51
|
The Impact of Cardiac Lipotoxicity on Cardiac Function and Mirnas Signature in Obese and Non-Obese Rats with Myocardial Infarction. Sci Rep 2019; 9:444. [PMID: 30679580 PMCID: PMC6345821 DOI: 10.1038/s41598-018-36914-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/27/2018] [Indexed: 02/08/2023] Open
Abstract
Cardiac lipotoxicity is involved in the cardiac functional consequences associated with obesity. Therefore, the aim of this study was to explore whether changes in the mitochondrial lipid cardiac profile could reflect differences in cardiac function and structure in obese and non-obese rats with myocardial infarction (MI). Whether these changes can also be reflected in a specific plasma miRNA signature as markers of cardiac damage was also evaluated. Rats were fed with either standard (3.5% fat) or high fat diet (35% fat) for 6 weeks before the induction of MI and sacrificed 4 weeks later. MI showed cardiac lipotoxicity independently of the presence of obesity, although obese and non-obese rats did not present the same cardiac lipid profile at mitochondrial level. Several cardiac lipid species in mitochondria, including cardiolipins and triglycerides, were associated with myocardial fibrosis, with mitochondrial triglyceride levels being independently associated with it; this supports that lipotoxicity can affect cardiac function. MI down-regulated plasma levels of miRNA 15b-5p and 194-5p in obese and non-obese animals, which were associated with cardiac function, mitochondrial lipids and myocardial fibrosis, with miRNA 15b-5p levels being independently associated with cardiac fibrosis. This could support that lipotoxicity could affect heart function by modulating plasma miRNAs.
Collapse
|
52
|
Jáuregui-Wade JM, Valdés J, Ayala-Sumuano JT, Ávila-García R, Cerbón-Solorzano J. De novo synthesis of sphingolipids plays an important role during in vitro encystment of Entamoeba invadens. Biochem Biophys Res Commun 2018; 508:1031-1037. [PMID: 30545628 DOI: 10.1016/j.bbrc.2018.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/01/2018] [Indexed: 02/05/2023]
Abstract
Entamoeba invadens is a protozoan, which causes multiple damages in reptiles and is considered a prototype for the study of the Entamoeba encystment in vitro. Here we report for the first time the role of the de novo synthesis pathway of sphingolipids during the encystment of E. invadens. In silico analysis showed that this parasite has six putative genes coding for ceramide synthases (CerS), all of them coding for proteins containing the Lag1p motif, a region conserved in the ceramide synthases of multiple organisms, suggesting that they might be bona fide CerS. The six genes of E. invadens are differentially expressed at different time intervals in both stages trophozoite and cyst, based on the results obtained through qRT-PCR assays, the genes involved in the synthesis of sphingolipids with long-chain fatty acids CerS 2,3,4 (EIN_046610, EIN_097030, EIN_130350) have maximum points of relative expression in both stages of the E. invadens life cycle, which strongly suggest that the signaling exerted from the synthesis pathway of sphingolipids is essential for the encystment of E. invadens, since the generation of the more abundant sphingomyelin (SM) subspecies with long-chain fatty acids are fundamental for the parasite to reach its conversion from trophozoite to cyst. When myriocin was used as an inhibitor of serine palmitoyl CoA transferase (SPT), first enzyme in the de novo biosynthesis of sphingolipids, the trophozoites of E. invadens were unable to reach the encystment. Since the effect of myriocin was reversed with exogenous d-erythrosphingosine (DHS), it was demonstrated that the inhibition was specific and it was confirmed that the synthesis of sphingolipids play an essential role during the encystment process of E. invadens.
Collapse
Affiliation(s)
| | - Jesús Valdés
- Department of Biochemistry, CINVESTAV-IPN, P.O. Box 14-740, 07360, Ciudad de México, Mexico
| | | | - Ricardo Ávila-García
- Department of Biochemistry, CINVESTAV-IPN, P.O. Box 14-740, 07360, Ciudad de México, Mexico
| | - Jorge Cerbón-Solorzano
- Department of Biochemistry, CINVESTAV-IPN, P.O. Box 14-740, 07360, Ciudad de México, Mexico.
| |
Collapse
|
53
|
Abstract
Sphingolipids, including the two central bioactive lipids ceramide and sphingosine-1-phosphate (S1P), have opposing roles in regulating cancer cell death and survival, respectively, and there have been exciting developments in understanding how sphingolipid metabolism and signalling regulate these processes in response to anticancer therapy. Recent studies have provided mechanistic details of the roles of sphingolipids and their downstream targets in the regulation of tumour growth and response to chemotherapy, radiotherapy and/or immunotherapy using innovative molecular, genetic and pharmacological tools to target sphingolipid signalling nodes in cancer cells. For example, structure-function-based studies have provided innovative opportunities to develop mechanism-based anticancer therapeutic strategies to restore anti-proliferative ceramide signalling and/or inhibit pro-survival S1P-S1P receptor (S1PR) signalling. This Review summarizes how ceramide-induced cellular stress mediates cancer cell death through various mechanisms involving the induction of apoptosis, necroptosis and/or mitophagy. Moreover, the metabolism of ceramide for S1P biosynthesis, which is mediated by sphingosine kinase 1 and 2, and its role in influencing cancer cell growth, drug resistance and tumour metastasis through S1PR-dependent or receptor-independent signalling are highlighted. Finally, studies targeting enzymes involved in sphingolipid metabolism and/or signalling and their clinical implications for improving cancer therapeutics are also presented.
Collapse
Affiliation(s)
- Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, South Carolina 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, MSC 957, Charleston, South Carolina 29425, USA
| |
Collapse
|
54
|
Watts JL, Ristow M. Lipid and Carbohydrate Metabolism in Caenorhabditis elegans. Genetics 2017; 207:413-446. [PMID: 28978773 PMCID: PMC5629314 DOI: 10.1534/genetics.117.300106] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022] Open
Abstract
Lipid and carbohydrate metabolism are highly conserved processes that affect nearly all aspects of organismal biology. Caenorhabditis elegans eat bacteria, which consist of lipids, carbohydrates, and proteins that are broken down during digestion into fatty acids, simple sugars, and amino acid precursors. With these nutrients, C. elegans synthesizes a wide range of metabolites that are required for development and behavior. In this review, we outline lipid and carbohydrate structures as well as biosynthesis and breakdown pathways that have been characterized in C. elegans We bring attention to functional studies using mutant strains that reveal physiological roles for specific lipids and carbohydrates during development, aging, and adaptation to changing environmental conditions.
Collapse
Affiliation(s)
- Jennifer L Watts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, 8603 Schwerzenbach-Zurich, Switzerland
| |
Collapse
|
55
|
Chan JP, Brown J, Hark B, Nolan A, Servello D, Hrobuchak H, Staab TA. Loss of Sphingosine Kinase Alters Life History Traits and Locomotor Function in Caenorhabditis elegans. Front Genet 2017; 8:132. [PMID: 28983319 PMCID: PMC5613162 DOI: 10.3389/fgene.2017.00132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022] Open
Abstract
Sphingolipid metabolism is important to balance the abundance of bioactive lipid molecules involved in cell signaling, neuronal function, and survival. Specifically, the sphingolipid sphingosine mediates cell death signaling, whereas its phosphorylated form, sphingosine-1-phosphate (S1P), mediates cell survival signaling. The enzyme sphingosine kinase produces S1P, and the activity of sphingosine kinase impacts the ability of cells to survive under stress and challenges. To examine the influence of sphingolipid metabolism, particularly enzymes regulating sphingosine and S1P, in mediating aging, neuronal function and stress response, we examined life history traits, locomotor capacities and heat stress responses of young and old animals using the model organism Caenorhabditis elegans. We found that C. elegans sphk-1 mutants, which lack sphingosine kinase, had shorter lifespans, reduced brood sizes, and smaller body sizes compared to wild type animals. By analyzing a panel of young and old animals with genetic mutations in the sphingolipid signaling pathway, we showed that aged sphk-1 mutants exhibited a greater decline in neuromuscular function and locomotor behavior. In addition, aged animals lacking sphk-1 were more susceptible to death induced by acute and prolonged heat exposure. On the other hand, older animals with loss of function mutations in ceramide synthase (hyl-1), which converts sphingosine to ceramide, showed improved neuromuscular function and stress response with age. This phenotype was dependent on sphk-1. Together, our data show that loss of sphingosine kinase contributes to poor animal health span, suggesting that sphingolipid signaling may be important for healthy neuronal function and animal stress response during aging.
Collapse
Affiliation(s)
- Jason P. Chan
- Department of Biology, Juniata CollegeHuntingdon, PA, United States
| | | | | | | | | | | | | |
Collapse
|
56
|
Cozma C, Iurașcu MI, Eichler S, Hovakimyan M, Brandau O, Zielke S, Böttcher T, Giese AK, Lukas J, Rolfs A. C26-Ceramide as highly sensitive biomarker for the diagnosis of Farber Disease. Sci Rep 2017; 7:6149. [PMID: 28733637 PMCID: PMC5522391 DOI: 10.1038/s41598-017-06604-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 06/15/2017] [Indexed: 12/31/2022] Open
Abstract
Farber disease (FD) is a rare autosomal recessive disease caused by mutations in the acid ceramidase gene (ASAH1). Low ceramidase activity results in the accumulation of fatty substances, mainly ceramides. Hallmark symptoms at clinical level are periarticular nodules, lipogranulomas, swollen and painful joints and a hoarse voice. FD phenotypes are heterogeneous varying from mild to very severe cases, with the patients not surviving past their first year of life. The diagnostic aspects of FD are poorly developed due to the rarity of the disease. In the present study, the screening for ceramides and related molecules was performed in Farber affected patients (n = 10), carriers (n = 11) and control individuals (n = 192). This study has the highest number of enrolled Farber patients and carriers reported to present. Liquid chromatography multiple reaction mass spectrometry (LC/MRM-MS) studies revealed that the ceramide C26:0 and especially its isoform 1 is a highly sensitive and specific biomarker for FD (p < 0.0001). The new biomarker can be determined directly in the dried blood spot extracts with low sample consumption. This allows for easy sample preparation, high reproducibility and use in high throughput screenings.
