51
|
Protect, modify, deprotect (PMD): A strategy for creating vaccines to elicit antibodies targeting a specific epitope. Proc Natl Acad Sci U S A 2019; 116:9947-9952. [PMID: 31028143 PMCID: PMC6525525 DOI: 10.1073/pnas.1822062116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The discovery of broadly neutralizing Abs (bnAbs) against infectious agents such as influenza virus and HIV-1 has sparked interest in creating vaccines that focus an Ab response toward a particular epitope of a protein. These “immunofocusing” strategies have shown promise but are also burdened with inherent limitations. We introduce an immunofocusing method called protect, modify, deprotect (PMD) that uses a bnAb as a molecular stencil to create vaccine candidates that direct the immune response toward the epitope of the bnAb. PMD has the potential to provide epitope-specific immunofocusing, in a generalizable manner. In creating vaccines against infectious agents, there is often a desire to direct an immune response toward a particular conformational epitope on an antigen. We present a method, called protect, modify, deprotect (PMD), to generate immunogenic proteins aimed to direct a vaccine-induced antibody (Ab) response toward an epitope defined by a specific monoclonal Ab (mAb). The mAb is used to protect the target epitope on the protein. Then the remaining exposed surfaces of the protein are modified to render them nonimmunogenic. Finally, the epitope is deprotected by removal of the mAb. The resultant protein is modified at surfaces other than the target epitope. We validate PMD using a well-characterized antigen, hen egg white lysozyme, then demonstrate the utility of PMD using influenza virus hemagglutinin (HA). We use an mAb to protect a highly conserved epitope on the stem domain of HA. Exposed surface amines are then modified with short polyethylene glycol chains. The resultant antigen shows markedly reduced binding to mAbs that target the head region of HA, while maintaining binding to mAbs at the epitope of interest. This antigenic preference is also observed with yeast cells displaying Ab fragments. Antisera from guinea pigs immunized with the PMD-modified HA show increased cross-reactivity with HAs from other influenza strains, compared with antisera obtained with unmodified HA trimers. PMD has the potential to direct an Ab response at high resolution and could be used in combination with other such strategies. There are many attractive targets for the application of PMD.
Collapse
|
52
|
Lessons for general vaccinology research from attempts to develop an HIV vaccine. Vaccine 2019; 37:3400-3408. [PMID: 30979571 DOI: 10.1016/j.vaccine.2019.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 01/12/2023]
Abstract
In the past when large investments have been made in tackling narrow scientific challenges, the enormous expansion in our knowledge in one small area has had a spill-over effect on research and treatment of other diseases. The large investment in HIV vaccine development in recent years has the potential for such an effect on vaccine development for other diseases. HIV vaccine developers have experienced repeated failure using the standard approaches to vaccine development. This has forced them to consider immune responses in greater depth and detail. It has led to a recognition of the importance of epitopic specificity in both antibody and T cell responses. Also, it has led to an understanding of the importance of affinity maturation in antibody responses and the quality of T cell responses in T cell-mediated immunity. It has advanced the development of many novel vaccine vectors and vehicles that are now available for use in other vaccines. Further, it has focused attention on the impact of research funding mechanisms and community engagement on vaccine development. These developments and considerations have implications for vaccinology more generally. Some suggestions are made for investigators working on other "hard-to-develop" vaccines.
Collapse
|
53
|
Zhu C, Dukhovlinova E, Council O, Ping L, Faison EM, Prabhu SS, Potter EL, Upton SL, Yin G, Fay JM, Kincer LP, Spielvogel E, Campbell SL, Benhabbour SR, Ke H, Swanstrom R, Dokholyan NV. Rationally designed carbohydrate-occluded epitopes elicit HIV-1 Env-specific antibodies. Nat Commun 2019; 10:948. [PMID: 30814513 PMCID: PMC6393580 DOI: 10.1038/s41467-019-08876-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 02/01/2019] [Indexed: 12/13/2022] Open
Abstract
An array of carbohydrates masks the HIV-1 surface protein Env, contributing to the evasion of humoral immunity. In most HIV-1 isolates 'glycan holes' occur due to natural sequence variation, potentially revealing the underlying protein surface to the immune system. Here we computationally design epitopes that mimic such surface features (carbohydrate-occluded neutralization epitopes or CONE) of Env through 'epitope transplantation', in which the target region is presented on a carrier protein scaffold with preserved structural properties. Scaffolds displaying the four CONEs are examined for structure and immunogenicity. Crystal structures of two designed proteins reflect the computational models and accurately mimic the native conformations of CONEs. The sera from rabbits immunized with several CONE immunogens display Env binding activity. Our method determines essential structural elements for targets of protective antibodies. The ability to design immunogens with high mimicry to viral proteins also makes possible the exploration of new templates for vaccine development.
