51
|
Xie G, Yin S, Zhang Z, Qi D, Wang X, Kim D, Yagai T, Brocker CN, Wang Y, Gonzalez FJ, Wang H, Qu A. Hepatocyte Peroxisome Proliferator-Activated Receptor α Enhances Liver Regeneration after Partial Hepatectomy in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:272-282. [PMID: 30448405 DOI: 10.1016/j.ajpath.2018.10.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 09/18/2018] [Accepted: 10/10/2018] [Indexed: 12/25/2022]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a key nuclear receptor involved in the control of lipid homeostasis. In rodents, PPARα is also a potent hepatic mitogen. Hepatocyte-specific disruption of PPARα inhibits agonist-induced hepatocyte proliferation; however, little is known about the exact role of PPARα in partial hepatectomy (PHx)-induced liver regeneration. Herein, using hepatocyte-specific PPARα-deficient (PparaΔHep) mice, the function of hepatocyte PPARα in PHx-induced liver regeneration was investigated. PPARα protein level and transcriptional activity were increased in the liver after PHx. Compared with the Pparafl/fl mice, PparaΔHep mice exhibited significantly reduced hepatocyte proliferation at 32 hours after PHx. Consistently, reduced Ccnd1 and Pcna mRNA and CYCD1 and proliferating cell nuclear antigen protein were observed at 32 hours after PHx in PparaΔHep mice. Furthermore, PparaΔHep mice showed increased hepatic lipid accumulation and enhanced hepatic triglyceride contents because of impaired hepatic fatty acid β-oxidation when compared with that observed in Pparafl/fl mice. These results indicate that PPARα promotes liver regeneration after PHx, at least partially via regulating the cell cycle and lipid metabolism.
Collapse
Affiliation(s)
- Guomin Xie
- School of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Capital Medical University, Beijing, China
| | - Shi Yin
- Department of Geriatrics, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Zhenzhen Zhang
- Department of Infectious Diseases, Peking University First Hospital, Beijing, China
| | - Dan Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Capital Medical University, Beijing, China
| | - Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Capital Medical University, Beijing, China
| | - Donghwan Kim
- Laboratory of Metabolism, National Cancer Institute, NIH, Bethesda, Maryland
| | - Tomoki Yagai
- Laboratory of Metabolism, National Cancer Institute, NIH, Bethesda, Maryland
| | - Chad N Brocker
- Laboratory of Metabolism, National Cancer Institute, NIH, Bethesda, Maryland
| | - Yan Wang
- Department of Infectious Diseases, Peking University First Hospital, Beijing, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, NIH, Bethesda, Maryland
| | - Hua Wang
- School of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, China; Department of Oncology, First Affiliated Hospital, Anhui Medical University, Hefei, China; Institute for Liver Diseases, Anhui Medical University, Hefei, China.
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Capital Medical University, Beijing, China.
| |
Collapse
|
52
|
Liver-specific Repin1 deficiency impairs transient hepatic steatosis in liver regeneration. Sci Rep 2018; 8:16858. [PMID: 30442920 PMCID: PMC6237840 DOI: 10.1038/s41598-018-35325-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/02/2018] [Indexed: 02/06/2023] Open
Abstract
Transient hepatic steatosis upon liver resection supposes functional relationships between lipid metabolism and liver regeneration. Repin1 has been suggested as candidate gene for obesity and dyslipidemia by regulating key genes of lipid metabolism and lipid storage. Herein, we characterized the regenerative potential of mice with a hepatic deletion of Repin1 (LRep1−/−) after partial hepatectomy (PH) in order to determine the functional significance of Repin1 in liver regeneration. Lipid dynamics and the regenerative response were analyzed at various time points after PH. Hepatic Repin1 deficiency causes a significantly decreased transient hepatic lipid accumulation. Defects in lipid uptake, as analyzed by decreased expression of the fatty acid transporter Cd36 and Fatp5, may contribute to attenuated and shifted lipid accumulation, accompanied by altered extent and chronological sequence of liver cell proliferation in LRep1−/− mice. In vitro steatosis experiments with primary hepatocytes also revealed attenuated lipid accumulation and occurrence of smaller lipid droplets in Repin1-deficient cells, while no direct effect on proliferation in HepG2 cells was observed. Based on these results, we propose that hepatocellular Repin1 might be of functional significance for early accumulation of lipids in hepatocytes after PH, facilitating efficient progression of liver regeneration.
Collapse
|
53
|
Petersen D, Mavarani L, Niedieker D, Freier E, Tannapfel A, Kötting C, Gerwert K, El-Mashtoly SF. Virtual staining of colon cancer tissue by label-free Raman micro-spectroscopy. Analyst 2018; 142:1207-1215. [PMID: 27840868 DOI: 10.1039/c6an02072k] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The great capability of the label-free classification of tissue via vibrational spectroscopy, like Raman or infrared imaging, is shown in numerous publications (review: Diem et al., J. Biophotonics, 2013, 6, 855-886). Herein, we present a new approach, virtual staining, that improves the Raman spectral histopathology (SHP) images of colorectal cancer tissue by combining the integrated Raman intensity image in the C-H stretching region (2800-3050 cm-1) with the pseudo-colour Raman image. This allows the display of fine structures such as the filamentous composition of muscle tissue. The morphology of the virtually stained images is in agreement with the gold standard in medical diagnosis, the haematoxylin-eosin staining. The virtual staining image also represents the whole biochemical fingerprint, and several tissue components including carcinoma were identified automatically with high sensitivity and specificity. For fast tissue classifications, a similar approach was applied on coherent anti-Stokes Raman scattering (CARS) spectral data that is faster and therefore potentially more suitable for clinical applications.
Collapse
Affiliation(s)
- D Petersen
- Department of Biophysics and Protein Research Unit Europe (PURE), Ruhr University Bochum, ND/04 Nord, 44780 Bochum, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
The plasma membrane of eukaryotic cells is not a simple sheet of lipids and proteins but is differentiated into subdomains with crucial functions. Caveolae, small pits in the plasma membrane, are the most abundant surface subdomains of many mammalian cells. The cellular functions of caveolae have long remained obscure, but a new molecular understanding of caveola formation has led to insights into their workings. Caveolae are formed by the coordinated action of a number of lipid-interacting proteins to produce a microdomain with a specific structure and lipid composition. Caveolae can bud from the plasma membrane to form an endocytic vesicle or can flatten into the membrane to help cells withstand mechanical stress. The role of caveolae as mechanoprotective and signal transduction elements is reviewed in the context of disease conditions associated with caveola dysfunction.
Collapse
Affiliation(s)
- Robert G. Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland 4060, Australia
| |
Collapse
|
55
|
Role of peroxisome proliferator-activated receptor alpha (PPARα) and PPARα-mediated species differences in triclosan-induced liver toxicity. Arch Toxicol 2018; 92:3391-3402. [DOI: 10.1007/s00204-018-2308-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/13/2018] [Indexed: 01/31/2023]
|
56
|
Wirsching A, Eberhardt C, Wurnig MC, Boss A, Lesurtel M. Transient steatosis assessed by magnetic resonance imaging predicts outcome after extended hepatectomy in mice. Am J Surg 2018; 216:658-665. [PMID: 30064726 DOI: 10.1016/j.amjsurg.2018.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/19/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
RATIONALE AND OBJECTIVES Posthepatectomy liver failure (PHLF) remains challenging to diagnose and difficult to treat. The extent of transient regeneration-associated steatosis (TRAS) differs between successful liver regeneration and PHLF. This study aims to quantify TRAS by magnetic resonance imaging (MRI) after hepatectomy in mice. MATERIALS AND METHODS Mice (C57BL/6) underwent either extended hepatectomy (EH) or standard hepatectomy (SH). Serial MRI on postoperative days 1-7 was used to compare TRAS and liver remnant growth between groups. Survival was also assessed. RESULTS EH was associated with decreased survival and impaired proliferation when compared to SH (p = 0.02 and p = 0.03). MRI showed increased TRAS 48 h after EH compared to SH (11.8 ± 6% vs. 4.3 ± 2%, p < 0.001). Compared to EH survivors, death after EH was associated with increased TRAS 48 h postoperatively (16.4 ± 6% vs. 9.2 ± 5%, p = 0.02). CONCLUSIONS EH is associated with increased TRAS and inferior outcomes when compared to SH. MRI may help to predict PHLF after hepatectomy.
Collapse
Affiliation(s)
- Andrea Wirsching
- Swiss Hepato-Pancreatico-Biliary and Transplantation Center, Department of Surgery, University Hospital Zurich, Rämistrasse 100, CH-8091, Zürich, Switzerland.
| | - Christian Eberhardt
- Institute for Diagnosic and Interventional Radiology, University Hospital Zurich, Rämistrasse 100, CH-8091, Zürich, Switzerland.
| | - Moritz C Wurnig
- Institute for Diagnosic and Interventional Radiology, University Hospital Zurich, Rämistrasse 100, CH-8091, Zürich, Switzerland.
| | - Andreas Boss
- Institute for Diagnosic and Interventional Radiology, University Hospital Zurich, Rämistrasse 100, CH-8091, Zürich, Switzerland.
| | - Mickaël Lesurtel
- Swiss Hepato-Pancreatico-Biliary and Transplantation Center, Department of Surgery, University Hospital Zurich, Rämistrasse 100, CH-8091, Zürich, Switzerland.
| |
Collapse
|
57
|
Abstract
Triglyceride molecules represent the major form of storage and transport of fatty acids within cells and in the plasma. The liver is the central organ for fatty acid metabolism. Fatty acids accrue in liver by hepatocellular uptake from the plasma and by de novo biosynthesis. Fatty acids are eliminated by oxidation within the cell or by secretion into the plasma within triglyceride-rich very low-density lipoproteins. Notwithstanding high fluxes through these pathways, under normal circumstances the liver stores only small amounts of fatty acids as triglycerides. In the setting of overnutrition and obesity, hepatic fatty acid metabolism is altered, commonly leading to the accumulation of triglycerides within hepatocytes, and to a clinical condition known as nonalcoholic fatty liver disease (NAFLD). In this review, we describe the current understanding of fatty acid and triglyceride metabolism in the liver and its regulation in health and disease, identifying potential directions for future research. Advances in understanding the molecular mechanisms underlying the hepatic fat accumulation are critical to the development of targeted therapies for NAFLD. © 2018 American Physiological Society. Compr Physiol 8:1-22, 2018.
Collapse
Affiliation(s)
- Michele Alves-Bezerra
- Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, USA
| | - David E Cohen
- Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, USA
| |
Collapse
|
58
|
Fontana J, Kučera O, Mezera V, Anděl M, Červinková Z. Glucagon-like peptide-1 analogues exenatide and liraglutide exert inhibitory effect on the early phase of liver regeneration after partial hepatectomy in rats. Physiol Res 2017; 66:833-844. [PMID: 28730824 DOI: 10.33549/physiolres.933464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin known for proliferative and antiapoptotic effects on various tissues. Exenatide and Liraglutide are GLP-1 analogues used in clinical practice as antidiabetic drugs. Since GLP-1 and its analogues exert significant effect on liver metabolism and since changes in intermediary metabolism play an important role in the process of liver regeneration, we decided to determine the effect of Exenatide and Liraglutide on the early phase of liver regeneration and selected metabolic parameters in a model of 2/3 partial hepatectomy (PHx) in rats. Animals were submitted either to PHx or laparotomy and received 3 doses of either GLP-1 analogues (Exenatide - 42 microg/kg b.w., Liraglutide - 0.75 mg/kg b.w.) or saline intraperitoneally. We analyzed body and liver weight, liver bromodeoxyuridine incorporation, liver content of DNA, triacylglycerols and cholesterol and biochemical serum parameters. Bromodeoxyuridine labeling was significantly lower in hepatectomized rats receiving either type of GLP-1 analogues when compared to hepatectomized controls. This effect was more pronounced in the Liraglutide group compared to Exenatide (p<0.001). In addition, liver DNA content was lower in hepatectomized rats receiving Liraglutide than in hepatectomized control rats (p<0.001). In conclusion, GLP-1 analogues Exenatide and Liraglutide significantly inhibited an early phase of liver regeneration after PHx in rats. This inhibitory effect was more pronounced in rats receiving Liraglutide.
