51
|
Schoberer J, König J, Veit C, Vavra U, Liebminger E, Botchway SW, Altmann F, Kriechbaumer V, Hawes C, Strasser R. A signal motif retains Arabidopsis ER-α-mannosidase I in the cis-Golgi and prevents enhanced glycoprotein ERAD. Nat Commun 2019; 10:3701. [PMID: 31420549 PMCID: PMC6697737 DOI: 10.1038/s41467-019-11686-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/01/2019] [Indexed: 11/09/2022] Open
Abstract
The Arabidopsis ER-α-mannosidase I (MNS3) generates an oligomannosidic N-glycan structure that is characteristically found on ER-resident glycoproteins. The enzyme itself has so far not been detected in the ER. Here, we provide evidence that in plants MNS3 exclusively resides in the Golgi apparatus at steady-state. Notably, MNS3 remains on dispersed punctate structures when subjected to different approaches that commonly result in the relocation of Golgi enzymes to the ER. Responsible for this rare behavior is an amino acid signal motif (LPYS) within the cytoplasmic tail of MNS3 that acts as a specific Golgi retention signal. This retention is a means to spatially separate MNS3 from ER-localized mannose trimming steps that generate the glycan signal required for flagging terminally misfolded glycoproteins for ERAD. The physiological importance of the very specific MNS3 localization is demonstrated here by means of a structurally impaired variant of the brassinosteroid receptor BRASSINOSTEROID INSENSITIVE 1.
Collapse
Affiliation(s)
- Jennifer Schoberer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria.
| | - Julia König
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Christiane Veit
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Eva Liebminger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Stanley W Botchway
- Central Laser Facility, Science and Technology Facilities Council (STFC), Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, OX11 0QX, UK
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Verena Kriechbaumer
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, UK
| | - Chris Hawes
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, UK
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
52
|
Welch LG, Munro S. A tale of short tails, through thick and thin: investigating the sorting mechanisms of Golgi enzymes. FEBS Lett 2019; 593:2452-2465. [DOI: 10.1002/1873-3468.13553] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Lawrence G. Welch
- MRC Laboratory of Molecular Biology Francis Crick Avenue Cambridge UK
| | - Sean Munro
- MRC Laboratory of Molecular Biology Francis Crick Avenue Cambridge UK
| |
Collapse
|
53
|
Pothukuchi P, Agliarulo I, Russo D, Rizzo R, Russo F, Parashuraman S. Translation of genome to glycome: role of the Golgi apparatus. FEBS Lett 2019; 593:2390-2411. [PMID: 31330561 DOI: 10.1002/1873-3468.13541] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022]
Abstract
Glycans are one of the four biopolymers of the cell and they play important roles in cellular and organismal physiology. They consist of both linear and branched structures and are synthesized in a nontemplated manner in the secretory pathway of mammalian cells with the Golgi apparatus playing a key role in the process. In spite of the absence of a template, the glycans synthesized by a cell are not a random collection of possible glycan structures but a distribution of specific glycans in defined quantities that is unique to each cell type (Cell type here refers to distinct cell forms present in an organism that can be distinguished based on morphological, phenotypic and/or molecular criteria.) While information to produce cell type-specific glycans is encoded in the genome, how this information is translated into cell type-specific glycome (Glycome refers to the quantitative distribution of all glycan structures present in a given cell type.) is not completely understood. We summarize here the factors that are known to influence the fidelity of glycan biosynthesis and integrate them into known glycosylation pathways so as to rationalize the translation of genetic information to cell type-specific glycome.
Collapse
Affiliation(s)
- Prathyush Pothukuchi
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Ilenia Agliarulo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Domenico Russo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Riccardo Rizzo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Francesco Russo
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| | - Seetharaman Parashuraman
- Institute of Biochemistry and Cellular Biology, National Research Council of Italy, Napoli, Italy
| |
Collapse
|
54
|
Pantazopoulou A, Glick BS. A Kinetic View of Membrane Traffic Pathways Can Transcend the Classical View of Golgi Compartments. Front Cell Dev Biol 2019; 7:153. [PMID: 31448274 PMCID: PMC6691344 DOI: 10.3389/fcell.2019.00153] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/22/2019] [Indexed: 01/07/2023] Open
Abstract
A long-standing assumption is that the cisternae of the Golgi apparatus can be grouped into functionally distinct compartments, yet the molecular identities of those compartments have not been clearly described. The concept of a compartmentalized Golgi is challenged by the cisternal maturation model, which postulates that cisternae form de novo and then undergo progressive biochemical changes. Cisternal maturation can potentially be reconciled with Golgi compartmentation by defining compartments as discrete kinetic stages in the maturation process. These kinetic stages are distinguished by the traffic pathways that are operating. For example, a major transition occurs when a cisterna stops producing COPI vesicles and begins producing clathrin-coated vesicles. This transition separates one kinetic stage, the "early Golgi," from a subsequent kinetic stage, the "late Golgi" or "trans-Golgi network (TGN)." But multiple traffic pathways drive Golgi maturation, and the periods of operation for different traffic pathways can partially overlap, so there is no simple way to define a full set of Golgi compartments in terms of kinetic stages. Instead, we propose that the focus should be on the series of transitions experienced by a Golgi cisterna as various traffic pathways are switched on and off. These traffic pathways drive changes in resident transmembrane protein composition. Transitions in traffic pathways seem to be the fundamental, conserved determinants of Golgi organization. According to this view, the initial goal is to identify the relevant traffic pathways and place them on the kinetic map of Golgi maturation, and the ultimate goal is to elucidate the logic circuit that switches individual traffic pathways on and off as a cisterna matures.
Collapse
Affiliation(s)
- Areti Pantazopoulou
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
55
|
Kellokumpu S. Golgi pH, Ion and Redox Homeostasis: How Much Do They Really Matter? Front Cell Dev Biol 2019; 7:93. [PMID: 31263697 PMCID: PMC6584808 DOI: 10.3389/fcell.2019.00093] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
Exocytic and endocytic compartments each have their own unique luminal ion and pH environment that is important for their normal functioning. A failure to maintain this environment - the loss of homeostasis - is not uncommon. In the worst case, all the main Golgi functions, including glycosylation, membrane trafficking and protein sorting, can be perturbed. Several factors contribute to Golgi homeostasis. These include not only ions such as H+, Ca2+, Mg2+, Mn2+, but also Golgi redox state and nitric oxide (NO) levels, both of which are dependent on the oxygen levels in the cells. Changes to any one of these factors have consequences on Golgi functions, the nature of which can be dissimilar or similar depending upon the defects themselves. For example, altered Golgi pH homeostasis gives rise to Cutis laxa disease, in which glycosylation and membrane trafficking are both affected, while altered Ca2+ homeostasis due to the mutated SCPA1 gene in Hailey-Hailey disease, perturbs various protein sorting, proteolytic cleavage and membrane trafficking events in the Golgi. This review gives an overview of the molecular machineries involved in the maintenance of Golgi ion, pH and redox homeostasis, followed by a discussion of the organelle dysfunction and disease that frequently result from their breakdown. Congenital disorders of glycosylation (CDGs) are discussed only when they contribute directly to Golgi pH, ion or redox homeostasis. Current evidence emphasizes that, rather than being mere supporting factors, Golgi pH, ion and redox homeostasis are in fact key players that orchestrate and maintain all Golgi functions.
Collapse
Affiliation(s)
- Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
56
|
Uemura S. Intracellular Dynamics of GM3 and GM2 Synthases. TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1956.2j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Satoshi Uemura
- Division of Medical Biochemistry, Faculty of Medicine, Tohoku Medical and Pharmaceutical University
| |
Collapse
|
57
|
Uemura S. Intracellular Dynamics of GM3 and GM2 Synthases. TRENDS GLYCOSCI GLYC 2019. [DOI: 10.4052/tigg.1956.2e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Satoshi Uemura
- Division of Medical Biochemistry, Faculty of Medicine, Tohoku Medical and Pharmaceutical University
| |
Collapse
|
58
|
Wang X, Wang Z, Zhang Y, Wang Y, Zhang H, Xie S, Xie P, Yu R, Zhou X. Golgi phosphoprotein 3 sensitizes the tumour suppression effect of gefitinib on gliomas. Cell Prolif 2019; 52:e12636. [PMID: 31094020 PMCID: PMC6669003 DOI: 10.1111/cpr.12636] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
Objectives We previously reported that Golgi phosphoprotein 3 (GOLPH3) promotes glioma progression by inhibiting EGFR endocytosis and degradation, leading to EGFR accumulation and PI3K‐AKT pathway over‐activation. In the current study, we examine whether GOLPH3 affects the response of glioma cells to gefitinib, an EGFR selective inhibitor. Materials and Methods The expression of GOLPH3 and EGFR in glioma cells was detected by immunofluorescence and immunoblotting. The cell viability or growth in vitro was determined by CCK‐8, EdU incorporation and clonogenic assays. The primary glioma cells were cultured by trypsin and mechanical digestion. The transwell invasion assay was used to examine the primary glioma cell motility. Intracranial glioma model in nude mice were established to explore the sensitivity of gefitinib to GOLPH3 high cancer cells in vivo. Results Both the immortalized and primary glioma cells with GOLPH3 over‐expression hold higher EGFR protein levels on the cell membrane and exhibited higher sensitivity to gefitinib. In addition, primary glioma cells with higher GOLPH3 level exhibited stronger proliferation behaviour. Importantly, GOLPH3 enhanced the anti‐tumour effect of gefitinib in vivo. Consistently, after gefitinib treatment, tumours derived from GOLPH3 over‐expression cells exhibited lower Ki67‐positive and higher cleaved caspase‐3–positive cells than control tumours. Conclusions Our results demonstrate that GOLPH3 increases the sensitivity of glioma cells to gefitinib. Our study provides foundation for further exploring whether GOLPH3 high gliomas will be more sensitive to anti‐EGFR therapy in clinic and give ideas for developing new possible treatments for individual glioma patients.