Collapse
Affiliation(s)
- Cheng Zhu
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Departments of Pharmacology, Penn State College of Medicine, Hershey, PA, 17033-0850, USA
| | - Elena Dukhovlinova
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Olivia Council
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lihua Ping
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Edgar M Faison
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shamit S Prabhu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - E Lake Potter
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Stephen L Upton
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Guowei Yin
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - James M Fay
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Laura P Kincer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ean Spielvogel
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sharon L Campbell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - S Rahima Benhabbour
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC-NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hengming Ke
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ronald Swanstrom
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Departments of Pharmacology, Penn State College of Medicine, Hershey, PA, 17033-0850, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- UNC-NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Departments of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033-0850, USA.
| |
Collapse
|
54
|
Kundert K, Kortemme T. Computational design of structured loops for new protein functions. Biol Chem 2019; 400:275-288. [PMID: 30676995 PMCID: PMC6530579 DOI: 10.1515/hsz-2018-0348] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022]
Abstract
The ability to engineer the precise geometries, fine-tuned energetics and subtle dynamics that are characteristic of functional proteins is a major unsolved challenge in the field of computational protein design. In natural proteins, functional sites exhibiting these properties often feature structured loops. However, unlike the elements of secondary structures that comprise idealized protein folds, structured loops have been difficult to design computationally. Addressing this shortcoming in a general way is a necessary first step towards the routine design of protein function. In this perspective, we will describe the progress that has been made on this problem and discuss how recent advances in the field of loop structure prediction can be harnessed and applied to the inverse problem of computational loop design.
Collapse
Affiliation(s)
- Kale Kundert
- Graduate Group in Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Tanja Kortemme
- Graduate Group in Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, 499 Illinois St, San Francisco, CA 94158, USA
| |
Collapse
|
55
|
Chang J, Zhang Y, Yang D, Jiang Z, Wang F, Yu L. Potent neutralization activity against type O foot-and-mouth disease virus elicited by a conserved type O neutralizing epitope displayed on bovine parvovirus virus-like particles. J Gen Virol 2018; 100:187-198. [PMID: 30547855 DOI: 10.1099/jgv.0.001194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In this study, ten sites on the N terminus and different surface variable regions (VRs) of the bovine parvovirus (BPV) VP2 capsid protein were selected according to an alignment of its sequence with that of the BPV-1 strain HADEN for insertion of the type O foot-and-mouth disease virus (FMDV) conserved neutralizing epitope 8E8. Ten epitope-chimeric BPV VP2 capsid proteins carrying the 8E8 epitope were expressed in Sf9 cells, and electron micrographs demonstrated that these fusion proteins self-assembled into virus-like particles (VLPs) with properties similar to those of natural BPV virions. Immunofluorescence assay (IFA) and Western blot analysis demonstrated that each of the ten epitope-chimeric VLPs reacted with both anti-BPV serum and anti-type O FMDV mAb 8E8. These results indicated that insertions of the 8E8 epitope at these sites on the BPV VP2 protein did not interfere with the immunoreactivity of VP2 or VLP formation, and that the exogenous epitope 8E8 was correctly expressed in BPV VLPs. In addition, anti-BPV IgG antibodies were induced in mice by intramuscular inoculation with each of the ten chimeric VLPs, indicating that the immunogenicity of the chimeric VLPs was not disrupted. Importantly, potent anti-FMDV viral neutralizing (VN) antibodies, which exhibited the highest titre of 1 : 176, were induced by two chimeric VLPs, rBPV-VLP-8E8(391) and rBPV-VLP-8E8(395), in which the 8E8 epitope was inserted into positions 391/392 and 395/396, respectively, in the VR VIII of BPV VP2. Our results demonstrated that the 391/392 and 395/396 positions in the VR VIII of the BPV VP2 protein can effectively display a foreign epitope, making this an attractive approach for the design of nanoparticle-vectored and epitope-based vaccines.
Collapse
Affiliation(s)
- Jitao Chang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin 150069, PR China
| | - Yue Zhang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin 150069, PR China
| | - Decheng Yang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin 150069, PR China
| | - Zhigang Jiang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin 150069, PR China
| | - Fang Wang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin 150069, PR China
| | - Li Yu
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin 150069, PR China
| |
Collapse
|
56
|
Netzer R, Listov D, Lipsh R, Dym O, Albeck S, Knop O, Kleanthous C, Fleishman SJ. Ultrahigh specificity in a network of computationally designed protein-interaction pairs. Nat Commun 2018; 9:5286. [PMID: 30538236 PMCID: PMC6290019 DOI: 10.1038/s41467-018-07722-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/21/2018] [Indexed: 01/21/2023] Open
Abstract
Protein networks in all organisms comprise homologous interacting pairs. In these networks, some proteins are specific, interacting with one or a few binding partners, whereas others are multispecific and bind a range of targets. We describe an algorithm that starts from an interacting pair and designs dozens of new pairs with diverse backbone conformations at the binding site as well as new binding orientations and sequences. Applied to a high-affinity bacterial pair, the algorithm results in 18 new ones, with cognate affinities from pico- to micromolar. Three pairs exhibit 3-5 orders of magnitude switch in specificity relative to the wild type, whereas others are multispecific, collectively forming a protein-interaction network. Crystallographic analysis confirms design accuracy, including in new backbones and polar interactions. Preorganized polar interaction networks are responsible for high specificity, thus defining design principles that can be applied to program synthetic cellular interaction networks of desired affinity and specificity. The molecular basis of ultrahigh specificity in protein-protein interactions remains obscure. The authors present a computational method to design atomically accurate new pairs exhibiting >100,000-fold specificity switches, generating a large and complex interaction network.