Collapse
Affiliation(s)
- J Fontana
- Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
59
|
Wu T, Huang J, Wu S, Huang Z, Chen X, Liu Y, Cui D, Song G, Luo Q, Liu F, Ouyang G. Deficiency of periostin impairs liver regeneration in mice after partial hepatectomy. Matrix Biol 2017; 66:81-92. [PMID: 28965986 DOI: 10.1016/j.matbio.2017.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 12/17/2022]
Abstract
Periostin (Postn) is a crucial extracellular remodeling factor that has been implicated in the pathogenesis of hepatic inflammation, fibrosis, non-alcoholic fatty liver disease and liver cancer. However, the role of Postn in liver regeneration remains unclear. Here, we demonstrate that Postn mRNA and protein levels are significantly upregulated in the mice after 2/3 partial hepatectomy (PHx). Compared with wild-type mice, Postn-deficient mice exhibit lower liver/body weight ratio and less Ki67-positive cells at days 2, 8 and 14 after PHx. Macrophage infiltration and the levels of TNF-α, IL-6 and HGF in the livers of Postn-deficient mice are significantly decreased compared with wild-type mice one day after PHx. In addition, overexpression of Postn leads to higher liver/body weight ratio and more Ki67-positive cells in the livers of mice and promotes hepatocyte proliferation in vitro. Moreover, liver sinusoidal endothelial cells, biliary epithelial cells and hepatocytes can express Postn after PHx, and Postn deficiency impairs angiogenesis during liver regeneration. Our findings indicate that Postn deficiency impairs liver regeneration in mice after PHx and Postn might be a novel promoter for liver regeneration.
Collapse
Affiliation(s)
- Tiantian Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jingwen Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Shasha Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zhengjie Huang
- Department of Surgical Oncology, First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Xiaoyan Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yingfu Liu
- Medical College, Xiamen University, Xiamen 361102, China
| | - Dan Cui
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Gang Song
- Medical College, Xiamen University, Xiamen 361102, China
| | - Qi Luo
- Department of Surgical Oncology, First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Fan Liu
- Medical College, Xiamen University, Xiamen 361102, China.
| | - Gaoliang Ouyang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
60
|
Cui CX, Deng JN, Yan L, Liu YY, Fan JY, Mu HN, Sun HY, Wang YH, Han JY. Silibinin Capsules improves high fat diet-induced nonalcoholic fatty liver disease in hamsters through modifying hepatic de novo lipogenesis and fatty acid oxidation. JOURNAL OF ETHNOPHARMACOLOGY 2017; 208:24-35. [DOI: 10.1016/j.jep.2017.06.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
61
|
Fernandez-Rojo MA, Ramm GA. Filling the Gap on Caveolin-1 in Liver Carcinogenesis. Trends Cancer 2017; 2:701-705. [PMID: 28741517 DOI: 10.1016/j.trecan.2016.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 11/19/2022]
Abstract
Caveolin-1 (CAV1) has emerged as a promoter of proliferation, metastasis, and chemoresistance in hepatoma cells, as well as a marker of poor prognosis in liver cancer. We discuss here current knowledge and future approaches to elucidating the molecular mechanisms underlying CAV1 action during hepatocarcinogenesis and evaluate its potential use in clinical therapies.
Collapse
Affiliation(s)
- Manuel A Fernandez-Rojo
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.
| | - Grant A Ramm
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
62
|
Li M, Chen D, Huang H, Wang J, Wan X, Xu C, Li C, Ma H, Yu C, Li Y. Caveolin1 protects against diet induced hepatic lipid accumulation in mice. PLoS One 2017; 12:e0178748. [PMID: 28570612 PMCID: PMC5453590 DOI: 10.1371/journal.pone.0178748] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/18/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND AIM Caveolin1 (CAV1) is involved in lipid homeostasis and endocytosis, but little is known about the significance of CAV1 in the pathogenesis and development of nonalcoholic fatty liver disease (NAFLD). This study aimed to determine the role of CAV1 in NAFLD. METHODS Expression of CAV1 in the in vitro and in vivo models of NAFLD was analyzed. The effects of CAV1 knockdown or overexpression on free fatty acid (FFA)-induced lipid accumulation in L02 cells and AML12 cells were determined. CAV1 knockout (CAV1-KO) mice and their wild-type (WT) littermates were subjected to a high fat diet (HFD) for 4 weeks, and the functional consequences of losing the CAV1 gene and its subsequent molecular mechanisms were also examined. RESULTS Noticeably, CAV1 expression was markedly reduced in NAFLD. CAV1 knockdown led to the aggravation of steatosis that was induced by FFA in both L02 cells and AML12 cells, while CAV1 overexpression markedly attenuated lipid accumulation in the cells. Consistent with CAV1 repression in the livers of HFD-induced mice, the CAV1-KO mice exhibited more severe hepatic steatosis upon HFD intake. In addition, increased cholesterol levels and elevated transaminases were detected in the plasma of CAV1-KO mice. The protein expression of SREBP1, a key gene involved in lipogenesis, was augmented following CAV1 suppression in FFA-treated hepatocytes and in the livers of HFD-fed CAV1-KO mice. CONCLUSIONS CAV1 serves as an important protective factor in the development of NAFLD by modulating lipid metabolism gene expression.
Collapse
Affiliation(s)
- Meng Li
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Dahua Chen
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Haixiu Huang
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiewei Wang
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xingyong Wan
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chengfu Xu
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chunxiao Li
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Han Ma
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chaohui Yu
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Youming Li
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
63
|
Sackey-Aboagye B, Olsen AL, Mukherjee SM, Ventriglia A, Yokosaki Y, Greenbaum LE, Lee GY, Naga H, Wells RG. Fibronectin Extra Domain A Promotes Liver Sinusoid Repair following Hepatectomy. PLoS One 2016; 11:e0163737. [PMID: 27741254 PMCID: PMC5065221 DOI: 10.1371/journal.pone.0163737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 09/13/2016] [Indexed: 11/19/2022] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are the main endothelial cells in the liver and are important for maintaining liver homeostasis as well as responding to injury. LSECs express cellular fibronectin containing the alternatively spliced extra domain A (EIIIA-cFN) and increase expression of this isoform after liver injury, although its function is not well understood. Here, we examined the role of EIIIA-cFN in liver regeneration following partial hepatectomy. We carried out two-thirds partial hepatectomies in mice lacking EIIIA-cFN and in their wild type littermates, studied liver endothelial cell adhesion on decellularized, EIIIA-cFN-containing matrices and investigated the role of cellular fibronectins in liver endothelial cell tubulogenesis. We found that liver weight recovery following hepatectomy was significantly delayed and that sinusoidal repair was impaired in EIIIA-cFN null mice, especially females, as was the lipid accumulation typical of the post-hepatectomy liver. In vitro, we found that liver endothelial cells were more adhesive to cell-deposited matrices containing the EIIIA domain and that cellular fibronectin enhanced tubulogenesis and vascular cord formation. The integrin α9β1, which specifically binds EIIIA-cFN, promoted tubulogenesis and adhesion of liver endothelial cells to EIIIA-cFN. Our findings identify a role for EIIIA-cFN in liver regeneration and tubulogenesis. We suggest that sinusoidal repair is enhanced by increased LSEC adhesion, which is mediated by EIIIA-cFN.
Collapse
Affiliation(s)
- Bridget Sackey-Aboagye
- Department of Medicine, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Abby L. Olsen
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sarmistha M. Mukherjee
- Department of Physiology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alexander Ventriglia
- Department of Bioengineering, School of Engineering and Applied Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | | | - Gi Yun Lee
- Department of Bioengineering, School of Engineering and Applied Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hani Naga
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rebecca G. Wells
- Department of Medicine, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
64
|
Caveolin-1 Function in Liver Physiology and Disease. Trends Mol Med 2016; 22:889-904. [DOI: 10.1016/j.molmed.2016.08.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/14/2016] [Accepted: 08/17/2016] [Indexed: 12/18/2022]
|
65
|
Bartoli D, Piobbico D, Bellet MM, Bennati AM, Roberti R, Della Fazia MA, Servillo G. Impaired cell proliferation in regenerating liver of 3 β-hydroxysterol Δ14-reductase (TM7SF2) knock-out mice. Cell Cycle 2016; 15:2164-2173. [PMID: 27341299 PMCID: PMC4993425 DOI: 10.1080/15384101.2016.1195939] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/18/2016] [Accepted: 05/22/2016] [Indexed: 12/21/2022] Open
Abstract
The liver is the most important organ in cholesterol metabolism, which is instrumental in regulating cell proliferation and differentiation. The gene Tm7sf2 codifies for 3 β-hydroxysterol-Δ14-reductase (C14-SR), an endoplasmic reticulum resident protein catalyzing the reduction of C14-unsaturated sterols during cholesterol biosynthesis from lanosterol. In this study we analyzed the role of C14-SR in vivo during cell proliferation by evaluating liver regeneration in Tm7sf2 knockout (KO) and wild-type (WT) mice. Tm7sf2 KO mice showed no alteration in cholesterol content. However, accumulation and delayed catabolism of hepatic triglycerides was observed, resulting in persistent steatosis at all times post hepatectomy. Moreover, delayed cell cycle progression to the G1/S phase was observed in Tm7sf2 KO mice, resulting in reduced cell division at the time points examined. This was associated to abnormal ER stress response, leading to alteration in p53 content and, consequently, induction of p21 expression in Tm7sf2 KO mice. In conclusion, our results indicate that Tm7sf2 deficiency during liver regeneration alters lipid metabolism and generates a stress condition, which, in turn, transiently unbalances hepatocytes cell cycle progression.
