diuretic hormone 44, ecdysis-triggering hormone, eclosion hormone, FMRFamide-like peptide, GSEFLamide, insulin-like peptide, intocin, leucokinin, myosuppressin, neuropeptide F, orcokinin, proctolin, pyrokinin, RYamide, short neuropeptide F, SIFamide, sulfakinin and tachykinin-related peptide; these are the first neuropeptides described from any proturan. Comparison of the Acerentomon precursors and mature peptides with those from other arthropods revealed features characteristic of both the insects and the crustaceans, which is consistent with the hypothesized phylogenetic position of the Protura within the Pancrustacea, i.e. at or near the point of divergence of the hexapods from the crustaceans.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| | - Megan Chi
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
83
|
Christie AE. In silico prediction of a neuropeptidome for the eusocial insect Mastotermes darwiniensis. Gen Comp Endocrinol 2015; 224:69-83. [PMID: 26095226 DOI: 10.1016/j.ygcen.2015.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 06/09/2015] [Indexed: 12/22/2022]
Abstract
Mastotermes darwiniensis is the most basal living member of the Isoptera (termites), yet it exhibits an extremely advanced level of eusocial organization. Given the interest in, and the high levels of differential developmental and behavioral control needed for, eusociality, it is surprising that essentially nothing is known about the native peptides of M. darwiniensis, which undoubtedly represent the largest and most diverse class of hormones present in this species. The recent public deposition of a 100,000(+)-sequence transcriptome for M. darwiniensis provides a means for peptide discovery in this termite. Here, this resource was mined for putative peptide-encoding transcripts via the BLAST algorithm tblastn and known arthropod neuropeptide precursor queries; mature peptide structures were predicted from the deduced pre/preprohormones using a well-vetted bioinformatics workflow. Thirty-four M. darwiniensis peptide-encoding transcripts were identified, with 163 distinct mature peptides predicted from these sequences. These peptides included members of the adipokinetic hormone, adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin C, allatotropin, bursicon β, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/ion transport peptide, diuretic hormone 31, diuretic hormone 44, FMRFamide-like peptide, insulin-like peptide, leucokinin, myosuppressin, neuroparsin, neuropeptide F, orcokinin, pigment dispersing hormone, pyrokinin, RYamide, short neuropeptide F, SIFamide, sulfakinin and tachykinin-related peptide families. This peptidome is the largest thus far predicted for any member of the Isoptera, and provides a foundation for initiating studies of peptidergic signaling in this and other termites, including ones directed at understanding the roles peptide hormones play in the developmental and behavioral control required for eusociality.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
84
|
Christie AE. Neuropeptide discovery in Symphylella vulgaris (Myriapoda, Symphyla): In silico prediction of the first myriapod peptidome. Gen Comp Endocrinol 2015; 223:73-86. [PMID: 26407502 DOI: 10.1016/j.ygcen.2015.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/22/2015] [Indexed: 12/27/2022]
Abstract
Arthropods have contributed greatly to our understanding of peptidergic control of physiology and behavior, and being the largest and most diverse animal phylum, represent a model for investigating peptide hormone evolution. Surprisingly, one arthropod subphylum, the Myriapoda, is uninvestigated in terms of its peptide hormones. The public deposition of a transcriptome for Symphylella vulgaris, a pseudocentipede, provides a means for peptide discovery in myriapods. Here, in silico transcriptome mining was used to identify 47 S. vulgaris neuropeptide-encoding transcripts within this dataset. The identified transcripts allowed for the deduction of 31 unique pre/preprohormone sequences, with 97 distinct mature peptides predicted from the deduced proteins. The predicted S. vulgaris peptidome includes members of the adipokinetic hormone/red pigment concentrating hormone, adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin C (AST-C), allatotropin, CCHamide, crustacean cardioactive peptide, GSEFLamide, insulin-like peptide, intocin, proctolin, pyrokinin, short neuropeptide F, SIFamide and sulfakinin families. This is the first, and thus