Collapse
Affiliation(s)
- Xu Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhaohao Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hao Zhang
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shao Xie
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Peng Xie
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiuping Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
59
|
Zhao SB, Suda Y, Nakanishi H, Wang N, Yoko-O T, Gao XD, Fujita M. Yeast Dop1 is required for glycosyltransferase retrieval from the trans-Golgi network. Biochim Biophys Acta Gen Subj 2019; 1863:1147-1157. [PMID: 30981741 DOI: 10.1016/j.bbagen.2019.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Glycosyltransferases are type II membrane proteins that are responsible for glycan modification of proteins and lipids, and localize to distinct cisternae in the Golgi apparatus. During cisternal maturation, retrograde trafficking helps maintain the steady-state localization of these enzymes in the sub-compartments of the Golgi. METHODS To understand how glycosyltransferases are recycled in the late Golgi complex, we searched for genes that are essential for budding yeast cell growth and that encode proteins localized in endosomes and in the Golgi. We specifically analyzed the roles of Dop1 and its binding partner Neo1 in retaining Golgi-resident glycosyltransferases, in the late Golgi complex. RESULTS Dop1 primarily localized to younger compartments of the trans-Golgi network (TGN) and seemed to cycle within the TGN. In contrast, Neo1, a P4-ATPase that interacts with Dop1, localized to the TGN. Abolition of DOP1 expression led to defects in the FM4-64 endocytic pathway. Dop1 and Neo1 were required for correct glycosylation of invertase, a secretory protein, at the Golgi. In DOP1-shutdown cells, Och1, a mannosyltransferase that is typically located in the cis-Golgi, mislocalized to the TGN. In addition, the function of multiple glycosyltransferases required for N- and O-glycosylation were impaired in DOP1-shutdown cells. CONCLUSIONS Our results indicate that Dop1 is involved in vesicular transport at the TGN, and is critical for retrieving glycosyltransferases from the TGN to the Golgi in yeast. GENERAL SIGNIFICANCE Golgi-resident glycosyltransferases recycling from the TGN to the Golgi is dependent on Dop1 and the P4-ATPase Neo1.
Collapse
Affiliation(s)
- Shen-Bao Zhao
- Key Laboratory of Carbohydrate Chemistry, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yasuyuki Suda
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan; Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama 351-0198, Japan
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Takehiko Yoko-O
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
60
|
Becker JL, Tran DT, Tabak LA. Members of the GalNAc-T family of enzymes utilize distinct Golgi localization mechanisms. Glycobiology 2019; 28:841-848. [PMID: 30084948 DOI: 10.1093/glycob/cwy071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/04/2018] [Indexed: 12/28/2022] Open
Abstract
Mucin-type O-glycosylation is an evolutionarily conserved and essential post-translational protein modification that is initiated in the Golgi apparatus by a family of enzymes known as the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts). GalNAc-Ts are type II membrane proteins which contain short N-terminal tails located in the cytoplasm, a transmembrane domain that crosses the Golgi membrane, to which is connected a stem region that tethers the C-terminal catalytic and lectin domains that reside in the Golgi lumen. Although mucin-type O-glycans have been shown to play critical roles in numerous biological processes, little is known about how the GalNAc-Ts are targeted to their site of action within the Golgi complex. Here, we investigate the essential protein domains required for Golgi localization of four representative members of the GalNAc-T family of enzymes. We find that GalNAc-T1 and -T2 require their cytoplasmic tail and transmembrane domains for proper Golgi localization, while GalNAc-T10 requires its transmembrane and luminal stem domains. GalNAc-T7 can use either its cytoplasmic tail or its luminal stem, in combination with its transmembrane domain, to localize to the Golgi. We determined that a single glutamic acid in the GalNAc-T10 cytoplasmic tail inhibits its ability to localize to the Golgi via a cytoplasmic tail-dependent mechanism. We therefore demonstrate that despite their similarity, different members of this enzyme family are directed to the Golgi by more than one set of targeting signals.
Collapse
Affiliation(s)
- Jessica L Becker
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Duy T Tran
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Lawrence A Tabak
- Section on Biological Chemistry, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
61
|
The knocking down of the oncoprotein Golgi phosphoprotein 3 in T98G cells of glioblastoma multiforme disrupts cell migration by affecting focal adhesion dynamics in a focal adhesion kinase-dependent manner. PLoS One 2019; 14:e0212321. [PMID: 30779783 PMCID: PMC6380552 DOI: 10.1371/journal.pone.0212321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 01/31/2019] [Indexed: 01/29/2023] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3) is a conserved protein of the Golgi apparatus that in humans has been implicated in tumorigenesis. However, the precise function of GOLPH3 in malignant transformation is still unknown. Nevertheless, clinicopathological data shows that in more than a dozen kinds of cancer, including gliomas, GOLPH3 could be found overexpressed, which correlates with poor prognosis. Experimental data shows that overexpression of GOLPH3 leads to transformation of primary cells and to tumor growth enhancement. Conversely, the knocking down of GOLPH3 in GOLPH3-overexpressing tumor cells reduces tumorigenic features, such as cell proliferation and cell migration and invasion. The cumulative evidence indicate that GOLPH3 is an oncoprotein that promotes tumorigenicity by a mechanism that impact at different levels in different types of cells, including the sorting of Golgi glycosyltransferases, signaling pathways, and the actin cytoskeleton. How GOLPH3 connects mechanistically these processes has not been determined yet. Further studies are important to have a more complete understanding of the role of GOLPH3 as oncoprotein. Given the genetic diversity in cancer, a still outstanding aspect is how in this inherent heterogeneity GOLPH3 could possibly exert its oncogenic function. We have aimed to evaluate the contribution of GOLPH3 overexpression in the malignant phenotype of different types of tumor cells. Here, we analyzed the effect on cell migration that resulted from stable, RNAi-mediated knocking down of GOLPH3 in T98G cells of glioblastoma multiforme, a human glioma cell line with unique features. We found that the reduction of GOLPH3 levels produced dramatic changes in cell morphology, involving rearrangements of the actin cytoskeleton and reduction in the number and dynamics of focal adhesions. These effects correlated with decreased cell migration and invasion due to affected persistence and directionality of cell motility. Moreover, the knocking down of GOLPH3 also caused a reduction in autoactivation of focal adhesion kinase (FAK), a cytoplasmic tyrosine kinase that regulates focal adhesions. Our data support a model in which GOLPH3 in T98G cells promotes cell migration by stimulating the activity of FAK.
Collapse
|
62
|
Iyer P, Bhave M, Jain BK, RoyChowdhury S, Bhattacharyya D. Vps74p controls Golgi size in an Arf1‐dependent manner. FEBS Lett 2018; 592:3720-3735. [DOI: 10.1002/1873-3468.13266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Prasanna Iyer
- Advanced Centre for Treatment Research & Education in Cancer (ACTREC) Tata Memorial Centre Kharghar, Navi Mumbai India
- Homi Bhabha National Institute Training School Complex Anushakti Nagar Mumbai India
| | - Madhura Bhave
- Advanced Centre for Treatment Research & Education in Cancer (ACTREC) Tata Memorial Centre Kharghar, Navi Mumbai India
- Homi Bhabha National Institute Training School Complex Anushakti Nagar Mumbai India
| | - Bhawik Kumar Jain
- Advanced Centre for Treatment Research & Education in Cancer (ACTREC) Tata Memorial Centre Kharghar, Navi Mumbai India
- Homi Bhabha National Institute Training School Complex Anushakti Nagar Mumbai India
| | - Sudeshna RoyChowdhury
- Advanced Centre for Treatment Research & Education in Cancer (ACTREC) Tata Memorial Centre Kharghar, Navi Mumbai India
- Homi Bhabha National Institute Training School Complex Anushakti Nagar Mumbai India
| | - Dibyendu Bhattacharyya
- Advanced Centre for Treatment Research & Education in Cancer (ACTREC) Tata Memorial Centre Kharghar, Navi Mumbai India
- Homi Bhabha National Institute Training School Complex Anushakti Nagar Mumbai India
| |
Collapse
|
63
|
Kuna RS, Field SJ. GOLPH3: a Golgi phosphatidylinositol(4)phosphate effector that directs vesicle trafficking and drives cancer. J Lipid Res 2018; 60:269-275. [PMID: 30266835 DOI: 10.1194/jlr.r088328] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/25/2018] [Indexed: 12/17/2022] Open
Abstract
GOLPH3 is a peripheral membrane protein localized to the Golgi and its vesicles, but its purpose had been unclear. We found that GOLPH3 binds specifically to the phosphoinositide phosphatidylinositol(4)phosphate [PtdIns(4)P], which functions at the Golgi to promote vesicle exit for trafficking to the plasma membrane. PtdIns(4)P is enriched at the trans-Golgi and so recruits GOLPH3. Here, a GOLPH3 complex is formed when it binds to myosin18A (MYO18A), which binds F-actin. This complex generates a pulling force to extract vesicles from the Golgi; interference with this GOLPH3 complex results in dramatically reduced vesicle trafficking. The GOLPH3 complex has been identified as a driver of cancer in humans, likely through multiple mechanisms that activate secretory trafficking. In this review, we summarize the literature that identifies the nature of the GOLPH3 complex and its role in cancer. We also consider the GOLPH3 complex as a hub with the potential to reveal regulation of the Golgi and suggest the possibility of GOLPH3 complex inhibition as a therapeutic approach in cancer.