Collapse
Affiliation(s)
- Daniela Bartoli
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Danilo Piobbico
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Anna Maria Bennati
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Rita Roberti
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Giuseppe Servillo
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
66
|
Tautenhahn HM, Brückner S, Baumann S, Winkler S, Otto W, von Bergen M, Bartels M, Christ B. Attenuation of Postoperative Acute Liver Failure by Mesenchymal Stem Cell Treatment Due to Metabolic Implications. Ann Surg 2016; 263:546-56. [PMID: 25775061 DOI: 10.1097/sla.0000000000001155] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To prevent posthepatectomy acute liver failure after extended resection by treatment with mesenchymal stem cells (MSCs). BACKGROUND Liver tumors often require extended liver resection, overburdening metabolic and regenerative capacities of the remnant organ. Resulting dysfunction and failure may be improved by the proregenerative characteristics of MSCs. METHODS Extended liver resection was performed in (DPPIV)-deficient F344-Fischer rats. Wild-type animals served as donors of peritoneal adipose-derived MSCs. These were predifferentiated in vitro into hepatocytic cells and delivered to the liver by splenic application. Liver-related blood parameters (international normalized ratio, bilirubin, aspartate aminotransferase, alanine aminotransferase) and liver histology (hematoxylin-eosin, Sudan III) were determined to monitor liver function. Metabolic changes were assessed by metabolomic analyses in the remnant liver and the serum. Liver damage and regeneration were quantified by determination of the apoptotic and proliferation rates. RESULTS MSCs supported survival after partial hepatectomy. They decreased liver-related blood parameters indicative for the improvement of liver function. The extensive lipid accumulation in hepatocytes illustrating the metabolic overload after resection was attenuated. Treatment with MSCs normalized imbalance of amino acids, acylcarnitines, sphingolipids, and glycerophospholipids in the liver and blood. Furthermore, MSCs decreased the apoptotic rate and increased the proliferation rate. The experimental time period (48 hours) was too short to allow for integration of MSCs into the host liver. Thus, the mode of action was probably indirect. CONCLUSIONS MSCs ameliorated hepatic dysfunction and improved liver regeneration after extended resection by paracrine mechanisms. They may represent a new therapeutic option to treat posthepatectomy acute liver failure.
Collapse
Affiliation(s)
- Hans-Michael Tautenhahn
- *Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig AöR, Leipzig, Germany †Translational Centre for Regenerative Medicine, University of Leipzig, Leipzig, Germany ‡Department of Metabolomics, Helmholtz Centre for Environmental Research GmbH-UFZ, Leipzig, Germany §Institute of Pharmacy, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany ¶Department of Proteomics, Helmholtz Centre for Environmental Research GmbH-UFZ, Leipzig, Germany
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Aalborg, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Sohn J, Brick RM, Tuan RS. From embryonic development to human diseases: The functional role of caveolae/caveolin. ACTA ACUST UNITED AC 2016; 108:45-64. [PMID: 26991990 DOI: 10.1002/bdrc.21121] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 02/06/2023]
Abstract
Caveolae, an almost ubiquitous, structural component of the plasma membrane, play a critical role in many functions essential for proper cell function, including membrane trafficking, signal transduction, extracellular matrix remodeling, and tissue regeneration. Three main types of caveolin proteins have been identified from caveolae since the discovery of caveolin-1 in the early 1990s. All three (Cav-1, Cav-2, and Cav-3) play crucial roles in mammalian physiology, and can effect pathogenesis in a wide range of human diseases. While many biological activities of caveolins have been uncovered since its discovery, their role and regulation in embryonic develop remain largely poorly understood, although there is increasing evidence that caveolins may be linked to lung and brain birth defects. Further investigations are clearly needed to decipher how caveolae/caveolins mediate cellular functions and activities of normal embryogenesis and how their perturbations contribute to developmental disorders.
Collapse
Affiliation(s)
- Jihee Sohn
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rachel M Brick
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
68
|
Jia Y, Wu C, Kim J, Kim B, Lee SJ. Astaxanthin reduces hepatic lipid accumulations in high-fat-fed C57BL/6J mice via activation of peroxisome proliferator-activated receptor (PPAR) alpha and inhibition of PPAR gamma and Akt. J Nutr Biochem 2016; 28:9-18. [DOI: 10.1016/j.jnutbio.2015.09.015] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 09/08/2015] [Accepted: 09/11/2015] [Indexed: 02/06/2023]
|
69
|
Guan X, Wang N, Cui F, Liu Y, Liu P, Zhao J, Han C, Li X, Leng Z, Li Y, Ji X, Zou W, Liu J. Caveolin-1 is essential in the differentiation of human adipose-derived stem cells into hepatocyte-like cells via an MAPK pathway-dependent mechanism. Mol Med Rep 2015; 13:1487-94. [PMID: 26717806 PMCID: PMC4732856 DOI: 10.3892/mmr.2015.4743] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 09/25/2015] [Indexed: 12/20/2022] Open
Abstract
Human adipose-derived stem cells (hADSCs), widely present in the adult human body, are an emerging and attractive tool for the establishment of stem cell-based therapies for the treatment of liver disease. However, the mechanism underlying hADSCs hepatic differentiation remains to be elucidated. Caveolin-1 (Cav-1), a 21–24 kDa membrane structural protein, is important in liver regeneration and development. In the present study, fluorescence immuno-cytochemistry and western blotting were used to analyze the expression levels of Cav-1 and evaluate its effects on the hepatic differentiation of hADSCs. The results revealed that primary hADSCs preserved the ability to proliferate and differentiate into hepatocyte-like cells. As demonstrated by semiquantitative reverse transcription-polymerase chain reaction, hepatocyte-inducing factors significantly increased the expression of Cav-1 in a time-dependent manner, as indicated by increased expression levels of the albumin (ALB) and α-fetoprotein (AFP) markers. In addition the expression levels of ALB and HNF1A significantly decreased following small interfering RNA-mediated knockdown of Cav-1. The mitogen-activated protein kinase (MAPK) signaling pathway was activated during hepatic differentiation and inhibited following Cav-1 knockdown. These results suggested that Cav-1 may regulate the hepatocyte-like differentiation of hADSCs by modulating mitogen-activated protein kinase kinase/MAPK signaling. The results of the present study will provide experimental and theoretical basis for further clinical studies on stem cell transplantation in the treatment of liver disease.
Collapse
Affiliation(s)
- Xin Guan
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Nan Wang
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Fenggong Cui
- Liaoning Key Laboratories of Biotechnology and Molecular Drug Research and Development, College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, P.R. China
| | - Yang Liu
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Peng Liu
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jingyuan Zhao
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Chao Han
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xiaoyan Li
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhiqian Leng
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Ying Li
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xiaofei Ji
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Wei Zou
- Liaoning Key Laboratories of Biotechnology and Molecular Drug Research and Development, College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, P.R. China
| | - Jing Liu
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
70
|
Feng G, Long Y, Peng J, Li Q, Cui Z. Transcriptomic characterization of the dorsal lobes after hepatectomy of the ventral lobe in zebrafish. BMC Genomics 2015; 16:979. [PMID: 26584608 PMCID: PMC4653908 DOI: 10.1186/s12864-015-2145-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/26/2015] [Indexed: 02/08/2023] Open
Abstract
Background The liver possesses an ability of compensatory growth after removing three of five lobes in mammals or one of three lobes in zebrafish. The reenter of hepatocytes into the cell cycle is one of the hallmarks for the initiation of liver compensatory growth, but cellular and molecular mechanisms underlying the activation of hepatocytes remain largely unknown. Results To better understand the process, transcriptional profiles of the remaining liver dorsal lobes in female zebrafish were generated with RNA-seq. About 44 million raw reads were obtained from three sequencing libraries and 71 % of raw reads were mapped to the reference genome of zebrafish. A total number of 5652 genes were differentially expressed in at least one of two time points during the compensatory growth of liver dorsal lobes and classified into different functional categories. A number of genes encoding angiogenesis-related growth factors/ligands and apoptosis-associated cytokines were strongly expressed at 6-h time point after the removal of the ventral lobe. Gene ontology enrichment analysis of genes up-regulated during early stages of liver compensatory growth revealed that small GTPase-mediated signal transduction, RNA processing and intracellular protein transport were the most highly overrepresented biological processes and SNARE interactions in vesicular transport, proteasome and basal transcription factors were the most highly enriched pathways. Moreover, 477 genes differently expressed during liver compensatory growth of both female zebrafish and mice were involved in the response to stimulus, DNA replication, metabolic processes of fatty acid, lipid and steroid, multicellular organismal homeostasis and extracellular matrix constituent secretion. Conclusions Multiple biological processes and signaling pathways are immediately activated in remaining dorsal lobes of female zebrafish right after removal of the ventral lobe and these findings provide crucial clues for further identification of cis-elements and trans-factors that are extensively involved in the initiation of liver compensatory growth. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2145-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guohui Feng
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yong Long
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
| | - Jinrong Peng
- Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Qing Li
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
| | - Zongbin Cui
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
| |
Collapse
|
71
|
Mouse CD11b+Kupffer Cells Recruited from Bone Marrow Accelerate Liver Regeneration after Partial Hepatectomy. PLoS One 2015; 10:e0136774. [PMID: 26333171 PMCID: PMC4557907 DOI: 10.1371/journal.pone.0136774] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/08/2015] [Indexed: 01/11/2023] Open
Abstract
TNF and Fas/FasL are vital components, not only in hepatocyte injury, but are also required for hepatocyte regeneration. Liver F4/80+Kupffer cells are classified into two subsets; resident radio-resistant CD68+cells with phagocytic and bactericidal activity, and recruited radio-sensitive CD11b+cells with cytokine-producing capacity. The aim of this study was to investigate the role of these Kupffer cells in the liver regeneration after partial hepatectomy (PHx) in mice. The proportion of Kupffer cell subsets in the remnant liver was examined in C57BL/6 mice by flow cytometry after PHx. To examine the role of CD11b+Kupffer cells/Mφ, mice were depleted of these cells before PHx by non-lethal 5 Gy irradiation with or without bone marrow transplantation (BMT) or the injection of a CCR2 (MCP-1 receptor) antagonist, and liver regeneration was evaluated. Although the proportion of CD68+Kupffer cells did not significantly change after PHx, the proportion of CD11b+Kupffer cells/Mφ and their FasL expression was greatly increased at three days after PHx, when the hepatocytes vigorously proliferate. Serum TNF and MCP-1 levels peaked one day after PHx. Irradiation eliminated the CD11b+Kupffer cells/Mφ for approximately two weeks in the liver, while CD68+Kupffer cells, NK cells and NKT cells remained, and hepatocyte regeneration was retarded. However, BMT partially restored CD11b+Kupffer cells/Mφ and recovered the liver regeneration. Furthermore, CCR2 antagonist treatment decreased the CD11b+Kupffer cells/Mφ and significantly inhibited liver regeneration. The CD11b+Kupffer cells/Mφ recruited from bone marrow by the MCP-1 produced by CD68+Kupffer cells play a pivotal role in liver regeneration via the TNF/FasL/Fas pathway after PHx.
Collapse
|
72
|
Molecular mechanisms of fatty liver in obesity. Front Med 2015; 9:275-87. [PMID: 26290284 DOI: 10.1007/s11684-015-0410-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 05/25/2015] [Indexed: 12/17/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) covers a spectrum of liver disorders ranging from simple steatosis to advanced pathologies, including nonalcoholic steatohepatitis and cirrhosis. NAFLD significantly contributes to morbidity and mortality in developed societies. Insulin resistance associated with central obesity is the major cause of hepatic steatosis, which is characterized by excessive accumulation of triglyceride-rich lipid droplets in the liver. Accumulating evidence supports that dysregulation of adipose lipolysis and liver de novo lipogenesis (DNL) plays a key role in driving hepatic steatosis. In this work, we reviewed the molecular mechanisms responsible for enhanced adipose lipolysis and increased hepatic DNL that lead to hepatic lipid accumulation in the context of obesity. Delineation of these mechanisms holds promise for developing novel avenues against NAFLD.
