51
|
Emerging Single-cell Approaches to Understand HIV in the Central Nervous System. Curr HIV/AIDS Rep 2021; 19:113-120. [PMID: 34822063 PMCID: PMC8613726 DOI: 10.1007/s11904-021-00586-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 11/23/2022]
Abstract
Purpose of Review This review highlights emerging single-cell sequencing methods relevant to translational studies of HIV in the central nervous system (CNS), summarizes limited single-cell studies of HIV in the CNS, and discusses opportunities for future HIV translational CNS studies. Recent Findings Innovative methods utilizing single-cell technologies have advanced the study of genomes, proteomes, transcriptomes, and epigenomes at an enhanced resolution and depth. Single-cell analyses of central nervous system tissue, including autopsy brain and CSF cells, may shed light on CNS perturbations in people living with HIV. New strategies can distinguish distinct molecular identifies of rare infected cells at single-cell level, suggesting an opportunity to uncloak the molecular identity of hidden HIV in the CNS reservoir. Summary Adoption of multimodal “omics” analyses to translational HIV studies and tissue compartments beyond blood will be critical to advancing our understanding of viral establishment, persistence, and eradication.
Collapse
|
52
|
Weichseldorfer M, Affram Y, Heredia A, Rikhtegaran-Tehrani Z, Sajadi MM, Williams SP, Tagaya Y, Benedetti F, Ramadhani HO, Denaro F, Munawwar A, Bryant J, Zella D, Reitz M, Romerio F, Latinovic OS. Combined cART including Tenofovir Disoproxil, Emtricitabine, and Dolutegravir has potent therapeutic effects in HIV-1 infected humanized mice. J Transl Med 2021; 19:453. [PMID: 34717655 PMCID: PMC8557591 DOI: 10.1186/s12967-021-03120-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/16/2021] [Indexed: 01/17/2023] Open
Abstract
HIV-1 reservoirs persist in the presence of combined antiretroviral therapy (cART). However, cART has transformed HIV-1 infection into a chronic disease marked by control of HIV-1 viral load and mortality reduction. Major challenges remain, including viral resistance upon termination of cART and persistence and identification of tissue distribution of HIV-1 reservoirs. Thus, appropriate animal models that best mimic HIV-1 pathogenesis are important, and the current study complements our previously published validation of the CD34+ hematopoietic humanized mouse model for this purpose. Here we analyze viral suppression using the recently developed combination of antiretrovirals that include Tenofovir Disoproxil (TDF), Emtricitabine (FTC), and Dolutegravir (DTG), a choice based on recent clinical outcomes showing its improved antiretroviral potency, CD4+ T cell preservation, tolerability, and prevention of viral drug resistance compared to that of previous regimens. We used quantitative Airyscan-based super resolution confocal microscopy of selected mouse tissues. Our data allowed us to identify specific solid tissue reservoirs of human T cells expressing the HIV-1 core protein p24. In particular, lymph node, brain, spleen, and liver were visualized as reservoirs for residual infected cells. Marked reduction of viral replication was evident. Considering that detection and visualization of cryptic sites of HIV-1 infection in tissues are clearly crucial steps towards HIV-1 eradication, appropriate animal models with pseudo-human immune systems are needed. In fact, current studies with humans and non-human primates have limited sample availability at multiple stages of infection and cannot easily analyze the effects of differently administered combined antiretroviral treatments on multiple tissues. That is easier to manage when working with humanized mouse models, although we realize the limitations due to low human cell recovery and thus the number of cells available for thorough and comprehensive analyses. Nonetheless, our data further confirm that the CD34+ humanized mouse model is a potentially useful pre-clinical model to study and improve current anti-HIV-1 therapies.
Collapse
Affiliation(s)
- Matthew Weichseldorfer
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Yvonne Affram
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.,Department of Microbial Pathogenesis and Immunology, University of Texas A and M Health Science Center, Bryan, TX, 77843, USA
| | - Alonso Heredia
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.,Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | | | - Mohammad M Sajadi
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.,Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Sumiko P Williams
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Yutaka Tagaya
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.,Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Francesca Benedetti
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.,Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Habib O Ramadhani
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Frank Denaro
- Morgan State University, College of Bio Sciences, Baltimore, MD, 21011, USA
| | - Arshi Munawwar
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Joseph Bryant
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Davide Zella
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.,Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Marvin Reitz
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Fabio Romerio
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.,Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21201, USA
| | - Olga S Latinovic
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA. .,Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
53
|
Weichseldorfer M, Reitz M, Latinovic OS. Past HIV-1 Medications and the Current Status of Combined Antiretroviral Therapy Options for HIV-1 Patients. Pharmaceutics 2021; 13:pharmaceutics13111798. [PMID: 34834213 PMCID: PMC8621549 DOI: 10.3390/pharmaceutics13111798] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/27/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
Combined antiretroviral therapy (cART) is treatment with a combination of several antiretroviral drugs that block multiple stages in the virus replication cycle. An estimated 60% of the 38 million HIV-1 patients globally receive some form of cART. The benefits of cART for controlling HIV-1 replication, transmission, and infection rates have led to its universal recommendation. Implementation has caused a substantial reduction in morbidity and mortality of persons living with HIV-1/AIDS (PLWHA). More specifically, standard cART has provided controlled, undetectable levels of viremia, high treatment efficacy, reduction in pill burden, and an improved lifestyle in HIV-1 patients overall. However, HIV-1 patients living with AIDS (HPLA) generally show high viral loads upon cART interruption. Latently infected resting CD4+ T cells remain a major barrier to curing infected patients on long-term cART. There is a critical need for more effective compounds and therapies that not only potently reactivate latently infected cells, but also lead to the death of these reactivated cells. Efforts are ongoing to better control ongoing viral propagation, including the identification of appropriate animal models that best mimic HIV-1 pathogenesis, before proceeding with clinical trials. Limited toxicity profiles, improved drug penetration to certain tissues, and extended-release formulations are needed to cover gaps in existing HIV-1 treatment options. This review will cover past, current, and new cART strategies recently approved or in ongoing development.
Collapse
Affiliation(s)
- Matthew Weichseldorfer
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
| | - Marvin Reitz
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
| | - Olga S. Latinovic
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Correspondence:
| |
Collapse
|
54
|
Yang X, Huang T, Wang T, Gao H, Zhang H, Peng W, Zhao J, Hu S, Lu P, Hong Z, Li B, Deng K. MAT2A-Mediated S-Adenosylmethionine Level in CD4 + T Cells Regulates HIV-1 Latent Infection. Front Immunol 2021; 12:745784. [PMID: 34616406 PMCID: PMC8488394 DOI: 10.3389/fimmu.2021.745784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/26/2021] [Indexed: 12/02/2022] Open
Abstract
Antiretroviral drugs effectively halt HIV-1 replication and disease progression, however, due to the presence of a stable viral latent reservoir, the infection cannot be cured by antiretroviral drugs alone. Elucidating the molecular mechanisms underlying HIV-1 latent infection remains a critical hurdle that precludes the development of novel therapeutic strategies aiming for a potential functional cure. Cellular metabolism has been reported to affect HIV-1 replication in CD4+ T cells, but it remains largely unclear whether it is involved in the regulation of HIV-1 latency. Here, we performed a sub-pooled CRISPR library knockout screen targeting 1773 metabolic-related genes in a cell model of HIV-1 latent infection and found that Methionine Adenosyltransferase 2A (MAT2A) contributes to HIV-1 latency. MAT2A knockout enhanced the reactivation of latent HIV-1 while MAT2A overexpression did the opposite. Mechanistically, MAT2A modulates HIV-1 latency through S-Adenosylmethionine (SAM)-mediated one-carbon flux. MAT2A knockout resulted in a significant downregulation of DNA and histone methylation at the HIV-1 5’-LTR. Importantly, we found that the plasma level of SAM is positively correlated with HIV-1 DNA in PBMCs from ART-treated infected individuals, suggesting SAM could serve as a potential biomarker for the latent viral reservoir. Overall, this study reveals an important role of MAT2A-mediated one-carbon metabolism in regulating HIV-1 latency and provides a promising target for the development of new strategies for a functional cure of HIV-1.
Collapse
Affiliation(s)
- Xiaofan Yang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ting Huang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Tiantian Wang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hongbo Gao
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haitao Zhang
- Department of Infectious Diseases, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Wen Peng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiacong Zhao
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shujing Hu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Panpan Lu
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zhongsi Hong
- Department of Infectious Diseases, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Bo Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kai Deng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
55
|
Oti VB. Nanoparticles and Its Implications in HIV/AIDS Therapy. Curr Drug Discov Technol 2021; 17:448-456. [PMID: 31250759 DOI: 10.2174/1570163816666190620111652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/15/2019] [Accepted: 03/28/2019] [Indexed: 01/10/2023]
Abstract
The use of Antiretroviral drugs in treating HIV/ AIDS patients has enormously increased their life spans with serious disadvantages. The virus infection still remains a public health problem worldwide with no cure and vaccine for the viral agent until now. The use of nanoparticles (NPs) for the treatment and prevention of HIV/AIDS is an emerging technology of the 21st century. NPs are solid and colloid particles with 10 nm to <1000 nm size range; although, less than 200 nm is the recommended size for nanomedical usage. There are NPs with therapeutic capabilities such as liposomes, micelles, dendrimers and nanocapsules. The particle enters the body mainly via oral intake, direct injection and inhalation. It has been proven to have potentials of advancing the prevention and treatment of the viral agent. Certain NPs have been shown to have selftherapeutic activity for the virus in vitro. Strategies that are novel are emerging which can be used to improve nanotechnology, such as genetic treatment and immunotherapy. In this review, nanoparticles, the types and its characteristics in drug delivery were discussed. The light was furthermore shed on its implications in the prevention and treatment of HIV/AIDS.
Collapse
Affiliation(s)
- Victor B Oti
- Department of Microbiology, Nasarawa State University, PMB 1022, Keffi, Nigeria
| |
Collapse
|
56
|
Barabona G, Mahiti M, Toyoda M, Kamori D, Masoud S, Judicate GP, Sunguya B, Lyamuya E, Ueno T. Advanced baseline immunosuppression is associated with elevated levels of plasma markers of fungal translocation and inflammation in long-term treated HIV-infected Tanzanians. AIDS Res Ther 2021; 18:55. [PMID: 34446039 PMCID: PMC8394626 DOI: 10.1186/s12981-021-00381-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/17/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND For over a decade, antiretroviral therapy (ART) in resource-limited countries was only recommended for patients with advanced HIV disease. We investigated this group of patients in order to determine any relationship between degree of immunosuppression during treatment initiation and the subsequent levels of inflammatory biomarkers, reservoir size and plasma marker of fungal translocation after achieving long-term virological control. METHODS We analyzed 115 virally suppressed (female 83.5%) and 40 untreated (female 70%) subjects from Dar es Salaam, Tanzania. The size of HIV latent reservoir (proviral DNA copy) was determined using quantitative PCR. Inflammatory biomarkers; IL-6, IL-10, and soluble CD14 (sCD14), were measured using multiplex cytometric beads array. Antibody titers for Cytomegalovirus (CMV) and Epstein Barr virus (EBV), plasma level of 1-3-beta-D-Glucan (BDG) was measured using ELISA. High-sensitivity C-reactive protein (hsCRP) was measured using nephelometric method. RESULTS The median age was 36 (IQR 32-44) and 47 (IQR 43-54) years in untreated and virally suppressed patients respectively. Median duration of treatment for virally suppressed patients was 9 years (IQR 7-12) and median baseline CD4 count was 147 cells/mm3 (IQR 65-217). Virally suppressed patients were associated with significantly lower plasma levels of IL-10, sCD14 and BDG (P < 0.05) when compared to untreated patients. However, plasma level of IL-6 was similar between the groups. Baseline advanced level of immunosuppression (CD4 < 100cells/cm3) was associated with significantly higher plasma level of IL-6 (P = 0.02), hsCRP (P = 0.036) and BDG (P = 0.0107). This relationship was not seen in plasma levels of other tested markers. Degree of baseline immunosuppression was not associated with the subsequent proviral DNA copy. In addition, plasma levels of inflammatory marker were not associated with sex, CMV or EBV antibody titers, treatment duration or regimen. CONCLUSIONS Our data suggest that advanced immunosuppression at ART initiation is associated with severity of inflammation and elevated fungal translocation marker despite long term virological control. Further studies are needed to evaluate the potential increased burden of non-AIDS comorbidities that are linked to elevated inflammatory and fungal translocation markers as a result of the policy of HIV treatment at CD4 count < 200 cells/cm3 implemented for over a decade in Tanzania.