far only, peptidome predicted for a myriapod. Of particular note were a modified AST-C, TYWKQCAFNAVSRFamide, that lacks one of two cysteine residues (i.e. one at position 13) stereotypically present in members of this peptide family (and hence is missing the disulfide bridge that spans these residues) and a SIFamide, PPFNGSIFamide, that is truncated due to a lysine for arginine substitution in the dibasic residue pair commonly located at positions 3 and 4 of stereotypical full-length isoforms (e.g. the crustacean peptide GYRKPPFNGSIFamide). The peptides predicted here represent the only extant resource for initiating investigations of native peptidergic signaling in the Myriapoda.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
85
|
Ons S, Bellés X, Maestro JL. Orcokinins contribute to the regulation of vitellogenin transcription in the cockroach Blattella germanica. JOURNAL OF INSECT PHYSIOLOGY 2015; 82:129-133. [PMID: 26462930 DOI: 10.1016/j.jinsphys.2015.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 09/29/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
Orcokinins (OKs) are neuropeptides that were first identified in crustacean through their myotropic activity. In insects, the OK gene gives rise to two mRNAs coding for two different families of conserved mature neuropeptides: OKA and OKB. Although OKs are conserved in many insect species, its physiological role in this animal class is not fully understood. Until now prothoracicotropic, regulatory of light entrainment to the circadian clock and "awakening" activities have been reported for these peptides in different insect species. Here we report the identification of OKA and OKB precursors in the cockroach Blattella germanica. OKA mRNA was detected in brain, whereas OKB mRNA was detected both in brain and midgut. In vivo silencing of OK precursors suggests the involvement of OK gene products in the regulation of vitellogenin expression in the fat body, an action that appears to be independent of juvenile hormone. This is the first time that a function of this kind has been reported for OKs.
Collapse
Affiliation(s)
- Sheila Ons
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | - Xavier Bellés
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | - José L Maestro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| |
Collapse
|
86
|
Schmidlin T, Boender AJ, Frese CK, Heck AJR, Adan RAH, Altelaar AFM. Diet-Induced Neuropeptide Expression: Feasibility of Quantifying Extended and Highly Charged Endogenous Peptide Sequences by Selected Reaction Monitoring. Anal Chem 2015; 87:9966-73. [DOI: 10.1021/acs.analchem.5b03334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Thierry Schmidlin
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University and Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Arjen J. Boender
- Department
of Translational Neuroscience, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Christian K. Frese
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University and Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University and Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Roger A. H. Adan
- Department
of Translational Neuroscience, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - A. F. Maarten Altelaar
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University and Netherlands Proteomics Centre, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
87
|
Han B, Fang Y, Feng M, Hu H, Qi Y, Huo X, Meng L, Wu B, Li J. Quantitative Neuropeptidome Analysis Reveals Neuropeptides Are Correlated with Social Behavior Regulation of the Honeybee Workers. J Proteome Res 2015; 14:4382-93. [DOI: 10.1021/acs.jproteome.5b00632] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bin Han
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou
Xiangshan, Beijing 100093, China
| | - Yu Fang
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou
Xiangshan, Beijing 100093, China
| | - Mao Feng
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou
Xiangshan, Beijing 100093, China
| | - Han Hu
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou
Xiangshan, Beijing 100093, China
| | - Yuping Qi
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou
Xiangshan, Beijing 100093, China
| | - Xinmei Huo
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou
Xiangshan, Beijing 100093, China
| | - Lifeng Meng
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou
Xiangshan, Beijing 100093, China
| | - Bin Wu