Collapse
|
73
|
Schroeder B, McNiven MA. Importance of endocytic pathways in liver function and disease. Compr Physiol 2015; 4:1403-17. [PMID: 25428849 DOI: 10.1002/cphy.c140001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatocellular endocytosis is a highly dynamic process responsible for the internalization of a variety of different receptor ligand complexes, trophic factors, lipids, and, unfortunately, many different pathogens. The uptake of these external agents has profound effects on seminal cellular processes including signaling cascades, migration, growth, and proliferation. The hepatocyte, like other well-polarized epithelial cells, possesses a host of different endocytic mechanisms and entry routes to ensure the selective internalization of cargo molecules. These pathways include receptor-mediated endocytosis, lipid raft associated endocytosis, caveolae, or fluid-phase uptake, although there are likely many others. Understanding and defining the regulatory mechanisms underlying these distinct entry routes, sorting and vesicle formation, as well as the postendocytic trafficking pathways is of high importance especially in the liver, as their mis-regulation can contribute to aberrant liver pathology and liver diseases. Further, these processes can be "hijacked" by a variety of different infectious agents and viruses. This review provides an overview of common components of the endocytic and postendocytic trafficking pathways utilized by hepatocytes. It will also discuss in more detail how these general themes apply to liver-specific processes including iron homeostasis, HBV infection, and even hepatic steatosis.
Collapse
Affiliation(s)
- Barbara Schroeder
- Department of Biochemistry and Molecular Biology, Center for Basic Research in Digestive Diseases, Mayo Clinic and Foundation, Rochester, Minnesota
| | | |
Collapse
|
74
|
Son YH, Lee SJ, Lee KB, Lee JH, Jeong EM, Chung SG, Park SC, Kim IG. Dexamethasone downregulates caveolin-1 causing muscle atrophy via inhibited insulin signaling. J Endocrinol 2015; 225:27-37. [PMID: 25688118 DOI: 10.1530/joe-14-0490] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glucocorticoids play a major role in the development of muscle atrophy in various medical conditions, such as cancer, burn injury, and sepsis, by inhibiting insulin signaling. In this study, we report a new pathway in which glucocorticoids reduce the levels of upstream insulin signaling components by downregulating the transcription of the gene encoding caveolin-1 (CAV1), a scaffolding protein present in the caveolar membrane. Treatment with the glucocorticoid dexamethasone (DEX) decreased CAV1 protein and Cav1 mRNA expression, with a concomitant reduction in insulin receptor alpha (IRα) and IR substrate 1 (IRS1) levels in C2C12 myotubes. On the basis of the results of promoter analysis using deletion mutants and site-directed mutagenesis a negative glucocorticoid-response element in the regulatory region of the Cav1 gene was identified, confirming that Cav1 is a glucocorticoid-target gene. Cav1 knockdown using siRNA decreased the protein levels of IRα and IRS1, and overexpression of Cav1 prevented the DEX-induced decrease in IRα and IRS1 proteins, demonstrating a causal role of Cav1 in the inhibition of insulin signaling. Moreover, injection of adenovirus expressing Cav1 into the gastrocnemius muscle of mice prevented DEX-induced atrophy. These results indicate that CAV1 is a critical regulator of muscle homeostasis, linking glucocorticoid signaling to the insulin signaling pathway, thereby providing a novel target for the prevention of glucocorticoid-induced muscle atrophy.
Collapse
Affiliation(s)
- Young Hoon Son
- Department of Biochemistry and Molecular BiologyInstitute of Human-Environment Interface BiologyDepartment of Rehabilitation MedicineSeoul National University College of Medicine, 103 Daehak-ro, Jongno-Gu, Seoul 110-799, Korea
| | - Seok-Jin Lee
- Department of Biochemistry and Molecular BiologyInstitute of Human-Environment Interface BiologyDepartment of Rehabilitation MedicineSeoul National University College of Medicine, 103 Daehak-ro, Jongno-Gu, Seoul 110-799, Korea
| | - Ki-Baek Lee
- Department of Biochemistry and Molecular BiologyInstitute of Human-Environment Interface BiologyDepartment of Rehabilitation MedicineSeoul National University College of Medicine, 103 Daehak-ro, Jongno-Gu, Seoul 110-799, Korea
| | - Jin-Haeng Lee
- Department of Biochemistry and Molecular BiologyInstitute of Human-Environment Interface BiologyDepartment of Rehabilitation MedicineSeoul National University College of Medicine, 103 Daehak-ro, Jongno-Gu, Seoul 110-799, Korea
| | - Eui Man Jeong
- Department of Biochemistry and Molecular BiologyInstitute of Human-Environment Interface BiologyDepartment of Rehabilitation MedicineSeoul National University College of Medicine, 103 Daehak-ro, Jongno-Gu, Seoul 110-799, Korea Department of Biochemistry and Molecular BiologyInstitute of Human-Environment Interface BiologyDepartment of Rehabilitation MedicineSeoul National University College of Medicine, 103 Daehak-ro, Jongno-Gu, Seoul 110-799, Korea
| | - Sun Gun Chung
- Department of Biochemistry and Molecular BiologyInstitute of Human-Environment Interface BiologyDepartment of Rehabilitation MedicineSeoul National University College of Medicine, 103 Daehak-ro, Jongno-Gu, Seoul 110-799, Korea
| | - Sang-Chul Park
- Department of Biochemistry and Molecular BiologyInstitute of Human-Environment Interface BiologyDepartment of Rehabilitation MedicineSeoul National University College of Medicine, 103 Daehak-ro, Jongno-Gu, Seoul 110-799, Korea
| | - In-Gyu Kim
- Department of Biochemistry and Molecular BiologyInstitute of Human-Environment Interface BiologyDepartment of Rehabilitation MedicineSeoul National University College of Medicine, 103 Daehak-ro, Jongno-Gu, Seoul 110-799, Korea Department of Biochemistry and Molecular BiologyInstitute of Human-Environment Interface BiologyDepartment of Rehabilitation MedicineSeoul National University College of Medicine, 103 Daehak-ro, Jongno-Gu, Seoul 110-799, Korea
| |
Collapse
|
75
|
Ding L, Yang Y, Qu Y, Yang T, Wang K, Liu W, Xia W. Bile acid promotes liver regeneration via farnesoid X receptor signaling pathways in rats. Mol Med Rep 2015; 11:4431-7. [PMID: 25634785 DOI: 10.3892/mmr.2015.3270] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 10/29/2014] [Indexed: 11/05/2022] Open
Abstract
Bile acids, which are synthesized from cholesterol in the hepatocytes of the liver, are amphipathic molecules with a steroid backbone. Studies have shown that bile acid exhibits important effects on liver regeneration. However, the mechanism underlying these effects remains unclear. The aim of the present study was to investigate the effect of bile acid and the farnesoid X receptor (FXR) on hepatic regeneration and lipid metabolism. Rats were fed with 0.2% bile acid or glucose for 7 days and then subjected to a 50 or 70% hepatectomy. Hepatic regeneration rate, serum and liver levels of bile acid, and expression of FXR and Caveolin‑1, were detected at 24, 48 or 72 h following hepatectomy. The expression of proliferating cell nuclear antigen (PCNA) in the liver was measured using immunohistochemistry at the end of the study. Hepatocytes isolated from rats were treated with bile acid, glucose, FXR agonist and FXR antagonist, separately or in combination. Lipid metabolism, the expression of members of the FXR signaling pathway and energy metabolism‑related factors were measured using ELISA kits or western blotting. Bile acid significantly increased the hepatic regeneration rate and the expression of FXR, Caveolin‑1 and PCNA. Levels of total cholesterol and high density lipoprotein were increased in bile acid‑ or FXR agonist‑treated hepatocytes in vitro. Levels of triglyceride, low density lipoprotein and free fatty acid were decreased. In addition, bile acid and FXR agonists increased the expression of bile salt export pump and small heterodimer partner, and downregulated the expression of apical sodium‑dependent bile acid transporter, Na+/taurocholate cotransporting polypeptide and cholesterol 7α‑hydroxylase. These results suggested that physiological concentrations of bile acid may promote liver regeneration via FXR signaling pathways, and may be associated with energy metabolism.
Collapse
Affiliation(s)
- Long Ding
- The Second Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Yu Yang
- Department of Topographical Anatomy, College of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Yikun Qu
- The Second Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Ting Yang
- Department of Vascular Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Kaifeng Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Weixin Liu
- The Second Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Weibin Xia
- The Second Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| |
Collapse
|
76
|
Li B, Zhang Z, Zhang H, Quan K, Lu Y, Cai D, Ning G. Aberrant miR199a-5p/caveolin1/PPARα axis in hepatic steatosis. J Mol Endocrinol 2014; 53:393-403. [PMID: 25312970 DOI: 10.1530/jme-14-0127] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD), a condition characterized by an excessive accumulation of triglycerides (TGs) in hepatocytes, has dramatically increased globally during recent decades. MicroRNAs (miRs) have been suggested to play crucial roles in many complex diseases and lipid metabolism. Our results indicated that miR199a-5p was remarkably upregulated in free fatty acid (FA)-treated hepatocytes. To investigate the role of miR199a-5p in the pathogenesis of fatty liver and the potential mechanism by which miR199a-5p regulates NAFLD, we first transfected two hepatocyte cell lines, HepG2 and AML12 cells, with agomiR199a-5p or antagomiR199a-5p. Our results indicated that miR199a-5p overexpression exacerbated deposition of FA and inhibited ATP levels and mitochondrial DNA (mtDNA) contents. Consistently, suppression of miR199a-5p partially alleviated deposition of FA and increased ATP levels and mtDNA contents. Moreover, miR199a-5p suppressed the expression of mitochondrial FA β-oxidation-related genes through inhibition of caveolin1 (CAV1) and the related peroxisome proliferator-activated receptor alpha (PPARα) pathway. Furthermore, suppression of CAV1 gene expression by CAV1 siRNA inhibited the PPARα signalling pathway. Finally, we examined the expression of miR199a-5p in liver samples derived from mice fed a high-fat diet, db/db mice, ob/ob mice and NAFLD patients, and found that miR199a-5p was upregulated while CAV1 and PPARA were downregulated in these systems, which was strongly indicative of the essential role of miR199a-5p in NAFLD. In summary, miR199a-5p plays a vital role in lipid metabolism, mitochondrial activity and mitochondrial β-oxidation in liver. Upregulated miR199a-5p in hepatocytes may contribute to impaired FA β-oxidation in mitochondria and aberrant lipid deposits, probably via CAV1 and the PPARα pathway.