Collapse
Affiliation(s)
- Godfrey Barabona
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Chuo-ku, Honjo, Kumamoto, 860-0811, Japan
| | - Macdonald Mahiti
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Mako Toyoda
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Chuo-ku, Honjo, Kumamoto, 860-0811, Japan
| | - Doreen Kamori
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Salim Masoud
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - George P Judicate
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Chuo-ku, Honjo, Kumamoto, 860-0811, Japan
| | - Bruno Sunguya
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Chuo-ku, Honjo, Kumamoto, 860-0811, Japan
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Eligius Lyamuya
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Chuo-ku, Honjo, Kumamoto, 860-0811, Japan
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Takamasa Ueno
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Chuo-ku, Honjo, Kumamoto, 860-0811, Japan.
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
| |
Collapse
|
57
|
Quijia CR, Alves RC, Hanck-Silva G, Galvão Frem RC, Arroyos G, Chorilli M. Metal-organic frameworks for diagnosis and therapy of infectious diseases. Crit Rev Microbiol 2021; 48:161-196. [PMID: 34432563 DOI: 10.1080/1040841x.2021.1950120] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Infectious diseases are one of the leading cause of mortality and morbidity worldwide. Metal-Organic Frameworks (MOFs), which are porous coordination materials composed of bridging organic ligands and metallic ions or clusters, exhibits great potential to be used against several pathogens, such as bacteria, viruses, fungi and protozoa. MOFs can show sustained release capability, high surface area, adjustable pore size and structural flexibility, which makes them good candidates for new therapeutic systems. This review provides a detailed summary of the biological application of MOFs, focussing on diagnosis and treatment of infectious diseases. MOFs have been reported for usage as antimicrobial agents, drug delivery systems, therapeutic composites, nanozymes and phototherapies. Furthermore, different MOF-based biosensors have also been developed to detect specific pathogens by electrochemical, fluorometric and colorimetric assays. Finally, we present limitations and perspectives in this field.
Collapse
Affiliation(s)
| | - Renata Carolina Alves
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Araraquara, Brazil
| | - Gilmar Hanck-Silva
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Araraquara, Brazil
| | | | - Guilherme Arroyos
- Institute of Chemistry, São Paulo State University, UNESP, Araraquara, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University, UNESP, Araraquara, Brazil
| |
Collapse
|
58
|
Chen CJ, Chiu ML, Hung CH, Liang WM, Ho MW, Lin TH, Liu X, Tsang H, Liao CC, Huang SM, Wu YF, Wu YC, Li TM, Tsai FJ, Lin YJ. Effect of Xanthium Strumarium on HIV-1 5'-LTR Transcriptional Activity and Viral Reactivation in Latently Infected Cells. Front Pharmacol 2021; 12:720821. [PMID: 34421615 PMCID: PMC8378250 DOI: 10.3389/fphar.2021.720821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Chinese herbal medicines (CHMs) are widely used in Asian countries. They show multiple pharmacological activities, including antiviral activities. The 5'-long terminal repeat (LTR) region of HIV-1, required for viral transcription, is a potential drug target for HIV-1 reactivation and intrinsic cell death induction of infected or latently infected cells. Modulation of HIV-1 reactivation requires interactions between host cell proteins and viral 5'-LTR elements. By evaluation of two CHMs- Xanthium strumarium and Pueraria montana, we found that 1) X. strumarium reactivated HIV-1 latently infected cells in J-Lat 8.4, J-Lat 9.2, U1, and ACH-2 cells in vitro; 2) 27 nuclear regulatory proteins were associated with HIV-1 5'-LTR using deoxyribonucleic acid affinity pull-down and LC-MS/MS analyses; and 3) among them, silencing of XRCC6 reactivated HIV-1 5'-LTR transcriptional activity. We found that X. strumarium inhibits the 5'-LTR associated XRCC6 nuclear regulatory proteins, increases its viral 5'-LTR promoter transcriptional activity, and reactivates HIV-1 latently infected cells in vitro. These findings may contribute to understanding the 5'-LTR activity and the host cell nuclear regulatory protein machinery for reactivating HIV-1 and for future investigations to eradicate and cure HIV-1 infection.
Collapse
Affiliation(s)
- Chao-Jung Chen
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Mu-Lin Chiu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chien-Hui Hung
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan, Taiwan.,Division of Infectious Diseases, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan
| | - Wen-Miin Liang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Mao-Wang Ho
- Section of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.,Department of Internal Medicine, School of Medicine, China Medical University, Taichung, Taiwan
| | - Ting-Hsu Lin
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Xiang Liu
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Hsinyi Tsang
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Chiu-Chu Liao
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Fang Wu
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.,Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Ying-Ju Lin
- Genetic Center, Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
59
|
Liu J, Ma L, Song C, Xing H, Cen S, Lin W. Anti-HIV Effects of Baculiferins Are Regulated by the Potential Target Protein DARS. ACS Chem Biol 2021; 16:1377-1389. [PMID: 34338505 DOI: 10.1021/acschembio.1c00148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Baculiferins are a group of marine sponge-derived polycyclic alkaloids with anti-HIV (human immunodeficiency virus) activities. To identify additional baculiferin-based congeners for SAR analysis and to investigate the mode of action, a total of 18 new baculiferin-type derivatives were synthesized. The inhibitory activities of the congeners against the HIV-1 virus were evaluated in vitro, and the relevant SAR was discussed. Compound 18 exerted the most potent activity toward VSV-G-pseudotyped HIV-1 (IC50 of 3.44 μM) and HIV-1 strain SF33 (IC50 of 2.80 μM) in vitro. To identify the cellular targets, three photoaffinity baculiferin probes were simultaneously synthesized. Photoaffinity labeling experiments together with LC-MS/MS data identified aspartate-tRNA ligase (DARS) as a putative target protein of 18. The overexpression and knockdown of DARS in HEK293T cells provided additional data to demonstrate that DARS is a potential target protein in the regulation of HIV virus infection. The modes of antiviral baculiferins 13 and 18 binding to DARS were determined by a molecular docking simulation. Thus, baculiferin 18 is considered a promising lead as a new molecular target for the development of anti-HIV agents.
Collapse
Affiliation(s)
- Jianrong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Ocean Research, Ningbo Institute of Marine Medicine, Peking University, Beijing, People’s Republic of China
| | - Ling Ma
- Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Chang Song
- Division of Virology and Immunology National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Hui Xing
- Division of Virology and Immunology National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Shan Cen
- Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Ocean Research, Ningbo Institute of Marine Medicine, Peking University, Beijing, People’s Republic of China
| |
Collapse
|
60
|
Monitoring reactivation of latent HIV by label-free gradient light interference microscopy. iScience 2021; 24:102940. [PMID: 34430819 PMCID: PMC8367845 DOI: 10.1016/j.isci.2021.102940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/24/2021] [Accepted: 07/30/2021] [Indexed: 11/23/2022] Open
Abstract
Human immunodeficiency virus (HIV) can infect cells and take a quiescent and nonexpressive state called latency. In this study, we report insights provided by label-free, gradient light interference microscopy (GLIM) about the changes in dry mass, diameter, and dry mass density associated with infected cells that occur upon reactivation. We discovered that the mean cell dry mass and mean diameter of latently infected cells treated with reactivating drug, TNF-α, are higher for latent cells that reactivate than those of the cells that did not reactivate. Cells with mean dry mass and diameter less than approximately 10 pg and 8 μm, respectively, remain exclusively in the latent state. Also, cells with mean dry mass greater than approximately 28-30 pg and mean diameter greater than 11–12 μm have a higher probability of reactivating. This study is significant as it presents a new label-free approach to quantify latent reactivation of a virus in single cells. GLIM imaging reveals differences between latent and reactivated HIV in JLat cells Cells with reactivated HIV have higher dry mass and diameter
Collapse
|
61
|
Mehta K, Gohil Y, Mishra S, D’silva A, Amanullah A, Selvam D, Pargain N, Nala N, Sanjeeva GN, Ranga U. An Improved Tat/Rev Induced Limiting Dilution Assay With Enhanced Sensitivity and Breadth of Detection. Front Immunol 2021; 12:715644. [PMID: 34421920 PMCID: PMC8375296 DOI: 10.3389/fimmu.2021.715644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/20/2021] [Indexed: 12/03/2022] Open
Abstract
Tat/Rev Induced Limiting Dilution Assay (TILDA) is instrumental in estimating the size of latent reservoirs of HIV-1. Here, we report an optimized TILDA containing a broader detection range compared to the reported methods and high sensitivity. Giving priority to sequence conservation, we positioned the two forward primers and the probe in exon-1 of HIV-1. The reverse primers are positioned in highly conserved regions of exon-7. The optimized TILDA detected eight molecular clones belonging to five major genetic subtypes of HIV-1 with a comparable detection sensitivity. Using the optimized assay, we show that only a minor proportion of CD4+ T cells of primary clinical samples can spontaneously generate multiply spliced viral transcripts. A significantly larger proportion of the cells produced viral transcripts following activation. The optimized TILDA is suitable to characterize HIV-1 latent reservoirs and the therapeutic strategies intended to target the reservoir size.
Collapse
Affiliation(s)
- Kavita Mehta
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Yuvrajsinh Gohil
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Swarnima Mishra
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Anish D’silva
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Afzal Amanullah
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Deepak Selvam
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Neelam Pargain
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Narendra Nala
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - G. N. Sanjeeva
- Department of Pediatric Genetics, Indira Gandhi Institute of Child Health, Bengaluru, India
| | - Udaykumar Ranga
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
62
|
Mucosal Priming with a Recombinant Influenza A Virus-Vectored Vaccine Elicits T-Cell and Antibody Responses to HIV-1 in Mice. J Virol 2021; 95:JVI.00059-21. [PMID: 33789991 DOI: 10.1128/jvi.00059-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/21/2021] [Indexed: 12/11/2022] Open
Abstract
Recombinant influenza A viral (IAV) vectors are potential to stimulate systemic and mucosal immunity, but the packaging capacity is limited and only one or a few epitopes can be carried. Here, we report the generation of a replication-competent IAV vector that carries a full-length HIV-1 p24 gene linked to the 5'-terminal coding region of the neuraminidase segment via a protease cleavage sequence (IAV-p24). IAV-p24 was successfully rescued and stably propagated, and P24 protein was efficiently expressed in infected mammalian cells. In BALB/c mice, IAV-p24 showed attenuated pathogenicity compared to that of the parental A/PR/8/34 (H1N1) virus. An intranasal inoculation with IAV-p24 elicited moderate HIV-specific cell-mediated immune (CMI) responses in the airway and vaginal tracts and in the spleen, and an intranasal boost with a replication-incompetent adenovirus type 2 vector expressing the HIV-1 gag gene (Ad2-gag) greatly improved these responses. Importantly, compared to an Ad2-gag prime plus IAV-p24 boost regimen, the IAV-p24 prime plus Ad2-gag boost regimen had a greater efficacy in eliciting HIV-specific CMI responses. P24-specific CD8+ T cells and antibodies were robustly provoked both systemically and in mucosal sites and showed long-term durability, revealing that IAV-p24 may be used as a mucosa-targeted priming vaccine. Our results illustrate that IAV-p24 is able to prime systemic and mucosal immunity against HIV-1 and warrants further evaluation in nonhuman primates.IMPORTANCE An effective HIV-1 vaccine remains elusive despite nearly 40 years of research. CD8+ T cells and protective antibodies may both be desirable for preventing HIV-1 infection in susceptible mucosal sites. Recombinant influenza A virus (IAV) vector has the potential to stimulate these immune responses, but the packaging capacity is extremely limited. Here, we describe a replication-competent IAV vector expressing the HIV-1 p24 gene (IAV-p24). Unlike most other IAV vectors that carried one or several antigenic epitopes, IAV-p24 stably expressed the full-length P24 protein, which contains multiple epitopes and is highly conserved among all known HIV-1 sequences. Compared to the parental A/PR/8/34 (H1N1) virus, IAV-p24 showed an attenuated pathogenicity in BALB/c mice. When combined with an adenovirus vector expressing the HIV-1 gag gene, IAV-p24 was able to prime P24-specific systemic and mucosal immune responses. IAV-p24 as an alternative priming vaccine against HIV-1 warrants further evaluation in nonhuman primates.