Collapse
Affiliation(s)
- Ramya S Kuna
- Division of Endocrinology and Metabolism, Department of Medicine, University of California at San Diego, La Jolla, CA
| | - Seth J Field
- Division of Endocrinology and Metabolism, Department of Medicine, University of California at San Diego, La Jolla, CA
| |
Collapse
|
64
|
Structure and mechanism of cancer-associated N-acetylglucosaminyltransferase-V. Nat Commun 2018; 9:3380. [PMID: 30140003 PMCID: PMC6107550 DOI: 10.1038/s41467-018-05931-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/31/2018] [Indexed: 12/31/2022] Open
Abstract
N-acetylglucosaminyltransferase-V (GnT-V) alters the structure of specific N-glycans by modifying α1-6-linked mannose with a β1-6-linked N-acetylglucosamine branch. β1-6 branch formation on cell surface receptors accelerates cancer metastasis, making GnT-V a promising target for drug development. However, the molecular basis of GnT-V's catalytic mechanism and substrate specificity are not fully understood. Here, we report crystal structures of human GnT-V luminal domain with a substrate analog. GnT-V luminal domain is composed of a GT-B fold and two accessary domains. Interestingly, two aromatic rings sandwich the α1-6 branch of the acceptor N-glycan and restrain the global conformation, partly explaining the fine branch specificity of GnT-V. In addition, interaction of the substrate N-glycoprotein with GnT-V likely contributes to protein-selective and site-specific glycan modification. In summary, the acceptor-GnT-V complex structure suggests a catalytic mechanism, explains the previously observed inhibition of GnT-V by branching enzyme GnT-III, and provides a basis for the rational design of drugs targeting N-glycan branching.
Collapse
|
65
|
Recycling of Golgi glycosyltransferases requires direct binding to coatomer. Proc Natl Acad Sci U S A 2018; 115:8984-8989. [PMID: 30126980 DOI: 10.1073/pnas.1810291115] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The glycosyltransferases of the mammalian Golgi complex must recycle between the stacked cisternae of that organelle to maintain their proper steady-state localization. This trafficking is mediated by COPI-coated vesicles, but how the glycosyltransferases are incorporated into these transport vesicles is poorly understood. Here we show that the N-terminal cytoplasmic tails (N-tails) of a number of cis Golgi glycosyltransferases which share a ϕ-(K/R)-X-L-X-(K/R) sequence bind directly to the δ- and ζ-subunits of COPI. Mutations of this N-tail motif impair binding to the COPI subunits, leading to mislocalization of the transferases to lysosomes. The physiological importance of these interactions is illustrated by mucolipidosis III patients with missense mutations in the N-tail of GlcNAc-1-phosphotransferase that cause the transferase to be rapidly degraded in lysosomes. These studies establish that direct binding of the N-tails of mammalian cis Golgi glycosyltransferases with COPI subunits is essential for recycling within the Golgi.
Collapse
|
66
|
Wu S, Fu J, Dong Y, Yi Q, Lu D, Wang W, Qi Y, Yu R, Zhou X. GOLPH3 promotes glioma progression via facilitating JAK2-STAT3 pathway activation. J Neurooncol 2018; 139:269-279. [PMID: 29713848 DOI: 10.1007/s11060-018-2884-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/23/2018] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Our recent work reported that GOLPH3 promotes glioma progression via inhibiting endocytosis and degradation of EGFR. The current study aimed to explore the potential regulating mechanism of GOLPH3 on JAK2-STAT3 signaling, a downstream effector of EGFR, in glioma progression. METHODS The expression of JAK2, STAT3 and GOLPH3 in glioma tissues was detected by western blotting, tissue microarray and immunohistochemistry. The U251 and U87 cells with GOLPH3 down-regulation or over-expression were generated by lentivirus system. The effects of GOLPH3 on the activity of JAK2 and STAT3 were detected by western blotting and reverse transcription polymerase chain reaction. Co-immunoprecipitation was used to detect the association of GOLPH3 with JAK2 and STAT3. Cell proliferation was detected by CCK8 and EdU assay. RESULTS The level of JAK2, STAT3 and GOLPH3 were significantly up-regulated and exhibited pairwise correlation in human glioma tissues. The level of p-JAK2 and p-STAT3, as well as the mRNA and protein levels of cyclin D1 and c-myc, two target genes of STAT3, decreased after GOLPH3 down-regulation, while they increased after GOLPH3 over-expression both in U251 and U87 cells. Interestingly, GOLPH3, JAK2 and STAT3 existed in the same protein complex and GOLPH3 affected the interaction of JAK2 and STAT3. Importantly, down-regulation of STAT3 partially abolished cell proliferation induced by GOLPH3 over-expression. CONCLUSIONS GOLPH3 may act as a scaffold protein to regulate JAK2-STAT3 interaction and then its activation, which therefore mediates the effect of GOLPH3 on cell proliferation.
Collapse
Affiliation(s)
- Shishuang Wu
- The Graduate School, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Jiale Fu
- The Graduate School, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Yu Dong
- The Graduate School, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Qinghao Yi
- The Graduate School, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Dong Lu
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Weibing Wang
- The Graduate School, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Yanhua Qi
- The Graduate School, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China.,Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China. .,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China.
| | - Xiuping Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China. .,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China.
| |
Collapse
|
67
|
Del Bel LM, Brill JA. Sac1, a lipid phosphatase at the interface of vesicular and nonvesicular transport. Traffic 2018; 19:301-318. [PMID: 29411923 DOI: 10.1111/tra.12554] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 12/14/2022]
Abstract
The lipid phosphatase Sac1 dephosphorylates phosphatidylinositol 4-phosphate (PI4P), thereby holding levels of this crucial membrane signaling molecule in check. Sac1 regulates multiple cellular processes, including cytoskeletal organization, membrane trafficking and cell signaling. Here, we review the structure and regulation of Sac1, its roles in cell signaling and development and its links to health and disease. Remarkably, many of the diverse roles attributed to Sac1 can be explained by the recent discovery of its requirement at membrane contact sites, where its consumption of PI4P is proposed to drive interorganelle transfer of other cellular lipids, thereby promoting normal lipid homeostasis within cells.
Collapse
Affiliation(s)
- Lauren M Del Bel
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
68
|
Abstract
The coat protein complex I (COPI) allows the precise sorting of lipids and proteins between Golgi cisternae and retrieval from the Golgi to the ER. This essential role maintains the identity of the early secretory pathway and impinges on key cellular processes, such as protein quality control. In this Cell Science at a Glance and accompanying poster, we illustrate the different stages of COPI-coated vesicle formation and revisit decades of research in the context of recent advances in the elucidation of COPI coat structure. By calling attention to an array of questions that have remained unresolved, this review attempts to refocus the perspectives of the field.
Collapse
Affiliation(s)
- Eric C Arakel
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Blanche Schwappach
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany .,Max-Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
69
|
Inokuchi JI, Inamori KI, Kabayama K, Nagafuku M, Uemura S, Go S, Suzuki A, Ohno I, Kanoh H, Shishido F. Biology of GM3 Ganglioside. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:151-195. [PMID: 29747813 DOI: 10.1016/bs.pmbts.2017.10.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since the successful molecular cloning in 1998 of GM3 synthase (GM3S, ST3GAL5), the enzyme responsible for initiating biosynthesis of all complex gangliosides, the efforts of our research group have been focused on clarifying the physiological and pathological implications of gangliosides, particularly GM3. We have identified isoforms of GM3S proteins having distinctive lengths of N-terminal cytoplasmic tails, and found that these cytoplasmic tails define subcellular localization, stability, and in vivo activity of GM3S isoforms. Our studies of the molecular pathogenesis of type 2 diabetes, focused on interaction between insulin receptor and GM3 in membrane microdomains, led to a novel concept: type 2 diabetes and certain other lifestyle-related diseases are membrane microdomain disorders resulting from aberrant expression of gangliosides. This concept has enhanced our understanding of the pathophysiological roles of GM3 and related gangliosides in various diseases involving chronic inflammation, such as insulin resistance, leptin resistance, and T-cell function and immune disorders (e.g., allergic asthma). We also demonstrated an essential role of GM3 in murine and human auditory systems; a common pathological feature of GM3S deficiency is deafness. This is the first direct link reported between gangliosides and auditory functions.
Collapse
Affiliation(s)
- Jin-Ichi Inokuchi
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| | - Kei-Ichiro Inamori
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | | | - Masakazu Nagafuku
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Satoshi Uemura
- Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Shinji Go
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Akemi Suzuki
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Isao Ohno
- Center for Medical Education, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Hirotaka Kanoh
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Fumi Shishido
- Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| |
Collapse
|
70
|
Groux-Degroote S, Rodríguez-Walker M, Dewald JH, Daniotti JL, Delannoy P. Gangliosides in Cancer Cell Signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:197-227. [DOI: 10.1016/bs.pmbts.2017.10.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
71
|
Bergeron JJM, Au CE, Thomas DY, Hermo L. Proteomics Identifies Golgi phosphoprotein 3 (GOLPH3) with A Link Between Golgi Structure, Cancer, DNA Damage and Protection from Cell Death. Mol Cell Proteomics 2017; 16:2048-2054. [PMID: 28954815 DOI: 10.1074/mcp.mr117.000068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Indexed: 01/13/2023] Open
Abstract
GOLPH3 is the first example of a Golgi resident oncogene protein. It was independently identified in multiple screens; first in proteomic-based screens as a resident protein of the Golgi apparatus, and second as an oncogene product in a screen for genes amplified in cancer. A third screen uncovered the association of GOLPH3 with the Golgi resident phospholipid, phosphatidyl inositol 4 phosphate (PI4P) to maintain the characteristic ribbon structure of the Golgi apparatus favoring vesicular transport of secretory proteins.