Collapse
Affiliation(s)
- Ravit Netzer
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Dina Listov
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Rosalie Lipsh
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Orly Dym
- Structural Proteomics Unit, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Shira Albeck
- Structural Proteomics Unit, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Orli Knop
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel.
| |
Collapse
|
57
|
Rosetta FunFolDes - A general framework for the computational design of functional proteins. PLoS Comput Biol 2018; 14:e1006623. [PMID: 30452434 PMCID: PMC6277116 DOI: 10.1371/journal.pcbi.1006623] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/03/2018] [Accepted: 11/06/2018] [Indexed: 01/11/2023] Open
Abstract
The robust computational design of functional proteins has the potential to deeply impact translational research and broaden our understanding of the determinants of protein function and stability. The low success rates of computational design protocols and the extensive in vitro optimization often required, highlight the challenge of designing proteins that perform essential biochemical functions, such as binding or catalysis. One of the most simplistic approaches for the design of function is to adopt functional motifs in naturally occurring proteins and transplant them to computationally designed proteins. The structural complexity of the functional motif largely determines how readily one can find host protein structures that are "designable", meaning that are likely to present the functional motif in the desired conformation. One promising route to enhance the "designability" of protein structures is to allow backbone flexibility. Here, we present a computational approach that couples conformational folding with sequence design to embed functional motifs into heterologous proteins-Rosetta Functional Folding and Design (FunFolDes). We performed extensive computational benchmarks, where we observed that the enforcement of functional requirements resulted in designs distant from the global energetic minimum of the protein. An observation consistent with several experimental studies that have revealed function-stability tradeoffs. To test the design capabilities of FunFolDes we transplanted two viral epitopes into distant structural templates including one de novo "functionless" fold, which represent two typical challenges where the designability problem arises. The designed proteins were experimentally characterized showing high binding affinities to monoclonal antibodies, making them valuable candidates for vaccine design endeavors. Overall, we present an accessible strategy to repurpose old protein folds for new functions. This may lead to important improvements on the computational design of proteins, with structurally complex functional sites, that can perform elaborate biochemical functions related to binding and catalysis.
Collapse
|
58
|
Mishra S, Manish M. Studies on computational grafting of malarial epitopes in serum albumin. Comput Biol Med 2018; 102:126-131. [PMID: 30268977 DOI: 10.1016/j.compbiomed.2018.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/22/2018] [Accepted: 09/23/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Antigens (or their epitopes)-carrier protein combinations are extensively utilized for vaccine development strategies. Chemical conjugation methods are cumbersome with limited conjugation sites. Computational protein modelling methods can evaluate every position of a carrier protein for conjugation via epitope grafting in a reasonable time frame as compared to wet experimental techniques. Graftibility of positions can be estimated by the presence of native atomic contacts in resulting chimeric antigen. METHODOLOGY Five epitopes were selected, and computational grafting at each position was performed in three templates of serum albumin. Protein modelling algorithms such as segment matching and satisfaction of spatial restraints were employed for computational grafting. Contact-based protein discriminatory function was used to evaluate the chimeric proteins having native atomic contacts. RESULTS On the evaluation of approximately 1 million distinct protein modelling simulations, region around the 450th position of serum albumin was observed to be suitable for epitope grafting. CONCLUSION Computational protein modelling tools may be used to design a chimeric antigen. The approach may overcome the limitations associated with chemical conjugation and furthermore harness the potential of custom gene synthesis/recombinant protein production.
Collapse
Affiliation(s)
- Smriti Mishra
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Manish Manish
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India; ICMR-National Institute of Malaria Research, Dwarka, Sector-8, New Delhi, 110077, India.
| |
Collapse
|
59
|
|
60
|
Sesterhenn F, Bonet J, Correia BE. Structure-based immunogen design-leading the way to the new age of precision vaccines. Curr Opin Struct Biol 2018; 51:163-169. [PMID: 29980105 PMCID: PMC7127059 DOI: 10.1016/j.sbi.2018.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/12/2018] [Indexed: 11/16/2022]
Abstract
Vaccines have been one of the most successful interventions in global health. However, traditional vaccine development has proven insufficient to deal with pathogens that elude the immune system through highly variable and non-functional epitopes. Emerging B cell technologies have yielded potent monoclonal antibodies targeting conserved epitopes, and their structural characterization has provided templates for rational immunogen design. Here, we review immunogen design strategies that leverage structural information to steer bulk immune responses towards the induction of precise antibody specificities targeting key antigenic sites. Immunogens designed to elicit well-defined antibody responses will become the basis of what we dubbed precision vaccines. Such immunogens have been used to tackle long-standing vaccine problems and have demonstrated their potential to seed the next-generation of vaccines.