Collapse
|
63
|
Gao H, Ozantürk AN, Wang Q, Harlan GH, Schmitz AJ, Presti RM, Deng K, Shan L. Evaluation of HIV-1 latency reversal and antibody-dependent viral clearance by quantification of singly spliced HIV-1 vpu/ env mRNA. J Virol 2021; 95:JVI.02124-20. [PMID: 33762408 PMCID: PMC8139706 DOI: 10.1128/jvi.02124-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/13/2021] [Indexed: 11/20/2022] Open
Abstract
The latent reservoir of HIV-1 is a major barrier for viral eradication. Potent HIV-1 broadly neutralizing antibodies (bNabs) have been used to prevent and treat HIV-1 infections in animal models and clinical trials. Combination of bNabs and latency-reversing agents (LRAs) is considered a promising approach for HIV-1 eradication. PCR-based assays that can rapidly and specifically measure singly spliced HIV-1 vpu/env mRNA are needed to evaluate the induction of the viral envelope production at the transcription level and bNab-mediated reservoir clearance. Here we reported a PCR-based method to accurately quantify the production of intracellular HIV-1 vpu/env mRNA. With the vpu/env assay, we determined the LRA combinations that could effectively induce vpu/env mRNA production in CD4+ T cells from ART-treated individuals. None of the tested LRAs were effective alone. A comparison between the quantitative viral outgrowth assay (Q-VOA) and the vpu/env assay showed that vpu/env mRNA production was closely associated with the reactivation of replication-competent HIV-1, suggesting that vpu/env mRNA was mainly produced by intact viruses. Finally, antibody-mediated in vitro killing in HIV-1-infected humanized mice demonstrated that the vpu/env assay could be used to measure the reduction of infected cells in tissues and was more accurate than the commonly used gag-based PCR assay which measured unspliced viral genomic RNA. In conclusion, the vpu/env assay allows convenient and accurate assessment of HIV-1 latency reversal and bNab-mediated therapeutic strategies.ImportanceHIV-1 persists in individuals on antiretroviral therapy (ART) due to the long-lived cellular reservoirs that contain dormant viruses. Recent discoveries of HIV-1-specific broadly neutralizing antibodies (bNabs) targeting HIV-1 Env protein rekindled the interest in antibody-mediated elimination of latent HIV-1. Latency-reversing agents (LRAs) together with HIV-1 bNabs is a possible strategy to clear residual viral reservoirs, which makes the evaluation of HIV-1 Env expression upon LRA treatment critical. We developed a PCR-based assay to quantify the production of intracellular HIV-1 vpu/env mRNA. Using patient CD4+ T cells, we found that induction of HIV-1 vpu/env mRNA required a combination of different LRAs. Using in vitro, ex vivo and humanized mouse models, we showed that the vpu/env assay could be used to measure antibody efficacy in clearing HIV-1 infection. These results suggest that the vpu/env assay can accurately evaluate HIV-1 reactivation and bNab-based therapeutic interventions.
Collapse
Affiliation(s)
- Hongbo Gao
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ayşe N Ozantürk
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Qiankun Wang
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Gray H Harlan
- Department of Chemistry, Washington University, St Louis, MO, USA
| | - Aaron J Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Rachel M Presti
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kai Deng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Liang Shan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
64
|
Feng Z, Yang Z, Gao X, Xue Y, Wang X. Resveratrol Promotes HIV-1 Tat Accumulation via AKT/FOXO1 Signaling Axis and Potentiates Vorinostat to Antagonize HIV-1 Latency. Curr HIV Res 2021; 19:238-247. [PMID: 33461468 DOI: 10.2174/1570162x19666210118151249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The latent reservoir of HIV-1 is a major barrier to achieving the eradication of HIV-1/AIDS. One strategy is termed "shock and kill", which aims to awaken the latent HIV-1 using latency reversing agents (LRAs) to replicate and produce HIV-1 particles. Subsequently, the host cells containing HIV-1 can be recognized and eliminated by the immune response and anti-retroviral therapy. Although many LRAs have been found and tested, their clinical trials were dissatisfactory. OBJECTIVE To aim of the study was to investigate how resveratrol reactivates silent HIV-1 transcription and assess if resveratrol could be a candidate drug for the "shock" phase in "shock and kill" strategy. METHODS We used established HIV-1 transcription cell models (HeLa-based NH1 and NH2 cells) and HIV-1 latent cell models (J-Lat A72 and Jurkat 2D10 cells). We performed resveratrol treatment on these cell lines and studied the mechanism of how resveratrol stimulates HIV-1 gene transcription. We also tested resveratrol's bioactivity on primary cells isolated from HIV-1 latent infected patients. RESULTS Resveratrol promoted HIV-1 Tat protein levels, and resveratrol-induced Tat promotion was found to be dependent on the AKT/FOXO1 signaling axis. Resveratrol could partially dissociate P-TEFb (Positive Transcription Elongation Factor b) from 7SK snRNP (7SK small nuclear Ribonucleoprotein) and promote Tat-SEC (Super Elongation Complex) interaction. Preclinical studies showed that resveratrol potentiated Vorinostat to awaken HIV-1 latency in HIV-1 latent infected cells isolated from patients. CONCLUSION We found a new mechanism of resveratrol stimulating the production of HIV-1. Resveratrol could be a promising candidate drug to eradicate HIV-1 reservoirs.
Collapse
Affiliation(s)
- Zeming Feng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Zhengrong Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiang Gao
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yuhua Xue
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaohui Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
65
|
Combinatorial Use of Both Epigenetic and Non-Epigenetic Mechanisms to Efficiently Reactivate HIV Latency. Int J Mol Sci 2021; 22:ijms22073697. [PMID: 33918134 PMCID: PMC8036438 DOI: 10.3390/ijms22073697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/30/2022] Open
Abstract
The persistence of latent HIV provirus pools in different resting CD4+ cell subsets remains the greatest obstacle in the current efforts to treat and cure HIV infection. Recent efforts to purge out latently infected memory CD4+ T-cells using latency-reversing agents have failed in clinical trials. This review discusses the epigenetic and non-epigenetic mechanisms of HIV latency control, major limitations of the current approaches of using latency-reversing agents to reactivate HIV latency in resting CD4+ T-cells, and potential solutions to these limitations.
Collapse
|
66
|
Lai A, Giacomet V, Bergna A, Zuccotti GV, Zehender G, Clerici M, Trabattoni D, Fenizia C. Early-Transmitted Variants and Their Evolution in a HIV-1 Positive Couple: NGS and Phylogenetic Analyses. Viruses 2021; 13:v13030513. [PMID: 33808903 PMCID: PMC8003824 DOI: 10.3390/v13030513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/05/2022] Open
Abstract
We had access to both components of a couple who became infected with human immunodeficiency virus (HIV)-1 through sexual behavior during the early initial phase of infection and before initiation of therapy. We analyzed blood samples obtained at the time of diagnosis and after six months of combined antiretroviral therapy. Next-generation sequencing (NGS) and phylogenetic analyses were used to investigate the transmission and evolution of HIV-1 quasispecies. Phylogenetic analyses were conducted using Bayesian inference methods. Both partners were infected with an HIV-1 B subtype. No evidence of viral recombination was observed. The lowest intrapersonal genetic distances were observed at baseline, before initiation of therapy, and in particular in the V1V2 fragment (distances ranging from 0.102 to 0.148). One HIV-1 single variant was concluded to be dominant in all of the HIV-1 regions analyzed, although some minor variants could be observed. The same tree structure was observed both at baseline and after six months of therapy. These are the first extended phylogenetic analyses performed on both members of a therapy-naïve couple within a few weeks of infection, and in which the effect of antiretroviral therapy on viral evolution was analyzed. Understanding which HIV-1 variants are most likely to be transmitted would allow a better understanding of viral evolution, possibly playing a role in vaccine design and prevention strategies.
Collapse
Affiliation(s)
- Alessia Lai
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy; (A.L.); (A.B.); (G.Z.); (D.T.)
| | - Vania Giacomet
- Clinic of Pediatrics, ASST Fatebenefratelli-Sacco, Sacco Clinical Sciences Institute, Via G.B. Grassi 74, 20157 Milan, Italy; (V.G.); (G.V.Z.)
| | - Annalisa Bergna
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy; (A.L.); (A.B.); (G.Z.); (D.T.)
| | - Gian Vincenzo Zuccotti
- Clinic of Pediatrics, ASST Fatebenefratelli-Sacco, Sacco Clinical Sciences Institute, Via G.B. Grassi 74, 20157 Milan, Italy; (V.G.); (G.V.Z.)
| | - Gianguglielmo Zehender
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy; (A.L.); (A.B.); (G.Z.); (D.T.)
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Via F. Sforza 35, 20122 Milan, Italy;
- IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148 Milan, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy; (A.L.); (A.B.); (G.Z.); (D.T.)
| | - Claudio Fenizia
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy; (A.L.); (A.B.); (G.Z.); (D.T.)
- Department of Pathophysiology and Transplantation, University of Milan, Via F. Sforza 35, 20122 Milan, Italy;
- Correspondence: ; Tel.: +39-02-5031-9679; Fax: +39-02-5031-9677
| |
Collapse
|
67
|
Wang Q, Gao H, Clark KM, Mugisha CS, Davis K, Tang JP, Harlan GH, DeSelm CJ, Presti RM, Kutluay SB, Shan L. CARD8 is an inflammasome sensor for HIV-1 protease activity. Science 2021; 371:eabe1707. [PMID: 33542150 PMCID: PMC8029496 DOI: 10.1126/science.abe1707] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022]
Abstract
HIV-1 has high mutation rates and exists as mutant swarms within the host. Rapid evolution of HIV-1 allows the virus to outpace the host immune system, leading to viral persistence. Approaches to targeting immutable components are needed to clear HIV-1 infection. Here, we report that the caspase recruitment domain-containing protein 8 (CARD8) inflammasome senses HIV-1 protease activity. HIV-1 can evade CARD8 sensing because its protease remains inactive in infected cells before viral budding. Premature intracellular activation of the viral protease triggered CARD8 inflammasome-mediated pyroptosis of HIV-1-infected cells. This strategy led to the clearance of latent HIV-1 in patient CD4+ T cells after viral reactivation. Thus, our study identifies CARD8 as an inflammasome sensor of HIV-1, which holds promise as a strategy for the clearance of persistent HIV-1 infection.
Collapse
Affiliation(s)
- Qiankun Wang
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hongbo Gao
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kolin M Clark
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Christian Shema Mugisha
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Keanu Davis
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jack P Tang
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Gray H Harlan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Carl J DeSelm
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA
| | - Rachel M Presti
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Sebla B Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Liang Shan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
68
|
Matsuda K, Kobayakawa T, Kariya R, Tsuchiya K, Ryu S, Tsuji K, Ishii T, Gatanaga H, Yoshimura K, Okada S, Hamada A, Mitsuya H, Tamamura H, Maeda K. A Therapeutic Strategy to Combat HIV-1 Latently Infected Cells With a Combination of Latency-Reversing Agents Containing DAG-Lactone PKC Activators. Front Microbiol 2021; 12:636276. [PMID: 33815322 PMCID: PMC8010149 DOI: 10.3389/fmicb.2021.636276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
Advances in antiviral therapy have dramatically improved the therapeutic effects on HIV type 1 (HIV-1) infection. However, even with potent combined antiretroviral therapy, HIV-1 latently infected cells cannot be fully eradicated. Latency-reversing agents (LRAs) are considered a potential tool for eliminating such cells; however, recent in vitro and in vivo studies have raised serious concerns regarding the efficacy and safety of the "shock and kill" strategy using LRAs. In the present study, we examined the activity and safety of a panel of protein kinase C (PKC) activators with a diacylglycerol (DAG)-lactone structure that mimics DAG, an endogenous ligand for PKC isozymes. YSE028, a DAG-lactone derivative, reversed HIV-1 latency in vitro when tested using HIV-1 latently infected cells (e.g., ACH2 and J-Lat cells) and primary cells from HIV-1-infected individuals. The activity of YSE028 in reversing HIV-1 latency was synergistically enhanced when combined with JQ1, a bromodomain and extra-terminal inhibitor LRA. DAG-lactone PKC activators also induced caspase-mediated apoptosis, specifically in HIV-1 latently infected cells. In addition, these DAG-lactone PKC activators showed minimal toxicity in vitro and in vivo. These data suggest that DAG-lactone PKC activators may serve as potential candidates for combination therapy against HIV-1 latently infected cells, especially when combined with other LRAs with a different mechanism, to minimize side effects and achieve maximum efficacy in various reservoir cells of the whole body.
Collapse
Affiliation(s)
- Kouki Matsuda
- National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Bunkyō, Japan
| | - Ryusho Kariya
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kiyoto Tsuchiya
- AIDS Clinical Center, National Center for Global Health and Medicine, Shinjuku, Japan
| | - Shoraku Ryu
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Bunkyō, Japan
| | - Takahiro Ishii
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Bunkyō, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine, Shinjuku, Japan
| | - Kazuhisa Yoshimura
- AIDS Research Centre, National Institute of Infectious Diseases, Tokyo, Japan
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Akinobu Hamada
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroaki Mitsuya
- National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Bunkyō, Japan
| | - Kenji Maeda
- National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| |
Collapse
|
69
|
Lu Y, Singh H, Singh A, Dar RD. A transient heritable memory regulates HIV reactivation from latency. iScience 2021; 24:102291. [PMID: 33889814 PMCID: PMC8050369 DOI: 10.1016/j.isci.2021.102291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/04/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Reactivation of human immunodeficiency virus 1 (HIV-1) from latently infected T cells is a critical barrier to cure patients. It remains unknown whether reactivation of individual latent cells occurs stochastically in response to latency reversal agents (LRAs) or is a deterministic outcome of an underlying cell state. To characterize these single-cell responses, we leverage the classical Luria-Delbrück fluctuation test where single cells are isolated from a clonal population and exposed to LRAs after colony expansion. Data show considerable colony-to-colony fluctuations with the fraction of reactivating cells following a skewed distribution. Modeling systematic measurements of fluctuations over time uncovers a transient heritable memory that regulates HIV-1 reactivation, where single cells are in an LRA-responsive state for a few weeks before switching back to an irresponsive state. These results have enormous implications for designing therapies to purge the latent reservoir and further utilize fluctuation-based assays to uncover hidden transient cellular states underlying phenotypic heterogeneity.