Collapse
Affiliation(s)
- John J M Bergeron
- From the ‡Department of Medicine, McGill University Hospital Research Institute, Montreal, Quebec, Canada H4A 3J1;
| | - Catherine E Au
- From the ‡Department of Medicine, McGill University Hospital Research Institute, Montreal, Quebec, Canada H4A 3J1
| | - David Y Thomas
- §Department of Biochemistry, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | - Louis Hermo
- ¶Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7
| |
Collapse
|
72
|
Wang JH, Yuan LJ, Liang RX, Liu ZG, Li BH, Wen ZS, Huang ST, Zheng M. GOLPH3 promotes cell proliferation and tumorigenicity in esophageal squamous cell carcinoma via mTOR and Wnt/β‑catenin signal activation. Mol Med Rep 2017; 16:7138-7144. [PMID: 28901498 DOI: 10.3892/mmr.2017.7495] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/06/2017] [Indexed: 11/05/2022] Open
Abstract
The authors' previous study demonstrated that Golgi phosphoprotein 3 (GOLPH3) was significantly overexpressed in esophageal squamous cell carcinoma (ESCC), correlating with poor patient survival. In the present study, GOLPH3 stable overexpression and knockdown KYSE‑140 cell lines were constructed. Cell proliferation, colony formation, cell cycle progression and tumorigenesis assays were performed. The results revealed that GOLPH3 promoted ESCC cell growth and proliferation. The effects of GOLPH3 on the mechanistic target of rapamycin (mTOR) and Wnt/β‑catenin signaling pathways were investigated using western blot analyis and dual‑luciferase reporter assays, and were observed to be activated in cells with GOLPH3 overexpression. Furthermore, overexpression of GOLPH3 resulted in the downregulation of p21 protein, upregulation of cyclin D1 and increased retinoblastoma‑associated protein phosphorylation, consequently leading to accelerated cell cycle progression. In addition, GOLPH3 knockdown resulted in reversed effects. The results of the current study suggest that GOLPH3 serves an important role in promoting tumorigenicity of ESCC via mTOR and Wnt/β‑catenin signaling pathway activation.
Collapse
Affiliation(s)
- Jian-Hua Wang
- Department of Cardiovascular Surgery, Guangdong No. 2 Provincial People's Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Lin-Jing Yuan
- Department of Gynecology, The First Affiliated Hospital of Sun Yat‑Sen University Guangzhou, Guangdong 510080, P.R. China
| | - Rong-Xin Liang
- Department of Cardiovascular Surgery, Guangdong No. 2 Provincial People's Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Zi-Gang Liu
- Department of Cardiovascular Surgery, Guangdong No. 2 Provincial People's Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Bo-Hai Li
- Department of Chest, Guangdong No. 2 Provincial People's Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Zhe-Sheng Wen
- Department of Chest, Sun Yat‑Sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Shu-Ting Huang
- Department of Gynecology, Sun Yat‑Sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Min Zheng
- Department of Gynecology, Sun Yat‑Sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
73
|
Frappaolo A, Sechi S, Kumagai T, Robinson S, Fraschini R, Karimpour-Ghahnavieh A, Belloni G, Piergentili R, Tiemeyer KH, Tiemeyer M, Giansanti MG. COG7 deficiency in Drosophila generates multifaceted developmental, behavioral and protein glycosylation phenotypes. J Cell Sci 2017; 130:3637-3649. [PMID: 28883096 DOI: 10.1242/jcs.209049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/04/2017] [Indexed: 12/14/2022] Open
Abstract
Congenital disorders of glycosylation (CDG) comprise a family of human multisystemic diseases caused by recessive mutations in genes required for protein N-glycosylation. More than 100 distinct forms of CDGs have been identified and most of them cause severe neurological impairment. The Conserved Oligomeric Golgi (COG) complex mediates tethering of vesicles carrying glycosylation enzymes across the Golgi cisternae. Mutations affecting human COG1, COG2 and COG4-COG8 cause monogenic forms of inherited, autosomal recessive CDGs. We have generated a Drosophila COG7-CDG model that closely parallels the pathological characteristics of COG7-CDG patients, including pronounced neuromotor defects associated with altered N-glycome profiles. Consistent with these alterations, larval neuromuscular junctions of Cog7 mutants exhibit a significant reduction in bouton numbers. We demonstrate that the COG complex cooperates with Rab1 and Golgi phosphoprotein 3 to regulate Golgi trafficking and that overexpression of Rab1 can rescue the cytokinesis and locomotor defects associated with loss of Cog7. Our results suggest that the Drosophila COG7-CDG model can be used to test novel potential therapeutic strategies by modulating trafficking pathways.
Collapse
Affiliation(s)
- Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Tadahiro Kumagai
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd., Athens, GA 30602, USA
| | - Sarah Robinson
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd., Athens, GA 30602, USA
| | - Roberta Fraschini
- Dipartimento di Biotecnologie e Bioscienze, Università degli studi di Milano Bicocca, 20126 Milano, Italy
| | - Angela Karimpour-Ghahnavieh
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Giorgio Belloni
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Roberto Piergentili
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Katherine H Tiemeyer
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd., Athens, GA 30602, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd., Athens, GA 30602, USA .,Department of Biochemistry and Molecular Biology, The University of Georgia, B122 Life Sciences Building, Athens, GA 30602, USA
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
74
|
Anderson NS, Mukherjee I, Bentivoglio CM, Barlowe C. The Golgin protein Coy1 functions in intra-Golgi retrograde transport and interacts with the COG complex and Golgi SNAREs. Mol Biol Cell 2017; 28:mbc.E17-03-0137. [PMID: 28794270 PMCID: PMC5620376 DOI: 10.1091/mbc.e17-03-0137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/12/2017] [Accepted: 07/31/2017] [Indexed: 01/09/2023] Open
Abstract
Extended coiled-coil proteins of the Golgin family play prominent roles in maintaining the structure and function of the Golgi complex. Here we further investigate the Golgin protein Coy1 and document its function in retrograde transport between early Golgi compartments. Cells that lack Coy1 displayed a reduced half-life of the Och1 mannosyltransferase, an established cargo of intra-Golgi retrograde transport. Combining the coy1Δ mutation with deletions in other putative retrograde Golgins (sgm1Δ and rud3Δ) caused strong glycosylation and growth defects and reduced membrane association of the Conserved Oligomeric Golgi complex. In contrast, overexpression of COY1 inhibited the growth of mutant strains deficient in fusion activity at the Golgi (sed5-1 and sly1-ts). To map Coy1 protein interactions, co-immunoprecipitation experiments revealed an association with the Conserved Oliogmeric Golgi (COG) complex and with intra-Golgi SNARE proteins. These physical interactions are direct, as Coy1 was efficiently captured in vitro by Lobe A of the COG complex and the purified SNARE proteins Gos1, Sed5 and Sft1. Thus, our genetic, in vivo, and biochemical data indicate a role for Coy1 in regulating COG complex-dependent fusion of retrograde-directed COPI vesicles.
Collapse
Affiliation(s)
- Nadine S Anderson
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Indrani Mukherjee
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Christine M Bentivoglio
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Charles Barlowe
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
75
|
Schoberer J, Strasser R. Plant glyco-biotechnology. Semin Cell Dev Biol 2017; 80:133-141. [PMID: 28688929 DOI: 10.1016/j.semcdb.2017.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 11/17/2022]
Abstract
Glycosylation is an important protein modification in all eukaryotes. Whereas the early asparagine-linked glycosylation (N-glycosylation) and N-glycan processing steps in the endoplasmic reticulum are conserved between mammals and plants, the maturation of complex N-glycans in the Golgi apparatus differs considerably. Due to a restricted number of Golgi-resident N-glycan processing enzymes and the absence of nucleotide sugars such as CMP-N-acetylneuraminic acid, plants produce only a limited repertoire of different N-glycan structures. Moreover, mammalian mucin-type O-glycosylation of serine or threonine residues has not been described in plants and the required machinery is not encoded in their genome which enables de novo build-up of the pathway. As a consequence, plants are very well-suited for the production of homogenous N- and O-glycans and are increasingly used for the production of recombinant glycoproteins with custom-made glycans that may result in the generation of biopharmaceuticals with improved therapeutic potential.