Collapse
Affiliation(s)
- Claudia Cozma
- Centogene AG, Schillingallee 68, 18057, Rostock, Germany.
| | | | | | | | - Oliver Brandau
- Centogene AG, Schillingallee 68, 18057, Rostock, Germany
| | - Susanne Zielke
- Albrecht-Kossel-Institute for Neurodegeneration, Rostock University Medical Centre, Gehlsheimerstraße 20, 18147, Rostock, Germany
| | - Tobias Böttcher
- Albrecht-Kossel-Institute for Neurodegeneration, Rostock University Medical Centre, Gehlsheimerstraße 20, 18147, Rostock, Germany
| | - Anne-Katrin Giese
- Albrecht-Kossel-Institute for Neurodegeneration, Rostock University Medical Centre, Gehlsheimerstraße 20, 18147, Rostock, Germany
| | - Jan Lukas
- Albrecht-Kossel-Institute for Neurodegeneration, Rostock University Medical Centre, Gehlsheimerstraße 20, 18147, Rostock, Germany
| | - Arndt Rolfs
- Centogene AG, Schillingallee 68, 18057, Rostock, Germany.,Albrecht-Kossel-Institute for Neurodegeneration, Rostock University Medical Centre, Gehlsheimerstraße 20, 18147, Rostock, Germany
| |
Collapse
|
57
|
McCulloch KA, Qi YB, Takayanagi-Kiya S, Jin Y, Cherra SJ. Novel Mutations in Synaptic Transmission Genes Suppress Neuronal Hyperexcitation in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2017; 7:2055-2063. [PMID: 28468816 PMCID: PMC5499116 DOI: 10.1534/g3.117.042598] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/22/2017] [Indexed: 01/29/2023]
Abstract
Acetylcholine (ACh) receptors (AChR) regulate neural circuit activity in multiple contexts. In humans, mutations in ionotropic acetylcholine receptor (iAChR) genes can cause neurological disorders, including myasthenia gravis and epilepsy. In Caenorhabditis elegans, iAChRs play multiple roles in the locomotor circuit. The cholinergic motor neurons express an ACR-2-containing pentameric AChR (ACR-2R) comprised of ACR-2, ACR-3, ACR-12, UNC-38, and UNC-63 subunits. A gain-of-function mutation in the non-α subunit gene acr-2 [acr-2(gf)] causes defective locomotion as well as spontaneous convulsions. Previous studies of genetic suppressors of acr-2(gf) have provided insights into ACR-2R composition and assembly. Here, to further understand how the ACR-2R regulates neuronal activity, we expanded the suppressor screen for acr-2(gf)-induced convulsions. The majority of these suppressor mutations affect genes that play critical roles in synaptic transmission, including two novel mutations in the vesicular ACh transporter unc-17 In addition, we identified a role for a conserved major facilitator superfamily domain (MFSD) protein, mfsd-6, in regulating neural circuit activity. We further defined a role for the sphingosine (SPH) kinase (Sphk) sphk-1 in cholinergic neuron activity, independent of previously known signaling pathways. Overall, the genes identified in our study suggest that optimal modulation of synaptic activity is balanced by the differential activities of multiple pathways, and the novel alleles provide valuable reagents to further dissect neuronal mechanisms regulating the locomotor circuit.
Collapse
Affiliation(s)
- Katherine A McCulloch
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093
| | - Yingchuan B Qi
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093
| | - Seika Takayanagi-Kiya
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093
| | - Salvatore J Cherra
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
58
|
Ji R, Akashi H, Drosatos K, Liao X, Jiang H, Kennel PJ, Brunjes DL, Castillero E, Zhang X, Deng LY, Homma S, George IJ, Takayama H, Naka Y, Goldberg IJ, Schulze PC. Increased de novo ceramide synthesis and accumulation in failing myocardium. JCI Insight 2017; 2:82922. [PMID: 28469091 PMCID: PMC5414571 DOI: 10.1172/jci.insight.82922] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/21/2017] [Indexed: 01/26/2023] Open
Abstract
Abnormal lipid metabolism may contribute to myocardial injury and remodeling. To determine whether accumulation of very long-chain ceramides occurs in human failing myocardium, we analyzed myocardial tissue and serum from patients with severe heart failure (HF) undergoing placement of left ventricular assist devices and controls. Lipidomic analysis revealed increased total and very long-chain ceramides in myocardium and serum of patients with advanced HF. After unloading, these changes showed partial reversibility. Following myocardial infarction (MI), serine palmitoyl transferase (SPT), the rate-limiting enzyme of the de novo pathway of ceramide synthesis, and ceramides were found increased. Blockade of SPT by the specific inhibitor myriocin reduced ceramide accumulation in ischemic cardiomyopathy and decreased C16, C24:1, and C24 ceramides. SPT inhibition also reduced ventricular remodeling, fibrosis, and macrophage content following MI. Further, genetic deletion of the SPTLC2 gene preserved cardiac function following MI. Finally, in vitro studies revealed that changes in ceramide synthesis are linked to hypoxia and inflammation. In conclusion, cardiac ceramides accumulate in the failing myocardium, and increased levels are detectable in circulation. Inhibition of de novo ceramide synthesis reduces cardiac remodeling. Thus, increased de novo ceramide synthesis contributes to progressive pathologic cardiac remodeling and dysfunction.
Collapse
Affiliation(s)
- Ruiping Ji
- Division of Cardiology, Columbia University Medical Center, New York, New York, USA
| | - Hirokazu Akashi
- Division of Cardiology, Columbia University Medical Center, New York, New York, USA
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Temple University School of Medicine, Center for Translational Medicine, Department of Pharmacology, Philadelphia, Pennsylvania, USA
| | - Xianghai Liao
- Division of Cardiology, Columbia University Medical Center, New York, New York, USA
| | - Hongfeng Jiang
- Division of Preventive Medicine and Nutrition, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Peter J. Kennel
- Division of Cardiology, Columbia University Medical Center, New York, New York, USA
| | - Danielle L. Brunjes
- Division of Cardiology, Columbia University Medical Center, New York, New York, USA
| | | | - Xiaokan Zhang
- Division of Cardiology, Columbia University Medical Center, New York, New York, USA
| | - Lily Y. Deng
- Division of Cardiology, Columbia University Medical Center, New York, New York, USA
| | - Shunichi Homma
- Division of Cardiology, Columbia University Medical Center, New York, New York, USA
| | | | - Hiroo Takayama
- Division of Cardiothoracic Surgery, Department of Surgery
| | - Yoshifumi Naka
- Division of Cardiothoracic Surgery, Department of Surgery
| | - Ira J. Goldberg
- Division of Preventive Medicine and Nutrition, Department of Medicine, Columbia University Medical Center, New York, New York, USA
- Division of Endocrinology, Diabetes and Metabolism, New York University Langone Medical Center, New York, New York, USA
| | - P. Christian Schulze
- Division of Cardiology, Columbia University Medical Center, New York, New York, USA
- Department of Internal Medicine I, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, University Hospital Jena, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
59
|
Hannich JT, Mellal D, Feng S, Zumbuehl A, Riezman H. Structure and conserved function of iso-branched sphingoid bases from the nematode Caenorhabditis elegans. Chem Sci 2017; 8:3676-3686. [PMID: 30155209 PMCID: PMC6094178 DOI: 10.1039/c6sc04831e] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/03/2017] [Indexed: 01/22/2023] Open
Abstract
Sphingolipids are bio-active metabolites that show structural diversity among eukaryotes. They are essential for growth of all eukaryotic cells but when produced in an uncontrolled manner can lead to cell death and pathologies including auto-immune reactions, cancer, diabetes and neurodegeneration. Caenorhabditis elegans is an important genetic model organism both to find new drug-targets against parasitic nematodes and to study the conserved roles of sphingolipids in animals like their essential functions in very basic cellular processes ranging from maintenance of cell polarity and mitochondrial repair to growth and survival. C. elegans produces sphingoid bases which are structurally distinct from those of other animals as both iso- and anteiso-branched species have been reported. Using metabolic labeling we show that most worm sphingoid bases are iso-branched. We have synthesized the nematode-specific C17 iso-branched sphinganine and its 1-deoxy analogue and could show that both the iso-branch and the 1-hydroxyl group are essential to form functional nematode sphingolipids which are needed to maintain intestinal function. The organism specificity was examined by complementation experiments in Saccharomyces cerevisiae yeast cells lacking sphingoid base synthesis. We found that iso-branched sphingoid base did not support growth of mutant cells and was toxic to wild type yeast. 1-Deoxy sphingolipids have been linked to the hereditary disease HSAN1A and other metabolic disorders including diabetes. We found that in C. elegans the 1-deoxy analogue cannot rescue the intestinal phenotype caused by sphingoid base depletion. In fact, in wild-type animals with normal sphingoid base biosynthesis, exogenous 1-deoxy analogue had a disruptive effect on apical cytoskeletal organization of intestinal cells indicating that atypical bases can interfere with normal sphingolipid function.
Collapse
Affiliation(s)
- J Thomas Hannich
- Department of Biochemistry , University of Geneva , CH-1205 Geneva , Switzerland .
- National Centre of Competence in Research (NCCR) "Chemical Biology" , Switzerland
| | - Denia Mellal
- Department of Chemistry , University of Fribourg , CH-1700 Fribourg , Switzerland .
- National Centre of Competence in Research (NCCR) "Chemical Biology" , Switzerland
| | - Suihan Feng
- Department of Biochemistry , University of Geneva , CH-1205 Geneva , Switzerland .
- National Centre of Competence in Research (NCCR) "Chemical Biology" , Switzerland
| | - Andreas Zumbuehl
- Department of Chemistry , University of Fribourg , CH-1700 Fribourg , Switzerland .
- National Centre of Competence in Research (NCCR) "Chemical Biology" , Switzerland
| | - Howard Riezman
- Department of Biochemistry , University of Geneva , CH-1205 Geneva , Switzerland .
- National Centre of Competence in Research (NCCR) "Chemical Biology" , Switzerland
| |
Collapse
|
60
|
Sun CL, Zhang H, Liu M, Wang W, Crowder CM. A screen for protective drugs against delayed hypoxic injury. PLoS One 2017; 12:e0176061. [PMID: 28426808 PMCID: PMC5398677 DOI: 10.1371/journal.pone.0176061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/04/2017] [Indexed: 12/04/2022] Open
Abstract
Despite longstanding efforts to develop cytoprotective drugs against ischemia/reperfusion (IR) injuries, there remains no effective therapeutics to treat hypoxic injury. The failure of traditional strategies at solving this problem suggests the need for novel and unbiased approaches that can lead to previously unsuspected targets and lead compounds. Towards this end, we report here a unique small molecule screen in the nematode C. elegans for compounds that improve recovery when applied after the hypoxic insult, using a C. elegans strain engineered to have delayed cell non-autonomous death. In a screen of 2000 compounds, six were found to produce significant protection of C. elegans from delayed death. Four of the compounds were tested in an ex vivo mouse heart ischemia/reperfusion model and two, meclocycline and 3-amino-1,2,4-triazole, significantly reduced infarction size. Our work demonstrates the feasibility of this novel C. elegans screen to discover hypoxia protective drugs that are also protective in a mammalian model of hypoxic injury.
Collapse
Affiliation(s)
- Chun-Ling Sun
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Huiliang Zhang
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Meng Liu
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Anesthesiology, The Second Military Medical University, Shanghai, People’s Republic of China
| | - Wang Wang
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - C. Michael Crowder
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Genome Science, University of Washington School of Medicine, Seattle, Washington, United States of America
| |
Collapse
|
61
|
Clozapine Modulates Glucosylceramide, Clears Aggregated Proteins, and Enhances ATG8/LC3 in Caenorhabditis elegans. Neuropsychopharmacology 2017; 42:951-962. [PMID: 27711049 PMCID: PMC5312067 DOI: 10.1038/npp.2016.230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/27/2016] [Accepted: 09/21/2016] [Indexed: 12/31/2022]
Abstract
Defining the mechanisms of action of the antipsychotic drug (APD), clozapine, is of great importance, as clozapine is more effective and has therapeutic benefits in a broader range of psychiatric disorders compared with other APDs. Its range of actions have not been fully characterized. Exposure to APDs early in development causes dose-dependent developmental delay and lethality in Caenorhabditis elegans. A previous genome-wide RNAi screen for suppressors of clozapine-induced developmental delay and lethality revealed 40 candidate genes, including sms-1, which encodes a sphingomyelin synthase. One sms-1 isoform is expressed in the C. elegans pharynx, and its transgene rescues the sms-1 mutant phenotype. We examined pharyngeal pumping and observed that clozapine-induced inhibition of pharyngeal pumping requires sms-1, a finding that may explain the role of the gene in mediating clozapine-induced developmental delay/lethality. By analyzing multiple enzymes involved in sphingolipid metabolism, and by observing the effect of addition of various lipids directly to the worms, we suggest that glucosylceramide may be a key mediator of the effects of clozapine. We further observed that clozapine clears protein aggregates, such as α-synuclein, PolyQ protein, and α-1-antitrypsin mutant protein. In addition, it enhances ATG8/LC3. We conclude that clozapine appears to affect the development and induce lethality of worms, in part, through modulating glucosylceramide. We discuss the possible connections among glucosylceramide, protein aggregate clearance, and autophagy. Interactions, including mechanistic pathways involving these elements, may underlie some of the clinical effects of clozapine.