Collapse
Affiliation(s)
- Yiyang Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 321 Everitt Laboratory, 1406 West Green Street, Urbana, IL 61801, USA
| | - Harpal Singh
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 321 Everitt Laboratory, 1406 West Green Street, Urbana, IL 61801, USA
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
- Corresponding author
| | - Roy D. Dar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 321 Everitt Laboratory, 1406 West Green Street, Urbana, IL 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
- Corresponding author
| |
Collapse
|
70
|
Bruce JW, Bracken M, Evans E, Sherer N, Ahlquist P. ZBTB2 represses HIV-1 transcription and is regulated by HIV-1 Vpr and cellular DNA damage responses. PLoS Pathog 2021; 17:e1009364. [PMID: 33635925 PMCID: PMC7946322 DOI: 10.1371/journal.ppat.1009364] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 03/10/2021] [Accepted: 02/08/2021] [Indexed: 11/19/2022] Open
Abstract
Previously, we reported that cellular transcription factor ZASC1 facilitates DNA-dependent/RNA-independent recruitment of HIV-1 TAT and the cellular elongation factor P-TEFb to the HIV-1 promoter and is a critical factor in regulating HIV-1 transcriptional elongation (PLoS Path e1003712). Here we report that cellular transcription factor ZBTB2 is a novel repressor of HIV-1 gene expression. ZBTB2 strongly co-immunoprecipitated with ZASC1 and was dramatically relocalized by ZASC1 from the cytoplasm to the nucleus. Mutations abolishing ZASC1/ZBTB2 interaction prevented ZBTB2 nuclear relocalization. We show that ZBTB2-induced repression depends on interaction of cellular histone deacetylases (HDACs) with the ZBTB2 POZ domain. Further, ZASC1 interaction specifically recruited ZBTB2 to the HIV-1 promoter, resulting in histone deacetylation and transcription repression. Depleting ZBTB2 by siRNA knockdown or CRISPR/CAS9 knockout in T cell lines enhanced transcription from HIV-1 vectors lacking Vpr, but not from these vectors expressing Vpr. Since HIV-1 Vpr activates the viral LTR by inducing the ATR kinase/DNA damage response pathway, we investigated ZBTB2 response to Vpr and DNA damaging agents. Expressing Vpr or stimulating the ATR pathway with DNA damaging agents impaired ZASC1’s ability to localize ZBTB2 to the nucleus. Moreover, the effects of DNA damaging agents and Vpr on ZBTB2 localization could be blocked by ATR kinase inhibitors. Critically, Vpr and DNA damaging agents decreased ZBTB2 binding to the HIV-1 promoter and increased promoter histone acetylation. Thus, ZBTB2 is recruited to the HIV-1 promoter by ZASC1 and represses transcription, but ATR pathway activation leads to ZBTB2 removal from the promoter, cytoplasmic sequestration and activation of viral transcription. Together, our data show that ZASC1/ZBTB2 integrate the functions of TAT and Vpr to maximize HIV-1 gene expression. The Human immunodeficiency virus 1 (HIV-1) TAT and VPR proteins, in combination with cellular transcription factors, regulate the switch between transcriptionally active productive infection and the transcriptionally inactive latent state. Previously we reported that ZASC1, a cellular transcription factor linked to multiple squamous cell carcinomas and inherited ataxias, contributes to an RNA-independent, DNA-dependent step in recruiting the TAT/P-TEFb complex that is critical for HIV-1 transcription elongation to the HIV-1 promoter. Here we show ZASC1 interacts with ZBTB2, another cellular transcription factor with strong links to cancer. ZASC1 interaction relocalizes ZBTB2 from the cytoplasm to the HIV-1 promoter in the nucleus where ZBTB2 interacts with cellular HDACs, increases HIV-1 promoter histone deacetylation and represses viral transcription. We show that Vpr-mediated activation of the ATR/DNA damage pathway regulates ZBTB2 relocalization by ZASC1. Thus, the cellular transcription factors ZASC1 and ZBTB2 regulate the transcription elongation activities of HIV-1 TAT and the Vpr activation of the cellular DNA damage response pathway to determine the transcriptional fate of the HIV-1 provirus. These results also have strong implications for the role of ZASC1/ZBTB2 and the DNA damage response in cancer and inherited ataxias.
Collapse
Affiliation(s)
- James W. Bruce
- Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin, Madison, Wisconsin, United States of America
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, United States of America
- Howard Hughes Medical Institute, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Megan Bracken
- Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin, Madison, Wisconsin, United States of America
- Howard Hughes Medical Institute, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Edward Evans
- Institute for Molecular Virology, University of Wisconsin, Madison, Wisconsin, United States of America
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, United States of America
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Nathan Sherer
- Institute for Molecular Virology, University of Wisconsin, Madison, Wisconsin, United States of America
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Paul Ahlquist
- Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Institute for Molecular Virology, University of Wisconsin, Madison, Wisconsin, United States of America
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin, United States of America
- Howard Hughes Medical Institute, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
71
|
Wang X, Xu H. Residual Proviral Reservoirs: A High Risk for HIV Persistence and Driving Forces for Viral Rebound after Analytical Treatment Interruption. Viruses 2021; 13:335. [PMID: 33670027 PMCID: PMC7926539 DOI: 10.3390/v13020335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Antiretroviral therapy (ART) has dramatically suppressed human immunodeficiency virus (HIV) replication and become undetectable viremia. However, a small number of residual replication-competent HIV proviruses can still persist in a latent state even with lifelong ART, fueling viral rebound in HIV-infected patient subjects after treatment interruption. Therefore, the proviral reservoirs distributed in tissues in the body represent a major obstacle to a cure for HIV infection. Given unavailable HIV vaccine and a failure to eradicate HIV proviral reservoirs by current treatment, it is crucial to develop new therapeutic strategies to eliminate proviral reservoirs for ART-free HIV remission (functional cure), including a sterilizing cure (eradication of HIV reservoirs). This review highlights recent advances in the establishment and persistence of HIV proviral reservoirs, their detection, and potential eradication strategies.
Collapse
Affiliation(s)
| | - Huanbin Xu
- Tulane National Primate Research Center, Division of Comparative Pathology, Tulane University School of Medicine, 18703 Three Rivers Road, Covington, LA 70433, USA;
| |
Collapse
|
72
|
Muheem A, Baboota S, Ali J. An in-depth analysis of novel combinatorial drug therapy via nanocarriers against HIV/AIDS infection and their clinical perspectives: a systematic review. Expert Opin Drug Deliv 2021; 18:1025-1046. [PMID: 33460332 DOI: 10.1080/17425247.2021.1876660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Conventional antiretroviral therapy against HIV infections is threatening to become outdated due to the low chemical, physical, biological, and pharmacokinetic characteristics of therapeutic molecules, followed by the high chance of emergence of drug resistance. Considering the co-encapsulation of multi-infection agents in a single nanocarrier is emerging to offer various benefits such as synergistic action, improved therapeutic efficacy, reduced drug resistance development, patient compliance, and economical therapy.Areas covered: A systematic review of nano-based combinatorial drug therapy was performed using various databases including Scopus, PubMed, Google Scholar, and Science Direct between 2000 and 2020. The search set was screened as per the inclusion and exclusion criteria, followed by 46 scientific articles and seven clinical studies selected for in-depth analysis.Expert opinion: There has been an immense effort to analyze the mechanism of HIV infection to develop a promising therapeutic approach, although the aim of complete prevention has not been succeeded yet. The key finding is to overcome the challenges associated with conventional therapy by the combinatorial drug in a single nanoformulation, which holds great potential for impact in the management of HIV infection.
Collapse
Affiliation(s)
- Abdul Muheem
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi India
| |
Collapse
|
73
|
Devadoss D, Singh SP, Acharya A, Do KC, Periyasamy P, Manevski M, Mishra N, Tellez CS, Ramakrishnan S, Belinsky SA, Byrareddy SN, Buch S, Chand HS, Sopori M. HIV-1 Productively Infects and Integrates in Bronchial Epithelial Cells. Front Cell Infect Microbiol 2021; 10:612360. [PMID: 33614527 PMCID: PMC7890076 DOI: 10.3389/fcimb.2020.612360] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The role of lung epithelial cells in HIV-1-related lung comorbidities remains unclear, and the major hurdle in curing HIV is the persistence of latent HIV reservoirs in people living with HIV (PLWH). The advent of combined antiretroviral therapy has considerably increased the life span; however, the incidence of chronic lung diseases is significantly higher among PLWH. Lung epithelial cells orchestrate the respiratory immune responses and whether these cells are productively infected by HIV-1 is debatable. METHODS Normal human bronchial epithelial cells (NHBEs) grown on air-liquid interface were infected with X4-tropic HIV-1LAV and examined for latency using latency-reversing agents (LRAs). The role of CD4 and CXCR4 HIV coreceptors in NHBEs were tested, and DNA sequencing analysis was used to analyze the genomic integration of HIV proviral genes, Alu-HIVgag-pol, HIV-nef, and HIV-LTR. Lung epithelial sections from HIV-infected humans and SHIV-infected macaques were analyzed by FISH for HIV-gag-pol RNA and epithelial cell-specific immunostaining. RESULTS AND DISCUSSION NHBEs express CD4 and CXCR4 at higher levels than A549 cells. NHBEs are infected with HIV-1 basolaterally, but not apically, by X4-tropic HIV-1LAV in a CXCR4/CD4-dependent manner leading to HIV-p24 antigen production; however, NHBEs are induced to express CCR5 by IL-13 treatment. In the presence of cART, HIV-1 induces latency and integration of HIV provirus in the cellular DNA, which is rescued by the LRAs (endotoxin/vorinostat). Furthermore, lung epithelial cells from HIV-infected humans and SHIV-infected macaques contain HIV-specific RNA transcripts. Thus, lung epithelial cells are targeted by HIV-1 and could serve as potential HIV reservoirs that may contribute to the respiratory comorbidities in PLWH.
Collapse
Affiliation(s)
- Dinesh Devadoss
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Shashi P. Singh
- Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, NM, United States
| | - Arpan Acharya
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kieu Chinh Do
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, United States
| | - Palsamy Periyasamy
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Marko Manevski
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Neerad Mishra
- Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, NM, United States
| | - Carmen S. Tellez
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, United States
| | - Sundaram Ramakrishnan
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Steven A. Belinsky
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, United States
| | - Siddappa N. Byrareddy
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shilpa Buch
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Hitendra S. Chand
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Mohan Sopori
- Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, NM, United States
| |
Collapse
|
74
|
Zhou J, Krishnan N, Jiang Y, Fang RH, Zhang L. Nanotechnology for virus treatment. NANO TODAY 2021; 36:101031. [PMID: 33519948 PMCID: PMC7836394 DOI: 10.1016/j.nantod.2020.101031] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 04/14/2023]
Abstract
The continued emergence of novel viruses poses a significant threat to global health. Uncontrolled outbreaks can result in pandemics that have the potential to overburden our healthcare and economic systems. While vaccination is a conventional modality that can be employed to promote herd immunity, antiviral vaccines can only be applied prophylactically and do little to help patients who have already contracted viral infections. During the early stages of a disease outbreak when vaccines are unavailable, therapeutic antiviral drugs can be used as a stopgap solution. However, these treatments do not always work against emerging viral strains and can be accompanied by adverse effects that sometimes outweigh the benefits. Nanotechnology has the potential to overcome many of the challenges facing current antiviral therapies. For example, nanodelivery vehicles can be employed to drastically improve the pharmacokinetic profile of antiviral drugs while reducing their systemic toxicity. Other unique nanomaterials can be leveraged for their virucidal or virus-neutralizing properties. In this review, we discuss recent developments in antiviral nanotherapeutics and provide a perspective on the application of nanotechnology to the SARS-CoV-2 outbreak and future virus pandemics.