Collapse
Affiliation(s)
- Jennifer Schoberer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
76
|
Rizzo R, Parashuraman S, D’Angelo G, Luini A. GOLPH3 and oncogenesis: What is the molecular link? Tissue Cell 2017; 49:170-174. [DOI: 10.1016/j.tice.2016.06.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/14/2016] [Accepted: 06/14/2016] [Indexed: 12/20/2022]
|
77
|
Bhide GP, Colley KJ. Sialylation of N-glycans: mechanism, cellular compartmentalization and function. Histochem Cell Biol 2017; 147:149-174. [PMID: 27975143 PMCID: PMC7088086 DOI: 10.1007/s00418-016-1520-x] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 12/18/2022]
Abstract
Sialylated N-glycans play essential roles in the immune system, pathogen recognition and cancer. This review approaches the sialylation of N-glycans from three perspectives. The first section focuses on the sialyltransferases that add sialic acid to N-glycans. Included in the discussion is a description of these enzymes' glycan acceptors, conserved domain organization and sequences, molecular structure and catalytic mechanism. In addition, we discuss the protein interactions underlying the polysialylation of a select group of adhesion and signaling molecules. In the second section, the biosynthesis of sialic acid, CMP-sialic acid and sialylated N-glycans is discussed, with a special emphasis on the compartmentalization of these processes in the mammalian cell. The sequences and mechanisms maintaining the sialyltransferases and other glycosylation enzymes in the Golgi are also reviewed. In the final section, we have chosen to discuss processes in which sialylated glycans, both N- and O-linked, play a role. The first part of this section focuses on sialic acid-binding proteins including viral hemagglutinins, Siglecs and selectins. In the second half of this section, we comment on the role of sialylated N-glycans in cancer, including the roles of β1-integrin and Fas receptor N-glycan sialylation in cancer cell survival and drug resistance, and the role of these sialylated proteins and polysialic acid in cancer metastasis.
Collapse
Affiliation(s)
- Gaurang P Bhide
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, 900 S. Ashland Avenue, MC669, Chicago, IL, 60607, USA
| | - Karen J Colley
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, 900 S. Ashland Avenue, MC669, Chicago, IL, 60607, USA.
| |
Collapse
|
78
|
Abstract
Protein secretion mediated by the secretory transport pathway is an important cellular process in eukaryotic cells. In the conventional secretory transport pathway, newly synthesized proteins pass through several endomembrane compartments en route to their specific destinations. Transport of secretory proteins between different compartments is shuttled by small, membrane-enclosed vesicles. To ensure the fidelity of transport, eukaryotic cells employ elaborate molecular machineries to accurately sort newly synthesized proteins into specific transport vesicles and precisely deliver these transport vesicles to distinct acceptor compartments. In this review, we summarize the molecular machineries that regulate each step of vesicular transport in the secretory transport pathway in yeast and animal cells.
Collapse
Affiliation(s)
- Yusong Guo
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Feng Yang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiao Tang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
79
|
Gomez-Navarro N, Miller E. Protein sorting at the ER-Golgi interface. J Cell Biol 2016; 215:769-778. [PMID: 27903609 PMCID: PMC5166505 DOI: 10.1083/jcb.201610031] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/02/2016] [Accepted: 11/17/2016] [Indexed: 01/01/2023] Open
Abstract
In this review, Gomez-Navarro and Miller summarize the principles of cargo sorting by the vesicle traffic machinery and consider the diverse mechanisms by which cargo proteins are selected and captured into different transport vesicles. Protein traffic is of critical importance for normal cellular physiology. In eukaryotes, spherical transport vesicles move proteins and lipids from one internal membrane-bound compartment to another within the secretory pathway. The process of directing each individual protein to a specific destination (known as protein sorting) is a crucial event that is intrinsically linked to vesicle biogenesis. In this review, we summarize the principles of cargo sorting by the vesicle traffic machinery and consider the diverse mechanisms by which cargo proteins are selected and captured into different transport vesicles. We focus on the first two compartments of the secretory pathway: the endoplasmic reticulum and Golgi. We provide an overview of the complexity and diversity of cargo adaptor function and regulation, focusing on recent mechanistic discoveries that have revealed insight into protein sorting in cells.
Collapse
Affiliation(s)
- Natalia Gomez-Navarro
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| | - Elizabeth Miller
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, England, UK
| |
Collapse
|
80
|
Lipid transfer proteins and the tuning of compartmental identity in the Golgi apparatus. Chem Phys Lipids 2016; 200:42-61. [DOI: 10.1016/j.chemphyslip.2016.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 11/23/2022]
|
81
|
Ishii M, Suda Y, Kurokawa K, Nakano A. COPI is essential for Golgi cisternal maturation and dynamics. J Cell Sci 2016; 129:3251-61. [PMID: 27445311 PMCID: PMC5047698 DOI: 10.1242/jcs.193367] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/15/2016] [Indexed: 02/02/2023] Open
Abstract
Proteins synthesized in the endoplasmic reticulum (ER) are transported to the Golgi and then sorted to their destinations. For their passage through the Golgi, one widely accepted mechanism is cisternal maturation. Cisternal maturation is fulfilled by the retrograde transport of Golgi-resident proteins from later to earlier cisternae, and candidate carriers for this retrograde transport are coat protein complex I (COPI)-coated vesicles. We examined the COPI function in cisternal maturation directly by 4D observation of the transmembrane Golgi-resident proteins in living yeast cells. COPI temperature-sensitive mutants and induced degradation of COPI proteins were used to knockdown COPI function. For both methods, inactivation of COPI subunits Ret1 and Sec21 markedly impaired the transition from cis to medial and to trans cisternae. Furthermore, the movement of cisternae within the cytoplasm was severely restricted when COPI subunits were depleted. Our results demonstrate the essential roles of COPI proteins in retrograde trafficking of the Golgi-resident proteins and dynamics of the Golgi cisternae. Highlighted Article: Knockdown of COPI function restricts retrograde recycling of Golgi-resident proteins and markedly impairs the transition from cis to medial and to trans cisternae, as demonstrated in living yeast cells.
Collapse
Affiliation(s)
- Midori Ishii
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuyuki Suda
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Laboratory of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kazuo Kurokawa
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
82
|
Chen L, Lau MSY, Banfield DK. Multiple ER-Golgi SNARE transmembrane domains are dispensable for trafficking but required for SNARE recycling. Mol Biol Cell 2016; 27:2633-41. [PMID: 27385338 PMCID: PMC5007084 DOI: 10.1091/mbc.e16-05-0277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/29/2016] [Indexed: 11/30/2022] Open
Abstract
In biochemical assays, the transmembrane domains of SNAREs have been found to be crucial in mediating membrane fusion. Yeast cells in which a particular essential ER–Golgi SNARE’s transmembrane domain has been removed remain viable and devoid of forward-trafficking defects. The formation of soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complexes between opposing membranes is an essential prerequisite for fusion between vesicles and their target compartments. The composition and length of a SNARE’s transmembrane domain (TMD) is also an indicator for their steady-state distribution in cells. The evolutionary conservation of the SNARE TMD, together with the strict requirement of this feature for membrane fusion in biochemical studies, implies that the TMD represents an essential protein module. Paradoxically, we find that for several essential ER- and Golgi-localized SNAREs, a TMD is unnecessary. Moreover, in the absence of a covalent membrane tether, such SNAREs can still support ER–Golgi vesicle transport and recapitulate established genetic interactions. Transport anomalies appear to be restricted to retrograde trafficking, but these defects are overcome by the attachment of a C-terminal lipid anchor to the SNARE. We conclude that the TMD functions principally to support the recycling of Qb-, Qc-, and R-SNAREs and, in so doing, retrograde transport.
Collapse
Affiliation(s)
- Li Chen
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Martin S Y Lau
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - David K Banfield
- Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| |
Collapse
|
83
|
Micaroni M, Giacchetti G, Plebani R, Xiao GG, Federici L. ATP2C1 gene mutations in Hailey-Hailey disease and possible roles of SPCA1 isoforms in membrane trafficking. Cell Death Dis 2016; 7:e2259. [PMID: 27277681 PMCID: PMC5143377 DOI: 10.1038/cddis.2016.147] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/17/2016] [Accepted: 04/28/2016] [Indexed: 12/12/2022]
Abstract
ATP2C1 gene codes for the secretory pathway Ca(2+)/Mn(2+)-ATPase pump type 1 (SPCA1) localizing at the golgi apparatus. Mutations on the human ATP2C1 gene, causing decreased levels of the SPCA1 expression, have been identified as the cause of the Hailey-Hailey disease, a rare skin disorder. In the last few years, several mutations have been described, and here we summarize how they are distributed along the gene and how missense mutations affect protein expression. SPCA1 is expressed in four different isoforms through alternative splicing of the ATP2C1 gene and none of these isoforms is differentially affected by any of these mutations. However, a better understanding of the tissue specific expression of the isoforms, their localization along the secretory pathway, their specific binding partners and the role of the C-terminal tail making isoforms different from each other, will be future goals of the research in this field.