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou
Xiangshan, Beijing 100093, China
| | - Jianke Li
- Institute of Apicultural
Research/Key Laboratory of Pollinating Insect Biology, Ministry of
Agriculture, Chinese Academy of Agricultural Sciences, No. 1 Beigou
Xiangshan, Beijing 100093, China
| |
Collapse
|
88
|
Hou L, Jiang F, Yang P, Wang X, Kang L. Molecular characterization and expression profiles of neuropeptide precursors in the migratory locust. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 63:63-71. [PMID: 26036749 DOI: 10.1016/j.ibmb.2015.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 05/26/2023]
Abstract
Neuropeptides serve as the most important regulatory signals in insects. Many neuropeptides and their precursors have been identified in terms of the contig sequences of whole genome information of the migratory locust (Locusta migratoria), which exhibits a typical phenotypic plasticity in morphology, behavior and physiology. However, functions of these locust neuropeptides are largely unknown. In this study, we first revised the 23 reported neuropeptide precursor genes and identified almost all the neuropeptide precursors and corresponding products in L. migratoria. We further revealed the significant expansion profiles (such as AKH) and alternative splicing of neuropeptide genes (Lom-ITP, Lom-OK and Lom-NPF1). Transcriptomic analysis indicated that several neuropeptides, such as Lom-ACP and Lom-OK, displayed development-specific expression patterns. qRT-PCR data confirmed that most neuropeptide precursors were strongly expressed in the central nervous system. Fifteen neuropeptide genes displayed different expression levels between solitarious and gregarious locusts. These findings provide valuable clues to understand neuropeptide evolution and their functional roles in basic biology and phase transition in locusts.
Collapse
Affiliation(s)
- Li Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Jiang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Pengcheng Yang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
89
|
Mikani A, Watari Y, Takeda M. Brain-midgut cross-talk and autocrine metabolastat via the sNPF/CCAP negative feed-back loop in the American cockroach, Periplaneta americana. Cell Tissue Res 2015; 362:481-96. [DOI: 10.1007/s00441-015-2242-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 06/18/2015] [Indexed: 10/23/2022]
|
90
|
de Brito Sanchez MG, Serre M, Avarguès-Weber A, Dyer AG, Giurfa M. Learning context modulates aversive taste strength in honey bees. ACTA ACUST UNITED AC 2015; 218:949-59. [PMID: 25788729 DOI: 10.1242/jeb.117333] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The capacity of honey bees (Apis mellifera) to detect bitter substances is controversial because they ingest without reluctance different kinds of bitter solutions in the laboratory, whereas free-flying bees avoid them in visual discrimination tasks. Here, we asked whether the gustatory perception of bees changes with the behavioral context so that tastes that are less effective as negative reinforcements in a given context become more effective in a different context. We trained bees to discriminate an odorant paired with 1 mol l(-1) sucrose solution from another odorant paired with either distilled water, 3 mol l(-1) NaCl or 60 mmol l(-1) quinine. Training was either Pavlovian [olfactory conditioning of the proboscis extension reflex (PER) in harnessed bees], or mainly operant (olfactory conditioning of free-walking bees in a Y-maze). PER-trained and maze-trained bees were subsequently tested both in their original context and in the alternative context. Whereas PER-trained bees transferred their choice to the Y-maze situation, Y-maze-trained bees did not respond with a PER to odors when subsequently harnessed. In both conditioning protocols, NaCl and distilled water were the strongest and the weakest aversive reinforcement, respectively. A significant variation was found for quinine, which had an intermediate aversive effect in PER conditioning but a more powerful effect in the Y-maze, similar to that of NaCl. These results thus show that the aversive strength of quinine varies with the learning context, and reveal the plasticity of the bee's gustatory system. We discuss the experimental constraints of both learning contexts and focus on stress as a key modulator of taste in the honey bee. Further explorations of bee taste are proposed to understand the physiology of taste modulation in bees.