Collapse
Affiliation(s)
- Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nishta Krishnan
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yao Jiang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
75
|
Ramoso AM, Magalang JA, Sánchez-Taltavull D, Esguerra JP, Roldán É. Stochastic resetting antiviral therapies prevent drug resistance development. ACTA ACUST UNITED AC 2020. [DOI: 10.1209/0295-5075/132/50003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
76
|
Prolonged administration of maraviroc reactivates latent HIV in vivo but it does not prevent antiretroviral-free viral rebound. Sci Rep 2020; 10:22286. [PMID: 33339855 PMCID: PMC7749169 DOI: 10.1038/s41598-020-79002-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/27/2020] [Indexed: 01/24/2023] Open
Abstract
Human immunodeficiency virus (HIV) remains incurable due to latent viral reservoirs established in non-activated CD4 T cells that cannot be eliminated via antiretroviral therapy. Current efforts to cure HIV are focused on identifying drugs that will induce viral gene expression in latently infected cells, commonly known as latency reversing agents (LRAs). Some drugs have been shown to reactivate latent HIV but do not cause a reduction in reservoir size. Therefore, finding new LRAs or new combinations or increasing the round of stimulations is needed to cure HIV. However, the effects of these drugs on viral rebound after prolonged treatment have not been evaluated. In a previous clinical trial, antiretroviral therapy intensification with maraviroc for 48 weeks caused an increase in residual viremia and episomal two LTR-DNA circles suggesting that maraviroc could reactivate latent HIV. We amended the initial clinical trial to explore additional virologic parameters in stored samples and to evaluate the time to viral rebound during analytical treatment interruption in three patients. Maraviroc induced an increase in cell-associated HIV RNA during the administration of the drug. However, there was a rapid rebound of viremia after antiretroviral therapy discontinuation. HIV-specific T cell response was slightly enhanced. These results show that maraviroc can reactivate latent HIV in vivo but further studies are required to efficiently reduce the reservoir size.
Collapse
|
77
|
Krasnopolsky S, Novikov A, Kuzmina A, Taube R. CRISPRi-mediated depletion of Spt4 and Spt5 reveals a role for DSIF in the control of HIV latency. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194656. [PMID: 33333262 DOI: 10.1016/j.bbagrm.2020.194656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 01/03/2023]
Abstract
Pivotal studies on the control of HIV transcription has laid the foundations for our understanding of how metazoan transcription is executed, and what are the factors that control this step. Part of this work established a role for DRB Sensitivity Inducing Factor (DSIF), consisting of Spt4 and Spt5, in promoting pause-release of RNA Polymerase II (Pol II) for optimal elongation. However, while there has been substantial progress in understanding the role of DSIF in mediating HIV gene transcription, its involvement in establishing viral latency has not been explored. Moreover, the effects of depleting Spt4 or Spt5, or simultaneously knocking down both subunits of DSIF have not been examined. In this study, we employed CRISPR interference (CRIPSRi) to knockdown the expression of Spt4, Spt5 or the entire DSIF complex, and monitored effects on HIV transcription and viral latency. Knocking down DSIF, or each of its subunits, inhibited HIV transcription, primarily at the step of Tat transactivation. This was accompanied by a decrease in promoter occupancy of Pol II and Cdk9, and to a lesser extent, AFF4. Interestingly, targeting the expression of one subunit of DSIF, reduced the protein stability of its counterpart partner. Moreover, depletion of Spt4, Spt5 or DSIF complex impaired cell growth, but did not cause cell death. Finally, knockdown of Spt4, Spt5 or DSIF, facilitated entry of HIV into latency. We conclude that each DSIF subunit plays a role in maintaining the stability of its other partner, achieving optimal function of the DSIF to enhance viral gene transcription.
Collapse
Affiliation(s)
- Simona Krasnopolsky
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | - Alex Novikov
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | - Alona Kuzmina
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | - Ran Taube
- The Shraga Segal Department of Microbiology Immunology and Genetics Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel.
| |
Collapse
|
78
|
Dubé K, Campbell DM, Perry KE, Kanazawa JT, Saberi P, Sauceda JA, Poteat T, Evans D. Reasons People Living with HIV Might Prefer Oral Daily Antiretroviral Therapy, Long-Acting Formulations, or Future HIV Remission Options. AIDS Res Hum Retroviruses 2020; 36:1054-1058. [PMID: 32829645 DOI: 10.1089/aid.2020.0107] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A growing body of research is beginning to elucidate reasons people living with HIV (PLWHIV) might prefer oral daily antiretroviral treatment (ART) compared with emerging long-acting ART (LA-ART) or HIV remission strategies under investigation. Our objective is to provide qualitative insights into the reasons why PLWHIV might prefer one of these HIV control therapies over others. From May to August 2018, we implemented a semistructured cross-sectional survey of PLWHIV in the United States to better understand patient preferences around various HIV treatment and remission options. Using free text, respondents were asked to explain why they preferred one HIV control option over the other two. We analyzed responses to the open-ended survey questions on reasons for preferring oral daily ART versus LA-ART versus HIV remission strategies using conventional content analysis. The results showed that PLWHIV preferred oral daily ART because of its familiarity and known safety and efficacy profile, whereas those who preferred LA-ART would value the convenience it offers. Finally, HIV remission strategies would be preferred to avoid taking ART altogether. The qualitative results provide insights into reasons why PLWHIV in the United States might prefer oral daily ART versus novel therapies. More importantly, they provide information to better align HIV virological control strategies with end-user perspectives. To make informed choices around evolving HIV therapeutics, PLWHIV and HIV care providers would benefit from decision tools to better assess options and trade-offs. More research is needed on how best to effectively support PLWHIV and HIV care providers in shared decision-making.
Collapse
Affiliation(s)
- Karine Dubé
- UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Danielle M. Campbell
- Charles R. Drew University of Medicine and Science, Los Angeles, California, USA
- Delaney AIDS Research Enterprise (DARE) Community Advisory Board, Los Angeles, California, USA
| | - Kelly E. Perry
- UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John T. Kanazawa
- UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Parya Saberi
- Division of Prevention Sciences, Center for AIDS Prevention Studies (CAPS), University of California, San Francisco (UCSF), San Francisco, California, USA
| | - John A. Sauceda
- Division of Prevention Sciences, Center for AIDS Prevention Studies (CAPS), University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Tonia Poteat
- Department of Social Medicine, UNC School of Medicine, Chapel Hill, North Carolina, USA
| | - David Evans
- Delaney AIDS Research Enterprise (DARE) Community Advisory Board, Los Angeles, California, USA
| |
Collapse
|
79
|
Torkzaban B, Mohseni Ahooyi T, Duggan M, Amini S, Khalili K. Cross-talk between lipid homeostasis and endoplasmic reticulum stress in neurodegeneration: Insights for HIV-1 associated neurocognitive disorders (HAND). Neurochem Int 2020; 141:104880. [PMID: 33065212 PMCID: PMC8208232 DOI: 10.1016/j.neuint.2020.104880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023]
Abstract
The dysregulation of lipid homeostasis is emerging as a hallmark of many CNS diseases. As aberrant protein regulation is suggested to be a shared pathological feature amongst many neurodegenerative conditions, such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), disruptions in neuronal lipid processing may contribute to disease progression in the CNS. Specifically, given the endoplasmic reticulum (ER) dual role in lipid homeostasis as well as protein quality control (PQC) via unfolded protein response (UPR), lipid dysregulation in the CNS may converge on ER functioning and constitute a crucial mechanism underlying aberrant protein aggregation. In the current review, we discuss the diverse roles of lipid species as essential components of the CNS. Moreover, given the importance of both lipid dysregulation and protein aggregation in pathology of CNS diseases, we attempt to assess the potential downstream cross-talk between lipid dysregulation and ER dependent PQC mechanisms, with special focus on HIV-associated neurodegenerative disorders (HAND).
Collapse
Affiliation(s)
- Bahareh Torkzaban
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500, N. Broad Street, Philadelphia, PA, USA
| | - Taha Mohseni Ahooyi
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500, N. Broad Street, Philadelphia, PA, USA
| | - Michael Duggan
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500, N. Broad Street, Philadelphia, PA, USA
| | - Shohreh Amini
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500, N. Broad Street, Philadelphia, PA, USA
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500, N. Broad Street, Philadelphia, PA, USA.
| |
Collapse
|
80
|
Prator CA, Donatelli J, Henrich TJ. From Berlin to London: HIV-1 Reservoir Reduction Following Stem Cell Transplantation. Curr HIV/AIDS Rep 2020; 17:385-393. [PMID: 32519184 DOI: 10.1007/s11904-020-00505-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Few interventional strategies lead to significant reductions in HIV-1 reservoir size or prolonged antiretroviral (ART)-free remission. Allogeneic stem cell transplantations (SCT) with or without donor cells harboring genetic mutations preventing functional expression of CCR5, an HIV coreceptor, lead to dramatic reductions in residual HIV burden. However, the mechanisms by which SCT reduces viral reservoirs and leads to a potential functional HIV cure are not well understood. RECENT FINDINGS A growing number of studies involving allogeneic SCT in people with HIV are emerging, including those with and without transplants involving CCR5Δ32/Δ32 mutations. Donor cells resistant to HIV entry are likely required in order to achieve permanent ART-free viral remission. However, dramatic reductions in the HIV reservoir secondary to beneficial graft-versus-host effects may lead to loss of HIV detection in blood and various tissues and lead to prolonged time to HIV rebound in individuals with wild-type CCR5 donors. Studies of SCT recipients and those who started very early ART during hyperacute infection suggest that dramatic reductions in reservoir size or restriction of initial reservoir seeding may lead to 8-10 months of time prior to eventual, and rapid, HIV recrudescence. Studies of allogeneic SCT in people with HIV have provided important insights into the size and nature of the HIV reservoir, and have invigorated other gene therapies to achieve HIV cure.
Collapse
Affiliation(s)
- Cecilia A Prator
- Division of Experimental Medicine, University of California San Francisco, 1001 Potrero Avenue Building 3, Room 525A, San Francisco, CA, 97706, USA
| | - Joanna Donatelli
- Division of Experimental Medicine, University of California San Francisco, 1001 Potrero Avenue Building 3, Room 525A, San Francisco, CA, 97706, USA.,California Institute of Regenerative Medicine, Bridges to Stem Cell Research Program, San Francisco State University, San Francisco, CA, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California San Francisco, 1001 Potrero Avenue Building 3, Room 525A, San Francisco, CA, 97706, USA.
| |
Collapse
|
81
|
Dubé K, Willenberg L, Dee L, Sylla L, Taylor J, Roebuck C, Palm D, Campbell D, Newton L, Patel H, Perry KE, Kanazawa J, Gerrard J, Brown B, Saberi P, Sauceda JA, Peluso MJ. Re-examining the HIV 'functional cure' oxymoron: Time for precise terminology? J Virus Erad 2020; 6:100017. [PMID: 33251025 PMCID: PMC7646673 DOI: 10.1016/j.jve.2020.100017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
For over a decade, the binary concepts of 'sterilizing' versus 'functional' cure have provided an organizing framework for the field of HIV cure-related research. In this article, we examine how the expression 'functional cure' is employed within the field, published literature, and community understanding of HIV cure research. In our synthesis of the different meanings attributed to 'functional cure' within contemporary biomedical discourse, we argue that employing the 'functional cure' terminology poses a series of problems. The expression itself is contradictory and inconsistently used across a wide array of HIV cure research initiatives. Further, the meaning and acceptability of 'functional cure' within communities of people living with and affected by HIV is highly variable. After drawing lessons from other fields, such as cancer and infectious hepatitis cure research, we summarize our considerations and propose alternative language that may more aptly describe the scientific objectives in question. We call for closer attention to language used to describe HIV cure-related research, and for continued, significant, and strategic engagement to ensure acceptable and more precise terminology.