Collapse
Affiliation(s)
- Fabian Sesterhenn
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Jaume Bonet
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland
| | - Bruno E Correia
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne CH-1015, Switzerland.
| |
Collapse
|
61
|
HIV-1 Vaccines Based on Antibody Identification, B Cell Ontogeny, and Epitope Structure. Immunity 2018; 48:855-871. [DOI: 10.1016/j.immuni.2018.04.029] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022]
|
62
|
Lai JI, Verma D, Bailey-Kellogg C, Ackerman ME. Towards conformational fidelity of a quaternary HIV-1 epitope: computational design and directed evolution of a minimal V1V2 antigen. Protein Eng Des Sel 2018; 31:121-133. [PMID: 29897567 PMCID: PMC6030936 DOI: 10.1093/protein/gzy010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 04/16/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022] Open
Abstract
Structure-based approaches to antigen design utilize insights from antibody (Ab):antigen interactions and a refined understanding of protective Ab responses to engineer novel antigens presenting epitopes with conformations relevant to eliciting or discovering protective humoral responses. For human immunodeficiency virus-1 (HIV-1), one model of protection is provided by broadly neutralizing Abs (bnAbs) against epitopes present in the closed prefusion trimeric conformation of HIV-1 envelope glycoprotein, such as the variable loops 1-2 (V1V2) apex. Here, computational design and directed evolution yielded a novel V1V2 sequence variant with potential utility for inclusion in an immunogen for eliciting bnAbs, or as an epitope probe for their detection. The computational design goal was to engineer a minimal single-chain antigen with three copies of the V1V2 loops to support maintenance of closed prefusion V1V2 trimeric conformation and presentation of bnAb epitopes. Via directed evolution of this computationally designed single-chain antigen, we isolated a V1V2 sequence variant that in monomeric form exhibited preferential recognition by quaternary-preferring and conformation-dependent mAbs. Structural context and transferability of this phenotype to V1V2 sequences from all strains of HIV-1 tested suggest a conformation-stabilizing effect. This example demonstrates the potential utility of computational design and directed evolution-based protein engineering strategies to develop minimal, conformation-stabilized epitope-specific antigens.
Collapse
Affiliation(s)
- Jennifer I Lai
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr, Hanover NH, USA
| | - Deeptak Verma
- Department of Computer Science, Dartmouth College, 9 Maynard St, Hanover NH, USA
| | - Chris Bailey-Kellogg
- Department of Computer Science, Dartmouth College, 9 Maynard St, Hanover NH, USA
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, 14 Engineering Dr, Hanover NH, USA
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr, Lebanon NH, USA
| |
Collapse
|
63
|
Yagi S, Akanuma S, Yamagishi A. Creation of artificial protein-protein interactions using α-helices as interfaces. Biophys Rev 2018; 10:411-420. [PMID: 29214605 PMCID: PMC5899712 DOI: 10.1007/s12551-017-0352-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/15/2017] [Indexed: 12/31/2022] Open
Abstract
Designing novel protein-protein interactions (PPIs) with high affinity is a challenging task. Directed evolution, a combination of randomization of the gene for the protein of interest and selection using a display technique, is one of the most powerful tools for producing a protein binder. However, the selected proteins often bind to the target protein at an undesired surface. More problematically, some selected proteins bind to their targets even though they are unfolded. Current state-of-the-art computational design methods have successfully created novel protein binders. These computational methods have optimized the non-covalent interactions at interfaces and thus produced artificial protein complexes. However, to date there are only a limited number of successful examples of computationally designed de novo PPIs. De novo design of coiled-coil proteins has been extensively performed and, therefore, a large amount of knowledge of the sequence-structure relationship of coiled-coil proteins has been accumulated. Taking advantage of this knowledge, de novo design of inter-helical interactions has been used to produce artificial PPIs. Here, we review recent progress in the in silico design and rational design of de novo PPIs and the use of α-helices as interfaces.
Collapse
Affiliation(s)
- Sota Yagi
- Department of Applied Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Satoshi Akanuma
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| | - Akihiko Yamagishi
- Department of Applied Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
64
|
Abstract
There is an urgent need to develop vaccines against pathogenic bacteria. However, this is often hindered by antigenic diversity and difficulties encountered manufacturing membrane proteins. Here we show how to use structure-based design to develop chimeric antigens (ChAs) for subunit vaccines. ChAs are generated against serogroup B Neisseria meningitidis (MenB), the predominant cause of meningococcal disease in wealthy countries. MenB ChAs exploit factor H binding protein (fHbp) as a molecular scaffold to display the immunogenic VR2 epitope from the integral membrane protein PorA. Structural analyses demonstrate fHbp is correctly folded and the PorA VR2 epitope adopts an immunogenic conformation. In mice, immunisation with ChAs generates fHbp and PorA antibodies that recognise the antigens expressed by clinical MenB isolates; these antibody responses correlate with protection against meningococcal disease. Application of ChAs is therefore a potentially powerful approach to develop multivalent subunit vaccines, which can be tailored to circumvent pathogen diversity. Factor H binding protein (fHbp) and PorA are components of experimental serogroup B N. meningitidis vaccines. Here the authors graft the VR2 loop of PorA onto an fHBp-based scaffold to demonstrate proof-of-principle of a chimeric antigen strategy and vaccination against meningococcal disease.