Collapse
|
62
|
Liu L, Wang Z, Park HG, Xu C, Lawrence P, Su X, Wijendran V, Walker WA, Kothapalli KSD, Brenna JT. Human fetal intestinal epithelial cells metabolize and incorporate branched chain fatty acids in a structure specific manner. Prostaglandins Leukot Essent Fatty Acids 2017; 116:32-39. [PMID: 28088292 PMCID: PMC5260611 DOI: 10.1016/j.plefa.2016.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Branched chain fatty acids (BCFA) are constituents of gastrointestinal (GI) tract in healthy newborn human infants, reduce the incidence of necrotizing enterocolitis (NEC) in a neonatal rat model, and are incorporated into small intestine cellular lipids in vivo. We hypothesize that BCFA are taken up, metabolized and incorporated into human fetal cells in vitro. METHODS Human H4 cells, a fetal non-transformed primary small intestine cell line, were incubated with albumin-bound non-esterified anteiso-17:0, iso-16:0, iso-18:0 and/or iso-20:0, and FA profiles in lipid fractions were analyzed. RESULTS All BCFA were readily incorporated as major constituents of cellular lipids. Anteiso-17:0 was preferentially taken up, and was most effective among BCFA tested in displacing normal (n-) FA. The iso BCFA were preferred in reverse order of chain length, with iso-20:0 appearing at lowest level. BCFA incorporation in phospholipids (PL) followed the same order of preference, accumulating 42% of FA as BCFA with no overt morphological signs of cell death. Though cholesterol esters (CE) are at low cellular concentration among lipid classes examined, CE had the greatest affinity for BCFA, accumulating 65% of FA as BCFA. BCFA most effectively displaced lower saturated FA. Iso-16:0, iso-18:0 and anteiso-17:0 were both elongated and chain shortened by ±C2. Iso-20:0 was chain shortened to iso-18:0 and iso-16:0 but not elongated. CONCLUSIONS Nontransformed human fetal intestinal epithelial cells incorporate high levels of BCFA when they are available and metabolize them in a structure specific manner. These findings imply that specific pathways for handling BCFA are present in the lumen-facing cells of the human fetal GI tract that is exposed to vernix-derived BCFA in late gestation.
Collapse
Affiliation(s)
- Lei Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China; Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Zhen Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Hui Gyu Park
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Chuang Xu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Peter Lawrence
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Xueli Su
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; Jingchu University of Technology, Jingmen, Hubei 448000, China
| | - Vasuki Wijendran
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Charlestow, MA, USA
| | - W Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Charlestow, MA, USA
| | | | - J Thomas Brenna
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
63
|
Starvation-Induced Stress Response Is Critically Impacted by Ceramide Levels in Caenorhabditis elegans. Genetics 2016; 205:775-785. [PMID: 27974500 DOI: 10.1534/genetics.116.194282] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/07/2016] [Indexed: 12/24/2022] Open
Abstract
Our understanding of the cellular mechanisms by which animals regulate their response to starvation is limited, despite the strong relevance of the problem to major human health issues. The L1 diapause of Caenorhabditis elegans, where first-stage larvae arrest in response to a food-less environment, is an excellent system to study this mechanism. We found, through genetic manipulation and lipid analysis, that biosynthesis of ceramide, particularly those with longer fatty acid side chains, critically impacts animal survival during L1 diapause. Genetic interaction analysis suggests that ceramide may act in both insulin-IGF-1 signaling (IIS)-dependent and IIS-independent pathways to affect starvation survival. Genetic and expression analyses indicate that ceramide is required for maintaining the proper expression of previously characterized starvation-responsive genes, genes that are regulated by the IIS pathway and tumor suppressor Rb, and genes responsive to pathogen. These findings provide an important insight into the roles of sphingolipid metabolism, not only in starvation response, but also in aging and food-response-related human health problems.
Collapse
|
64
|
Glucose or Altered Ceramide Biosynthesis Mediate Oxygen Deprivation Sensitivity Through Novel Pathways Revealed by Transcriptome Analysis in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2016; 6:3149-3160. [PMID: 27507791 PMCID: PMC5068937 DOI: 10.1534/g3.116.031583] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Individuals with type 2 diabetes display metabolic abnormalities, such as hyperglycemia, increased free fatty acids, insulin resistance, and altered ceramide levels, that contribute to vascular dysfunctions and compromised oxygen delivery. Caenorhabditis elegans fed a glucose-supplemented diet or with altered ceramide metabolism, due to a hyl-2 mutation, are sensitive to oxygen deprivation (anoxia). Our experiments showed that the combination of these factors further decreased the anoxia survival. RNA-sequencing analysis was performed to assess how a glucose-supplemented diet and/or a hyl-2 mutation altered the transcriptome. Comparison analysis of transcripts associated with anoxia-sensitive animals [hyl-2(tm2031) mutation or a glucose diet] revealed 199 common transcripts encoded by genes with known or predicted functions involving innate immunity, cuticle function (collagens), or xenobiotic and endobiotic phase I and II detoxification system. Use of RNA interference (RNAi) to target gene products of the xenobiotic and endobiotic phase I and II detoxification system (UDP-glycosyltransferase and Cytochrome p450 genes; ugt-15, ugt-18, ugt-19, ugt-41, ugt-63, cyp-13A12, cyp-25A1, and cyp-33C8) increased anoxia survival in wild-type animals fed a standard diet. Anoxia sensitivity of the hyl-2(tm2031) animals was suppressed by RNAi of cyp-25A1 or cyp-33C8 genes. A glucose diet fed to the P0 hermaphrodite decreased the anoxia survival of its F1 embryos; however, the RNAi of ugt-63 and cyp-33C8 suppressed anoxia sensitivity. These studies provide evidence that the detoxification system impacts oxygen deprivation responses and that C. elegans can be used to model the conserved detoxification system.
Collapse
|
65
|
Ying L, Zhu H. Current advances in the functional studies of fatty acids and fatty acid-derived lipids in C. elegans. WORM 2016; 5:e1184814. [PMID: 27695652 DOI: 10.1080/21624054.2016.1184814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/18/2016] [Accepted: 04/26/2016] [Indexed: 02/08/2023]
Abstract
Fatty acids and fatty acid-derived lipids (FAs/FADLs) play essential roles in many living organisms, including contributions to membrane structure and signaling transduction. Aberrant metabolism of FAs/FADLs often causes diseases and health problems. However, the detailed mechanistic studies of specific FAs/FADLs in vivo are limited. C. elegans has been an effective model system for FA/ FADL studies due to its powerful genetics and conserved lipid biosynthetic pathways. The recently developed high-throughput analytic tools also enable sophisticated profiling of lipids molecules in C. elegans, which is critical for understanding their specific functions. Here we review a subset of current advances in FA/FADL functional studies in C. elegans.
Collapse
Affiliation(s)
- Lu Ying
- School of Life Science and Technology, ShanghaiTech University , Shanghai, China
| | - Huanhu Zhu
- School of Life Science and Technology, ShanghaiTech University , Shanghai, China
| |
Collapse
|
66
|
Laaksonen R, Ekroos K, Sysi-Aho M, Hilvo M, Vihervaara T, Kauhanen D, Suoniemi M, Hurme R, März W, Scharnagl H, Stojakovic T, Vlachopoulou E, Lokki ML, Nieminen MS, Klingenberg R, Matter CM, Hornemann T, Jüni P, Rodondi N, Räber L, Windecker S, Gencer B, Pedersen ER, Tell GS, Nygård O, Mach F, Sinisalo J, Lüscher TF. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur Heart J 2016; 37:1967-76. [PMID: 27125947 PMCID: PMC4929378 DOI: 10.1093/eurheartj/ehw148] [Citation(s) in RCA: 473] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/17/2016] [Indexed: 12/12/2022] Open
Abstract
Aims The aim was to study the prognostic value of plasma ceramides (Cer) as cardiovascular death (CV death) markers in three independent coronary artery disease (CAD) cohorts. Methods and results Corogene study is a prospective Finnish cohort including stable CAD patients (n = 160). Multiple lipid biomarkers and C-reactive protein were measured in addition to plasma Cer(d18:1/16:0), Cer(d18:1/18:0), Cer(d18:1/24:0), and Cer(d18:1/24:1). Subsequently, the association between high-risk ceramides and CV mortality was investigated in the prospective Special Program University Medicine—Inflammation in Acute Coronary Syndromes (SPUM-ACS) cohort (n = 1637), conducted in four Swiss university hospitals. Finally, the results were validated in Bergen Coronary Angiography Cohort (BECAC), a prospective Norwegian cohort study of stable CAD patients. Ceramides, especially when used in ratios, were significantly associated with CV death in all studies, independent of other lipid markers and C-reactive protein. Adjusted odds ratios per standard deviation for the Cer(d18:1/16:0)/Cer(d18:1/24:0) ratio were 4.49 (95% CI, 2.24–8.98), 1.64 (1.29–2.08), and 1.77 (1.41–2.23) in the Corogene, SPUM-ACS, and BECAC studies, respectively. The Cer(d18:1/16:0)/Cer(d18:1/24:0) ratio improved the predictive value of the GRACE score (net reclassification improvement, NRI = 0.17 and ΔAUC = 0.09) in ACS and the predictive value of the Marschner score in stable CAD (NRI = 0.15 and ΔAUC = 0.02). Conclusions Distinct plasma ceramide ratios are significant predictors of CV death both in patients with stable CAD and ACS, over and above currently used lipid markers. This may improve the identification of high-risk patients in need of more aggressive therapeutic interventions.