Collapse
Affiliation(s)
- Karine Dubé
- UNC Gillings School of Global Public Health, Chapel Hill, NC, USA
| | | | - Lynda Dee
- AIDS Action Baltimore, Baltimore, MD, USA
- amfAR Institute for HIV Cure Research Community Advisory Board (CAB), Palm Springs, CA, USA
- Delaney AIDS Research Enterprise (DARE) CAB, Baltimore,MD and Los, Angeles, CA, USA
- Martin Delaney Collaboratory CAB, Baltimore, MD; Seattle, WA; Palm Springs, CA; Ithaca, NY, Los Angeles, CA, USA
| | - Laurie Sylla
- Martin Delaney Collaboratory CAB, Baltimore, MD; Seattle, WA; Palm Springs, CA; Ithaca, NY, Los Angeles, CA, USA
- DefeatHIV CAB, Seattle, WA, USA
| | - Jeff Taylor
- amfAR Institute for HIV Cure Research Community Advisory Board (CAB), Palm Springs, CA, USA
- Martin Delaney Collaboratory CAB, Baltimore, MD; Seattle, WA; Palm Springs, CA; Ithaca, NY, Los Angeles, CA, USA
- HIV + Aging Research Project – Palm Springs (HARP-PS), Palm Springs, CA, USA
- University of California AntiViral Research Center CAB, San Diego, CA, USA
- Collaboratory of AIDS Researchers for Eradication (CARE) CAB, Chapel Hill, USA
| | - Christopher Roebuck
- Martin Delaney Collaboratory CAB, Baltimore, MD; Seattle, WA; Palm Springs, CA; Ithaca, NY, Los Angeles, CA, USA
- BEAT-HIV CAB, Philadelphia, PA, USA
- Department of Science and Technology Studies, Cornell University, Ithaca, NY, USA
| | - David Palm
- Martin Delaney Collaboratory CAB, Baltimore, MD; Seattle, WA; Palm Springs, CA; Ithaca, NY, Los Angeles, CA, USA
- Collaboratory of AIDS Researchers for Eradication (CARE) CAB, Chapel Hill, USA
- Institute of Global Health and Infectious Diseases (IGHID), University of North Carolina at Chapel Hill, NC, USA
| | - Danielle Campbell
- Delaney AIDS Research Enterprise (DARE) CAB, Baltimore,MD and Los, Angeles, CA, USA
- Martin Delaney Collaboratory CAB, Baltimore, MD; Seattle, WA; Palm Springs, CA; Ithaca, NY, Los Angeles, CA, USA
- Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA, UCLA, Los Angeles, CA, USA
| | - Luke Newton
- UNC Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Hursch Patel
- UNC Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Kelly E. Perry
- UNC Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - John Kanazawa
- UNC Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Jo Gerrard
- University of California Riverside School of Medicine, Riverside, CA, USA
| | - Brandon Brown
- Center for Healthy Communities, Department of Social Medicine and Population Health, University of California Riverside School of Medicine, Riverside, CA, USA
| | - Parya Saberi
- Division of Prevention Science, Center for AIDS Prevention Studies, University of California, San Francisco, CA, USA
| | - John A. Sauceda
- Division of Prevention Science, Center for AIDS Prevention Studies, University of California, San Francisco, CA, USA
| | - Michael J. Peluso
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
82
|
Vartak R, Patki M, Menon S, Jablonski J, Mediouni S, Fu Y, Valente ST, Billack B, Patel K. β-cyclodextrin polymer/Soluplus® encapsulated Ebselen ternary complex (EβpolySol) as a potential therapy for vaginal candidiasis and pre-exposure prophylactic for HIV. Int J Pharm 2020; 589:119863. [DOI: 10.1016/j.ijpharm.2020.119863] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/10/2023]
|
83
|
McCune JM, Turner EH, Jiang A, Doehle BP. Bringing Gene Therapies for HIV Disease to Resource-Limited Parts of the World. Hum Gene Ther 2020; 32:21-30. [PMID: 32998595 PMCID: PMC10112459 DOI: 10.1089/hum.2020.252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Joseph M McCune
- HIV Frontiers, Global Health Innovative Technology Solutions, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Emily H Turner
- HIV Frontiers, Global Health Innovative Technology Solutions, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Adam Jiang
- HIV Frontiers, Global Health Innovative Technology Solutions, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Brian P Doehle
- HIV Frontiers, Global Health Innovative Technology Solutions, Bill & Melinda Gates Foundation, Seattle, Washington, USA
| |
Collapse
|
84
|
Torkzaban B, Natarajaseenivasan K, Mohseni Ahooyi T, Shekarabi M, Amini S, Langford TD, Khalili K. The lncRNA LOC102549805 (U1) modulates neurotoxicity of HIV-1 Tat protein. Cell Death Dis 2020; 11:835. [PMID: 33033233 PMCID: PMC7546609 DOI: 10.1038/s41419-020-03033-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023]
Abstract
HIV-1 Tat is a potent neurotoxic protein that is released by HIV-1 infected cells in the brain and perturbs neuronal homeostasis, causing a broad range of neurological disorders in people living with HIV-1. Furthermore, the effects of Tat have been addressed in numerous studies to investigate the molecular events associated with neuronal cells survival and death. Here, we discovered that exposure of rat primary neurons to Tat resulted in the up-regulation of an uncharacterized long non-coding RNA (lncRNA), LOC102549805 (lncRNA-U1). Our observations showed that increased expression of lncRNA-U1 in neurons disrupts bioenergetic pathways by dysregulating homeostasis of Ca2+, mitigating mitochondrial oxygen reduction, and decreasing ATP production, all of which point mitochondrial impairment in neurons via the Tat-mediated lncRNA-U1 induction. These changes were associated with imbalances in autophagy and apoptosis pathways. Additionally, this study showed the ability of Tat to modulate expression of the neuropeptide B/W receptor 1 (NPBWR1) gene via up-regulation of lncRNA-U1. Collectively, our results identified Tat-mediated lncRNA-U1 upregulation resulting in disruption of neuronal homeostasis.
Collapse
Affiliation(s)
- Bahareh Torkzaban
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA, 19140, USA
| | - Kalimuthusamy Natarajaseenivasan
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA, 19140, USA
| | - Taha Mohseni Ahooyi
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA, 19140, USA
| | - Masoud Shekarabi
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA, 19140, USA
| | - Shohreh Amini
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA, 19140, USA
| | - T Dianne Langford
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA, 19140, USA
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
85
|
Kakad SP, Kshirsagar SJ. Neuro-AIDS: Current Status and Challenges to Antiretroviral Drug Therapy (ART) for Its Treatment. CURRENT DRUG THERAPY 2020. [DOI: 10.2174/1574885515666200604123046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:
The infiltration of HIV into the brain alters the functions of the nervous
system known as Neuro-AIDS. It leads to neuronal defects clinically manifested by motor and cognitive
dysfunctions.
Materials and Methods:
Current antiretroviral therapy can prevent viral replication but cannot cure
the disease completely. HAART-Highly active antiretroviral therapy is used for the treatment of
HIV infection. Challenges in neuro-AIDS therapy are as shown in the graphical abstract. One of the
challenges is latent viral reservoirs like the brain; which act as a sanctuary site for viruses. Nearly
~50% of HIV patients show neuropathological signs. Nervous system related disorders, including
AIDS dementia, sensory neuropathy, and myelopathy have a 25% of prevalence in patients having
access to a highly active combination of antiretroviral therapy.
Results and Conclusion:
Brain is one of the viral sanctuary sites for HIV. The current need of
neuro-AIDS therapy is to target the brain as a viral reservoir. Drugs should cross or bypass the
blood-brain barrier to reach the brain with effective concentrations. Current research on novel drug
delivery approaches may prove helpful in treating neuro-AIDS and related disorders effectively.
Collapse
Affiliation(s)
- Smita P. Kakad
- Department of Pharmaceutics, MET’s Institute of Pharmacy, Adgaon, Nashik, Savitribai Phule Pune University, Maharashtra, Pune 422003, India
| | - Sanjay J. Kshirsagar
- Department of Pharmaceutics, MET’s Institute of Pharmacy, Adgaon, Nashik, Savitribai Phule Pune University, Maharashtra, Pune 422003, India
| |
Collapse
|
86
|
Genome-wide CRISPR knockout screen identifies ZNF304 as a silencer of HIV transcription that promotes viral latency. PLoS Pathog 2020; 16:e1008834. [PMID: 32956422 PMCID: PMC7529202 DOI: 10.1371/journal.ppat.1008834] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 10/01/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022] Open
Abstract
Despite the widespread use of anti-retroviral therapy, human immunodeficiency virus (HIV) still persists in an infected cell reservoir that harbors transcriptionally silent yet replication-competent proviruses. While significant progress has been made in understanding how the HIV reservoir is established, transcription repression mechanisms that are enforced on the integrated viral promoter have not been fully revealed. In this study, we performed a whole-genome CRISPR knockout screen in HIV infected T cells to identify host genes that potentially promote HIV latency. Of several top candidates, the KRAB-containing zinc finger protein, ZNF304, was identified as the top hit. ZNF304 silences HIV gene transcription through associating with TRIM28 and recruiting to the viral promoter heterochromatin-inducing methyltransferases, including the polycomb repression complex (PRC) and SETB1. Depletion of ZNF304 expression reduced levels of H3K9me3, H3K27me3 and H2AK119ub repressive histone marks on the HIV promoter as well as SETB1 and TRIM28, ultimately enhancing HIV gene transcription. Significantly, ZNF304 also promoted HIV latency, as its depletion delayed the entry of HIV infected cells into latency. In primary CD4+ cells, ectopic expression of ZNF304 silenced viral transcription. We conclude that by associating with TRIM28 and recruiting host transcriptional repressive complexes, SETB1 and PRC, to the HIV promoter, ZNF304 silences HIV gene transcription and promotes viral latency. Antiretroviral therapy has significantly decreased the morbidity and mortality associated with HIV infection. However, a complete cure remains out of reach, as HIV persists in a cell reservoir that is highly stable in the face of therapy. While developing novel therapeutic strategies to eliminate the reservoir is a well-recognized goal, knowledge of the molecular events that establish HIV latency is still not complete. To obtain insights into the silencing mechanisms of HIV gene transcription and the establishment of viral latency, a genome-wide CRISPR screen was employed to identify host factors that control viral latency. We identified zinc-finger protein 304 (ZNF304) and showed that through association with TRIM28, it recruits the histone methyltransferases SETB1 and PRC to deposit repressive marks on chromatin of the HIV promoter, thereby facilitating the silencing of viral gene transcription. Moreover, we found that depletion of ZNF304 expression activated HIV gene expression, while ZNF304 overexpression repressed viral gene transcription both in a T cell line and in primary CD4+ cells. Finally, our study showed that ZNF304 is also involved in modulating HIV latency, as its depletion delayed entry of the virus into a latency state. Our results offer an additional mechanistic explanation for how host histone repression complexes are tethered to the HIV promoter to promote chromatin compaction, thereby defining a potentially new target for perturbing the establishment of the viral reservoir.
Collapse
|
87
|
Nonhuman Primate Testing of the Impact of Different Regulatory T Cell Depletion Strategies on Reactivation and Clearance of Latent Simian Immunodeficiency Virus. J Virol 2020; 94:JVI.00533-20. [PMID: 32669326 DOI: 10.1128/jvi.00533-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022] Open
Abstract
Regulatory T cells (Tregs) may be key contributors to the HIV/SIV latent reservoir, since they harbor high levels of HIV/SIV; reverse CD4+ T cell immune activation status, increasing the pool of resting CD4+ T cells; and impair CD8+ T cell function, favoring HIV persistence. We tested the hypothesis that Treg depletion is a valid intervention toward an HIV cure by depleted Tregs in 14 rhesus macaque (RM) controllers infected with SIVsab, the virus that naturally infects sabaeus monkeys, through different strategies: administration of an anti-CCR4 immunotoxin, two doses of an anti-CD25 immunotoxin (interleukin-2 with diphtheria toxin [IL-2-DT]), or two combinations of both. All of these treatments resulted in significant depletion of the circulating Tregs (>70%) and their partial depletion in the gut (25%) and lymph nodes (>50%). The fractions of CD4+ T cells expressing Ki -67 increased up to 80% in experiments containing IL-2-DT and only 30% in anti-CCR4-treated RMs, paralleled by increases in the inflammatory cytokines. In the absence of ART, plasma virus rebounded to 103 vRNA copies/ml by day 10 after IL-2-DT administration. A large but transient boost of the SIV-specific CD8+ T cell responses occurred in IL-2-DT-treated RMs. Such increases were minimal in the RMs receiving anti-CCR4-based regimens. Five RMs received IL-2-DT on ART, but treatment was discontinued because of high toxicity and lymphopenia. As such, while all treatments depleted a significant proportion of Tregs, the side effects in the presence of ART prevent their clinical use and call for different Treg depletion approaches. Thus, based on our data, Treg targeting as a strategy for HIV cure cannot be discarded.IMPORTANCE Regulatory T cells (Tregs) can decisively contribute to the establishment and persistence of the HIV reservoir, since they harbor high levels of HIV/SIV, increase the pool of resting CD4+ T cells by reversing their immune activation status, and impair CD8+ T cell function, favoring HIV persistence. We tested multiple Treg depletion strategies and showed that all of them are at least partially successful in depleting Tregs. As such, Treg depletion appears to be a valid intervention toward an HIV cure, reducing the size of the reservoir, reactivating the virus, and boosting cell-mediated immune responses. Yet, when Treg depletion was attempted in ART-suppressed animals, the treatment had to be discontinued due to high toxicity and lymphopenia. Therefore, while Treg targeting as a strategy for HIV cure cannot be discarded, the methodology for Treg depletion has to be revisited.