Collapse
|
65
|
Cheng HD, Grimm SK, Gilman MS, Gwom LC, Sok D, Sundling C, Donofrio G, Karlsson Hedestam GB, Bonsignori M, Haynes BF, Lahey TP, Maro I, von Reyn CF, Gorny MK, Zolla-Pazner S, Walker BD, Alter G, Burton DR, Robb ML, Krebs SJ, Seaman MS, Bailey-Kellogg C, Ackerman ME. Fine epitope signature of antibody neutralization breadth at the HIV-1 envelope CD4-binding site. JCI Insight 2018. [PMID: 29515029 PMCID: PMC5922287 DOI: 10.1172/jci.insight.97018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Major advances in donor identification, antigen probe design, and experimental methods to clone pathogen-specific antibodies have led to an exponential growth in the number of newly characterized broadly neutralizing antibodies (bnAbs) that recognize the HIV-1 envelope glycoprotein. Characterization of these bnAbs has defined new epitopes and novel modes of recognition that can result in potent neutralization of HIV-1. However, the translation of envelope recognition profiles in biophysical assays into an understanding of in vivo activity has lagged behind, and identification of subjects and mAbs with potent antiviral activity has remained reliant on empirical evaluation of neutralization potency and breadth. To begin to address this discrepancy between recombinant protein recognition and virus neutralization, we studied the fine epitope specificity of a panel of CD4-binding site (CD4bs) antibodies to define the molecular recognition features of functionally potent humoral responses targeting the HIV-1 envelope site bound by CD4. Whereas previous studies have used neutralization data and machine-learning methods to provide epitope maps, here, this approach was reversed, demonstrating that simple binding assays of fine epitope specificity can prospectively identify broadly neutralizing CD4bs-specific mAbs. Building on this result, we show that epitope mapping and prediction of neutralization breadth can also be accomplished in the assessment of polyclonal serum responses. Thus, this study identifies a set of CD4bs bnAb signature amino acid residues and demonstrates that sensitivity to mutations at signature positions is sufficient to predict neutralization breadth of polyclonal sera with a high degree of accuracy across cohorts and across clades.
Collapse
Affiliation(s)
- Hao D Cheng
- Thayer School of Engineering and.,Molecular and Cellular Biology Program, Dartmouth College, Hanover, New Hampshire, USA
| | | | - Morgan Sa Gilman
- Thayer School of Engineering and.,Molecular and Cellular Biology Program, Dartmouth College, Hanover, New Hampshire, USA
| | - Luc Christian Gwom
- Thayer School of Engineering and.,Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - Devin Sok
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Christopher Sundling
- Unit of Infectious Diseases, Department of Medicine, Solna, Karolinska Institute, Stockholm, Sweden
| | - Gina Donofrio
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | | | | | | | - Timothy P Lahey
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Isaac Maro
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.,DarDar Health Programs, Dar es salaam, Tanzania.,Tokyo Medical and Dental University, Tokyo, Japan
| | - C Fordham von Reyn
- Department of Medicine, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Miroslaw K Gorny
- Department of Pathology, NYU School of Medicine, New York, New York, USA
| | - Susan Zolla-Pazner
- Departments of Medicine and Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, Massachusetts, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, Massachusetts, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA.,Ragon Institute of MGH, MIT, and Harvard University, Cambridge, Massachusetts, USA
| | - Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Shelly J Krebs
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Michael S Seaman
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | |
Collapse
|
66
|
Towards an anti-disease malaria vaccine. Emerg Top Life Sci 2017; 1:539-545. [PMID: 33525843 PMCID: PMC7289038 DOI: 10.1042/etls20170091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 11/24/2022]
Abstract
Human infective parasites, such as those that cause malaria, are highly adapted to evade clearance by the immune system. In situations where they must maintain prolonged interactions with molecules of their host, they often use parasite surface protein families. These families are highly diverse to prevent immune recognition, and yet, to promote parasite survival, their members must retain the ability to interact with specific human receptors. One of the best understood of the parasite surface protein families is the PfEMP1 proteins of Plasmodium falciparum. These molecules cause infected erythrocytes to adhere to human receptors found on blood vessel and tissue surfaces. This protects the parasite within from clearance by the spleen and also causes symptoms of severe malaria. The PfEMP1 are exposed to the immune system during infection and are therefore excellent vaccine candidates for use in an approach to prevent severe disease. A key question, however, is whether their extensive diversity precludes them from forming components of the malaria vaccines of the future?
Collapse
|
67
|
Hegde NR, Gauthami S, Sampath Kumar HM, Bayry J. The use of databases, data mining and immunoinformatics in vaccinology: where are we? Expert Opin Drug Discov 2017; 13:117-130. [PMID: 29226722 DOI: 10.1080/17460441.2018.1413088] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Vaccinology has evolved from a sub-discipline focussed on simplistic vaccine development based on antibody-mediated protection to a separate discipline involving epidemiology, host and pathogen biology, immunology, genomics, proteomics, structure biology, protein engineering, chemical biology, and delivery systems. Data mining in combination with bioinformatics has provided a scaffold linking all these disciplines to the design of vaccines and vaccine adjuvants. Areas covered: This review provides background knowledge on immunological aspects which have been exploited with informatics for the in silico analysis of immune responses and the design of vaccine antigens. Furthermore, the article presents various databases and bioinformatics tools, and discusses B and T cell epitope predictions, antigen design, adjuvant research and systems immunology, highlighting some important examples, and challenges for the future. Expert opinion: Informatics and data mining have not only reduced the time required for experimental immunology, but also contributed to the identification and design of novel vaccine candidates and the determination of biomarkers and pathways of vaccine response. However, more experimental data is required for benchmarking immunoinformatic tools. Nevertheless, developments in immunoinformatics and reverse vaccinology, which are nascent fields, are likely to hasten vaccine discovery, although the path to regulatory approval is likely to remain a necessary impediment.