Collapse
Affiliation(s)
- Maria Gabriela de Brito Sanchez
- University of Toulouse, Research Center on Animal Cognition, Toulouse 31062, Cedex 9, France CNRS, Research Center on Animal Cognition, Toulouse 31062, Cedex 9, France
| | - Marion Serre
- University of Toulouse, Research Center on Animal Cognition, Toulouse 31062, Cedex 9, France CNRS, Research Center on Animal Cognition, Toulouse 31062, Cedex 9, France
| | - Aurore Avarguès-Weber
- University of Toulouse, Research Center on Animal Cognition, Toulouse 31062, Cedex 9, France CNRS, Research Center on Animal Cognition, Toulouse 31062, Cedex 9, France
| | - Adrian G Dyer
- School of Media and Communication, RMIT University, Melbourne, Victoria 3000, Australia
| | - Martin Giurfa
- University of Toulouse, Research Center on Animal Cognition, Toulouse 31062, Cedex 9, France CNRS, Research Center on Animal Cognition, Toulouse 31062, Cedex 9, France
| |
Collapse
|
91
|
Ni M, Zhang H, Li FC, Wang BB, Xu KZ, Shen WD, Li B. Nanoparticulate anatase TiO2 (TiO2 NPs) upregulates the expression of silkworm (Bombyx mori) neuropeptide receptor and promotes silkworm feeding, growth, and silking. Peptides 2015; 68:64-71. [PMID: 25636404 DOI: 10.1016/j.peptides.2014.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/15/2014] [Accepted: 12/15/2014] [Indexed: 11/16/2022]
Abstract
Bombyx mori orphan G protein-coupled receptor, BNGR-A4, is the specific receptor of B. mori neuropeptide F (BmNPFR, neuropeptide F designated NPF). BmNPFR binds specifically and efficiently to B. mori neuropeptides BmNPF1a and BmNPF1b, which activates the ERK1/2 signaling pathway to regulate B. mori food intake and growth. Titanium dioxide nanoparticles (TiO2 NPs) can promote B. mori growth. However, whether the mechanisms of TiO2 NPs' effects are correlated with BmNPFR remains unknown. In this study, the effects of TiO2 NPs (5mg/L) feeding and BmNPFR-dsRNA injection on B. mori food intake and growth were investigated; after TiO2 NPs treatments, B. mori food intake, body weight, and cocoon shell weight were 5.82%, 4.64%, and 9.30% higher, respectively, than those of controls. The food intake, body weight, and cocoon shell weight of the BmNPFR-dsRNA injection group were reduced by 8.05%, 6.28%, and 6.98%, respectively, compared to the control. After TiO2 NPs treatment for 72h, the transcriptional levels of BmNPFR, BmNPF1a, and BmNPF1b in the midgut were 1.58, 1.43, and 1.34-folds, respectively, of those of the control, but 1.99, 2.26, and 2.19-folds, respectively, of the BmNPFR-dsRNA injection group; the phosphorylation level of MAPK was 24.03% higher than the control, while the phosphorylation level of BmNPFR-dsRNA injection group was 71.00% of control. The results indicated that TiO2 NPs affect B. mori feeding and growth through increasing the expression of BmNPFR. This study helps clarify the roles of BmNPF/BmNPFR system in TiO2 NPs' effects on B. mori feeding, growth, and development.
Collapse
Affiliation(s)
- Min Ni
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Hua Zhang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Fan Chi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Bin Bin Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Kai Zun Xu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Wei De Shen
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
92
|
Lismont E, Vleugels R, Marchal E, Badisco L, Van Wielendaele P, Lenaerts C, Zels S, Tobe SS, Vanden Broeck J, Verlinden H. Molecular cloning and characterization of the allatotropin precursor and receptor in the desert locust, Schistocerca gregaria. Front Neurosci 2015; 9:84. [PMID: 25814925 PMCID: PMC4357254 DOI: 10.3389/fnins.2015.00084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/25/2015] [Indexed: 12/25/2022] Open
Abstract
Allatotropins (ATs) are pleiotropic neuropeptides initially isolated from the tobacco hornworm, Manduca sexta. In 2008, the first receptor for AT-like peptides (ATR) was characterized in Bombyx mori. Since then, ATRs have also been characterized in M. sexta, Tribolium castaneum, Aedes aegypti and Bombus terrestris. These receptors show sequence similarity to vertebrate orexin (ORX) receptors. When generating an EST-database of the desert locust (Schistocerca gregaria) central nervous system, we found cDNA sequences encoding the Schgr-AT precursor and a fragment of its putative receptor. This receptor cDNA has now been completed and functionally expressed in mammalian cell lines. Activation of this receptor, designated as Schgr-ATR, by Schgr-AT caused an increase in intracellular calcium ions, as well as cyclic AMP (cAMP), with an EC50 value in the nanomolar range. In addition, the transcript distribution of both the Schgr-AT precursor and Schgr-ATR was investigated by means of quantitative real-time PCR. Moreover, we found more evidence for the myotropic and allatostimulatory actions of Schgr-AT in the desert locust. These data are discussed and situated in a broader context by comparison with literature data on AT and ATR in insects.