Collapse
Affiliation(s)
- Bo Li
- Shanghai Institute of Endocrine and Metabolic DiseasesShanghai Clinical Center for Endocrine and Metabolic Diseases, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, ChinaDepartment of NeurosurgeryHuashan Hospital of Fudan University, Shanghai 200040, ChinaDepartment of Molecular PharmacologyAlbert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Zhiguo Zhang
- Shanghai Institute of Endocrine and Metabolic DiseasesShanghai Clinical Center for Endocrine and Metabolic Diseases, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, ChinaDepartment of NeurosurgeryHuashan Hospital of Fudan University, Shanghai 200040, ChinaDepartment of Molecular PharmacologyAlbert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Huizhi Zhang
- Shanghai Institute of Endocrine and Metabolic DiseasesShanghai Clinical Center for Endocrine and Metabolic Diseases, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, ChinaDepartment of NeurosurgeryHuashan Hospital of Fudan University, Shanghai 200040, ChinaDepartment of Molecular PharmacologyAlbert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Kai Quan
- Shanghai Institute of Endocrine and Metabolic DiseasesShanghai Clinical Center for Endocrine and Metabolic Diseases, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, ChinaDepartment of NeurosurgeryHuashan Hospital of Fudan University, Shanghai 200040, ChinaDepartment of Molecular PharmacologyAlbert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Yan Lu
- Shanghai Institute of Endocrine and Metabolic DiseasesShanghai Clinical Center for Endocrine and Metabolic Diseases, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, ChinaDepartment of NeurosurgeryHuashan Hospital of Fudan University, Shanghai 200040, ChinaDepartment of Molecular PharmacologyAlbert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Dongsheng Cai
- Shanghai Institute of Endocrine and Metabolic DiseasesShanghai Clinical Center for Endocrine and Metabolic Diseases, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, ChinaDepartment of NeurosurgeryHuashan Hospital of Fudan University, Shanghai 200040, ChinaDepartment of Molecular PharmacologyAlbert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Guang Ning
- Shanghai Institute of Endocrine and Metabolic DiseasesShanghai Clinical Center for Endocrine and Metabolic Diseases, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, ChinaDepartment of NeurosurgeryHuashan Hospital of Fudan University, Shanghai 200040, ChinaDepartment of Molecular PharmacologyAlbert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
77
|
The commonly used antimicrobial additive triclosan is a liver tumor promoter. Proc Natl Acad Sci U S A 2014; 111:17200-5. [PMID: 25404284 DOI: 10.1073/pnas.1419119111] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Triclosan [5-chloro-2-(2,4-dichlorophenoxy)phenol; TCS] is a synthetic, broad-spectrum antibacterial chemical used in a wide range of consumer products including soaps, cosmetics, therapeutics, and plastics. The general population is exposed to TCS because of its prevalence in a variety of daily care products as well as through waterborne contamination. TCS is linked to a multitude of health and environmental effects, ranging from endocrine disruption and impaired muscle contraction to effects on aquatic ecosystems. We discovered that TCS was capable of stimulating liver cell proliferation and fibrotic responses, accompanied by signs of oxidative stress. Through a reporter screening assay with an array of nuclear xenobiotic receptors (XenoRs), we found that TCS activates the nuclear receptor constitutive androstane receptor (CAR) and, contrary to previous reports, has no significant effect on mouse peroxisome proliferation activating receptor α (PPARα). Using the procarcinogen diethylnitrosamine (DEN) to initiate tumorigenesis in mice, we discovered that TCS substantially accelerates hepatocellular carcinoma (HCC) development, acting as a liver tumor promoter. TCS-treated mice exhibited a large increase in tumor multiplicity, size, and incidence compared with control mice. TCS-mediated liver regeneration and fibrosis preceded HCC development and may constitute the primary tumor-promoting mechanism through which TCS acts. These findings strongly suggest there are adverse health effects in mice with long-term TCS exposure, especially on enhancing liver fibrogenesis and tumorigenesis, and the relevance of TCS liver toxicity to humans should be evaluated.
Collapse
|
78
|
Méndez-Giménez L, Rodríguez A, Balaguer I, Frühbeck G. Role of aquaglyceroporins and caveolins in energy and metabolic homeostasis. Mol Cell Endocrinol 2014; 397:78-92. [PMID: 25008241 DOI: 10.1016/j.mce.2014.06.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 12/23/2022]
Abstract
Aquaglyceroporins and caveolins are submicroscopic integral membrane proteins that are particularly abundant in many mammalian cells. Aquaglyceroporins (AQP3, AQP7, AQP9 and AQP10) encompass a subfamily of aquaporins that allow the movement of water, but also of small solutes, such as glycerol, across cell membranes. Glycerol constitutes an important metabolite as a substrate for de novo synthesis of triacylglycerols and glucose as well as an energy substrate to produce ATP via the mitochondrial oxidative phosphorylation. In this sense, the control of glycerol influx/efflux in metabolic organs by aquaglyceroporins plays a crucial role with the dysregulation of these glycerol channels being associated with metabolic diseases, such as obesity, insulin resistance, non-alcoholic fatty liver disease and cardiac hypertrophy. On the other hand, caveolae have emerged as relevant plasma membrane sensors implicated in a wide range of cellular functions, including endocytosis, apoptosis, cholesterol homeostasis, proliferation and signal transduction. Caveolae-coating proteins, namely caveolins and cavins, can act as scaffolding proteins within caveolae by concentrating signaling molecules involved in free fatty acid and cholesterol uptake, proliferation, insulin signaling or vasorelaxation, among others. The importance of caveolae in whole-body homeostasis is highlighted by the link between homozygous mutations in genes encoding caveolins and cavins with metabolic diseases, such as lipodystrophy, dyslipidemia, muscular dystrophy and insulin resistance in rodents and humans. The present review focuses on the role of aquaglyceroporins and caveolins on lipid and glucose metabolism, insulin secretion and signaling, energy production and cardiovascular homeostasis, outlining their potential relevance in the development and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Leire Méndez-Giménez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain.
| | - Inmaculada Balaguer
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain; Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
79
|
Hu Y, Zhan Q, Liu HX, Chau T, Li Y, Wan YJ, Yvonne Wan YJ. Accelerated partial hepatectomy-induced liver cell proliferation is associated with liver injury in Nur77 knockout mice. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3272-83. [PMID: 25307349 DOI: 10.1016/j.ajpath.2014.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/29/2014] [Accepted: 08/18/2014] [Indexed: 12/17/2022]
Abstract
Nur77, encoded by Nr4a1 (alias Nur77), plays roles in cell death, survival, and inflammation. To study the role of Nur77 in liver regeneration, wild-type (WT) and Nur77 knockout (KO) mice were subjected to standard two-thirds partial hepatectomy (PH). Nur77 mRNA and protein levels were markedly induced at 1 hour after PH in WT livers, coinciding with ERK1/2 activation. Surprisingly, Nur77 KO mice exhibited a higher liver-to-body weight ratio than WT mice at 24, 48, and 72 hours after PH. Nur77 KO livers exhibited increase in Ki-67-positive hepatocytes at 24 hours, with early induction of cell-cycle genes. Despite accelerated regeneration, Nur77 KO livers paradoxically incurred necrosis, hepatocyte apoptosis, elevated serum alanine aminotransferase activity, and Kupffer cell accumulation. Microarray analysis revealed up-regulation of genes modulating inflammation, cell proliferation, and apoptosis but down-regulation (due to Nur77 deficiency) of glucose and lipid homeostasis genes. Levels of proinflammatory cytokines IL-6, IL-12, IL-23, and CCL2 were increased and levels of anti-inflammatory IL-10 were decreased, compared with WT. Activated NF-κB and STAT3 and mRNA levels of target genes Myc and Bcl2l1 were elevated in Nur77 KO livers. Overall, Nur77 appears essential for regulating early signaling of liver regeneration by modulating cytokine-mediated inflammatory, apoptotic, and energy mobilization processes. The accelerated liver regeneration observed in Nur77 KO mice is likely due to a compensatory effect caused by injury.
Collapse
Affiliation(s)
- Ying Hu
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health Systems, Sacramento, California
| | - Qi Zhan
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China; Guangzhou Digestive Disease Center, Guangzhou, China
| | - Hui-Xin Liu
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health Systems, Sacramento, California
| | - Thinh Chau
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health Systems, Sacramento, California
| | - Yuyuan Li
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China; Guangzhou Digestive Disease Center, Guangzhou, China
| | - Yu-Jui Wan
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health Systems, Sacramento, California; Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China; Guangzhou Digestive Disease Center, Guangzhou, China.
| | | |
Collapse
|
80
|
Ryter SW, Choi AMK, Kim HP. Profibrogenic phenotype in caveolin-1 deficiency via differential regulation of STAT-1/3 proteins. Biochem Cell Biol 2014; 92:370-8. [PMID: 25263949 DOI: 10.1139/bcb-2014-0075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fibrosis underlies the pathogenesis of several human diseases, which can lead to severe injury of vital organs. We previously demonstrated that caveolin-1 expression is reduced in experimental fibrosis and that caveolin-1 exerts antiproliferative and antifibrotic effects in lung fibrosis models. The signal transducers and activators of transcription (STAT) proteins, STAT1 and STAT3, can be activated simultaneously. STAT1 can inhibit cell growth and promote apoptosis while STAT3 inhibits apoptosis. Here, we show that caveolin-1-deficient (cav-1(-/-)) lung fibroblasts display dramatically upregulated STAT3 activation in response to platelet-derived growth factor-BB and transforming growth factor-β stimuli, whereas STAT1 activation is undetectable. Downregulation of protein tyrosine phosphatase-1B played a role in the preferential activation of STAT3 in cav-1(-/-) fibroblasts. Genetic deletion of STAT3 by siRNA modulated the expression of genes involved in cell proliferation and fibrogenesis. Basal expression of α-smooth muscle actin was prominent in cav-1(-/-) liver and kidney, consistent with deposition of collagen in these organs. Collectively, we demonstrate that the antiproliferative and antifibrogenic properties of caveolin-1 in vitro are mediated by the balance between STAT1 and STAT3 activation. Deregulated STAT signaling associated with caveolin-1 deficiency may be relevant to proliferative disorders such as tissue fibrosis.
Collapse
Affiliation(s)
- Stefan W Ryter
- a Division of Pulmonary and Critical Care Medicine, Brigham Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
81
|
Gao L, Zhou Y, Zhong W, Zhao X, Chen C, Chen X, Gu Y, Chen J, Lv Z, Shen J. Caveolin-1 is essential for protecting against binge drinking-induced liver damage through inhibiting reactive nitrogen species. Hepatology 2014; 60:687-99. [PMID: 24710718 DOI: 10.1002/hep.27162] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/02/2014] [Indexed: 12/11/2022]
Abstract
UNLABELLED Caveolin-1 (Cav-1) is known to participate in many diseases, but its roles in alcoholic liver injury remain unknown. In the present study, we aimed to explore the roles of Cav-1 in protecting hepatocytes from ethanol-mediated nitrosative injury. We hypothesized that Cav-1 could attenuate ethanol-mediated nitrosative stress and liver damage through regulating epidermal growth factor receptor/signal transducer and activator of transcription 3/inducible nitric oxide synthase (EGFR/STAT3/iNOS)-signaling cascades. Ethanol-fed mice had time- and dose-dependent increases of Cav-1 in serum and liver with peak increase at 12 hours. Compared to wild-type mice, Cav-1 deficiency mice revealed higher expression of iNOS, higher levels of nitrate/nitrite and peroxynitrite, and had more serious liver damage, accompanied with higher levels of cleaved caspase-3 and apoptotic cell death in liver, and higher levels of alanine aminotransferase and aspartate aminotransferase in serum. Furthermore, the results revealed that the ethanol-mediated Cav-1 increase was in an extracellular signal-regulated kinase-dependent manner, and Cav-1 protected hepatocytes from ethanol-mediated apoptosis by inhibiting iNOS activity and regulating EGFR- and STAT3-signaling cascades. In agreement with these findings, clinical trials in human subjects revealed that serum Cav-1 level was time dependently elevated and peak concentration was observed 12 hours after binge drinking. Alcohol-induced liver lesions were negatively correlated with Cav-1 level, but positively correlated with nitrate/nitrite level, in serum of binge drinkers. CONCLUSIONS Cav-1 could be a cellular defense protein against alcoholic hepatic injury through inhibiting reactive nitrogen species and regulating EGFR/STAT3/iNOS-signaling cascades.