Collapse
Affiliation(s)
| | - S Gauthami
- b Ella Foundation, Turkapally , Hyderabad , India
| | - H M Sampath Kumar
- c Council of Scientific and Industrial Research - Indian Institute of Chemical Technology , Hyderabad , India
| | - Jagadeesh Bayry
- d Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1138 , Centre de Recherche des Cordeliers, Paris , France
| |
Collapse
|
68
|
Kuhn AB, Kube S, Karow-Zwick AR, Seeliger D, Garidel P, Blech M, Schäfer LV. Improved Solution-State Properties of Monoclonal Antibodies by Targeted Mutations. J Phys Chem B 2017; 121:10818-10827. [DOI: 10.1021/acs.jpcb.7b09126] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alexander B. Kuhn
- Theoretical
Chemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | | | | | | | | | | | - Lars V. Schäfer
- Theoretical
Chemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| |
Collapse
|
69
|
In silico methods for design of biological therapeutics. Methods 2017; 131:33-65. [PMID: 28958951 DOI: 10.1016/j.ymeth.2017.09.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 12/18/2022] Open
Abstract
It has been twenty years since the first rationally designed small molecule drug was introduced into the market. Since then, we have progressed from designing small molecules to designing biotherapeutics. This class of therapeutics includes designed proteins, peptides and nucleic acids that could more effectively combat drug resistance and even act in cases where the disease is caused because of a molecular deficiency. Computational methods are crucial in this design exercise and this review discusses the various elements of designing biotherapeutic proteins and peptides. Many of the techniques discussed here, such as the deterministic and stochastic design methods, are generally used in protein design. We have devoted special attention to the design of antibodies and vaccines. In addition to the methods for designing these molecules, we have included a comprehensive list of all biotherapeutics approved for clinical use. Also included is an overview of methods that predict the binding affinity, cell penetration ability, half-life, solubility, immunogenicity and toxicity of the designed therapeutics. Biotherapeutics are only going to grow in clinical importance and are set to herald a new generation of disease management and cure.
Collapse
|
70
|
Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site. Nat Biotechnol 2017; 35:667-671. [PMID: 28604661 PMCID: PMC5512607 DOI: 10.1038/nbt.3907] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 05/19/2017] [Indexed: 01/17/2023]
Abstract
Many viral surface glycoproteins and cell surface receptors are homo-oligomers, and thus can potentially be targeted by geometrically matched homo-oligomers that engage all subunits simultaneously to attain high avidity and/or lock subunits together. The adaptive immune system cannot generally employ this strategy since the individual antibody binding sites are not arranged with appropriate geometry to simultaneously engage multiple sites in a single target homo-oligomer. We describe a general strategy for the computational design of homo-oligomeric protein assemblies with binding functionality precisely matched to homo-oligomeric target sites. In the first step, a small protein is designed that binds a single site on the target. In the second step, the designed protein is assembled into a homo-oligomer such that the designed binding sites are aligned with the target sites. We use this approach to design high-avidity trimeric proteins that bind influenza A hemagglutinin (HA) at its conserved receptor binding site. The designed trimers can both capture and detect HA in a paper-based diagnostic format, neutralizes influenza in cell culture, and completely protects mice when given as a single dose 24 h before or after challenge with influenza.
Collapse
|
71
|
Mackenzie CO, Grigoryan G. Protein structural motifs in prediction and design. Curr Opin Struct Biol 2017; 44:161-167. [PMID: 28460216 PMCID: PMC5513761 DOI: 10.1016/j.sbi.2017.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/18/2017] [Accepted: 03/28/2017] [Indexed: 01/11/2023]
Abstract
The Protein Data Bank (PDB) has been an integral resource for shaping our fundamental understanding of protein structure and for the advancement of such applications as protein design and structure prediction. Over the years, information from the PDB has been used to generate models ranging from specific structural mechanisms to general statistical potentials. With accumulating structural data, it has become possible to mine for more complete and complex structural observations, deducing more accurate generalizations. Motif libraries, which capture recurring structural features along with their sequence preferences, have exposed modularity in the structural universe and found successful application in various problems of structural biology. Here we summarize recent achievements in this arena, focusing on subdomain level structural patterns and their applications to protein design and structure prediction, and suggest promising future directions as the structural database continues to grow.
Collapse
Affiliation(s)
- Craig O Mackenzie
- Institute for Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH 03755, United States
| | - Gevorg Grigoryan
- Institute for Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH 03755, United States; Department of Computer Science, Dartmouth College, Hanover, NH 03755, United States.