Collapse
Affiliation(s)
- Els Lismont
- Molecular Developmental Physiology and Signal Transduction, KU Leuven Leuven, Belgium
| | - Rut Vleugels
- Molecular Developmental Physiology and Signal Transduction, KU Leuven Leuven, Belgium
| | - Elisabeth Marchal
- Molecular Developmental Physiology and Signal Transduction, KU Leuven Leuven, Belgium ; Department of Cell and Systems Biology, University of Toronto Toronto, ON, Canada
| | - Liesbeth Badisco
- Molecular Developmental Physiology and Signal Transduction, KU Leuven Leuven, Belgium
| | | | - Cynthia Lenaerts
- Molecular Developmental Physiology and Signal Transduction, KU Leuven Leuven, Belgium
| | - Sven Zels
- Molecular Developmental Physiology and Signal Transduction, KU Leuven Leuven, Belgium
| | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto Toronto, ON, Canada
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven Leuven, Belgium
| | - Heleen Verlinden
- Molecular Developmental Physiology and Signal Transduction, KU Leuven Leuven, Belgium
| |
Collapse
|
93
|
Schmitt F, Vanselow JT, Schlosser A, Kahnt J, Rössler W, Wegener C. Neuropeptidomics of the Carpenter Ant Camponotus floridanus. J Proteome Res 2015; 14:1504-14. [DOI: 10.1021/pr5011636] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Franziska Schmitt
- Behavioral
Physiology and Sociobiology, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Jens T. Vanselow
- Rudolf
Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | - Andreas Schlosser
- Rudolf
Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | - Jörg Kahnt
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, D-35043 Marburg, Germany
| | - Wolfgang Rössler
- Behavioral
Physiology and Sociobiology, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Christian Wegener
- Neurobiology
and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
94
|
The Little Known Universe of Short Proteins in Insects: A Machine Learning Approach. SHORT VIEWS ON INSECT GENOMICS AND PROTEOMICS 2015. [DOI: 10.1007/978-3-319-24235-4_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
95
|
Christie AE. In silico characterization of the neuropeptidome of the Western black widow spider Latrodectus hesperus. Gen Comp Endocrinol 2015; 210:63-80. [PMID: 25449184 DOI: 10.1016/j.ygcen.2014.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/26/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
Abstract
Technological advancements in high-throughput sequencing have resulted in the production/public deposition of an ever-growing number of arthropod transcriptomes. While most sequencing projects have focused on hexapods, transcriptomes have also been generated for members of the Chelicerata. One chelicerate for which a large transcriptome has recently been released is the Western black widow Latrodectus hesperus, a member of the Araneae (true spiders). Here, a neuropeptidome for L. hesperus was predicted using this resource. Thirty-eight peptide-encoding transcripts were mined from the L. hesperus transcriptome, with 216 distinct peptides predicted from the deduced pre/preprohormones. The identified peptides included members of the allatostatin A, allatostatin B, allatostatin C, allatotropin, bursicon α, bursicon β, CAPA/periviscerokinin/pyrokinin, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/ion