Collapse
Affiliation(s)
- Lei Gao
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Mendes-Braz M, Elias-Miró M, Kleuser B, Fayyaz S, Jiménez-Castro MB, Massip-Salcedo M, Gracia-Sancho J, Ramalho FS, Rodes J, Peralta C. The effects of glucose and lipids in steatotic and non-steatotic livers in conditions of partial hepatectomy under ischaemia-reperfusion. Liver Int 2014; 34:e271-e289. [PMID: 24107124 DOI: 10.1111/liv.12348] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/25/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND Steatosis is a risk factor in partial hepatectomy (PH) under ischaemia-reperfusion (I/R), which is commonly applied in clinical practice to reduce bleeding. Nutritional support strategies, as well as the role of peripheral adipose tissue as energy source for liver regeneration, remain poorly investigated. AIMS To investigate whether the administration of either glucose or a lipid emulsion could protect steatotic and non-steatotic livers against damage and regenerative failure in an experimental model of PH under I/R. The relevance of peripheral adipose tissue in liver regeneration following surgery is studied. METHODS Steatotic and non-steatotic rat livers were subjected to surgery and the effects of either glucose or lipid treatment on damage and regeneration, and part of the underlying mechanisms, were investigated. RESULTS In non-steatotic livers, treatment with lipids or glucose provided the same protection against damage, regeneration failure and ATP drop. Adipose tissue was not required to regenerate non-steatotic livers. In the presence of hepatic steatosis, lipid treatment, but not glucose, protected against damage and regenerative failure by induction of cell cycle, maintenance of ATP levels and elevation of sphingosine-1-phosphate/ceramide ratio and phospholipid levels. Peripheral adipose tissue was required for regenerating the steatotic liver but it was not used as an energy source. CONCLUSION Lipid treatment in non-steatotic livers provides the same protection as that afforded by glucose in conditions of PH under I/R, whereas the treatment with lipids is preferable to reduce the injurious effects of liver surgery in the presence of steatosis.
Collapse
Affiliation(s)
- Mariana Mendes-Braz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Departamento de Patologia e Medicina Legal, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Chen D, Che G. Value of caveolin-1 in cancer progression and prognosis: Emphasis on cancer-associated fibroblasts, human cancer cells and mechanism of caveolin-1 expression (Review). Oncol Lett 2014; 8:1409-1421. [PMID: 25202343 PMCID: PMC4156192 DOI: 10.3892/ol.2014.2385] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 05/07/2014] [Indexed: 02/05/2023] Open
Abstract
Caveolin-1 (Cav-1) is found predominately in terminally differentiated cells, such as adipocytes, endothelia and smooth muscle cells, as well as type I pneumocytes. As a main structural component of caveolae, Cav-1 is important in modulating cellular signaling. In the present study, the expression and clinical role of Cav-1 were analyzed in tumor stromal and human cancer cells, respectively. The results of previous studies have shown that the downregulation of tumor stromal Cav-1 promotes tumor survival and predicts a poor tumor prognosis, predominantly concentrating on the mechanism of the metabolism of the cancer microenvironment (according to the autophagic tumor stroma model of cancer metabolism and the reverse Warburg effect). However, contradictory results concerning the expression, clinical roles and associated mechanisms of Cav-1 have been reported. An improved understanding of Cav-1 expression in tumor stromal and cancer cells will increase knowledge with regard to the clinical value of Cav-1 and its detailed mechanisms. This review summarizes the novel data concerning the clinical values and probable mechanisms of Cav-1 expression in tumor stromal (predominantly in cancer-associated fibroblasts) and cancer cells, respectively.
Collapse
Affiliation(s)
- Dali Chen
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Guowei Che
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
84
|
Manka P, Olliges V, Bechmann LP, Schlattjan M, Jochum C, Treckmann JW, Saner FH, Gerken G, Syn WK, Canbay A. Low levels of blood lipids are associated with etiology and lethal outcome in acute liver failure. PLoS One 2014; 9:e102351. [PMID: 25025159 PMCID: PMC4099314 DOI: 10.1371/journal.pone.0102351] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/17/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND/AIMS Emerging data links different aspects of lipid metabolism to liver regeneration. In patients with acute liver failure (ALF), low levels of lipids may correlate with disease severity. Thus, we determined whether there is an etiology-specific link between lipid levels in patients suffering from ALF and aimed to investigate an effect of lipid levels on the prognosis of ALF. METHODS In this retrospective single center study, we reviewed 89 consecutive ALF patients, who met the criteria of the "Acute Liver Failure Study Group". Patient characteristics, clinical data and laboratory parameters were individually analyzed at admission and correlated with the patients' outcome after a four week follow up. Possible endpoints were either discharge, or death or liver transplantation. RESULTS High-density lipoprotein (HDL), cholesterol and triglyceride levels were significantly lower in patients who died or required a liver transplant. HDL levels were significantly higher in patients with ALF caused by acetaminophen intoxication, compared to fulminant HBV infection or drug induced liver injury. HDL levels correlated with hepatic injury by ALT levels, and Albumin, and inversely correlated with the MELD score, INR, and bilirubin. CONCLUSION In our cohort of patients with ALF, we could show that HDL and cholesterol are suppressed. In addition novel etiology specific patterns between acteminophen and non-acteminophen induced liver failure were detected for serum lipid components. Further studies are needed to address the role of cholesterol and lipid metabolism and the according pathways in different etiologies of ALF.
Collapse
Affiliation(s)
- Paul Manka
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Verena Olliges
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Lars P. Bechmann
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Martin Schlattjan
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Christoph Jochum
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Jürgen W. Treckmann
- Department of General, Visceral and Transplantation Surgery, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Fuat H. Saner
- Department of General, Visceral and Transplantation Surgery, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Guido Gerken
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Wing-Kin Syn
- Liver Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
- Department of Hepatology, Barts Health NHS Trust, London, United Kingdom
| | - Ali Canbay
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
85
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinicopathological change characterized by the accumulation of triglycerides in hepatocytes and has frequently been associated with obesity, type 2 diabetes mellitus, hyperlipidemia, and insulin resistance. It is an increasingly recognized condition that has become the most common liver disorder in developed countries, affecting over one-third of the population and is associated with increased cardiovascular- and liver-related mortality. NAFLD is a spectrum of disorders, beginning as simple steatosis. In about 15% of all NAFLD cases, simple steatosis can evolve into non-alcoholic steatohepatitis, a medley of inflammation, hepatocellular injury, and fibrosis, often resulting in cirrhosis and even hepatocellular cancer. However, the molecular mechanism underlying NAFLD progression is not completely understood. Its pathogenesis has often been interpreted by the “double-hit” hypothesis. The primary insult or the “first hit” includes lipid accumulation in the liver, followed by a “second hit” in which proinflammatory mediators induce inflammation, hepatocellular injury, and fibrosis. Nowadays, a more complex model suggests that fatty acids (FAs) and their metabolites may be the true lipotoxic agents that contribute to NAFLD progression; a multiple parallel hits hypothesis has also been suggested. In NAFLD patients, insulin resistance leads to hepatic steatosis via multiple mechanisms. Despite the excess hepatic accumulation of FAs in NAFLD, it has been described that not only de novo FA synthesis is increased, but FAs are also taken up from the serum. Furthermore, a decrease in mitochondrial FA oxidation and secretion of very-low-density lipoproteins has been reported. This review discusses the molecular mechanisms that underlie the pathophysiological changes of hepatic lipid metabolism that contribute to NAFLD.
Collapse
Affiliation(s)
- Alba Berlanga
- Group GEMMAIR (AGAUR) and Applied Medicine Research Group, Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), IISPV, Hospital Universitari Joan XXIII, Tarragona, Spain
| | - Esther Guiu-Jurado
- Group GEMMAIR (AGAUR) and Applied Medicine Research Group, Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), IISPV, Hospital Universitari Joan XXIII, Tarragona, Spain
| | - José Antonio Porras
- Group GEMMAIR (AGAUR) and Applied Medicine Research Group, Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), IISPV, Hospital Universitari Joan XXIII, Tarragona, Spain ; Department of Internal Medicine, Hospital Universitari Joan XXIII Tarragona, Tarragona, Spain
| | - Teresa Auguet
- Group GEMMAIR (AGAUR) and Applied Medicine Research Group, Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), IISPV, Hospital Universitari Joan XXIII, Tarragona, Spain ; Department of Internal Medicine, Hospital Universitari Joan XXIII Tarragona, Tarragona, Spain
| |
Collapse
|
86
|
Nassir F, Ibdah JA. Role of mitochondria in nonalcoholic fatty liver disease. Int J Mol Sci 2014; 15:8713-42. [PMID: 24837835 PMCID: PMC4057755 DOI: 10.3390/ijms15058713] [Citation(s) in RCA: 262] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/04/2014] [Accepted: 05/07/2014] [Indexed: 12/15/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects about 30% of the general population in the United States and includes a spectrum of disease that includes simple steatosis, non-alcoholic steatohepatitis (NASH), fibrosis and cirrhosis. Significant insight has been gained into our understanding of the pathogenesis of NALFD; however the key metabolic aberrations underlying lipid accumulation in hepatocytes and the progression of NAFLD remain to be elucidated. Accumulating and emerging evidence indicate that hepatic mitochondria play a critical role in the development and pathogenesis of steatosis and NAFLD. Here, we review studies that document a link between the pathogenesis of NAFLD and hepatic mitochondrial dysfunction with particular focus on new insights into the role of impaired fatty acid oxidation, the transcription factor peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), and sirtuins in development and progression of NAFLD.
Collapse
Affiliation(s)
- Fatiha Nassir
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Missouri, Columbia, MO 65212, USA.
| | - Jamal A Ibdah
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
87
|
El-Mashtoly SF, Niedieker D, Petersen D, Krauss SD, Freier E, Maghnouj A, Mosig A, Hahn S, Kötting C, Gerwert K. Automated identification of subcellular organelles by coherent anti-stokes Raman scattering. Biophys J 2014; 106:1910-20. [PMID: 24806923 PMCID: PMC4017266 DOI: 10.1016/j.bpj.2014.03.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/10/2014] [Accepted: 03/14/2014] [Indexed: 01/06/2023] Open
Abstract
Coherent anti-Stokes Raman scattering (CARS) is an emerging tool for label-free characterization of living cells. Here, unsupervised multivariate analysis of CARS datasets was used to visualize the subcellular compartments. In addition, a supervised learning algorithm based on the "random forest" ensemble learning method as a classifier, was trained with CARS spectra using immunofluorescence images as a reference. The supervised classifier was then used, to our knowledge for the first time, to automatically identify lipid droplets, nucleus, nucleoli, and endoplasmic reticulum in datasets that are not used for training. These four subcellular components were simultaneously and label-free monitored instead of using several fluorescent labels. These results open new avenues for label-free time-resolved investigation of subcellular components in different cells, especially cancer cells.