Collapse
Affiliation(s)
- Reijo Laaksonen
- Zora Biosciences, Espoo, Finland Medical School, Tampere University, Tampere, Finland Finnish Clinical Biobank Tampere, University Hospital of Tampere, Tampere, Finland
| | | | | | | | | | | | | | | | - Winfried März
- Medical Clinic V (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany synlab Academy, synlab Holding Deutschland GmbH, Mannheim and Augsburg, Germany
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University Graz, Graz, Austria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University Graz, Graz, Austria
| | - Efthymia Vlachopoulou
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Marja-Liisa Lokki
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Markku S Nieminen
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
| | - Roland Klingenberg
- Department of Cardiology, University Heart Center, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Christian M Matter
- Department of Cardiology, University Heart Center, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University Hospital, Zürich, Switzerland
| | - Peter Jüni
- Applied Health Research Centre (AHRC), Li Ka Shing Knowledge Institute of St. Michael's Hospital, and Department of Medicine, University of Toronto, Toronto, Canada
| | - Nicolas Rodondi
- Department of General Internal Medicine, University Hospital Bern, Bern, Switzerland Department of Ambulatory Care and Community Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lorenz Räber
- Cardiovascular Center, Department of Cardiology, University Hospital Bern, Bern, Switzerland
| | - Stephan Windecker
- Cardiovascular Center, Department of Cardiology, University Hospital Bern, Bern, Switzerland
| | - Baris Gencer
- Cardiovascular Center, Department of Cardiology, University Hospital Geneva, Geneva, Switzerland
| | | | - Grethe S Tell
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Ottar Nygård
- Department of Clinical Science, University of Bergen, Bergen, Norway Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Francois Mach
- Cardiovascular Center, Department of Cardiology, University Hospital Geneva, Geneva, Switzerland
| | - Juha Sinisalo
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
| | - Thomas F Lüscher
- Institute of Clinical Chemistry, University Hospital, Zürich, Switzerland
| |
Collapse
|
67
|
Mao XR, Kaufman DM, Crowder CM. Nicotinamide mononucleotide adenylyltransferase promotes hypoxic survival by activating the mitochondrial unfolded protein response. Cell Death Dis 2016; 7:e2113. [PMID: 26913604 PMCID: PMC4849163 DOI: 10.1038/cddis.2016.5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/18/2015] [Accepted: 12/27/2015] [Indexed: 02/04/2023]
Abstract
Gain-of-function mutations in the mouse nicotinamide mononucleotide adenylyltransferase type 1 (Nmnat1) produce two remarkable phenotypes: protection against traumatic axonal degeneration and reduced hypoxic brain injury. Despite intensive efforts, the mechanism of Nmnat1 cytoprotection remains elusive. To develop a new model to define this mechanism, we heterologously expressed a mouse Nmnat1 non-nuclear-localized gain-of-function mutant gene (m-nonN-Nmnat1) in the nematode Caenorhabditis elegans and show that it provides protection from both hypoxia-induced animal death and taxol-induced axonal pathology. Additionally, we find that m-nonN-Nmnat1 significantly lengthens C. elegans lifespan. Using the hypoxia-protective phenotype in C. elegans, we performed a candidate screen for genetic suppressors of m-nonN-Nmnat1 cytoprotection. Loss of function in two genes, haf-1 and dve-1, encoding mitochondrial unfolded protein response (mitoUPR) factors were identified as suppressors. M-nonN-Nmnat1 induced a transcriptional reporter of the mitoUPR gene hsp-6 and provided protection from the mitochondrial proteostasis toxin ethidium bromide. M-nonN-Nmnat1 was also protective against axonal degeneration in C. elegans induced by the chemotherapy drug taxol. Taxol markedly reduced basal expression of a mitoUPR reporter; the expression was restored by m-nonN-Nmnat1. Taken together, these data implicate the mitoUPR as a mechanism whereby Nmnat1 protects from hypoxic and axonal injury.
Collapse
Affiliation(s)
- X R Mao
- Department of Anesthesiology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
| | - D M Kaufman
- Department of Anesthesiology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA 98195-6540, USA
| | - C M Crowder
- Department of Anesthesiology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA 98195-6540, USA
- Department of Genome Sciences, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA 98195-6540, USA
| |
Collapse
|
68
|
Witting M, Schmitt-Kopplin P. The Caenorhabditis elegans lipidome. Arch Biochem Biophys 2016; 589:27-37. [DOI: 10.1016/j.abb.2015.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 12/30/2022]
|
69
|
Jazwinski S. Mitochondria to nucleus signaling and the role of ceramide in its integration into the suite of cell quality control processes during aging. Ageing Res Rev 2015; 23:67-74. [PMID: 25555678 DOI: 10.1016/j.arr.2014.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/15/2014] [Accepted: 12/22/2014] [Indexed: 12/26/2022]
Abstract
Mitochondria to nucleus signaling has been the most extensively studied mode of inter-organelle communication. The first signaling pathway in this category of information transfer to be discovered was the retrograde response, with its own set of signal transduction proteins. The finding that this pathway compensates for mitochondrial dysfunction to extend the replicative lifespan of yeast cells has generated additional impetus for its study. This research has demonstrated crosstalk between the retrograde response and the target of rapamycin (TOR), small GTPase RAS, and high-osmolarity glycerol (HOG) pathways in yeast, all of which are key players in replicative lifespan. More recently, the retrograde response has been implicated in the diauxic shift and survival in stationary phase, extending its operation to the yeast chronological lifespan as well. In this capacity, the retrograde response may cooperate with other, related mitochondria to nucleus signaling pathways. Counterparts of the retrograde response are found in the roundworm, the fruit fly, the mouse, and even in human cells in tissue culture. The exciting realization that the retrograde response is embedded in the network of cellular quality control processes has emerged over the past few years. Most strikingly, it is closely integrated with autophagy and the selective brand of this quality control process, mitophagy. This coordination depends on TOR, and it engages ceramide/sphingolipid signaling. The yeast LAG1 ceramide synthase gene was the first longevity gene cloned as such, and its orthologs hyl-1 and hyl-2 determine worm lifespan. Thus, the involvement of ceramide signaling in quality control gives these findings cellular context. The retrograde response and ceramide are essential components of a lifespan maintenance process that likely evolved as a cytoprotective mechanism to defend the organism from diverse stressors.
Collapse
|
70
|
Zhu M, Wu G, Li YX, Stevens JK, Fan CX, Spang A, Dong MQ. Serum- and Glucocorticoid-Inducible Kinase-1 (SGK-1) Plays a Role in Membrane Trafficking in Caenorhabditis elegans. PLoS One 2015; 10:e0130778. [PMID: 26115433 PMCID: PMC4482599 DOI: 10.1371/journal.pone.0130778] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/22/2015] [Indexed: 02/03/2023] Open
Abstract
The mammalian serum- and glucocorticoid-inducible kinase SGK1 regulates the endocytosis of ion channels. Here we report that in C. elegans sgk-1 null mutants, GFP-tagged MIG-14/Wntless, the sorting receptor of Wnt, failed to localize to the basolateral membrane of intestinal cells; instead, it was mis-sorted to lysosomes. This effect can be explained in part by altered sphingolipid levels, because reducing glucosylceramide biosynthesis restored the localization of MIG-14::GFP. Membrane traffic was not perturbed in general, as no obvious morphological defects were detected for early endosomes, the Golgi apparatus, and the endoplasmic reticulum (ER) in sgk-1 null animals. The recycling of MIG-14/Wntless through the Golgi might be partially responsible for the observed phenotype because the subcellular distribution of two plasma membrane cargoes that do not recycle through the trans-Golgi network (TGN) was affected to a lesser degree. Consistently, knockdown of the ArfGEF gbf-1 altered the distribution of SGK-1 at the basolateral membrane of intestinal cells. In addition, we found that sgk-1(RNAi) induced unfolded protein response in the ER, suggesting at least an indirect role of SGK-1 early in the secretory pathway. We propose that SGK-1 function is required for lipid homeostasis and that it acts at different intracellular trafficking steps.
Collapse
Affiliation(s)
- Ming Zhu
- College of Life Sciences, Beijing Normal University, Beijing, China
- National Institute of Biological Sciences, Beijing, Beijing, China
| | - Gang Wu
- National Institute of Biological Sciences, Beijing, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, National Institute of Biological Sciences, Beijing, Beijing, China
| | - Yu-Xin Li
- National Institute of Biological Sciences, Beijing, Beijing, China
| | | | - Chao-Xuan Fan
- National Institute of Biological Sciences, Beijing, Beijing, China
| | - Anne Spang
- Growth and Development, Biozentrum, University of Basel, Basel, Switzerland
| | - Meng-Qiu Dong
- College of Life Sciences, Beijing Normal University, Beijing, China
- National Institute of Biological Sciences, Beijing, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, National Institute of Biological Sciences, Beijing, Beijing, China
| |
Collapse
|
71
|
Schrader L, Simola DF, Heinze J, Oettler J. Sphingolipids, Transcription Factors, and Conserved Toolkit Genes: Developmental Plasticity in the Ant Cardiocondyla obscurior. Mol Biol Evol 2015; 32:1474-86. [PMID: 25725431 PMCID: PMC4615751 DOI: 10.1093/molbev/msv039] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Developmental plasticity allows for the remarkable morphological specialization of individuals into castes in eusocial species of Hymenoptera. Developmental trajectories that lead to alternative caste fates are typically determined by specific environmental stimuli that induce larvae to express and maintain distinct gene expression patterns. Although most eusocial species express two castes, queens and workers, the ant Cardiocondyla obscurior expresses diphenic females and males; this provides a unique system with four discrete phenotypes to study the genomic basis of developmental plasticity in ants. We sequenced and analyzed the transcriptomes of 28 individual C. obscurior larvae of known developmental trajectory, providing the first in-depth analysis of gene expression in eusocial insect larvae. Clustering and transcription factor binding site analyses revealed that different transcription factors and functionally distinct sets of genes are recruited during larval development to induce the four alternative trajectories. In particular, we found complex patterns of gene regulation pertaining to sphingolipid metabolism, a conserved molecular pathway involved in development, obesity, and aging.
Collapse
Affiliation(s)
- Lukas Schrader
- Department for Zoology/Evolutionary Biology, Institut für Zoologie, Universität Regensburg, Regensburg, Germany
| | - Daniel F Simola
- Department of Cell and Developmental Biology, University of Pennsylvania
| | - Jürgen Heinze
- Department for Zoology/Evolutionary Biology, Institut für Zoologie, Universität Regensburg, Regensburg, Germany
| | - Jan Oettler
- Department for Zoology/Evolutionary Biology, Institut für Zoologie, Universität Regensburg, Regensburg, Germany
| |
Collapse
|
72
|
Siddique MM, Li Y, Chaurasia B, Kaddai VA, Summers SA. Dihydroceramides: From Bit Players to Lead Actors. J Biol Chem 2015; 290:15371-15379. [PMID: 25947377 DOI: 10.1074/jbc.r115.653204] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingolipid synthesis involves a highly conserved biosynthetic pathway that produces fundamental precursors of complex sphingolipids. The final reaction involves the insertion of a double bond into dihydroceramides to generate the more abundant ceramides, which are converted to sphingomyelins and glucosylceramides/gangliosides by the addition of polar head groups. Although ceramides have long been known to mediate cellular stress responses, the dihydroceramides that are transiently produced during de novo sphingolipid synthesis were deemed inert. Evidence published in the last few years suggests that these dihydroceramides accumulate to a far greater extent in tissues than previously thought. Moreover, they have biological functions that are distinct and non-overlapping with those of the more prevalent ceramides. Roles are being uncovered in autophagy, hypoxia, and cellular proliferation, and the lipids are now implicated in the etiology, treatment, and/or diagnosis of diabetes, cancer, ischemia/reperfusion injury, and neurodegenerative diseases. This minireview summarizes recent findings on this emerging class of bioactive lipids.