Collapse
|
88
|
Yang X, Wang Y, Lu P, Shen Y, Zhao X, Zhu Y, Jiang Z, Yang H, Pan H, Zhao L, Zhong Y, Wang J, Liang Z, Shen X, Lu D, Jiang S, Xu J, Wu H, Lu H, Jiang G, Zhu H. PEBP1 suppresses HIV transcription and induces latency by inactivating MAPK/NF-κB signaling. EMBO Rep 2020; 21:e49305. [PMID: 32924251 PMCID: PMC7645261 DOI: 10.15252/embr.201949305] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 05/28/2020] [Accepted: 08/12/2020] [Indexed: 11/09/2022] Open
Abstract
The latent HIV‐1 reservoir is a major barrier to viral eradication. However, our understanding of how HIV‐1 establishes latency is incomplete. Here, by performing a genome‐wide CRISPR‐Cas9 knockout library screen, we identify phosphatidylethanolamine‐binding protein 1 (PEBP1), also known as Raf kinase inhibitor protein (RKIP), as a novel gene inducing HIV latency. Depletion of PEBP1 leads to the reactivation of HIV‐1 in multiple models of latency. Mechanistically, PEBP1 de‐phosphorylates Raf1/ERK/IκB and IKK/IκB signaling pathways to sequestrate NF‐κB in the cytoplasm, which transcriptionally inactivates HIV‐1 to induce latency. Importantly, the induction of PEBP1 expression by the green tea compound epigallocatechin‐3‐gallate (EGCG) prevents latency reversal by inhibiting nuclear translocation of NF‐κB, thereby suppressing HIV‐1 transcription in primary CD4+ T cells isolated from patients receiving antiretroviral therapy (ART). These results suggest a critical role for PEBP1 in the regulation of upstream NF‐κB signaling pathways governing HIV transcription. Targeting of this pathway could be an option to control HIV reservoirs in patients in the future.
Collapse
Affiliation(s)
- Xinyi Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanan Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Panpan Lu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yinzhong Shen
- Department of Infectious Disease, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaying Zhao
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuqi Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhengtao Jiang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - He Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Hanyu Pan
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Lin Zhao
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yangcheng Zhong
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jing Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhiming Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoting Shen
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Shibo Jiang
- Department of Infectious Disease, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jianqing Xu
- Department of Infectious Disease, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Hongzhou Lu
- Department of Infectious Disease, Key Laboratory of Medical Molecular Virology of Ministry of Education/Health, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Guochun Jiang
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases & Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
89
|
Perdigão PR, Cunha-Santos C, Barbas CF, Santa-Marta M, Goncalves J. Protein Delivery of Cell-Penetrating Zinc-Finger Activators Stimulates Latent HIV-1-Infected Cells. Mol Ther Methods Clin Dev 2020; 18:145-158. [PMID: 32637446 PMCID: PMC7317221 DOI: 10.1016/j.omtm.2020.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/19/2020] [Indexed: 01/06/2023]
Abstract
Despite efforts to develop effective treatments for eradicating HIV-1, a cure has not yet been achieved. Whereas antiretroviral drugs target an actively replicating virus, latent, nonreplicative forms persist during treatment. Pharmacological strategies that reactivate latent HIV-1 and expose cellular reservoirs to antiretroviral therapy and the host immune system have, so far, been unsuccessful, often triggering severe side effects, mainly due to systemic immune activation. Here, we present an alternative approach for stimulating latent HIV-1 expression via direct protein delivery of cell-penetrating zinc-finger activators (ZFAs). Cys2-His2 zinc-fingers, fused to a transcription activation domain, were engineered to recognize the HIV-1 promoter and induce targeted viral transcription. Following conjugation with multiple positively charged nuclear localization signal (NLS) repeats, protein delivery of a single ZFA (3NLS-PBS1-VP64) efficiently internalized HIV-1 latently infected T-lymphocytes and specifically stimulated viral expression. We show that short-term treatment with this ZFA protein induces higher levels of viral reactivation in cell line models of HIV-1 latency than those observed with gene delivery. Our work establishes protein delivery of ZFA as a novel and safe approach toward eradication of HIV-1 reservoirs.
Collapse
Affiliation(s)
- Pedro R.L. Perdigão
- Molecular Microbiology and Biotechnology Department, Research Institute for Medicines (iMed ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- Department of Chemistry, Department of Cell and Molecular Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Catarina Cunha-Santos
- Molecular Microbiology and Biotechnology Department, Research Institute for Medicines (iMed ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos F. Barbas
- Department of Chemistry, Department of Cell and Molecular Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Mariana Santa-Marta
- Molecular Microbiology and Biotechnology Department, Research Institute for Medicines (iMed ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Joao Goncalves
- Molecular Microbiology and Biotechnology Department, Research Institute for Medicines (iMed ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
90
|
Abstract
PURPOSE OF REVIEW Immunotherapy strategies alternative to current antiretroviral therapies will need to address viral diversity while increasing the immune system's ability to efficiently target the latent virus reservoir. Antibody-based molecules can be designed based on broadly neutralizing and non-neutralizing antibodies that target free virions and infected cells. These multispecific molecules, either by IgG-like or non-IgG-like in structure, aim to target several independent HIV-1 epitopes and/or engage effector cells to eliminate the replicating virus and infected cells. This detailed review is intended to stimulate discussion on future requirements for novel immunotherapeutic molecules. RECENT FINDINGS Bispecific and trispecific antibodies are engineered as a single molecules to target two or more independent epitopes on the HIV-1 envelope (Env). These antibody-based molecules have increased avidity for Env, leading to improved neutralization potency and breadth compared with single parental antibodies. Furthermore, bispecific and trispecific antibodies that engage cellular receptors with one arm of the molecule help concentrate inhibitory molecules to the sites of potential infection and facilitate engagement of immune effector cells and Env-expressing target cells for their elimination. SUMMARY Recently engineered antibody-based molecules of different sizes and structures show promise in vitro or in vivo and are encouraging candidates for HIV treatment.
Collapse
Affiliation(s)
- Marina Tuyishime
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
91
|
Abdel-Mohsen M, Richman D, Siliciano RF, Nussenzweig MC, Howell BJ, Martinez-Picado J, Chomont N, Bar KJ, Yu XG, Lichterfeld M, Alcami J, Hazuda D, Bushman F, Siliciano JD, Betts MR, Spivak AM, Planelles V, Hahn BH, Smith DM, Ho YC, Buzon MJ, Gaebler C, Paiardini M, Li Q, Estes JD, Hope TJ, Kostman J, Mounzer K, Caskey M, Fox L, Frank I, Riley JL, Tebas P, Montaner LJ. Recommendations for measuring HIV reservoir size in cure-directed clinical trials. Nat Med 2020; 26:1339-1350. [PMID: 32895573 PMCID: PMC7703694 DOI: 10.1038/s41591-020-1022-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/16/2020] [Indexed: 12/28/2022]
Abstract
Therapeutic strategies are being clinically tested either to eradicate latent HIV reservoirs or to achieve virologic control in the absence of antiretroviral therapy. Attaining this goal will require a consensus on how best to measure the numbers of persistently infected cells with the potential to cause viral rebound after antiretroviral-therapy cessation in assessing the results of cure-directed strategies in vivo. Current measurements assess various aspects of the HIV provirus and its functionality and produce divergent results. Here, we provide recommendations from the BEAT-HIV Martin Delaney Collaboratory on which viral measurements should be prioritized in HIV-cure-directed clinical trials.
Collapse
Affiliation(s)
| | - Douglas Richman
- VA San Diego Healthcare System and University of California, San Diego, CA, USA
| | | | | | | | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | | | | | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Jose Alcami
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, Madrid and Infectious Diseases Unit, IBIDAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | - Davey M Smith
- VA San Diego Healthcare System and University of California, San Diego, CA, USA
| | - Ya-Chi Ho
- Yale School of Medicine, New Haven, CT, USA
| | - Maria J Buzon
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, Madrid and Infectious Diseases Unit, IBIDAPS, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | | | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Qingsheng Li
- School of Biological Sciences and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center (ONPRC), Oregon Health and Science University (OHSU), Beaverton, OR, USA
| | | | - Jay Kostman
- Jonathan Lax Center, Philadelphia FIGHT, Philadelphia, PA, USA
| | - Karam Mounzer
- Jonathan Lax Center, Philadelphia FIGHT, Philadelphia, PA, USA
| | | | - Lawrence Fox
- Division of AIDS, NIAID, NIH, North Bethesda, MD, USA
| | - Ian Frank
- University of Pennsylvania, Philadelphia, PA, USA
| | | | - Pablo Tebas
- University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
92
|
Pinto DO, DeMarino C, Vo TT, Cowen M, Kim Y, Pleet ML, Barclay RA, Noren Hooten N, Evans MK, Heredia A, Batrakova EV, Iordanskiy S, Kashanchi F. Low-Level Ionizing Radiation Induces Selective Killing of HIV-1-Infected Cells with Reversal of Cytokine Induction Using mTOR Inhibitors. Viruses 2020; 12:E885. [PMID: 32823598 PMCID: PMC7472203 DOI: 10.3390/v12080885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
HIV-1 infects 39.5 million people worldwide, and cART is effective in preventing viral spread by reducing HIV-1 plasma viral loads to undetectable levels. However, viral reservoirs persist by mechanisms, including the inhibition of autophagy by HIV-1 proteins (i.e., Nef and Tat). HIV-1 reservoirs can be targeted by the "shock and kill" strategy, which utilizes latency-reversing agents (LRAs) to activate latent proviruses and immunotarget the virus-producing cells. Yet, limitations include reduced LRA permeability across anatomical barriers and immune hyper-activation. Ionizing radiation (IR) induces effective viral activation across anatomical barriers. Like other LRAs, IR may cause inflammation and modulate the secretion of extracellular vesicles (EVs). We and others have shown that cells may secrete cytokines and viral proteins in EVs and, therefore, LRAs may contribute to inflammatory EVs. In the present study, we mitigated the effects of IR-induced inflammatory EVs (i.e., TNF-α), through the use of mTOR inhibitors (mTORi; Rapamycin and INK128). Further, mTORi were found to enhance the selective killing of HIV-1-infected myeloid and T-cell reservoirs at the exclusion of uninfected cells, potentially via inhibition of viral transcription/translation and induction of autophagy. Collectively, the proposed regimen using cART, IR, and mTORi presents a novel approach allowing for the targeting of viral reservoirs, prevention of immune hyper-activation, and selectively killing latently infected HIV-1 cells.
Collapse
Affiliation(s)
- Daniel O. Pinto
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Thy T. Vo
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Yuriy Kim
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Michelle L. Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Robert A. Barclay
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (N.N.H.); (M.K.E.)
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (N.N.H.); (M.K.E.)
| | - Alonso Heredia
- Institute of Human Virology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
| | - Elena V. Batrakova
- Department of Medicine, University of North Carolina HIV Cure Center; University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA;
| | - Sergey Iordanskiy
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA;
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| |
Collapse
|
93
|
Li M, Liu W, Bauch T, Graviss EA, Arduino RC, Kimata JT, Chen M, Wang J. Clearance of HIV infection by selective elimination of host cells capable of producing HIV. Nat Commun 2020; 11:4051. [PMID: 32792548 PMCID: PMC7426846 DOI: 10.1038/s41467-020-17753-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
The RNA genome of the human immunodeficiency virus (HIV) is reverse-transcribed into DNA and integrated into the host genome, resulting in latent infections that are difficult to clear. Here we show an approach to eradicate HIV infections by selective elimination of host cells harboring replication-competent HIV (SECH), which includes viral reactivation, induction of cell death, inhibition of autophagy and the blocking of new infections. Viral reactivation triggers cell death specifically in HIV-1-infected T cells, which is promoted by agents that induce apoptosis and inhibit autophagy. SECH treatments can clear HIV-1 in >50% mice reconstituted with a human immune system, as demonstrated by the lack of viral rebound after withdrawal of treatments, and by adoptive transfer of treated lymphocytes into uninfected humanized mice. Moreover, SECH clears HIV-1 in blood samples from HIV-1-infected patients. Our results suggest a strategy to eradicate HIV infections by selectively eliminating host cells capable of producing HIV.