Collapse
Affiliation(s)
- M Micaroni
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - G Giacchetti
- Aging Research Center (Ce.S.I.), University 'G. D'Annunzio' of Chieti-Pescara, Chieti 66100, Italy.,Department of Neuroscience, Imaging and Clinical Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti 66100, Italy
| | - R Plebani
- Aging Research Center (Ce.S.I.), University 'G. D'Annunzio' of Chieti-Pescara, Chieti 66100, Italy.,Department of Medical Oral and Biotechnological Sciences, School of Medicine and Health Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti 66100, Italy
| | - G G Xiao
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - L Federici
- Aging Research Center (Ce.S.I.), University 'G. D'Annunzio' of Chieti-Pescara, Chieti 66100, Italy.,Department of Medical Oral and Biotechnological Sciences, School of Medicine and Health Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti 66100, Italy
| |
Collapse
|
84
|
Cracking the Glycome Encoder: Signaling, Trafficking, and Glycosylation. Trends Cell Biol 2016; 26:379-388. [DOI: 10.1016/j.tcb.2015.12.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/08/2015] [Accepted: 12/18/2015] [Indexed: 01/22/2023]
|
85
|
Tenorio MJ, Ross BH, Luchsinger C, Rivera-Dictter A, Arriagada C, Acuña D, Aguilar M, Cavieres V, Burgos PV, Ehrenfeld P, Mardones GA. Distinct Biochemical Pools of Golgi Phosphoprotein 3 in the Human Breast Cancer Cell Lines MCF7 and MDA-MB-231. PLoS One 2016; 11:e0154719. [PMID: 27123979 PMCID: PMC4849736 DOI: 10.1371/journal.pone.0154719] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/18/2016] [Indexed: 01/08/2023] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3) has been implicated in the development of carcinomas in many human tissues, and is currently considered a bona fide oncoprotein. Importantly, several tumor types show overexpression of GOLPH3, which is associated with tumor progress and poor prognosis. However, the underlying molecular mechanisms that connect GOLPH3 function with tumorigenicity are poorly understood. Experimental evidence shows that depletion of GOLPH3 abolishes transformation and proliferation of tumor cells in GOLPH3-overexpressing cell lines. Conversely, GOLPH3 overexpression drives transformation of primary cell lines and enhances mouse xenograft tumor growth in vivo. This evidence suggests that overexpression of GOLPH3 could result in distinct features of GOLPH3 in tumor cells compared to that of non-tumorigenic cells. GOLPH3 is a peripheral membrane protein mostly localized at the trans-Golgi network, and its association with Golgi membranes depends on binding to phosphatidylinositol-4-phosphate. GOLPH3 is also contained in a large cytosolic pool that rapidly exchanges with Golgi-associated pools. GOLPH3 has also been observed associated with vesicles and tubules arising from the Golgi, as well as other cellular compartments, and hence it has been implicated in several membrane trafficking events. Whether these and other features are typical to all different types of cells is unknown. Moreover, it remains undetermined how GOLPH3 acts as an oncoprotein at the Golgi. Therefore, to better understand the roles of GOLPH3 in cancer cells, we sought to compare some of its biochemical and cellular properties in the human breast cancer cell lines MCF7 and MDA-MB-231 with that of the non-tumorigenic breast human cell line MCF 10A. We found unexpected differences that support the notion that in different cancer cells, overexpression of GOLPH3 functions in diverse fashions, which may influence specific tumorigenic phenotypes.
Collapse
Affiliation(s)
- María J. Tenorio
- Department of Physiology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Breyan H. Ross
- Department of Physiology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Charlotte Luchsinger
- Department of Physiology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Andrés Rivera-Dictter
- Department of Physiology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Cecilia Arriagada
- Department of Physiology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Diego Acuña
- Department of Physiology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Marcelo Aguilar
- Department of Physiology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Viviana Cavieres
- Department of Physiology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Patricia V. Burgos
- Department of Physiology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Department of Anatomy, Histology and Pathology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Gonzalo A. Mardones
- Department of Physiology, School of Medicine, and Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
- * E-mail:
| |
Collapse
|
86
|
Fisher P, Ungar D. Bridging the Gap between Glycosylation and Vesicle Traffic. Front Cell Dev Biol 2016; 4:15. [PMID: 27014691 PMCID: PMC4781848 DOI: 10.3389/fcell.2016.00015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/22/2016] [Indexed: 11/24/2022] Open
Abstract
Glycosylation is recognized as a vitally important posttranslational modification. The structure of glycans that decorate proteins and lipids is largely dictated by biosynthetic reactions occurring in the Golgi apparatus. This biosynthesis relies on the relative distribution of glycosyltransferases and glycosidases, which is maintained by retrograde vesicle traffic between Golgi cisternae. Tethering of vesicles at the Golgi apparatus prior to fusion is regulated by Rab GTPases, coiled-coil tethers termed golgins and the multisubunit tethering complex known as the conserved oligomeric Golgi (COG) complex. In this review we discuss the mechanisms involved in vesicle tethering at the Golgi apparatus and highlight the importance of tethering in the context of glycan biosynthesis and a set of diseases known as congenital disorders of glycosylation.
Collapse
Affiliation(s)
- Peter Fisher
- Department of Biology, University of York York, UK
| | - Daniel Ungar
- Department of Biology, University of York York, UK
| |
Collapse
|
87
|
Abstract
Protein glycosylation is an essential co- and post-translational modification of secretory and membrane proteins in all eukaryotes. The initial steps of N-glycosylation and N-glycan processing are highly conserved between plants, mammals and yeast. In contrast, late N-glycan maturation steps in the Golgi differ significantly in plants giving rise to complex N-glycans with β1,2-linked xylose, core α1,3-linked fucose and Lewis A-type structures. While the essential role of N-glycan modifications on distinct mammalian glycoproteins is already well documented, we have only begun to decipher the biological function of this ubiquitous protein modification in different plant species. In this review, I focus on the biosynthesis and function of different protein N-linked glycans in plants. Special emphasis is given on glycan-mediated quality control processes in the ER and on the biological role of characteristic complex N-glycan structures.
Collapse
Affiliation(s)
- Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
88
|
Papanikou E, Day KJ, Austin J, Glick BS. COPI selectively drives maturation of the early Golgi. eLife 2015; 4. [PMID: 26709839 PMCID: PMC4758959 DOI: 10.7554/elife.13232] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/27/2015] [Indexed: 12/12/2022] Open
Abstract
COPI coated vesicles carry material between Golgi compartments, but the role of COPI in the secretory pathway has been ambiguous. Previous studies of thermosensitive yeast COPI mutants yielded the surprising conclusion that COPI was dispensable both for the secretion of certain proteins and for Golgi cisternal maturation. To revisit these issues, we optimized the anchor-away method, which allows peripheral membrane proteins such as COPI to be sequestered rapidly by adding rapamycin. Video fluorescence microscopy revealed that COPI inactivation causes an early Golgi protein to remain in place while late Golgi proteins undergo cycles of arrival and departure. These dynamics generate partially functional hybrid Golgi structures that contain both early and late Golgi proteins, explaining how secretion can persist when COPI has been inactivated. Our findings suggest that cisternal maturation involves a COPI-dependent pathway that recycles early Golgi proteins, followed by multiple COPI-independent pathways that recycle late Golgi proteins. DOI:http://dx.doi.org/10.7554/eLife.13232.001 Proteins play many important roles for cells, and these roles often require the proteins to be in particular locations in or around the cells. A set of cell compartments called the Golgi packages certain proteins into bubble-like structures called vesicles to enable the proteins to be used elsewhere in the cell or released to the outside of the cell, in a process called the secretory pathway. The operation of the secretory pathway requires the Golgi compartments to be continually remodeled. Proteins and other materials can be ferried between the compartments of the Golgi by another type of vesicle. These vesicles are coated with a group, or complex, of proteins called COPI, which forms a curved lattice around the vesicles and helps them to capture the materials they will transport. However, it is not clear whether COPI is also involved in remodeling of the Golgi compartments. Papanikou, Day et al. addressed this question using a technique called the “anchor-away method” combined with microscopy to study COPI in yeast cells. The yeast were genetically engineered so that COPI activity was effectively shut down in the presence of a drug called rapamycin. The experiments show that COPI is involved in the early stages of remodeling the Golgi compartments, but not the later stages. This finding supports the emerging view of the Golgi as a self-organizing cellular machine, and it provides a framework for uncovering the engineering principles that underlie the secretory pathway. DOI:http://dx.doi.org/10.7554/eLife.13232.002
Collapse
Affiliation(s)
- Effrosyni Papanikou
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Kasey J Day
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| | - Jotham Austin
- Electron Microscopy Core Facility, The University of Chicago, Chicago, United States
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
| |
Collapse
|
89
|
Woo CH, Gao C, Yu P, Tu L, Meng Z, Banfield DK, Yao X, Jiang L. Conserved function of the lysine-based KXD/E motif in Golgi retention for endomembrane proteins among different organisms. Mol Biol Cell 2015; 26:4280-93. [PMID: 26378254 PMCID: PMC4642860 DOI: 10.1091/mbc.e15-06-0361] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/11/2015] [Indexed: 01/06/2023] Open
Abstract
We recently identified a new COPI-interacting KXD/E motif in the C-terminal cytosolic tail (CT) of Arabidopsis endomembrane protein 12 (AtEMP12) as being a crucial Golgi retention mechanism for AtEMP12. This KXD/E motif is conserved in CTs of all EMPs found in plants, yeast, and humans and is also present in hundreds of other membrane proteins. Here, by cloning selective EMP isoforms from plants, yeast, and mammals, we study the localizations of EMPs in different expression systems, since there are contradictory reports on the localizations of EMPs. We show that the N-terminal and C-terminal GFP-tagged EMP fusions are localized to Golgi and post-Golgi compartments, respectively, in plant, yeast, and mammalian cells. In vitro pull-down assay further proves the interaction of the KXD/E motif with COPI coatomer in yeast. COPI loss of function in yeast and plants causes mislocalization of EMPs or KXD/E motif-containing proteins to vacuole. Ultrastructural studies further show that RNA interference (RNAi) knockdown of coatomer expression in transgenic Arabidopsis plants causes severe morphological changes in the Golgi. Taken together, our results demonstrate that N-terminal GFP fusions reflect the real localization of EMPs, and KXD/E is a conserved motif in COPI interaction and Golgi retention in eukaryotes.