transport peptide, diuretic hormone 31, diuretic hormone 44, FMRFamide-like peptide (FLP), GSEFLamide, insulin-like peptide, neuropeptide F (NPF), orcokinin, proctolin, short neuropeptide F, SIFamide, sulfakinin and tachykinin-related peptide (TRP) families. Of particular note were the identifications of a carboxyl (C)-terminally extended corazonin, FLPs possessing -IMRFamide, -MMYFamide, and -MIHFamide C-termini, a NPF and a sulfakinin each ending in -RYamide rather than -RFamide, a precursor whose orcokinins include C-terminally amidated isoforms, and a collection of TRPs possessing -FXPXLamide rather than the stereotypical -FXGXLamide C-termini. The L. hesperus peptidome is by far the largest thus far published for any member of the Chelicerata. Taken collectively, these data serve as a reference for future neuropeptide discovery in the Araneae and provide a foundation for future studies of peptidergic control in L. hesperus and other spiders.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|
96
|
Meng QW, Liu XP, Lü FG, Fu KY, Guo WC, Li GQ. Involvement of a putative allatostatin in regulation of juvenile hormone titer and the larval development in Leptinotarsa decemlineata (Say). Gene 2015; 554:105-13. [DOI: 10.1016/j.gene.2014.10.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 09/12/2014] [Accepted: 10/18/2014] [Indexed: 11/16/2022]
|
97
|
Mass spectrometric identification, sequence evolution, and intraspecific variability of dimeric peptides encoded by cockroach akh genes. Anal Bioanal Chem 2014; 407:1685-93. [DOI: 10.1007/s00216-014-8382-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
|
98
|
Stoffolano JG, Croke K, Chambers J, Gäde G, Solari P, Liscia A. Role of Phote-HrTH (Phormia terraenovae hypertrehalosemic hormone) in modulating the supercontractile muscles of the crop of adult Phormia regina Meigen. JOURNAL OF INSECT PHYSIOLOGY 2014; 71:147-55. [PMID: 25450427 DOI: 10.1016/j.jinsphys.2014.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 10/17/2014] [Accepted: 10/21/2014] [Indexed: 05/28/2023]
Abstract
Phote-HrTH (Phormia terraenovae hypertrehalosemic hormone) has been demonstrated in the Diptera to be involved in flight metabolism, reproduction, and diapause. Each of these events needs the hormone's action and requirement for carbohydrates is the common denominator. In Diptera, carbohydrates are taken up during feeding by action of the cibarial pump and are then stored in the crop. Using adult Phormia regina, both a bioassay and electrophysiological recordings show that Phote-HrTH slows down or inhibits the crop lobe muscles (P5) and, at the same time, stimulates the muscles of the pump 4 (P4) involved in pushing fluids out of the crop and up into the midgut for digestion. The EC50 for P4 was in the nanomolar range while the IC50 for P5 was 1.4-75.1 pM. The effect of Phote-HrTH on P4/5 suggests that the peptide is important in coordinating the two pumps, which are involved in moving carbohydrates up into the midgut for digestion. The adult crop organ is an essential storage organ for carbohydrates and now should be considered an important structure capable of delivering nutrients to the midgut for digestion.
Collapse
Affiliation(s)
- John G Stoffolano
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA.