| |
Collapse
|
72
|
Paladino A, Marchetti F, Rinaldi S, Colombo G. Protein design: from computer models to artificial intelligence. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1318] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Antonella Paladino
- Biomolecular Simulations & Computational Chemistry Group; Istituto Istituto di Chimica del Riconoscimento Molecolare, CNR; Milano Italy
| | - Filippo Marchetti
- Biomolecular Simulations & Computational Chemistry Group; Istituto Istituto di Chimica del Riconoscimento Molecolare, CNR; Milano Italy
| | - Silvia Rinaldi
- Biomolecular Simulations & Computational Chemistry Group; Istituto Istituto di Chimica del Riconoscimento Molecolare, CNR; Milano Italy
| | - Giorgio Colombo
- Biomolecular Simulations & Computational Chemistry Group; Istituto Istituto di Chimica del Riconoscimento Molecolare, CNR; Milano Italy
| |
Collapse
|
73
|
Surrogate Wnt agonists that phenocopy canonical Wnt and β-catenin signalling. Nature 2017; 545:234-237. [PMID: 28467818 PMCID: PMC5815871 DOI: 10.1038/nature22306] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 03/27/2017] [Indexed: 12/16/2022]
Abstract
Wnt proteins modulate cell proliferation and differentiation and the self-renewal of stem cells by inducing β-catenin-dependent signalling through the Wnt receptor frizzled (FZD) and the co-receptors LRP5 and LRP6 to regulate cell fate decisions and the growth and repair of several tissues. The 19 mammalian Wnt proteins are cross-reactive with the 10 FZD receptors, and this has complicated the attribution of distinct biological functions to specific FZD and Wnt subtype interactions. Furthermore, Wnt proteins are modified post-translationally by palmitoylation, which is essential for their secretion, function and interaction with FZD receptors. As a result of their acylation, Wnt proteins are very hydrophobic and require detergents for purification, which presents major obstacles to the preparation and application of recombinant Wnt proteins. This hydrophobicity has hindered the determination of the molecular mechanisms of Wnt signalling activation and the functional importance of FZD subtypes, and the use of Wnt proteins as therapeutic agents. Here we develop surrogate Wnt agonists, water-soluble FZD-LRP5/LRP6 heterodimerizers, with FZD5/FZD8-specific and broadly FZD-reactive binding domains. Similar to WNT3A, these Wnt agonists elicit a characteristic β-catenin signalling response in a FZD-selective fashion, enhance the osteogenic lineage commitment of primary mouse and human mesenchymal stem cells, and support the growth of a broad range of primary human organoid cultures. In addition, the surrogates can be systemically expressed and exhibit Wnt activity in vivo in the mouse liver, regulating metabolic liver zonation and promoting hepatocyte proliferation, resulting in hepatomegaly. These surrogates demonstrate that canonical Wnt signalling can be activated by bi-specific ligands that induce receptor heterodimerization. Furthermore, these easily produced, non-lipidated Wnt surrogate agonists facilitate functional studies of Wnt signalling and the exploration of Wnt agonists for translational applications in regenerative medicine.
Collapse
|
74
|
Pancera M, Changela A, Kwong PD. How HIV-1 entry mechanism and broadly neutralizing antibodies guide structure-based vaccine design. Curr Opin HIV AIDS 2017; 12:229-240. [PMID: 28422787 PMCID: PMC5557343 DOI: 10.1097/coh.0000000000000360] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW An HIV-1 vaccine that elicits broadly neutralizing antibodies (bNAbs) remains to be developed. Here, we review how knowledge of bNAbs and HIV-1 entry mechanism is guiding the structure-based design of vaccine immunogens and immunization regimens. RECENT FINDINGS Isolation of bNAbs from HIV-1-infected donors has led to an unprecedented understanding of the sites of vulnerability that these antibodies target on the HIV-1 envelope (Env) as well as of the immunological pathways that these antibody lineages follow to develop broad and potent neutralization. Sites of vulnerability, however, reside in the context of diverse Env conformations required for HIV-1 entry, including a prefusion-closed state, a single-CD4-bound intermediate, a three-CD4-bound intermediate, a prehairpin intermediate and postfusion states, and it is not always clear which structural state optimally presents a particular site of vulnerability in the vaccine context. Furthermore, detailed knowledge of immunological pathways has led to debate among vaccine developers as to how much of the natural antibody-developmental pathway immunogens should mimic, ranging from only the recognized epitope to multiple antigens from the antibody-virus coevolution process. SUMMARY A plethora of information on bNAbs is guiding HIV-1-vaccine development. We highlight consideration of the appropriate structural context from the HIV-1-entry mechanism and extraordinary progress with replicating template B-cell ontogenies.
Collapse
Affiliation(s)
- Marie Pancera
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Anita Changela
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
75
|
Differential Antibody Responses to Conserved HIV-1 Neutralizing Epitopes in the Context of Multivalent Scaffolds and Native-Like gp140 Trimers. mBio 2017; 8:mBio.00036-17. [PMID: 28246356 PMCID: PMC5347340 DOI: 10.1128/mbio.00036-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) have provided valuable insights into the humoral immune response to HIV-1. While rationally designed epitope scaffolds and well-folded gp140 trimers have been proposed as vaccine antigens, a comparative understanding of their antibody responses has not yet been established. In this study, we probed antibody responses to the N332 supersite and the membrane-proximal external region (MPER) in the context of heterologous protein scaffolds and native-like gp140 trimers. Ferritin nanoparticles and fragment crystallizable (Fc) regions were utilized as multivalent carriers to display scaffold antigens with grafted N332 and MPER epitopes, respectively. Trimeric scaffolds were also identified to stabilize the MPER-containing BG505 gp140.681 trimer in a native-like conformation. Following structural and antigenic evaluation, a subset of scaffold and trimer antigens was selected for immunization in BALB/c mice. Serum binding revealed distinct patterns of antibody responses to these two bNAb targets presented in different structural contexts. For example, the N332 nanoparticles elicited glycan epitope-specific antibody responses that could also recognize the native trimer, while a scaffolded BG505 gp140.681 trimer generated a stronger and more rapid antibody response to the trimer apex than its parent gp140.664 trimer. Furthermore, next-generation sequencing (NGS) of mouse splenic B cells revealed expansion of antibody lineages with long heavy-chain complementarity-determining region 3 (HCDR3) loops upon activation by MPER scaffolds, in contrast to the steady repertoires primed by N332 nanoparticles and a soluble gp140.664 trimer. These findings will facilitate the future development of a coherent vaccination strategy that combines both epitope-focused and trimer-based approaches.IMPORTANCE Both epitope-focused and trimer-based strategies are currently being explored in HIV-1 vaccine development, which aims to elicit broadly neutralizing antibodies (bNAbs) targeting conserved epitopes on the viral envelope (Env). However, little is known about the differences in antibody response to these bNAb targets presented by foreign scaffolds and native Env. In this study, a systematic effort was undertaken to design multivalent epitope scaffolds and soluble gp140.681 trimers with a complete antigenic surface, and to comparatively analyze the antibody responses elicited by these antigens to the N332 supersite and MPER in a mouse model. This study will inform both epitope-focused and trimer-based vaccine design and will facilitate integration of the two vaccine strategies.