Collapse
Affiliation(s)
- Cheuk Hang Woo
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, and
| | - Caiji Gao
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, and
| | - Ping Yu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Linna Tu
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhaoyue Meng
- School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - David K Banfield
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen 518057, China
| | - Liwen Jiang
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, and CUHK Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen 518057, China )
| |
Collapse
|
90
|
Uemura S, Shishido F, Kashimura M, Inokuchi JI. The regulation of ER export and Golgi retention of ST3Gal5 (GM3/GM4 synthase) and B4GalNAcT1 (GM2/GD2/GA2 synthase) by arginine/lysine-based motif adjacent to the transmembrane domain. Glycobiology 2015; 25:1410-22. [DOI: 10.1093/glycob/cwv071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 08/18/2015] [Indexed: 11/12/2022] Open
|
91
|
Li Z, Blissard G. The vacuolar protein sorting genes in insects: A comparative genome view. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 62:211-225. [PMID: 25486452 DOI: 10.1016/j.ibmb.2014.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/06/2014] [Accepted: 11/21/2014] [Indexed: 06/04/2023]
Abstract
In eukaryotic cells, regulated vesicular trafficking is critical for directing protein transport and for recycling and degradation of membrane lipids and proteins. Through carefully regulated transport vesicles, the endomembrane system performs a large and important array of dynamic cellular functions while maintaining the integrity of the cellular membrane system. Genetic studies in yeast Saccharomyces cerevisiae have identified approximately 50 vacuolar protein sorting (VPS) genes involved in vesicle trafficking, and most of these genes are also characterized in mammals. The VPS proteins form distinct functional complexes, which include complexes known as ESCRT, retromer, CORVET, HOPS, GARP, and PI3K-III. Little is known about the orthologs of VPS proteins in insects. Here, with the newly annotated Manduca sexta genome, we carried out genomic comparative analysis of VPS proteins in yeast, humans, and 13 sequenced insect genomes representing the Orders Hymenoptera, Diptera, Hemiptera, Phthiraptera, Lepidoptera, and Coleoptera. Amino acid sequence alignments and domain/motif structure analyses reveal that most of the components of ESCRT, retromer, CORVET, HOPS, GARP, and PI3K-III are evolutionarily conserved across yeast, insects, and humans. However, in contrast to the VPS gene expansions observed in the human genome, only four VPS genes (VPS13, VPS16, VPS33, and VPS37) were expanded in the six insect Orders. Additionally, VPS2 was expanded only in species from Phthiraptera, Lepidoptera, and Coleoptera. These studies provide a baseline for understanding the evolution of vesicular trafficking across yeast, insect, and human genomes, and also provide a basis for further addressing specific functional roles of VPS proteins in insects.
Collapse
Affiliation(s)
- Zhaofei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Taicheng Road, Yangling, Shaanxi 712100, China.
| | - Gary Blissard
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
92
|
Velasquez SM, Ricardi MM, Poulsen CP, Oikawa A, Dilokpimol A, Halim A, Mangano S, Denita Juarez SP, Marzol E, Salgado Salter JD, Dorosz JG, Borassi C, Möller SR, Buono R, Ohsawa Y, Matsuoka K, Otegui MS, Scheller HV, Geshi N, Petersen BL, Iusem ND, Estevez JM. Complex regulation of prolyl-4-hydroxylases impacts root hair expansion. MOLECULAR PLANT 2015; 8:734-46. [PMID: 25655826 DOI: 10.1016/j.molp.2014.11.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 11/17/2014] [Accepted: 11/30/2014] [Indexed: 05/20/2023]
Abstract
Root hairs are single cells that develop by tip growth, a process shared with pollen tubes, axons, and fungal hyphae. However, structural plant cell walls impose constraints to accomplish tip growth. In addition to polysaccharides, plant cell walls are composed of hydroxyproline-rich glycoproteins (HRGPs), which include several groups of O-glycoproteins, including extensins (EXTs). Proline hydroxylation, an early post-translational modification (PTM) of HRGPs catalyzed by prolyl 4-hydroxylases (P4Hs), defines their subsequent O-glycosylation sites. In this work, our genetic analyses prove that P4H5, and to a lesser extent P4H2 and P4H13, are pivotal for root hair tip growth. Second, we demonstrate that P4H5 has in vitro preferred specificity for EXT substrates rather than for other HRGPs. Third, by P4H promoter and protein swapping approaches, we show that P4H2 and P4H13 have interchangeable functions but cannot replace P4H5. These three P4Hs are shown to be targeted to the secretory pathway, where P4H5 forms dimers with P4H2 and P4H13. Finally, we explore the impact of deficient proline hydroxylation on the cell wall architecture. Taken together, our results support a model in which correct peptidyl-proline hydroxylation on EXTs, and possibly in other HRGPs, is required for proper cell wall self-assembly and hence root hair elongation in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Silvia M Velasquez
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Martiniano M Ricardi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Christian Peter Poulsen
- VKR Research Centre, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Ai Oikawa
- Joint BioEnergy Institute, Feedstocks Division, Lawrence Berkeley National Laboratory, 5885 Hollis Street, Emeryville, CA 94608, USA
| | - Adiphol Dilokpimol
- VKR Research Centre, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Adnan Halim
- Copenhagen Center for Glycomics, Department of Cellular and Molecular, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Silvina Mangano
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Silvina Paola Denita Juarez
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Eliana Marzol
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Juan D Salgado Salter
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Javier Gloazzo Dorosz
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Cecilia Borassi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Svenning Rune Möller
- VKR Research Centre, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Rafael Buono
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Yukiko Ohsawa
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Ken Matsuoka
- Laboratory of Plant Nutrition, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan
| | - Marisa S Otegui
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | - Henrik V Scheller
- Joint BioEnergy Institute, Feedstocks Division, Lawrence Berkeley National Laboratory, 5885 Hollis Street, Emeryville, CA 94608, USA
| | - Naomi Geshi
- VKR Research Centre, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Bent Larsen Petersen
- VKR Research Centre, Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Norberto D Iusem
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - José M Estevez
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.
| |
Collapse
|
93
|
Multiple roles of a putative vacuolar protein sorting associated protein 74, FgVPS74, in the cereal pathogen Fusarium graminearum. J Microbiol 2015; 53:243-9. [DOI: 10.1007/s12275-015-5067-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 02/11/2015] [Accepted: 02/11/2015] [Indexed: 11/26/2022]
|
94
|
Petrosyan A, Ali MF, Cheng PW. Keratin 1 plays a critical role in golgi localization of core 2 N-acetylglucosaminyltransferase M via interaction with its cytoplasmic tail. J Biol Chem 2015; 290:6256-69. [PMID: 25605727 PMCID: PMC4358263 DOI: 10.1074/jbc.m114.618702] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/14/2015] [Indexed: 11/06/2022] Open
Abstract
Core 2 N-acetylglucosaminyltransferase 2/M (C2GnT-M) synthesizes all three β6GlcNAc branch structures found in secreted mucins. Loss of C2GnT-M leads to development of colitis and colon cancer. Recently we have shown that C2GnT-M targets the Golgi at the Giantin site and is recycled by binding to non-muscle myosin IIA, a motor protein, via the cytoplasmic tail (CT). But how this enzyme is retained in the Golgi is not known. Proteomics analysis identifies keratin type II cytoskeletal 1 (KRT1) as a protein pulled down with anti-c-Myc antibody or C2GnT-M CT from the lysate of Panc1 cells expressing bC2GnT-M tagged with c-Myc. Yeast two-hybrid analysis shows that the rod domain of KRT1 interacts directly with the WKR(6) motif in the C2GnT-M CT. Knockdown of KRT1 does not affect Golgi morphology but increases the interaction of C2GnT-M with non-muscle myosin IIA and its transportation to the endoplasmic reticulum, ubiquitination, and degradation. During Golgi recovery after brefeldin A treatment, C2GnT-M forms a complex with Giantin before KRT1, demonstrating CT-mediated sequential events of Golgi targeting and retention of C2GnT-M. In HeLa cells transiently expressing C2GnT-M-GFP, knockdown of KRT1 does not affect Golgi morphology but leaves C2GnT-M outside of the Golgi, resulting in the formation of sialyl-T antigen. Interaction of C2GnT-M and KRT1 was also detected in the goblet cells of human colon epithelial tissue and primary culture of colonic epithelial cells. The results indicate that glycosylation and thus the function of glycoconjugates can be regulated by a protein that helps retain a glycosyltransferase in the Golgi.
Collapse
Affiliation(s)
- Armen Petrosyan
- From the VA Nebraska-Western Iowa Health Care System, Department of Research Service, Omaha, Nebraska 68105 and Department of Biochemistry and Molecular Biology, College of Medicine and
| | - Mohamed F Ali
- From the VA Nebraska-Western Iowa Health Care System, Department of Research Service, Omaha, Nebraska 68105 and Department of Biochemistry and Molecular Biology, College of Medicine and
| | - Pi-Wan Cheng
- From the VA Nebraska-Western Iowa Health Care System, Department of Research Service, Omaha, Nebraska 68105 and Department of Biochemistry and Molecular Biology, College of Medicine and Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
95
|
Sechi S, Frappaolo A, Belloni G, Colotti G, Giansanti MG. The multiple cellular functions of the oncoprotein Golgi phosphoprotein 3. Oncotarget 2015; 6:3493-506. [PMID: 25691054 PMCID: PMC4414131 DOI: 10.18632/oncotarget.3051] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/07/2015] [Indexed: 12/13/2022] Open
Abstract
The highly conserved Golgi phosphoprotein 3 (GOLPH3) protein, a component of Trans-Golgi Network (TGN), has been defined as a "first-in-class Golgi oncoprotein" and characterized as a Phosphatidylinositol 4-phosphate [PI(4)P] effector at the Golgi. GOLPH3 is commonly amplified in several solid tumors. Furthermore this protein has been associated with poor prognosis in many cancers. Highly conserved from yeast to humans, GOLPH3 provides an essential function in vesicle trafficking and Golgi structure. Recent data have also implicated this oncoprotein in regulation of cytokinesis, modulation of mitochondrial mass and cellular response to DNA damage. A minute dissection of the molecular pathways that require GOLPH3 protein will be helpful to develop new therapeutic cancer strategies.