Collapse
Affiliation(s)
| | - Ying Li
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | | | - Vincent A Kaddai
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Scott A Summers
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.
| |
Collapse
|
73
|
Glucose induces sensitivity to oxygen deprivation and modulates insulin/IGF-1 signaling and lipid biosynthesis in Caenorhabditis elegans. Genetics 2015; 200:167-84. [PMID: 25762526 DOI: 10.1534/genetics.115.174631] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/02/2015] [Indexed: 12/15/2022] Open
Abstract
Diet is a central environmental factor that contributes to the phenotype and physiology of individuals. At the root of many human health issues is the excess of calorie intake relative to calorie expenditure. For example, the increasing amount of dietary sugars in the human diet is contributing to the rise of obesity and type 2 diabetes. Individuals with obesity and type 2 diabetes have compromised oxygen delivery, and thus it is of interest to investigate the impact a high-sugar diet has on oxygen deprivation responses. By utilizing the Caenorhabditis elegans genetic model system, which is anoxia tolerant, we determined that a glucose-supplemented diet negatively impacts responses to anoxia and that the insulin-like signaling pathway, through fatty acid and ceramide synthesis, modulates anoxia survival. Additionally, a glucose-supplemented diet alters lipid localization and initiates a positive chemotaxis response. Use of RNA-sequencing analysis to compare gene expression responses in animals fed either a standard or glucose-supplemented diet revealed that glucose impacts the expression of genes involved with multiple cellular processes including lipid and carbohydrate metabolism, stress responses, cell division, and extracellular functions. Several of the genes we identified show homology to human genes that are differentially regulated in response to obesity or type 2 diabetes, suggesting that there may be conserved gene expression responses between C. elegans fed a glucose-supplemented diet and a diabetic and/or obesity state observed in humans. These findings support the utility of the C. elegans model for understanding the molecular mechanisms regulating dietary-induced metabolic diseases.
Collapse
|
74
|
Xie LJ, Chen QF, Chen MX, Yu LJ, Huang L, Chen L, Wang FZ, Xia FN, Zhu TR, Wu JX, Yin J, Liao B, Shi J, Zhang JH, Aharoni A, Yao N, Shu W, Xiao S. Unsaturation of very-long-chain ceramides protects plant from hypoxia-induced damages by modulating ethylene signaling in Arabidopsis. PLoS Genet 2015; 11:e1005143. [PMID: 25822663 PMCID: PMC4379176 DOI: 10.1371/journal.pgen.1005143] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/12/2015] [Indexed: 01/16/2023] Open
Abstract
Lipid remodeling is crucial for hypoxic tolerance in animals, whilst little is known about the hypoxia-induced lipid dynamics in plants. Here we performed a mass spectrometry-based analysis to survey the lipid profiles of Arabidopsis rosettes under various hypoxic conditions. We observed that hypoxia caused a significant increase in total amounts of phosphatidylserine, phosphatidic acid and oxidized lipids, but a decrease in phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Particularly, significant gains in the polyunsaturated species of PC, PE and phosphatidylinositol, and losses in their saturated and mono-unsaturated species were evident during hypoxia. Moreover, hypoxia led to a remarkable elevation of ceramides and hydroxyceramides. Disruption of ceramide synthases LOH1, LOH2 and LOH3 enhanced plant sensitivity to dark submergence, but displayed more resistance to submergence under light than wild type. Consistently, levels of unsaturated very-long-chain (VLC) ceramide species (22:1, 24:1 and 26:1) predominantly declined in the loh1, loh2 and loh3 mutants under dark submergence. In contrast, significant reduction of VLC ceramides in the loh1-1 loh3-1 knockdown double mutant and lacking of VLC unsaturated ceramides in the ads2 mutants impaired plant tolerance to both dark and light submergences. Evidence that C24:1-ceramide interacted with recombinant CTR1 protein and inhibited its kinase activity in vitro, enhanced ER-to-nucleus translocation of EIN2-GFP and stabilization of EIN3-GFP in vivo, suggests a role of ceramides in modulating CTR1-mediated ethylene signaling. The dark submergence-sensitive phenotypes of loh mutants were rescued by a ctr1-1 mutation. Thus, our findings demonstrate that unsaturation of VLC ceramides is a protective strategy for hypoxic tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Li-Juan Xie
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qin-Fang Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mo-Xian Chen
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lu-Jun Yu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Li Huang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Liang Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Feng-Zhu Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Fan-Nv Xia
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tian-Ren Zhu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian-Xin Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian Yin
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bin Liao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianxin Shi
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Hua Zhang
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Nan Yao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wensheng Shu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
75
|
Dany M, Ogretmen B. Ceramide induced mitophagy and tumor suppression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2834-45. [PMID: 25634657 DOI: 10.1016/j.bbamcr.2014.12.039] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/09/2014] [Accepted: 12/25/2014] [Indexed: 12/11/2022]
Abstract
Sphingolipids are bioactive lipid effectors, which are involved in the regulation of various cellular signaling pathways. Sphingolipids play essential roles in controlling cell inflammation, proliferation, death, migration, senescence, metastasis and autophagy. Alterations in sphingolipid metabolism have been also implicated in many human cancers. Macroautophagy (referred to here as autophagy) is a form of nonselective sequestering of cytosolic materials by double membrane structures, autophagosomes, which can be either protective or lethal for cells. Ceramide, a central molecule of sphingolipid metabolism is involved in the regulation of autophagy at various levels, including the induction of lethal mitophagy, a selective autophagy process to target and eliminate damaged mitochondria. In this review, we focused on recent studies with regard to the regulation of autophagy, in particular lethal mitophagy, by ceramide, and aimed at providing discussion points for various context-dependent roles and mechanisms of action of ceramide in controlling mitophagy.
Collapse
Affiliation(s)
- Mohammed Dany
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA.
| |
Collapse
|
76
|
A HIF-independent mediator of transcriptional responses to oxygen deprivation in Caenorhabditis elegans. Genetics 2014; 199:739-48. [PMID: 25552276 DOI: 10.1534/genetics.114.173989] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The adaptive response to hypoxia is accompanied by widespread transcriptional changes that allow for prolonged survival in low oxygen. Many of these changes are directly regulated by the conserved hypoxia-inducible factor-1 (HIF-1) complex; however, even in its absence, many oxygen-sensitive transcripts in Caenorhabditis elegans are appropriately regulated in hypoxia. To identify mediators of these non-HIF-dependent responses, we established a hif-1 mutant reporter line that expresses GFP in hypoxia or when worms are treated with the hypoxia mimetic cobalt chloride (CoCl2). The reporter is selective and HIF independent, in that it remains insensitive to a number of cellular stresses, but is unaffected by mutation of the prolyl hydroxylase egl-9, suggesting that the regulators of this response pathway are different from those controlling the HIF pathway. We used the HIF-independent reporter to screen a transcription factor RNA interference (RNAi) library and identified genes that are required for hypoxia-sensitive and CoCl2-induced GFP expression. We identified the zinc finger protein BLMP-1 as a mediator of the HIF-independent response. We show that mutation of blmp-1 renders animals sensitive to hypoxic exposure and that blmp-1 is required for appropriate hypoxic-induced expression of HIF-independent transcripts. Further, we demonstrate that BLMP-1 is necessary for an increase of hypoxia-dependent histone acetylation within the promoter of a non-HIF-dependent hypoxia response gene.
Collapse
|
77
|
CerS2 haploinsufficiency inhibits β-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab 2014; 20:687-95. [PMID: 25295789 DOI: 10.1016/j.cmet.2014.09.015] [Citation(s) in RCA: 377] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/14/2014] [Accepted: 09/23/2014] [Indexed: 01/30/2023]
Abstract
Inhibition of ceramide synthesis prevents diabetes, steatosis, and cardiovascular disease in rodents. Six different ceramide synthases (CerS) that differ in tissue distribution and substrate specificity account for the diversity in acyl-chain composition of distinct ceramide species. Haploinsufficiency for ceramide synthase 2 (CerS2), the dominant isoform in the liver that preferentially makes very-long-chain (C22/C24/C24:1) ceramides, led to compensatory increases in long-chain C16-ceramides and conferred susceptibility to diet-induced steatohepatitis and insulin resistance. Mechanistic studies revealed that these metabolic effects were likely due to impaired β-oxidation resulting from inactivation of electron transport chain components. Inhibiting global ceramide synthesis negated the effects of CerS2 haploinsufficiency in vivo, and increasing C16-ceramides by overexpressing CerS6 recapitulated the phenotype in isolated, primary hepatocytes. Collectively, these studies reveal that altering sphingolipid acylation patterns impacts hepatic steatosis and insulin sensitivity and identify CerS6 as a possible therapeutic target for treating metabolic diseases associated with obesity.
Collapse
|
78
|
Turpin SM, Nicholls HT, Willmes DM, Mourier A, Brodesser S, Wunderlich CM, Mauer J, Xu E, Hammerschmidt P, Brönneke HS, Trifunovic A, LoSasso G, Wunderlich FT, Kornfeld JW, Blüher M, Krönke M, Brüning JC. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab 2014; 20:678-86. [PMID: 25295788 DOI: 10.1016/j.cmet.2014.08.002] [Citation(s) in RCA: 536] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/17/2014] [Accepted: 07/25/2014] [Indexed: 01/02/2023]
Abstract
Ceramides increase during obesity and promote insulin resistance. Ceramides vary in acyl-chain lengths from C14:0 to C30:0 and are synthesized by six ceramide synthase enzymes (CerS1-6). It remains unresolved whether obesity-associated alterations of specific CerSs and their defined acyl-chain length ceramides contribute to the manifestation of metabolic diseases. Here we reveal that CERS6 mRNA expression and C16:0 ceramides are elevated in adipose tissue of obese humans, and increased CERS6 expression correlates with insulin resistance. Conversely, CerS6-deficient (CerS6(Δ/Δ)) mice exhibit reduced C16:0 ceramides and are protected from high-fat-diet-induced obesity and glucose intolerance. CerS6 deletion increases energy expenditure and improves glucose tolerance, not only in CerS6(Δ/Δ) mice, but also in brown adipose tissue- (CerS6(ΔBAT)) and liver-specific (CerS6(ΔLIVER)) CerS6 knockout mice. CerS6 deficiency increases lipid utilization in BAT and liver. These experiments highlight CerS6 inhibition as a specific approach for the treatment of obesity and type 2 diabetes mellitus, circumventing the side effects of global ceramide synthesis inhibition.