Collapse
Affiliation(s)
- Min Li
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Wei Liu
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Tonya Bauch
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Edward A Graviss
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Roberto C Arduino
- Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School at The University of Texas Health Science Center, Houston, TX, 77030, USA
| | - Jason T Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Min Chen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jin Wang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
94
|
Rawlings SA, Gianella S. Tissue is the issue: how altruistic people with HIV are changing the HIV tissue reservoir landscape. Future Virol 2020; 15:397-400. [PMID: 32868981 DOI: 10.2217/fvl-2020-0091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/13/2020] [Indexed: 01/21/2023]
Affiliation(s)
- Stephen A Rawlings
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sara Gianella
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
95
|
Gianella S, Chaillon A, Chun TW, Sneller MC, Ignacio C, Vargas-Meneses MV, Caballero G, Ellis RJ, Kovacs C, Benko E, Huibner S, Kaul R. HIV RNA Rebound in Seminal Plasma after Antiretroviral Treatment Interruption. J Virol 2020; 94:e00415-20. [PMID: 32434884 PMCID: PMC7375368 DOI: 10.1128/jvi.00415-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
If strategies currently in development succeed in eradicating HIV reservoirs in peripheral blood and lymphoid tissues, residual sources of virus may remain in anatomic compartments. Paired blood and semen samples were collected from 12 individuals enrolled in a randomized, double-blind, placebo-controlled therapeutic vaccine clinical trial in people with HIV (PWH) who began antiretroviral therapy (ART) during acute or early infection (ClinicalTrials registration no. NCT01859325). After the week 56 visit (postintervention), all participants interrupted ART. At the first available time points after viral rebound, we sequenced HIV-1 env (C2-V3), gag (p24), and pol (reverse transcriptase) regions amplified from cell-free HIV RNA in blood and seminal plasma using the MiSeq Illumina platform. Comprehensive sequence and phylogenetic analyses were performed to evaluate viral population structure, compartmentalization, and viral diversity in blood and seminal plasma. Compared to that in blood, HIV RNA rebound in semen occurred significantly later (median of 66 versus 42 days post-ART interruption, P < 0.01) and reached lower levels (median 164 versus 16,090 copies/ml, P < 0.01). Three of five participants with available sequencing data presented compartmentalized viral rebound between blood and semen in one HIV coding region. Despite early ART initiation, HIV RNA molecular diversity was higher in semen than in blood in all three coding regions for most participants. Higher HIV RNA molecular diversity in the genital tract (compared to that in blood plasma) and evidence of compartmentalization illustrate the distinct evolutionary dynamics between these two compartments after ART interruption. Future research should evaluate whether the genital compartment might contribute to viral rebound in some PWH interrupting ART.IMPORTANCE To cure HIV, we likely need to target the reservoirs in all anatomic compartments. Here, we used sophisticated statistical and phylogenetic methods to analyze blood and semen samples collected from 12 persons with HIV who began antiretroviral therapy (ART) during very early HIV infection and who interrupted their ART as part of a clinical trial. First, we found that HIV RNA rebound in semen occurred significantly later and reached lower levels than in blood. Second, we found that the virus in semen was genetically different in some participants compared to that in blood. Finally, we found increased HIV RNA molecular diversity in semen compared to that in blood in almost all study participants. These data suggest that the HIV RNA populations emerging from the genital compartment after ART interruption might not be the same as those emerging from blood plasma. Future research should evaluate whether the genital compartment might contribute to viral rebound in some people with HIV (PWH) interrupting ART.
Collapse
Affiliation(s)
- Sara Gianella
- University of California, San Diego, La Jolla, California, USA
| | | | - Tae-Wook Chun
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Michael C Sneller
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | | | | - Gemma Caballero
- University of California, San Diego, La Jolla, California, USA
| | - Ronald J Ellis
- University of California, San Diego, La Jolla, California, USA
| | - Colin Kovacs
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Erika Benko
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Sanja Huibner
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rupert Kaul
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
96
|
Wang R, Bing A, Wang C, Hu Y, Bosch RJ, DeGruttola V. A flexible nonlinear mixed effects model for HIV viral load rebound after treatment interruption. Stat Med 2020; 39:2051-2066. [PMID: 32293756 PMCID: PMC8081565 DOI: 10.1002/sim.8529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/14/2020] [Accepted: 02/27/2020] [Indexed: 12/30/2022]
Abstract
Characterization of HIV viral rebound after the discontinuation of antiretroviral therapy is central to HIV cure research. We propose a parametric nonlinear mixed effects model for the viral rebound trajectory, which often has a rapid rise to a peak value followed by a decrease to a viral load set point. We choose a flexible functional form that captures the shapes of viral rebound trajectories and can also provide biological insights regarding the rebound process. Each parameter can incorporate a random effect to allow for variation in parameters across individuals. Key features of viral rebound trajectories such as viral set points are represented by the parameters in the model, which facilitates assessment of intervention effects and identification of important pretreatment interruption predictors for these features. We employ a stochastic expectation-maximization (StEM) algorithm to incorporate HIV-1 RNA values that are below the lower limit of assay quantification. We evaluate the performance of our model in simulation studies and apply the proposed model to longitudinal HIV-1 viral load data from five AIDS Clinical Trials Group treatment interruption studies.
Collapse
Affiliation(s)
- Rui Wang
- Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, MA, 02215, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Ante Bing
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Cathy Wang
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Yuchen Hu
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Ronald J. Bosch
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Victor DeGruttola
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| |
Collapse
|
97
|
Liu Z, Liang J, Chen S, Wang K, Liu X, Liu B, Xia Y, Guo M, Zhang X, Sun G, Tian G. Genome editing of CCR5 by AsCpf1 renders CD4 +T cells resistance to HIV-1 infection. Cell Biosci 2020; 10:85. [PMID: 32670545 PMCID: PMC7346486 DOI: 10.1186/s13578-020-00444-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022] Open
Abstract
Background The chemokine receptor CCR5 is one of the co-receptor of HIV-1 infection. People with homozygous CCR5Δ32 deletion resist HIV-1 infection, which makes the CCR5 an important target for HIV-1 gene therapy. Although the CRISPR/Cas9 has ever been used for HIV-1 study, the newly developed CRISPR/AsCpf1 has never been utilized in HIV-1 co-receptor disruption. The CRISPR/Cpf1 system shows many advantages over CRISPR/Cas9, such as lower off-target, small size of nuclease, easy sgRNA design for multiplex gene editing, etc. Therefore, the CRISPR/Cpf1 mediated gene editing will confer a more specific and safe strategy in HIV-1 co-receptor disruption. Results Here, we demonstrated that CRISPR/AsCpf1 could ablate the main co-receptor of HIV-1 infection-CCR5 efficiently with two screened sgRNAs via different delivery strategies (lentivirus, adenovirus). The edited cells resisted R5-tropic HIV-1 infection but not X4-tropic HIV-1 infection compared with the control group in different cell types of HIV-1 study (TZM.bl, SupT1-R5, Primary CD4+T cells). Meanwhile, the edited cells exhibited selective advantage over unedited cells while under the pressure of R5-tropic HIV-1. Furthermore, we clarified that the predicted off-target sites of selected sgRNAs were very limited, which is much less than regular using sgRNAs for CRISPR/Cas9, and no evident off-target was observed. We also showed that the disruption of CCR5 by CRISPR/AsCpf1 took no effects on cell proliferation and apoptosis. Conclusions Our study provides a basis for a possible application of CCR5-targeting gene editing by CRISPR/AsCpf1 with high specific sgRNAs against HIV-1 infection.
Collapse
Affiliation(s)
- Zhepeng Liu
- Department of Biotherapy Research Center, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong 510060 People's Republic of China.,Department of Oncology, The First Affiliated Hospital of Shenzhen University, The Second People's Hospital of Shenzhen, 3002 Sungang West Road, Shenzhen, 518035 People's Republic of China
| | - Jin Liang
- Department of Oncology, The First Affiliated Hospital of Shenzhen University, The Second People's Hospital of Shenzhen, 3002 Sungang West Road, Shenzhen, 518035 People's Republic of China
| | - Shuliang Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 People's Republic of China
| | - Kewu Wang
- Department of Oncology, The Second People's Hospital of Wuhu, Wuhu, 242401 People's Republic of China
| | - Xianhao Liu
- Department of Oncology, The First Affiliated Hospital of Shenzhen University, The Second People's Hospital of Shenzhen, 3002 Sungang West Road, Shenzhen, 518035 People's Republic of China
| | - Beibei Liu
- Department of Oncology, The First Affiliated Hospital of Shenzhen University, The Second People's Hospital of Shenzhen, 3002 Sungang West Road, Shenzhen, 518035 People's Republic of China
| | - Yang Xia
- Department of Oncology, The First Affiliated Hospital of Shenzhen University, The Second People's Hospital of Shenzhen, 3002 Sungang West Road, Shenzhen, 518035 People's Republic of China
| | - Mingxiong Guo
- College of Life Sciences, Wuhan University, Wuhan, 430071 People's Republic of China
| | - Xiaoshi Zhang
- Department of Biotherapy Research Center, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, Guangdong 510060 People's Republic of China
| | - Guihong Sun
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 People's Republic of China
| | - Geng Tian
- Department of Oncology, The First Affiliated Hospital of Shenzhen University, The Second People's Hospital of Shenzhen, 3002 Sungang West Road, Shenzhen, 518035 People's Republic of China
| |
Collapse
|
98
|
Extremely low viral reservoir in treated chronically HIV-1-infected individuals. EBioMedicine 2020; 57:102830. [PMID: 32580136 PMCID: PMC7317241 DOI: 10.1016/j.ebiom.2020.102830] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Small viral reservoirs are found predominantly in HIV-1 controllers and individuals treated during acute/early HIV-1 infection. However, other HIV+ individuals could naturally also harbour low viral reservoirs. METHODS We screened 451 HIV-1-infected treated-individuals with suppressed plasma viremia for at least 3 years and stored cryopreserved peripheral blood mononuclear cells (PBMCs). Total HIV-DNA was analysed in PBMCs with ddPCR. Individuals with <50 HIV-DNA copies/106 PBMCs constitute the 'Low Viral Reservoir Treated' cohort (LoViReT). Longitudinal samples were obtained from 12 chronically treated LoViReT and compared to 13 controls (>50 HIV-DNA copies/106 PBMCs) to analyse total HIV-DNA, T-cell and NK-cell populations, HIV-1 specific antibodies, and plasma inflammation markers. FINDINGS We found that 9.3% of the individuals screened had <50 HIV-DNA copies/106 PBMCs. At least 66% initiated cART during the chronic phase of HIV-1 infection (cp-LoViReT). Cp-LoViReT harboured lower levels of HIV-DNA before cART and after treatment introduction the decays were greater compared to controls. They displayed a marked decline in quantity and avidity in HIV-specific antibodies after initiation of cART. Cp-LoViReT had fewer CD8+ TTM and TEMRA in the absence of cART, and higher CD8+ TN after 18 months on therapy. INTERPRETATION Treated chronically HIV-1-infected LoViReT represent a new phenotype of individuals characterized by an intrinsically reduced viral reservoir, less impaired CD8+ T-cell compartment before cART, and low circulating HIV-1 antigens despite being treated in the chronic phase of infection. The identification of this unique group of individuals is of great interest for the design of future eradication studies. FUNDING MSD Spain.
Collapse
|
99
|
Martinsen JT, Gunst JD, Højen JF, Tolstrup M, Søgaard OS. The Use of Toll-Like Receptor Agonists in HIV-1 Cure Strategies. Front Immunol 2020; 11:1112. [PMID: 32595636 PMCID: PMC7300204 DOI: 10.3389/fimmu.2020.01112] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/07/2020] [Indexed: 12/16/2022] Open
Abstract
Toll-like receptors (TLRs) are a family of pattern recognition receptors and part of the first line of defense against invading microbes. In humans, we know of 10 different TLRs, which are expressed to varying degrees in immune cell subsets. Engaging TLRs through their specific ligands leads to activation of the innate immune system and secondarily priming of the adaptive immune system. Because of these unique properties, TLR agonists have been investigated as immunotherapy in cancer treatment for many years, but in recent years there has also been growing interest in the use of TLR agonists in the context of human immunodeficiency virus type 1 (HIV-1) cure research. The primary obstacle to curing HIV-1 is the presence of a latent viral reservoir in transcriptionally silent immune cells. Due to the very limited transcription of the integrated HIV-1 proviruses, latently infected cells cannot be targeted and cleared by immune effector mechanisms. TLR agonists are very interesting in this context because of their potential dual effects as latency reverting agents (LRAs) and immune modulatory compounds. Here, we review preclinical and clinical data on the impact of TLR stimulation on HIV-1 latency as well as antiviral and HIV-1-specific immunity. We also focus on the promising role of TLR agonists in combination strategies in HIV-1 cure research. Different combinations of TLR agonists and broadly neutralizing antibodies or TLRs agonists as adjuvants in HIV-1 vaccines have shown very encouraging results in non-human primate experiments and these concepts are now moving into clinical testing.
Collapse
Affiliation(s)
| | | | | | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
100
|
Enhancement of gene expression noise from transcription factor binding to genomic decoy sites. Sci Rep 2020; 10:9126. [PMID: 32499583 PMCID: PMC7272470 DOI: 10.1038/s41598-020-65750-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/08/2020] [Indexed: 12/29/2022] Open
Abstract
The genome contains several high-affinity non-functional binding sites for transcription factors (TFs) creating a hidden and unexplored layer of gene regulation. We investigate the role of such “decoy sites” in controlling noise (random fluctuations) in the level of a TF that is synthesized in stochastic bursts. Prior studies have assumed that decoy-bound TFs are protected from degradation, and in this case decoys function to buffer noise. Relaxing this assumption to consider arbitrary degradation rates for both bound/unbound TF states, we find rich noise behaviors. For low-affinity decoys, noise in the level of unbound TF always monotonically decreases to the Poisson limit with increasing decoy numbers. In contrast, for high-affinity decoys, noise levels first increase with increasing decoy numbers, before decreasing back to the Poisson limit. Interestingly, while protection of bound TFs from degradation slows the time-scale of fluctuations in the unbound TF levels, the decay of bound TFs leads to faster fluctuations and smaller noise propagation to downstream target proteins. In summary, our analysis reveals stochastic dynamics emerging from nonspecific binding of TFs and highlights the dual role of decoys as attenuators or amplifiers of gene expression noise depending on their binding affinity and stability of the bound TF.
Collapse
|