Collapse
Affiliation(s)
- Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| | - Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| | - Giorgio Belloni
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| | - Gianni Colotti
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche, Sapienza Università di Roma, 00185 Roma, Italy
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, 00185 Roma, Italy
| |
Collapse
|
96
|
Isaji T, Im S, Gu W, Wang Y, Hang Q, Lu J, Fukuda T, Hashii N, Takakura D, Kawasaki N, Miyoshi H, Gu J. An oncogenic protein Golgi phosphoprotein 3 up-regulates cell migration via sialylation. J Biol Chem 2015; 289:20694-705. [PMID: 24895123 DOI: 10.1074/jbc.m113.542688] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, the Golgi phosphoprotein 3 (GOLPH3) and its yeast homolog Vps74p have been characterized as essential for the Golgi localization of glycosyltransferase in yeast. GOLPH3 has been identified as a new oncogene that is commonly amplified in human cancers to modulate mammalian target of rapamycin signaling. However, the molecular mechanisms of the carcinogenic signaling pathway remain largely unclear. To investigate whether the expression of GOLPH3 was involved in the glycosylation processes in mammalian cells, and whether it affected cell behavior, we performed a loss-of-function study. Cell migration was suppressed in GOLPH3 knockdown (KD) cells, and the suppression was restored by a re-introduction of the GOLPH3 gene. HPLC and LC/MS analysis showed that the sialylation of N-glycans was specifically decreased in KD cells. The specific interaction between sialyltransferases and GOLPH3 was important for the sialylation. Furthermore, overexpression of α2,6-sialyltransferase-I rescued cell migration and cellular signaling, both of which were blocked in GOLPH3 knockdown cells. These results are the first direct demonstration of the role of GOLPH3 in N-glycosylation to regulate cell biological functions.
Collapse
|
97
|
Li T, You H, Mo X, He W, Tang X, Jiang Z, Chen S, Chen Y, Zhang J, Hu Z. GOLPH3 Mediated Golgi Stress Response in Modulating N2A Cell Death upon Oxygen-Glucose Deprivation and Reoxygenation Injury. Mol Neurobiol 2015; 53:1377-1385. [PMID: 25633094 DOI: 10.1007/s12035-014-9083-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/29/2014] [Indexed: 01/01/2023]
Abstract
Increasing evidence implicating that the organelle-dependent initiation of cell death merits further research. The evidence also implicates Golgi as a sensor and common downstream-effector of stress signals in cell death pathways, and it undergoes disassembly and fragmentation during apoptosis in several neurological disorders. It has also been reported that during apoptotic cell death, there is a cross talk between ER, mitochondria, and Golgi. Thus, we hypothesized that Golgi might trigger death signals during oxidative stress through its own machinery. The current study found that GOLPH3, an outer membrane protein of the Golgi complex, was significantly upregulated in N2A cells upon oxygen-glucose deprivation and reoxygenation (OGD/R), positioning from the compact perinuclear ribbon to dispersed vesicle-like structures throughout the cytoplasm. Additionally, elevated GOLPH3 promoted a stress-induced conversion of the LC3 subunit I to II and reactive oxygen species (ROS) production in long-term OGD/R groups. The collective data indicated that GOLPH3 not only acted as a sensor of Golgi stress for its prompt upregulation during oxidative stress but also as an initiator that triggered and propagated specific Golgi stress signals to downstream effectors. This affected ROS production and stress-related autophagy and finally controlled the entry into apoptosis. The data also supported the hypothesis that the Golgi apparatus could be an ideal target for stroke, neurodegenerative diseases, or cancer therapy through its own functional proteins.
Collapse
Affiliation(s)
- Ting Li
- The Second Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Hong You
- The Second Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Xiaoye Mo
- The Second Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Wenfang He
- The Second Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Xiangqi Tang
- The Second Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Zheng Jiang
- The Second Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Shiyu Chen
- The Second Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Yang Chen
- The Second Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Jie Zhang
- The Second Xiangya Hospital Central South University, Changsha, Hunan, China.
| | - Zhiping Hu
- The Second Xiangya Hospital Central South University, Changsha, Hunan, China.
| |
Collapse
|
98
|
Morimoto Y, Tani M. Synthesis of mannosylinositol phosphorylceramides is involved in maintenance of cell integrity of yeastSaccharomyces cerevisiae. Mol Microbiol 2015; 95:706-22. [DOI: 10.1111/mmi.12896] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Yuji Morimoto
- Department of Chemistry; Faculty of Sciences; Kyushu University; 6-10-1, Hakozaki, Higashi-ku Fukuoka 812-8581 Japan
| | - Motohiro Tani
- Department of Chemistry; Faculty of Sciences; Kyushu University; 6-10-1, Hakozaki, Higashi-ku Fukuoka 812-8581 Japan
| |
Collapse
|
99
|
Cruz-Garcia D, Curwin AJ, Popoff JF, Bruns C, Duran JM, Malhotra V. Remodeling of secretory compartments creates CUPS during nutrient starvation. ACTA ACUST UNITED AC 2014; 207:695-703. [PMID: 25512390 PMCID: PMC4274258 DOI: 10.1083/jcb.201407119] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Upon starvation, Grh1, a peripheral membrane protein located at endoplasmic reticulum (ER) exit sites and early Golgi in Saccharomyces cerevisiae under growth conditions, relocates to a compartment called compartment for unconventional protein secretion (CUPS). Here we report that CUPS lack Golgi enzymes, but contain the coat protein complex II (COPII) vesicle tethering protein Uso1 and the Golgi t-SNARE Sed5. Interestingly, CUPS biogenesis is independent of COPII- and COPI-mediated membrane transport. Pik1- and Sec7-mediated membrane export from the late Golgi is required for complete assembly of CUPS, and Vps34 is needed for their maintenance. CUPS formation is triggered by glucose, but not nitrogen starvation. Moreover, upon return to growth conditions, CUPS are absorbed into the ER, and not the vacuole. Altogether our findings indicate that CUPS are not specialized autophagosomes as suggested previously. We suggest that starvation triggers relocation of secretory and endosomal membranes, but not their enzymes, to generate CUPS to sort and secrete proteins that do not enter, or are not processed by enzymes of the ER-Golgi pathway of secretion.
Collapse
Affiliation(s)
- David Cruz-Garcia
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Amy J Curwin
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Jean-François Popoff
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Caroline Bruns
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Juan M Duran
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Vivek Malhotra
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
100
|
Schoberer J, Liebminger E, Vavra U, Veit C, Castilho A, Dicker M, Maresch D, Altmann F, Hawes C, Botchway SW, Strasser R. The transmembrane domain of N -acetylglucosaminyltransferase I is the key determinant for its Golgi subcompartmentation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:809-22. [PMID: 25230686 PMCID: PMC4282539 DOI: 10.1111/tpj.12671] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/28/2014] [Accepted: 09/11/2014] [Indexed: 05/18/2023]
Abstract
Golgi-resident type-II membrane proteins are asymmetrically distributed across the Golgi stack. The intrinsic features of the protein that determine its subcompartment-specific concentration are still largely unknown. Here, we used a series of chimeric proteins to investigate the contribution of the cytoplasmic, transmembrane and stem region of Nicotiana benthamiana N-acetylglucosaminyltransferase I (GnTI) for its cis/medial-Golgi localization and for protein-protein interaction in the Golgi. The individual GnTI protein domains were replaced with those from the well-known trans-Golgi enzyme α2,6-sialyltransferase (ST) and transiently expressed in Nicotiana benthamiana. Using co-localization analysis and N-glycan profiling, we show that the transmembrane domain of GnTI is the major determinant for its cis/medial-Golgi localization. By contrast, the stem region of GnTI contributes predominately to homomeric and heteromeric protein complex formation. Importantly, in transgenic Arabidopsis thaliana, a chimeric GnTI variant with altered sub-Golgi localization was not able to complement the GnTI-dependent glycosylation defect. Our results suggest that sequence-specific features in the transmembrane domain of GnTI account for its steady-state distribution in the cis/medial-Golgi in plants, which is a prerequisite for efficient N-glycan processing in vivo.
Collapse
Affiliation(s)
- Jennifer Schoberer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesMuthgasse 18, Vienna, 1190, Austria
| | - Eva Liebminger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesMuthgasse 18, Vienna, 1190, Austria
| | - Ulrike Vavra
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesMuthgasse 18, Vienna, 1190, Austria
| | - Christiane Veit
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesMuthgasse 18, Vienna, 1190, Austria
| | - Alexandra Castilho
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesMuthgasse 18, Vienna, 1190, Austria
| | - Martina Dicker
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesMuthgasse 18, Vienna, 1190, Austria
| | - Daniel Maresch
- Department of Chemistry, University of Natural Resources and Life SciencesMuthgasse 18, Vienna, 1190, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life SciencesMuthgasse 18, Vienna, 1190, Austria
| | - Chris Hawes
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes UniversityHeadington, Oxford, OX3 0BP, UK
| | - Stanley W Botchway
- Research Complex at Harwell, Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton LaboratoryHarwell-Oxford, Didcot, OX11 0QX, UK
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesMuthgasse 18, Vienna, 1190, Austria
| |
Collapse
|