Collapse
Affiliation(s)
- Sarah M Turpin
- Max Planck Institute for Metabolism Research, Cologne, North Rhine-Westphalia 50931, Germany; CECAD, Cologne, North Rhine-Westphalia 50931, Germany
| | - Hayley T Nicholls
- Max Planck Institute for Metabolism Research, Cologne, North Rhine-Westphalia 50931, Germany; CECAD, Cologne, North Rhine-Westphalia 50931, Germany
| | - Diana M Willmes
- Max Planck Institute for Metabolism Research, Cologne, North Rhine-Westphalia 50931, Germany; CECAD, Cologne, North Rhine-Westphalia 50931, Germany
| | - Arnaud Mourier
- CECAD, Cologne, North Rhine-Westphalia 50931, Germany; Max Planck Institute for the Biology of Aging, Cologne, North Rhine-Westphalia 50931, Germany
| | | | - Claudia M Wunderlich
- Max Planck Institute for Metabolism Research, Cologne, North Rhine-Westphalia 50931, Germany; CECAD, Cologne, North Rhine-Westphalia 50931, Germany
| | - Jan Mauer
- Max Planck Institute for Metabolism Research, Cologne, North Rhine-Westphalia 50931, Germany; CECAD, Cologne, North Rhine-Westphalia 50931, Germany
| | - Elaine Xu
- Max Planck Institute for Metabolism Research, Cologne, North Rhine-Westphalia 50931, Germany; CECAD, Cologne, North Rhine-Westphalia 50931, Germany
| | - Philipp Hammerschmidt
- Max Planck Institute for Metabolism Research, Cologne, North Rhine-Westphalia 50931, Germany; CECAD, Cologne, North Rhine-Westphalia 50931, Germany
| | - Hella S Brönneke
- Max Planck Institute for Metabolism Research, Cologne, North Rhine-Westphalia 50931, Germany; CECAD, Cologne, North Rhine-Westphalia 50931, Germany
| | | | - Giuseppe LoSasso
- Laboratory of Integrative and Systems Physiology, School of Life Sciences, École Polytechnique Fédérale, Lausanne 1015, Switzerland
| | - F Thomas Wunderlich
- Max Planck Institute for Metabolism Research, Cologne, North Rhine-Westphalia 50931, Germany; CECAD, Cologne, North Rhine-Westphalia 50931, Germany
| | - Jan-Wilhelm Kornfeld
- Max Planck Institute for Metabolism Research, Cologne, North Rhine-Westphalia 50931, Germany; CECAD, Cologne, North Rhine-Westphalia 50931, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Saxony 04103, Germany
| | - Martin Krönke
- CECAD, Cologne, North Rhine-Westphalia 50931, Germany; Institute for Medical Microbiology, University Hospital Cologne, Cologne, North Rhine-Westphalia 50931, Germany
| | - Jens C Brüning
- Max Planck Institute for Metabolism Research, Cologne, North Rhine-Westphalia 50931, Germany; CECAD, Cologne, North Rhine-Westphalia 50931, Germany; Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, North Rhine-Westphalia 50931, Germany.
| |
Collapse
|
79
|
Zhu H, Han M. Exploring developmental and physiological functions of fatty acid and lipid variants through worm and fly genetics. Annu Rev Genet 2014; 48:119-48. [PMID: 25195508 DOI: 10.1146/annurev-genet-041814-095928] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lipids are more than biomolecules for energy storage and membrane structure. With ample structural variation, lipids critically participate in nearly all aspects of cellular function. Lipid homeostasis and metabolism are closely related to major human diseases and health problems. However, lipid functional studies have been significantly underdeveloped, partly because of the difficulty in applying genetics and common molecular approaches to tackle the complexity associated with lipid biosynthesis, metabolism, and function. In the past decade, a number of laboratories began to analyze the roles of lipid metabolism in development and other physiological functions using animal models and combining genetics, genomics, and biochemical approaches. These pioneering efforts have not only provided valuable insights regarding lipid functions in vivo but have also established feasible methodology for future studies. Here, we review a subset of these studies using Caenorhabditis elegans and Drosophila melanogaster.
Collapse
Affiliation(s)
- Huanhu Zhu
- Howard Hughes Medical Institute and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309;
| | | |
Collapse
|
80
|
Aguilera-Romero A, Gehin C, Riezman H. Sphingolipid homeostasis in the web of metabolic routes. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:647-56. [DOI: 10.1016/j.bbalip.2013.10.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 10/26/2022]
|
81
|
Liu Y, Samuel BS, Breen PC, Ruvkun G. Caenorhabditis elegans pathways that surveil and defend mitochondria. Nature 2014; 508:406-10. [PMID: 24695221 PMCID: PMC4102179 DOI: 10.1038/nature13204] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 03/04/2014] [Indexed: 01/11/2023]
Abstract
Mitochondrial function is challenged by toxic by-products of metabolism as well as by pathogen attack. Caenorhabditis elegans normally responds to mitochondrial dysfunction with activation of mitochondrial-repair, drug-detoxification and pathogen-response pathways. Here, from a genome-wide RNA interference (RNAi) screen, we identified 45 C. elegans genes that are required to upregulate detoxification, pathogen-response and mitochondrial-repair pathways after inhibition of mitochondrial function by drug-induced or genetic disruption. Animals defective in ceramide biosynthesis are deficient in mitochondrial surveillance, and addition of particular ceramides can rescue the surveillance defects. Ceramide can also rescue the mitochondrial surveillance defects of other gene inactivations, mapping these gene activities upstream of ceramide. Inhibition of the mevalonate pathway, either by RNAi or statin drugs, also disrupts mitochondrial surveillance. Growth of C. elegans with a significant fraction of bacterial species from their natural habitat causes mitochondrial dysfunction. Other bacterial species inhibit C. elegans defence responses to a mitochondrial toxin, revealing bacterial countermeasures to animal defence.
Collapse
Affiliation(s)
- Ying Liu
- 1] Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA [3] State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Buck S Samuel
- 1] Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Peter C Breen
- 1] Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Gary Ruvkun
- 1] Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
82
|
Gertow J, Kjellqvist S, Ståhlman M, Cheung L, Gottfries J, Werngren O, Borén J, Franco-Cereceda A, Eriksson P, Fisher RM. Ceramides are associated with inflammatory processes in human mediastinal adipose tissue. Nutr Metab Cardiovasc Dis 2014; 24:124-131. [PMID: 24113394 DOI: 10.1016/j.numecd.2013.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/20/2013] [Accepted: 05/29/2013] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIM Ceramides are poorly characterized in human adipose tissue. The aim of this study was to investigate concentrations of different ceramide species in human subcutaneous and visceral adipose tissue depots and to determine associations between ceramides and global gene expression profiles. METHODS AND RESULTS Concentrations of six ceramide species were determined in plasma and in subcutaneous and mediastinal adipose tissue from 10 overweight subjects (BMI 29.4 ± 4.9 kg/m(2)). In the adipose tissue biopsies gene expression arrays were performed and relationships between ceramides and gene expression analyzed. Immunostaining of the two adipose tissue depots was performed in an independent group of 10 patients. Mediastinal adipose tissue contained significantly higher concentrations (p < 0.05) of all six ceramide species than the subcutaneous depot. Of the six ceramides in plasma, concentrations of only two (Cer d18:1/18:0 and Cer d18:1/22:0) correlated significantly (p < 0.05) with the corresponding species in mediastinal adipose tissue, but there were no significant correlations between ceramides in plasma and subcutaneous adipose tissue. Multivariate analysis identified significant correlations between the total ceramide concentration and global gene expression within mediastinal, but not subcutaneous adipose tissue, according to cross-validation. Gene ontology analysis of genes related to ceramides in the mediastinal depot revealed that genes positively correlated with ceramides were associated mainly with immune and inflammatory categories, while genes negatively correlated with ceramides were associated mainly with lipid and carbohydrate metabolism. CONCLUSIONS Ceramides in human mediastinal adipose tissue may be involved in inflammation and lipid and carbohydrate metabolism.
Collapse
Affiliation(s)
- J Gertow
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - S Kjellqvist
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - M Ståhlman
- Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - L Cheung
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - J Gottfries
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - O Werngren
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - J Borén
- Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - A Franco-Cereceda
- Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - P Eriksson
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - R M Fisher
- Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
83
|
Jazwinski SM. The retrograde response: a conserved compensatory reaction to damage from within and from without. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 127:133-54. [PMID: 25149216 DOI: 10.1016/b978-0-12-394625-6.00005-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The retrograde response was discovered in Saccharomyces cerevisiae as a signaling pathway from the mitochondrion to the nucleus that triggers an array of gene regulatory changes in the latter. The activation of the retrograde response compensates for the deficits associated with aging, and thus it extends yeast replicative life span. The retrograde response is activated by the progressive decline in mitochondrial membrane potential during aging that is the result of increasing mitochondrial dysfunction. The ensuing metabolic adaptations and stress resistance can only delay the inevitable demise of the yeast cell. The retrograde response is embedded in a network of signal transduction pathways that impinge upon virtually every aspect of cell physiology. Thus, its manifestations are complicated. Many of these pathways have been implicated in life span regulation quite independently of the retrograde response. Together, they operate in a delicate balance in promoting longevity. The retrograde response is closely aligned with cell quality control, often performing when quality control is not sufficient to assure longevity. Among the key pathways related to this aspect of retrograde signaling are target of rapamycin and ceramide signaling. The retrograde response can also be found in other organisms, including Caenorhabditis elegans, Drosophila melanogaster, mouse, and human, where it exhibits an ever-increasing complexity that may be corralled by the transcription factor NFκB. The retrograde response may have evolved as a cytoprotective mechanism that senses and defends the organism from pathogens and environmental toxins.
Collapse
Affiliation(s)
- S Michal Jazwinski
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
84
|
Delayed innocent bystander cell death following hypoxia in Caenorhabditis elegans. Cell Death Differ 2013; 21:557-67. [PMID: 24317200 DOI: 10.1038/cdd.2013.176] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/02/2013] [Accepted: 11/04/2013] [Indexed: 12/18/2022] Open
Abstract
After hypoxia, cells may die immediately or have a protracted course, living or dying depending on an incompletely understood set of cell autonomous and nonautonomous factors. In stroke, for example, some neurons are thought to die from direct hypoxic injury by cell autonomous primary mechanisms, whereas other so called innocent bystander neurons die from factors released from the primarily injured cells. A major limitation in identifying these factors is the inability of current in vivo models to selectively target a set of cells for hypoxic injury so that the primarily injured cells and the innocent bystanders are clearly delineated. In order to develop such a model, we generated transgenic Caenorhabditis elegans strains where 2-3% of somatic cells were made selectively sensitive to hypoxia. This was accomplished by cell type-specific wild-type rescue in either pharyngeal myocytes or GABAergic neurons of a hypoxia resistance-producing translation factor mutation. Surprisingly, hypoxic targeting of these relatively small subsets of non-essential cells produced widespread innocent bystander cell injury, behavioral dysfunction and eventual organismal death. The hypoxic injury phenotypes of the myocyte or neuron sensitized strains were virtually identical. Using this model, we show that the C. elegans insulin receptor/FOXO transcription factor pathway improves survival when activated only after hypoxic injury and blocks innocent bystander death.