Collapse
Affiliation(s)
- Samir F El-Mashtoly
- Department of Biophysics, Clinical Research Center, Ruhr-University Bochum, Bochum, Germany
| | - Daniel Niedieker
- Department of Biophysics, Clinical Research Center, Ruhr-University Bochum, Bochum, Germany
| | - Dennis Petersen
- Department of Biophysics, Clinical Research Center, Ruhr-University Bochum, Bochum, Germany
| | - Sascha D Krauss
- Department of Biophysics, Clinical Research Center, Ruhr-University Bochum, Bochum, Germany
| | - Erik Freier
- Department of Biophysics, Clinical Research Center, Ruhr-University Bochum, Bochum, Germany
| | - Abdelouahid Maghnouj
- Department of Molecular GI-Oncology, Clinical Research Center, Ruhr-University Bochum, Bochum, Germany
| | - Axel Mosig
- Department of Biophysics, Clinical Research Center, Ruhr-University Bochum, Bochum, Germany
| | - Stephan Hahn
- Department of Molecular GI-Oncology, Clinical Research Center, Ruhr-University Bochum, Bochum, Germany
| | - Carsten Kötting
- Department of Biophysics, Clinical Research Center, Ruhr-University Bochum, Bochum, Germany
| | - Klaus Gerwert
- Department of Biophysics, Clinical Research Center, Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
88
|
Mukherjee R, Kim SW, Choi MS, Yun JW. Sex-dependent expression of caveolin 1 in response to sex steroid hormones is closely associated with development of obesity in rats. PLoS One 2014; 9:e90918. [PMID: 24608114 PMCID: PMC3948350 DOI: 10.1371/journal.pone.0090918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 02/06/2014] [Indexed: 11/18/2022] Open
Abstract
Caveolin-1 (CAV1) is a conserved group of structural membrane proteins that form special cholesterol and sphingolipid-rich compartments, especially in adipocytes. Recently, it has been reported that CAV1 is an important target protein in sex hormone-dependent regulation of various metabolic pathways, particularly in cancer and diabetes. To clarify distinct roles of CAV1 in sex-dependent obesity development, we investigated the effects of high fat diet (HFD) and sex steroid hormones on CAV1 expression in adipose tissues of male and female rats. Results of animal experiments revealed that estrogen (17-β-estradiol, E2) and androgen (dihydrotestosterone, DHT) had opposite effects on body weight gain as well as on the regulation of CAV1, hormone sensitive lipase (HSL) and uncoupling protein 1 (UCP1) in adipose tissues. Furthermore, sex hormone receptors and aromatase were differentially expressed in a sex-dependent manner in response to E2 and DHT treatments. In vivo data were confirmed using 3T3-L1 and HIB1B cell lines, where Cav1 knock down stimulated lipogenesis but suppressed sex hormone receptor signaling proteins. Most importantly, co-immunoprecipitation enabled the identification of previously unrecognized CAV1-interacting mitochondrial or lipid oxidative pathway proteins in adipose tissues. Taken together, current data showed that CAV1 may play important preventive role in the development of obesity, with more prominent effects in females, and proved to be an important target protein for the hormonal regulation of adipose tissue metabolism by manipulating sex hormone receptors and mitochondrial oxidative pathways. Therefore, we can report, for the first time, the molecular mechanism underlying the effects of sex steroid hormones in the sex-dimorphic regulation of CAV1.
Collapse
Affiliation(s)
- Rajib Mukherjee
- Department of Biotechnology, Daegu University, Kyungsan, Republic of Korea
| | - Sang Woo Kim
- Department of Biotechnology, Daegu University, Kyungsan, Republic of Korea
| | - Myung Sook Choi
- Center for Food and Nutritional Genomics Research & Department of Food Science and Nutrition, Kyungpook National University, Daegu, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Kyungsan, Republic of Korea
- * E-mail:
| |
Collapse
|
89
|
Liu BB, Kong J, Wu SD, Wang Y. Bile acid salt export pump: Molecular mechanisms of transcription and intracellular regulation. Shijie Huaren Xiaohua Zazhi 2014; 22:788-794. [DOI: 10.11569/wcjd.v22.i6.788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bile salt export pump (BSEP), a member of ATP binding cassette (ABC), is responsible for transporting bile salt and is located on cholangiole lateral membrane. In humans, BSEP defects can lead to different types of cholestatic diseases, including hereditary or acquired liver diseases. In addition, BSEP is the most likely candidate gene for Lith1 stone. The bile salt plays an important role in many physiological and pathophysiological processes, and the scientific community has attached great importance to the research on the regulatory mechanism of the expression of BSEP. This paper summarizes the research related to transcriptional regulation of BSEP, and expression or functional changes of BSEP on cholangiole lateral membrane caused by intracellular transport changes, including intracellular endoplasmic reticulum and cell membrane ubiquitination-protease mediated protein degradation, short-term phosphorylation of BSEP, glycosylation, ubiquitination, and the regulatory effect of cholangiole lateral membrane-associated proteins.
Collapse
|
90
|
Ariotti N, Fernández-Rojo MA, Zhou Y, Hill MM, Rodkey TL, Inder KL, Tanner LB, Wenk MR, Hancock JF, Parton RG. Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling. ACTA ACUST UNITED AC 2014; 204:777-92. [PMID: 24567358 PMCID: PMC3941050 DOI: 10.1083/jcb.201307055] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Caveolae transduce mechanical stress into plasma membrane lipid alterations that disrupt Ras organization in an isoform-specific manner and modulate downstream signal transduction. The molecular mechanisms whereby caveolae exert control over cellular signaling have to date remained elusive. We have therefore explored the role caveolae play in modulating Ras signaling. Lipidomic and gene array analyses revealed that caveolin-1 (CAV1) deficiency results in altered cellular lipid composition, and plasma membrane (PM) phosphatidylserine distribution. These changes correlated with increased K-Ras expression and extensive isoform-specific perturbation of Ras spatial organization: in CAV1-deficient cells K-RasG12V nanoclustering and MAPK activation were enhanced, whereas GTP-dependent lateral segregation of H-Ras was abolished resulting in compromised signal output from H-RasG12V nanoclusters. These changes in Ras nanoclustering were phenocopied by the down-regulation of Cavin1, another crucial caveolar structural component, and by acute loss of caveolae in response to increased osmotic pressure. Thus, we postulate that caveolae remotely regulate Ras nanoclustering and signal transduction by controlling PM organization. Similarly, caveolae transduce mechanical stress into PM lipid alterations that, in turn, modulate Ras PM organization.
Collapse
Affiliation(s)
- Nicholas Ariotti
- The University of Queensland, Institute for Molecular Bioscience, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Deletion of cavin genes reveals tissue-specific mechanisms for morphogenesis of endothelial caveolae. Nat Commun 2013; 4:1831. [PMID: 23652019 PMCID: PMC3674239 DOI: 10.1038/ncomms2808] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 03/26/2013] [Indexed: 12/23/2022] Open
Abstract
Caveolae are abundant in endothelial cells and are thought to have important roles in endothelial cell biology. The cavin proteins are key components of caveolae, and are expressed at varied amounts in different tissues. Here we use knockout mice to determine the roles of cavins 2 and 3 in caveolar morphogenesis in vivo. Deletion of cavin 2 causes loss of endothelial caveolae in lung and adipose tissue, but has no effect on the abundance of endothelial caveolae in heart and other tissues. Changes in the morphology of endothelium in cavin 2 null mice correlate with changes in caveolar abundance. Cavin 3 is not required for making caveolae in the tissues examined. Cavin 2 determines the size of cavin complexes, and acts to shape caveolae. Cavin 1, however, is essential for normal oligomerization of caveolin 1. Our data reveal that endothelial caveolae are heterogeneous, and identify cavin 2 as a determinant of this heterogeneity. Cavin proteins are key components of mammalian caveolae and are expressed from four genes in a tissue-specific manner. Gram Hansen et al. demonstrate that caveolae in the endothelia of different tissues are remarkably heterogeneous, and reveal a role for cavin 2 in determining the apparent size of cavin complexes.
Collapse
|
92
|
Nutrigenomics of high fat diet induced obesity in mice suggests relationships between susceptibility to fatty liver disease and the proteasome. PLoS One 2013; 8:e82825. [PMID: 24324835 PMCID: PMC3855786 DOI: 10.1371/journal.pone.0082825] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/28/2013] [Indexed: 01/22/2023] Open
Abstract
Nutritional factors play important roles in the etiology of obesity, type 2 diabetes mellitus and their complications through genotype x environment interactions. We have characterised molecular adaptation to high fat diet (HFD) feeding in inbred mouse strains widely used in genetic and physiological studies. We carried out physiological tests, plasma lipid assays, obesity measures, liver histology, hepatic lipid measurements and liver genome-wide gene transcription profiling in C57BL/6J and BALB/c mice fed either a control or a high fat diet. The two strains showed marked susceptibility (C57BL/6J) and relative resistance (BALB/c) to HFD-induced insulin resistance and non alcoholic fatty liver disease (NAFLD). Global gene set enrichment analysis (GSEA) of transcriptome data identified consistent patterns of expression of key genes (Srebf1, Stard4, Pnpla2, Ccnd1) and molecular pathways in the two strains, which may underlie homeostatic adaptations to dietary fat. Differential regulation of pathways, including the proteasome, the ubiquitin mediated proteolysis and PPAR signalling in fat fed C57BL/6J and BALB/c suggests that altered expression of underlying diet-responsive genes may be involved in contrasting nutrigenomic predisposition and resistance to insulin resistance and NAFLD in these models. Collectively, these data, which further demonstrate the impact of gene x environment interactions on gene expression regulations, contribute to improved knowledge of natural and pathogenic adaptive genomic regulations and molecular mechanisms associated with genetically determined susceptibility and resistance to metabolic diseases.
Collapse
|
93
|
Kohjima M, Tsai TH, Tackett BC, Thevananther S, Li L, Chang BHJ, Chan L. Delayed liver regeneration after partial hepatectomy in adipose differentiation related protein-null mice. J Hepatol 2013; 59:1246-54. [PMID: 23928401 PMCID: PMC4001732 DOI: 10.1016/j.jhep.2013.07.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Adult hepatocytes undergo cell cycle progression and proliferation in response to partial hepatectomy (PH). Transient lipid accumulation within hepatocytes preceding the peak proliferative phase is a characteristic feature of regenerating livers. However, the molecular mediators and mechanisms responsible for lipid accumulation in regenerating livers are not well understood. Adipose differentiation related protein (ADRP; Plin2) regulates hepatic triglyceride storage and Plin2-deficient (Plin2(-/-)) mice have significantly reduced triglyceride (TG) content in the liver. We sought to determine the functional significance of PLIN2 in liver regeneration in response to PH and toxic liver injury and examined whether absence of Plin2 expression modulates hepatocyte proliferation and liver regeneration. METHODS We subjected wild-type (WT) and Plin2(-/-) mice to 70% PH or acute carbon tetrachloride (CCL4) treatment and examined the hepatic lipid content, the expression profile of lipid metabolism-related genes, the rate of cellular proliferation and the dynamics of liver regeneration in the treated animals. RESULTS In response to PH, Plin2(-/-) mice showed decreased hepatic triglyceride accumulation and delayed cell cycle progression, which was associated with impaired liver regeneration. Fatty acid (FA) synthesis and lipid transfer gene expression profile were comparable between Plin2(-/-) and wild-type mice, while VLDL secretion rate was higher in the Plin2(-/-) mice. Downregulated β-oxidation and reduced cytosolic FA level in Plin2(-/-) mice may have contributed to the attenuation of the liver regeneration capacity in these animals. In parallel experiments, we also observed attenuated hepatic lipid accumulation and proliferation in response to CCl4-mediated acute toxic liver injury in Plin2(-/-) mice. CONCLUSIONS We conclude that PLIN2-mediated lipid accumulation and utilization by the liver is important for efficient liver regeneration in response to PH and toxic liver injury.