| | - Katherine Croke
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - James Chambers
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Gerd Gäde
- Department of Biological Sciences, University of Cape Town, ZA-7701 Rondebosch, South Africa
| | - Paolo Solari
- Department of Biomedical Sciences, University of Cagliari, University Campus, S.P. 8, I-09042 Monserrato (CA), Italy
| | - Anna Liscia
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. 8, I-09042 Monserrato (CA), Italy
| |
Collapse
|
99
|
Veenstra JA. The contribution of the genomes of a termite and a locust to our understanding of insect neuropeptides and neurohormones. Front Physiol 2014; 5:454. [PMID: 25477824 PMCID: PMC4237046 DOI: 10.3389/fphys.2014.00454] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 11/03/2014] [Indexed: 12/29/2022] Open
Abstract
The genomes of the migratory locust Locusta migratoria and the termite Zootermopsis nevadensis were mined for the presence of genes encoding neuropeptides, neurohormones, and their G-protein coupled receptors (GPCRs). Both species have retained a larger number of neuropeptide and neuropeptide GPCRs than the better known holometabolous insect species, while other genes that in holometabolous species appear to have a single transcript produce two different precursors in the locust, the termite or both. Thus, the recently discovered CNMa neuropeptide gene has two transcripts predicted to produce two structurally different CNMa peptides in the termite, while the locust produces two different myosuppressin peptides in the same fashion. Both these species also have a calcitonin gene, which is different from the gene encoding the calcitonin-like insect diuretic hormone. This gene produces two types of calcitonins, calcitonins A and B. It is also present in Lepidoptera and Coleoptera and some Diptera, but absent from mosquitoes and Drosophila. However, in holometabolous insect species, only the B transcript is produced. Their putative receptors were also identified. In contrast, Locusta has a highly unusual gene that codes for a salivation stimulatory peptide. The Locusta genes for neuroparsin and vasopressin are particularly interesting. The neuroparsin gene produces five different transcripts, of which only one codes for the neurohormone identified from the corpora cardiaca. The other four transcripts code for neuroparsin-like proteins, which lack four amino acid residues, and that for that reason we called neoneuroparsins. The number of transcripts for the neoneuroparsins is about 200 times larger than the number of neuroparsin transcripts. The first exon and the putative promoter of the vasopressin genes, of which there are about seven copies in the genome, is very well-conserved, but the remainder of these genes is not. The relevance of these findings is discussed.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA UMR 5287 CNRS, Université de Bordeaux Pessac, France
| |
Collapse
|
100
|
Bajracharya P, Lu HL, Pietrantonio PV. The red imported fire ant (Solenopsis invicta Buren) kept Y not F: predicted sNPY endogenous ligands deorphanize the short NPF (sNPF) receptor. PLoS One 2014; 9:e109590. [PMID: 25310341 PMCID: PMC4195672 DOI: 10.1371/journal.pone.0109590] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/10/2014] [Indexed: 02/04/2023] Open
Abstract
Neuropeptides and their receptors play vital roles in controlling the physiology and behavior of animals. Short neuropeptide F (sNPF) signaling regulates several physiological processes in insects such as feeding, locomotion, circadian rhythm and reproduction, among others. Previously, the red imported fire ant (Solenopsis invicta) sNPF receptor (S. invicta sNPFR), a G protein-coupled receptor, was immunolocalized in queen and worker brain and queen ovaries. Differential distribution patterns of S. invicta sNPFR protein in fire ant worker brain were associated both with worker subcastes and with presence or absence of brood in the colony. However, the cognate ligand for this sNPFR has not been characterized and attempts to deorphanize the receptor with sNPF peptides from other insect species which ended in the canonical sequence LRLRFamide, failed. Receptor deorphanization is an important step to understand the neuropeptide receptor downstream signaling cascade. We cloned the full length cDNA of the putative S. invicta sNPF prepropeptide and identified the putative “sNPF” ligand within its sequence. The peptide ends with an amidated Tyr residue whereas in other insect species sNPFs have an amidated Phe or Trp residue at the C-terminus. We stably expressed the HA-tagged S. invicta sNPFR in CHO-K1 cells. Two S. invicta sNPFs differing at their N-terminus were synthesized that equally activated the sNPFR, SLRSALAAGHLRYa (EC50 = 3.2 nM) and SALAAGHLRYa (EC50 = 8.6 nM). Both peptides decreased the intracellular cAMP concentration, indicating signaling through the Gαi-subunit. The receptor was not activated by sNPF peptides from other insect species, honey bee long NPF (NPY) or mammalian PYY. Further, a synthesized peptide otherwise identical to the fire ant sequence but in which the C-terminal amidated amino acid residue ‘Y’ was switched to ‘F’, failed to activate the sNPFR. This discovery will now allow us to investigate the function of sNPY and its cognate receptor in fire ant biology.
Collapse
Affiliation(s)
- Prati Bajracharya
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Hsiao-Ling Lu
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Patricia V. Pietrantonio
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|