Collapse
|
85
|
Huang X, Withers BR, Dickson RC. Sphingolipids and lifespan regulation. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:657-64. [PMID: 23954556 DOI: 10.1016/j.bbalip.2013.08.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/01/2013] [Accepted: 08/06/2013] [Indexed: 02/08/2023]
Abstract
Diseases including cancer, type 2 diabetes, cardiovascular and immune dysfunction and neurodegeneration become more prevalent as we age, and combined with the increase in average human lifespan, place an ever increasing burden on the health care system. In this chapter we focus on finding ways of modulating sphingolipids to prevent the development of age-associated diseases or delay their onset, both of which could improve health in elderly, fragile people. Reducing the incidence of or delaying the onset of diseases of aging has blossomed in the past decade because of advances in understanding signal transduction pathways and cellular processes, especially in model organisms, that are largely conserved in most eukaryotes and that can be modulated to reduce signs of aging and increase health span. In model organisms such interventions must also increase lifespan to be considered significant, but this is not a requirement for use in humans. The most encouraging interventions in model organisms involve lowering the concentration of one or more sphingolipids so as to reduce the activity of key signaling pathways, one of the most promising being the Target of Rapamycin Complex 1 (TORC1) protein kinase pathway. Other potential ways in which modulating sphingolipids may contribute to improving the health profile of the elderly is by reducing oxidative stresses, inflammatory responses and growth factor signaling. Lastly, perhaps the most interesting way to modulate sphingolipids and promote longevity is by lowering the activity of serine palmitoyltransferase, the first enzyme in the de novo sphingolipid biosynthesis pathway. Available data in yeasts and rodents are encouraging and as we gain insights into molecular mechanisms the strategies for improving human health by modulating sphingolipids will become more apparent. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Collapse
Affiliation(s)
- Xinhe Huang
- Department of Molecular and Cellular Biochemistry and the Lucille Markey Cancer Center, University of Kentucky College of Medicine, 741 S. Limestone, Lexington, KY 40536, USA
| | - Bradley R Withers
- Department of Molecular and Cellular Biochemistry and the Lucille Markey Cancer Center, University of Kentucky College of Medicine, 741 S. Limestone, Lexington, KY 40536, USA
| | - Robert C Dickson
- Department of Molecular and Cellular Biochemistry and the Lucille Markey Cancer Center, University of Kentucky College of Medicine, 741 S. Limestone, Lexington, KY 40536, USA.
| |
Collapse
|
86
|
Mosbech MB, Kruse R, Harvald EB, Olsen ASB, Gallego SF, Hannibal-Bach HK, Ejsing CS, Færgeman NJ. Functional loss of two ceramide synthases elicits autophagy-dependent lifespan extension in C. elegans. PLoS One 2013; 8:e70087. [PMID: 23894595 PMCID: PMC3716707 DOI: 10.1371/journal.pone.0070087] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 06/16/2013] [Indexed: 12/30/2022] Open
Abstract
Ceramide and its metabolites constitute a diverse group of lipids, which play important roles as structural entities of biological membranes as well as regulators of cellular growth, differentiation, and development. The C. elegans genome comprises three ceramide synthase genes; hyl-1, hyl-2, and lagr-1. HYL-1 function is required for synthesis of ceramides and sphingolipids containing very long acyl-chains (≥C24), while HYL-2 is required for synthesis of ceramides and sphingolipids containing shorter acyl-chains (≤C22). Here we show that functional loss of HYL-2 decreases lifespan, while loss of HYL-1 or LAGR-1 does not affect lifespan. We show that loss of HYL-1 and LAGR-1 functions extend lifespan in an autophagy-dependent manner, as knock down of the autophagy-associated gene ATG-12 abolishes hyl-1;lagr-1 longevity. The transcription factors PHA-4/FOXA, DAF-16/FOXO, and SKN-1 are also required for the observed lifespan extension, as well as the increased number of autophagosomes in hyl-1;lagr-1 animals. Both autophagic events and the transcription factors PHA-4/FOXA, DAF-16, and SKN-1 have previously been associated with dietary restriction-induced longevity. Accordingly, we find that hyl-1;lagr-1 animals display reduced feeding, increased resistance to heat, and reduced reproduction. Collectively, our data suggest that specific sphingolipids produced by different ceramide synthases have opposing roles in determination of C. elegans lifespan. We propose that loss of HYL-1 and LAGR-1 result in dietary restriction-induced autophagy and consequently prolonged longevity.
Collapse
Affiliation(s)
- Mai-Britt Mosbech
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Rikke Kruse
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Eva Bang Harvald
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Anne Sofie Braun Olsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Sandra Fernandez Gallego
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | - Christer S. Ejsing
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Nils J. Færgeman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- * E-mail:
| |
Collapse
|
87
|
Abstract
Ceramide, a bioactive sphingolipid, is now at the forefront of cancer research. Classically, ceramide is thought to induce death, growth inhibition, and senescence in cancer cells. However, it is now clear that this simple picture of ceramide no longer holds true. Recent studies suggest that there are diverse functions of endogenously generated ceramides, which seem to be context dependent, regulated by subcellular/membrane localization and presence/absence of direct targets of these lipid molecules. For example, different fatty-acid chain lengths of ceramide, such as C(16)-ceramide that can be generated by ceramide synthase 6 (CerS6), have been implicated in cancer cell proliferation, whereas CerS1-generated C(18)-ceramide mediates cell death. The dichotomy of ceramides' function in cancer cells makes some of the metabolic enzymes of ceramide synthesis potential drug targets (such as Cers6) to prevent cancer growth in breast and head and neck cancers. Conversely, activation of CerS1 could be a new therapeutic option for the development of novel strategies against lung and head and neck cancers. This chapter focuses on recent discoveries about the mechanistic details of mainly de novo-generated ceramides and their signaling functions in cancer pathogenesis, and about how these mechanistic information can be translated into clinically relevant therapeutic options for the treatment of cancer.
Collapse
|
88
|
Zhu H, Shen H, Sewell AK, Kniazeva M, Han M. A novel sphingolipid-TORC1 pathway critically promotes postembryonic development in Caenorhabditis elegans. eLife 2013; 2:e00429. [PMID: 23705068 PMCID: PMC3660743 DOI: 10.7554/elife.00429] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 04/23/2013] [Indexed: 02/03/2023] Open
Abstract
Regulation of animal development in response to nutritional cues is an intensely studied problem related to disease and aging. While extensive studies indicated roles of the Target of Rapamycin (TOR) in sensing certain nutrients for controlling growth and metabolism, the roles of fatty acids and lipids in TOR-involved nutrient/food responses are obscure. Caenorhabditis elegans halts postembryonic growth and development shortly after hatching in response to monomethyl branched-chain fatty acid (mmBCFA) deficiency. Here, we report that an mmBCFA-derived sphingolipid, d17iso-glucosylceramide, is a critical metabolite in regulating growth and development. Further analysis indicated that this lipid function is mediated by TORC1 and antagonized by the NPRL-2/3 complex in the intestine. Strikingly, the essential lipid function is bypassed by activating TORC1 or inhibiting NPRL-2/3. Our findings uncover a novel lipid-TORC1 signaling pathway that coordinates nutrient and metabolic status with growth and development, advancing our understanding of the physiological roles of mmBCFAs, ceramides, and TOR. DOI:http://dx.doi.org/10.7554/eLife.00429.001.
Collapse
Affiliation(s)
- Huanhu Zhu
- Howard Hughes Medical Institute, University of Colorado, Boulder, Boulder, United States
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, United States
| | - Huali Shen
- Howard Hughes Medical Institute, University of Colorado, Boulder, Boulder, United States
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, United States
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Aileen K Sewell
- Howard Hughes Medical Institute, University of Colorado, Boulder, Boulder, United States
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, United States
| | - Marina Kniazeva
- Howard Hughes Medical Institute, University of Colorado, Boulder, Boulder, United States
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, United States
| | - Min Han
- Howard Hughes Medical Institute, University of Colorado, Boulder, Boulder, United States
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Boulder, United States
| |
Collapse
|
89
|
Azzam R, Hariri F, El-Hachem N, Kamar A, Dbaibo G, Nemer G, Bitar F. Regulation of de novo ceramide synthesis: the role of dihydroceramide desaturase and transcriptional factors NFATC and Hand2 in the hypoxic mouse heart. DNA Cell Biol 2013; 32:310-9. [PMID: 23672204 DOI: 10.1089/dna.2013.1993] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have previously shown that ceramide, a proapoptotic molecule decreases in the mouse heart as it adapts to hypoxia. We have also shown that its precursor, dihydroceramide, accumulates with hypoxia. This implicates the enzyme dihydroceramide desaturase (DHC-DS), which converts dihydroceramide to ceramide, in a potential regulatory checkpoint in cardiomyocytes. We hypothesised that the regulation of de novo ceramide synthesis plays an important role in the cardiomyocyte adaptation to hypoxia. We used an established mouse model to induce acute and chronic hypoxia. Cardiac tissues were extracted and quantitative real-time polymerase chain reaction (qRT-PCR) was used to evaluate the expression levels of DHC-DS. Electrophoretic Mobility Shift Assays (EMSAs) and qRT-PCR were used to evaluate the activity and expression levels of an array of transcription factors that might regulate DEGS1 gene expression. We demonstrated that DEGS1 mRNA levels decrease with time in hypoxic mice concurrent with the decrease in HAND2 transcripts. Interestingly, the DEGS1 promoter harbors overlapping sites for Hand2 and Nuclear Factor of Activated T-cells (NFATC) transcription factors. We have demonstrated a physical interaction between NFATC1 and the E-Box proteins with EMSA and coimmunoprecipitation assays. The regulation of de novo ceramide synthesis in response to hypoxia and this newly described interaction between E-box and NFATC transcription factors will pave the way to identify new pathways in the adaptation of the cardiomyocyte to stress. The elucidation of these pathways will in the long-term provide insights into potential targets for novel therapeutic regimens.
Collapse
Affiliation(s)
- Raed Azzam
- Department of Pediatrics, American University of Beirut-Medical Center, Beirut, Lebanon
| | | | | | | | | | | | | |
Collapse
|
90
|
Vlassaks E, Mencarelli C, Nikiforou M, Strackx E, Ferraz MJ, Aerts JM, De Baets MH, Martinez-Martinez P, Gavilanes AWD. Fetal asphyxia induces acute and persisting changes in the ceramide metabolism in rat brain. J Lipid Res 2013; 54:1825-33. [PMID: 23625371 DOI: 10.1194/jlr.m034447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Fetal asphyctic preconditioning, induced by a brief episode of experimental hypoxia-ischemia, offers neuroprotection to a subsequent more severe asphyctic insult at birth. Extensive cell stress and apoptosis are important contributing factors of damage in the asphyctic neonatal brain. Because ceramide acts as a second messenger for multiple apoptotic stimuli, including hypoxia/ischemia, we sought to investigate the possible involvement of the ceramide pathway in endogenous neuroprotection induced by fetal asphyctic preconditioning. Global fetal asphyxia was induced in rats by clamping both uterine and ovarian vasculature for 30 min. Fetal asphyxia resulted in acute changes in brain ceramide/sphingomyelin metabolic enzymes, ceramide synthase 1, 2, and 5, acid sphingomyelinase, sphingosine-1-phosphate phosphatase, and the ceramide transporter. This observation correlated with an increase in neuronal apoptosis and in astrocyte number. After birth, ceramide and sphingomyelin levels remained high in fetal asphyxia brains, suggesting that a long-term regulation of the ceramide pathway may be involved in the mechanism of tolerance to a subsequent, otherwise lethal, asphyctic event.