Collapse
Affiliation(s)
- Motoyuki Kohjima
- Diabetes and Endocrinology Research Center and Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Tsung-Huang Tsai
- Diabetes and Endocrinology Research Center and Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Bryan C. Tackett
- Diabetes and Endocrinology Research Center and Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Sundararajah Thevananther
- Diabetes and Endocrinology Research Center and Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Pediatrics, Section of Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Lan Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Benny Hung-Junn Chang
- Diabetes and Endocrinology Research Center and Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Lawrence Chan
- Diabetes and Endocrinology Research Center and Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
94
|
Protective effect of phosphatidylcholine on restoration of ethanol-injured hepatocytes related with caveolin-1. J Membr Biol 2013; 247:73-80. [PMID: 24292666 DOI: 10.1007/s00232-013-9613-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 11/08/2013] [Indexed: 01/01/2023]
Abstract
The absorption of phospholipid may improve the fluidity of membrane and enzyme activities. Phospholipids also play a role in promoting Caveolae formation and membrane synthesis. Caveolin-1 has a significant effect on signaling pathways involved in regulating cell proliferation and stress responsiveness. Thus, we can speculate that Caveolin-1 could affect the sense of environmental stress. We use Chang liver cell line to investigate the ability of Caveolin-1 to modulate the cellular response to ethanol injury. Caveolin-1 downregulate cells (Cav-1(-/-)) were established by stable transfecting with psiRNA-CAV1 plasmids, which were more sensitive to toxic effects of ethanol than the untransfected parental cells (WT). Releasing of ALT and electric conductivity were changed significantly in Cav-1(-/-) cells compared with WT. Caveolin-1 gene silencing could obviously down-regulate the activities of protein kinase C-α (PKC-α) and phospho-p42/44 MAP kinase, indicating cell proliferation and self-repairing abilities were inhibited. However, the levels of Caveolin-1 and PKC-α were increased by phosphatidylcholine administration. The results indicated that the inhibition of lipid peroxidation by phosphatidylcholine could lead to the prevention of membrane disruption, which closely correlated with the level of Caveolin-1. Since the protective effects of phosphatidylcholine against ethanol-induced lipid peroxidation might be regulated by phospholipid-PKC-α signaling pathway, related with Caveolin-1, the potential effects of phosphatidylcholine on membranes need to be verified.
Collapse
|
95
|
Elucidating the metabolic regulation of liver regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:309-21. [PMID: 24139945 DOI: 10.1016/j.ajpath.2013.04.034] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/26/2013] [Accepted: 04/01/2013] [Indexed: 02/08/2023]
Abstract
The regenerative capability of liver is well known, and the mechanisms that regulate liver regeneration are extensively studied. Such analyses have defined general principles that govern the hepatic regenerative response and implicated specific extracellular and intracellular signals as regulated during and essential for normal liver regeneration. Nevertheless, the most proximal events that stimulate liver regeneration and the distal signals that terminate this process remain incompletely understood. Recent data suggest that the metabolic response to hepatic insufficiency might be the proximal signal that initiates regenerative hepatocellular proliferation. This review provides an overview of the data in support of a metabolic model of liver regeneration and reflects on the clinical implications and areas for further study suggested by these findings.
Collapse
|
96
|
Koo SH. Nonalcoholic fatty liver disease: molecular mechanisms for the hepatic steatosis. Clin Mol Hepatol 2013; 19:210-5. [PMID: 24133660 PMCID: PMC3796672 DOI: 10.3350/cmh.2013.19.3.210] [Citation(s) in RCA: 311] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/06/2013] [Indexed: 12/21/2022] Open
Abstract
Liver plays a central role in the biogenesis of major metabolites including glucose, fatty acids, and cholesterol. Increased incidence of obesity in the modern society promotes insulin resistance in the peripheral tissues in humans, and could cause severe metabolic disorders by inducing accumulation of lipid in the liver, resulting in the progression of non-alcoholic fatty liver disease (NAFLD). NAFLD, which is characterized by increased fat depots in the liver, could precede more severe diseases such as non-alcoholic steatohepatitis (NASH), cirrhosis, and in some cases hepatocellular carcinoma. Accumulation of lipid in the liver can be traced by increased uptake of free fatty acids into the liver, impaired fatty acid beta oxidation, or the increased incidence of de novo lipogenesis. In this review, I would like to focus on the roles of individual pathways that contribute to the hepatic steatosis as a precursor for the NAFLD.
Collapse
Affiliation(s)
- Seung-Hoi Koo
- Department of Life Sciences, Korea University, Seoul, Korea
| |
Collapse
|
97
|
Mitochondrial dysfunction induces formation of lipid droplets as a generalized response to stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:327167. [PMID: 24175011 PMCID: PMC3794647 DOI: 10.1155/2013/327167] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/20/2013] [Indexed: 01/05/2023]
Abstract
Lipid droplet (LD) formation is a hallmark of cellular stress. Cells attempt to combat noxious stimuli by switching their metabolism from oxidative phosphorylation to glycolysis, sparing resources in LDs for generating cellular reducing power and for anabolic biosynthesis. Membrane phospholipids are also a source of LDs. To elucidate the formation of LDs, we exposed mice to hyperoxia, hypoxia, myocardial ischemia, and sepsis induced by cecal ligation and puncture (CLP). All the above-mentioned stressors enhanced the formation of LDs, as assessed by transmission electron microscopy, with severe mitochondrial swelling. Disruption of mitochondria by depleting mitochondrial DNA ( ρ 0 cells) significantly augmented the formation of LDs, causing transcriptional activation of fatty acid biosynthesis and metabolic reprogramming to glycolysis. Heme oxygenase (HO)-1 counteracts CLP-mediated septic shock in mouse models. In HO-1-deficient mice, LD formation was not observed upon CLP, but a concomitant decrease in "LD-decorating proteins" was observed, implying a link between LDs and cytoprotective activity. Collectively, LD biogenesis during stress can trigger adaptive LD formation, which is dependent on mitochondrial integrity and HO-1 activity; this may be a cellular survival strategy, apportioning energy-generating substrates to cellular defense.
Collapse
|
98
|
Nassar ZD, Hill MM, Parton RG, Parat MO. Caveola-forming proteins caveolin-1 and PTRF in prostate cancer. Nat Rev Urol 2013; 10:529-36. [PMID: 23938946 DOI: 10.1038/nrurol.2013.168] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The expression of caveola-forming proteins is dysregulated in prostate cancer. Caveolae are flask-shaped invaginations of the plasma membrane that have roles in membrane trafficking and cell signalling. Members of two families of proteins--caveolins and cavins--are known to be required for the formation and functions of caveolae. Caveolin-1, the major structural protein of caveolae, is overexpresssed in prostate cancer and has been demonstrated to be involved in prostate cancer angiogenesis, growth and metastasis. Polymerase I and transcript release factor (PTRF) is the only cavin family member necessary for caveola formation. When exogenously expressed in prostate cancer cells, PTRF reduces aggressive potential, probably via both caveola-mediated and caveola-independent mechanisms. In addition, stromal PTRF expression decreases with progression of the disease. Evaluation of caveolin-1 antibodies in the clinical setting is underway and it is hoped that future studies will reveal the mechanisms of PTRF action, allowing its targeting for therapeutic purposes.
Collapse
Affiliation(s)
- Zeyad D Nassar
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | | | | | | |
Collapse
|
99
|
Ben Ya'acov A, Lalazar G, Zolotaryova L, Steinhardt Y, Lichtentein Y, Ilan Y, Shteyer E. Impaired liver regeneration by β-glucosylceramide is associated with decreased fat accumulation. J Dig Dis 2013; 14:425-32. [PMID: 23575221 DOI: 10.1111/1751-2980.12062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the effect of β-glucosylceramide (GC), a natural glycolipid, on hepatic fat accumulation and regenerative response after partial hepatectomy (PH). METHODS Male C57Bl/6 mice were assigned to either 70% PH or sham surgery after receiving daily intraperitoneal injection of GC or vehicle for 3 days. Hepatic fat accumulation, cytokines, cell cycle proteins and adipogenic genes expression were assessed at various time points after PH. RESULTS The administration of GC delayed hepatic triglyceride accumulation during hepatic regeneration. This observation was closely correlated with alterations in the expression of four major adipogenic genes during the course of liver regeneration, with reduced expression 3 h after PH and increased expression 48 h post-surgery. GC significantly reduced hepatocellular proliferation 48 h after PH. In GC-treated mice, both tumor necrosis factor-α and interleukin-6 levels were lower 3, 48 and 72 h after PH compared with the control group. CONCLUSIONS Administration of GC delayed hepatic triglyceride accumulation and suppressed early adipogenic gene expression during the hepatic regenerative response. These changes are closely associated with early inhibition of liver regeneration and temporal alteration of cytokine secretion.
Collapse
Affiliation(s)
- Ami Ben Ya'acov
- Liver Unit, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| | | | | | | | | | | | | |
Collapse
|
100
|
The less-often-traveled surface of stem cells: caveolin-1 and caveolae in stem cells, tissue repair and regeneration. Stem Cell Res Ther 2013; 4:90. [PMID: 23899671 PMCID: PMC3854699 DOI: 10.1186/scrt276] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Stem cells are an important resource for tissue repair and regeneration. While a great deal of attention has focused on derivation and molecular regulation of stem cells, relatively little research has focused on how the subcellular structure and composition of the cell membrane influences stem cell activities such as proliferation, differentiation and homing. Caveolae are specialized membrane lipid rafts coated with caveolin scaffolding proteins, which can regulate cholesterol transport and the activity of cell signaling receptors and their downstream effectors. Caveolin-1 is involved in the regulation of many cellular processes, including growth, control of mitochondrial antioxidant levels, migration and senescence. These activities are of relevance to stem cell biology, and in this review evidence for caveolin-1 involvement in stem cell biology is summarized. Altered stem and progenitor cell populations in caveolin-1 null mice suggest that caveolin-1 can regulate stem cell proliferation, and in vitro studies with isolated stem cells suggest that caveolin-1 regulates stem cell differentiation. The available evidence leads us to hypothesize that caveolin-1 expression may stabilize the differentiated and undifferentiated stem cell phenotype, and transient downregulation of caveolin-1 expression may be required for transition between the two. Such regulation would probably be critical in regenerative applications of adult stem cells and during tissue regeneration. We also review here the temporal changes in caveolin-1 expression reported during tissue repair. Delayed muscle regeneration in transgenic mice overexpressing caveolin-1 as well as compromised cardiac, brain and liver tissue repair and delayed wound healing in caveolin-1 null mice suggest that caveolin-1 plays an important role in tissue repair, but that this role may be negative or positive depending on the tissue type and the nature of the repair process. Finally, we also discuss how caveolin-1 quiescence-inducing activities and effects on mitochondrial antioxidant levels may influence stem cell aging.
Collapse
|