Collapse
Affiliation(s)
- Evi Vlassaks
- Department of Neuroscience, Maastricht University, School of Mental Health and Neuroscience (MHeNS), Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Localized sphingolipid signaling at presynaptic terminals is regulated by calcium influx and promotes recruitment of priming factors. J Neurosci 2013; 32:17909-20. [PMID: 23223309 DOI: 10.1523/jneurosci.2808-12.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Activity-dependent changes in presynaptic function represent a critical mechanism by which synaptic strength is controlled. However, how changes in synaptic activity couple to presynaptic components to control synaptic vesicle release and recycling are poorly understood. Sphingosine kinase (SphK) is a sphingolipid metabolic enzyme whose activity-dependent recruitment to membrane regions within presynaptic terminals promotes neurotransmitter release. Here, we show that synaptic recruitment of SPHK-1, the SphK ortholog in Caenorhabditis elegans, is mediated by presynaptic calcium influx. Quantitative fluorescence imaging of live presynaptic terminals reveals that blocking presynaptic calcium influx reduces synaptic SPHK-1 abundance whereas increasing calcium influx increases SPHK-1 synaptic abundance. CALM-1, the calcium and integrin binding protein ortholog, colocalizes with SPHK-1 at release sites and regulates muscarinic-mediated synaptic SPHK-1 recruitment. We identify two additional sphingolipid metabolic enzymes that are concentrated at presynaptic terminals, and mutants lacking one of these, HYL-1/ceramide synthase, have defects in synaptic transmission and in synaptic vesicle cycling. Finally, we show that SPHK-1 activity is required for the recruitment of the priming protein UNC-13/Munc13 to presynaptic terminals following activation by muscarinic signaling. These findings suggest that calcium-dependent regulation of local S1P metabolism at synapses may be an important mechanism by which synaptic vesicle priming factors are recruited to release sites to promote synaptic transmission.
Collapse
|
92
|
Abstract
Sphingolipids are a diverse group of lipids that have essential cellular roles as structural components of membranes and as potent signaling molecules. In recent years, a detailed picture has emerged of the basic biochemistry of sphingolipids-from their initial synthesis in the endoplasmic reticulum (ER), to their elaboration into complex glycosphingolipids, to their turnover and degradation. However, our understanding of how sphingolipid metabolism is regulated in response to metabolic demand and physiologic cues remains incomplete. Here I discuss new insights into the mechanisms that ensure sphingolipid homeostasis, with an emphasis on the ER as a critical regulatory site in sphingolipid metabolism. In particular, Orm family proteins have recently emerged as key ER-localized mediators of sphingolipid homeostasis. A detailed understanding of how cells sense and control sphingolipid production promises to provide key insights into membrane function in health and disease.
Collapse
Affiliation(s)
- David K Breslow
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94035-5345, USA.
| |
Collapse
|
93
|
Sentelle RD, Senkal CE, Jiang W, Ponnusamy S, Gencer S, Selvam SP, Ramshesh VK, Peterson YK, Lemasters JJ, Szulc ZM, Bielawski J, Ogretmen B. Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy. Nat Chem Biol 2013; 8:831-8. [PMID: 22922758 PMCID: PMC3689583 DOI: 10.1038/nchembio.1059] [Citation(s) in RCA: 409] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 07/31/2012] [Indexed: 12/23/2022]
Abstract
Mechanisms by which autophagy promotes cell survival or death are unclear. We provide evidence that C(18)-pyridinium ceramide treatment or endogenous C(18)-ceramide generation by ceramide synthase 1 (CerS1) expression mediates autophagic cell death, independent of apoptosis in human cancer cells. C(18)-ceramide-induced lethal autophagy was regulated via microtubule-associated protein 1 light chain 3 β-lipidation, forming LC3B-II, and selective targeting of mitochondria by LC3B-II-containing autophagolysosomes (mitophagy) through direct interaction between ceramide and LC3B-II upon Drp1-dependent mitochondrial fission, leading to inhibition of mitochondrial function and oxygen consumption. Accordingly, expression of mutant LC3B with impaired ceramide binding, as predicted by molecular modeling, prevented CerS1-mediated mitochondrial targeting, recovering oxygen consumption. Moreover, knockdown of CerS1 abrogated sodium selenite-induced mitophagy, and stable LC3B knockdown protected against CerS1- and C(18)-ceramide-dependent mitophagy and blocked tumor suppression in vivo. Thus, these data suggest a new receptor function of ceramide for anchoring LC3B-II autophagolysosomes to mitochondrial membranes, defining a key mechanism for the induction of lethal mitophagy.
Collapse
Affiliation(s)
- R David Sentelle
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Tekpli X, Holme JA, Sergent O, Lagadic-Gossmann D. Role for membrane remodeling in cell death: Implication for health and disease. Toxicology 2013; 304:141-57. [DOI: 10.1016/j.tox.2012.12.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 11/29/2012] [Accepted: 12/20/2012] [Indexed: 12/31/2022]
|
95
|
Abstract
The ceramide synthase (CerS) enzymes catalyze the formation of (dihydro) ceramide, and thereby provide critical complexity to all sphingolipids (SLs) with respect to their acyl chain length. This review summarizes the progress in the field of CerS from the time of their discovery more than a decade ago as Longevity assurance (Lass) genes in yeast, until the recent development of CerS-deficient mouse models. Human hereditary CerS disorders are yet to be discovered. However, the recent findings in CerS mutant animals highlight the important physiological role of these enzymes. The fundamental findings with respect to CerS structure, function, localization, and regulation are discussed, as well as CerS roles in maintaining longevity in vivo.
Collapse
Affiliation(s)
- Joo-Won Park
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul 158-710, South Korea
| | | |
Collapse
|
96
|
Iranon NN, Miller DL. Interactions between oxygen homeostasis, food availability, and hydrogen sulfide signaling. Front Genet 2012; 3:257. [PMID: 23233860 PMCID: PMC3516179 DOI: 10.3389/fgene.2012.00257] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/04/2012] [Indexed: 12/19/2022] Open
Abstract
The ability to sense and respond to stressful conditions is essential to maintain organismal homeostasis. It has long been recognized that stress response factors that improve survival in changing conditions can also influence longevity. In this review, we discuss different strategies used by animals in response to decreased O(2) (hypoxia) to maintain O(2) homeostasis, and consider interactions between hypoxia responses, nutritional status, and H(2)S signaling. O(2) is an essential environmental nutrient for almost all metazoans as it plays a fundamental role in development and cellular metabolism. However, the physiological response(s) to hypoxia depend greatly on the amount of O(2) available. Animals must sense declining O(2) availability to coordinate fundamental metabolic and signaling pathways. It is not surprising that factors involved in the response to hypoxia are also involved in responding to other key environmental signals, particularly food availability. Recent studies in mammals have also shown that the small gaseous signaling molecule hydrogen sulfide (H(2)S) protects against cellular damage and death in hypoxia. These results suggest that H(2)S signaling also integrates with hypoxia response(s). Many of the signaling pathways that mediate the effects of hypoxia, food deprivation, and H(2)S signaling have also been implicated in the control of lifespan. Understanding how these pathways are coordinated therefore has the potential to reveal new cellular and organismal homeostatic mechanisms that contribute to longevity assurance in animals.
Collapse
Affiliation(s)
- Nicole N Iranon
- Department of Biochemistry, University of Washington School of Medicine Seattle, WA, USA ; Molecular and Cellular Biology Graduate Program, University of Washington School of Medicine Seattle, WA, USA
| | | |
Collapse
|
97
|
Kajiwara K, Muneoka T, Watanabe Y, Karashima T, Kitagaki H, Funato K. Perturbation of sphingolipid metabolism induces endoplasmic reticulum stress-mediated mitochondrial apoptosis in budding yeast. Mol Microbiol 2012; 86:1246-61. [PMID: 23062268 DOI: 10.1111/mmi.12056] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2012] [Indexed: 12/26/2022]
Abstract
Sphingolipids are a class of membrane lipids conserved from yeast to mammals which determine whether a cell dies or survives. Perturbations in sphingolipid metabolism cause apoptotic cell death. Recent studies indicate that reduced sphingolipid levels trigger the cell death, but little is known about the mechanisms. In the budding yeast Saccharomyces cerevisiae, we show that reduction in complex sphingolipid levels causes loss of viability, most likely due to the induction of mitochondria-dependent apoptotic cell death pathway, accompanied by changes in mitochondrial and endoplasmic reticulum morphology and endoplasmic reticulum stress. Elevated cytosolic free calcium is required for the loss of viability. These results indicate that complex sphingolipids are essential for maintaining endoplasmic reticulum homeostasis and suggest that perturbation in complex sphingolipid levels activates an endoplasmic reticulum stress-mediated and calcium-dependent pathway to propagate apoptotic signals to the mitochondria.
Collapse
Affiliation(s)
- Kentaro Kajiwara
- Department of Bioresource Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | | | | | | | | | | |
Collapse
|
98
|
|
99
|
Abstract
The present study demonstrates the important structural features of ceramide required for proper regulation, binding and identification by both pro-apoptotic and anti-apoptotic Bcl-2 family proteins. The C-4=C-5 trans-double bond has little influence on the ability of Bax and Bcl-xL to identify and bind to these channels. The stereochemistry of the headgroup and access to the amide group of ceramide is indispensible for Bax binding, indicating that Bax may interact with the polar portion of the ceramide channel facing the bulk phase. In contrast, Bcl-xL binding to ceramide channels is tolerant of stereochemical changes in the headgroup. The present study also revealed that Bcl-xL has an optimal interaction with long-chain ceramides that are elevated early in apoptosis, whereas short-chain ceramides are not well regulated. Inhibitors specific for the hydrophobic groove of Bcl-xL, including 2-methoxyantimycin A3, ABT-737 and ABT-263 provide insights into the region of Bcl-xL involved in binding to ceramide channels. Molecular docking simulations of the lowest-energy binding poses of ceramides and Bcl-xL inhibitors to Bcl-xL were consistent with the results of our functional studies and propose potential binding modes.
Collapse
|
100
|
Chan JP, Hu Z, Sieburth D. Recruitment of sphingosine kinase to presynaptic terminals by a conserved muscarinic signaling pathway promotes neurotransmitter release. Genes Dev 2012; 26:1070-85. [PMID: 22588719 DOI: 10.1101/gad.188003.112] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Sphingolipids are potent lipid second messengers that regulate cell differentiation, migration, survival, and secretion, and alterations in sphingolipid signaling have been implicated in a variety of diseases. However, how sphingolipid levels are regulated, particularly in the nervous system, remains poorly understood. Here, we show that the generation of sphingosine-1-phosphate by sphingosine kinase (SphK) promotes neurotransmitter release. Electrophysiological, imaging, and behavioral analyses of Caenorhabditis elegans mutants lacking sphingosine kinase sphk-1 indicate that neuronal development is normal, but there is a significant defect in neurotransmitter release from neuromuscular junctions. SPHK-1 localizes to discrete, nonvesicular regions within presynaptic terminals, and this localization is critical for synaptic function. Muscarinic agonists cause a rapid increase in presynaptic SPHK-1 abundance, whereas reduction of endogenous acetylcholine production results in a rapid decrease in presynaptic SPHK-1 abundance. Muscarinic regulation of presynaptic SPHK-1 abundance is mediated by a conserved presynaptic signaling pathway composed of the muscarinic acetylcholine receptor GAR-3, the heterotrimeric G protein Gαq, and its effector, Trio RhoGEF. SPHK-1 activity is required for the effects of muscarinic signaling on synaptic transmission. This study shows that SPHK-1 promotes neurotransmitter release in vivo and identifies a novel muscarinic pathway that regulates SphK abundance at presynaptic terminals.
Collapse
Affiliation(s)
- Jason P Chan
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California 90033, USA
| | | | | |
Collapse
|