Collapse
|
76
|
Geng F, Ma CW, Zeng AP. Reengineering substrate specificity of E. coli glutamate dehydrogenase using a position-based prediction method. Biotechnol Lett 2017; 39:599-605. [DOI: 10.1007/s10529-017-2297-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/10/2016] [Indexed: 01/11/2023]
|
77
|
Stines-Chaumeil C, Roussarie E, Mano N. The nature of the rate-limiting step of blue multicopper oxidases: Homogeneous studies versus heterogeneous. BIOCHIMIE OPEN 2017; 4:36-40. [PMID: 29450139 PMCID: PMC5801829 DOI: 10.1016/j.biopen.2017.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/21/2017] [Indexed: 11/15/2022]
Abstract
Multicopper oxidases (MCOs) catalyzed two half reactions (linked by an intramolecular electron transfer) through a Ping-Pong mechanism: the substrate oxidation followed by the O2 reduction. MCOs have been characterized in details in solution or immobilized on electrode surfaces. The nature of the rate-limiting steps, which is controversial in the literature, is discussed in this mini review for both cases. Deciphering such rate-limiting steps is of particular importance to efficiently use MCOs in any applications requiring the reduction of O2 to water. Limiting rate constant of multicopper oxidase in solution is discussed. Limiting rate constant of immobilized multicopper oxidase is discussed. Homogeneous and heterogeneous enzyme kinetics are compared.
Collapse
Affiliation(s)
- Claire Stines-Chaumeil
- CNRS, CRPP, UPR 8641, F-33600 Pessac, France.,Univ. Bordeaux, CRPP, UPR 8641, F-33600 Pessac, France
| | - Elodie Roussarie
- CNRS, CRPP, UPR 8641, F-33600 Pessac, France.,Univ. Bordeaux, CRPP, UPR 8641, F-33600 Pessac, France
| | - Nicolas Mano
- CNRS, CRPP, UPR 8641, F-33600 Pessac, France.,Univ. Bordeaux, CRPP, UPR 8641, F-33600 Pessac, France
| |
Collapse
|
78
|
One-step design of a stable variant of the malaria invasion protein RH5 for use as a vaccine immunogen. Proc Natl Acad Sci U S A 2017; 114:998-1002. [PMID: 28096331 DOI: 10.1073/pnas.1616903114] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Many promising vaccine candidates from pathogenic viruses, bacteria, and parasites are unstable and cannot be produced cheaply for clinical use. For instance, Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is essential for erythrocyte invasion, is highly conserved among field isolates, and elicits antibodies that neutralize in vitro and protect in an animal model, making it a leading malaria vaccine candidate. However, functional RH5 is only expressible in eukaryotic systems and exhibits moderate temperature tolerance, limiting its usefulness in hot and low-income countries where malaria prevails. Current approaches to immunogen stabilization involve iterative application of rational or semirational design, random mutagenesis, and biochemical characterization. Typically, each round of optimization yields minor improvement in stability, and multiple rounds are required. In contrast, we developed a one-step design strategy using phylogenetic analysis and Rosetta atomistic calculations to design PfRH5 variants with improved packing and surface polarity. To demonstrate the robustness of this approach, we tested three PfRH5 designs, all of which showed improved stability relative to wild type. The best, bearing 18 mutations relative to PfRH5, expressed in a folded form in bacteria at >1 mg of protein per L of culture, and had 10-15 °C higher thermal tolerance than wild type, while also retaining ligand binding and immunogenic properties indistinguishable from wild type, proving its value as an immunogen for a future generation of vaccines against the malaria blood stage. We envision that this efficient computational stability design methodology will also be used to enhance the biophysical properties of other recalcitrant vaccine candidates from emerging pathogens.
Collapse
|
79
|
Abstract
Computational grafting of target residues onto existing protein scaffolds is a powerful method for the design of proteins with novel function. In the grafting method side chain mutations are introduced into a preexisting protein scaffold to recreate a target functional motif. The success of this approach relies on two primary criteria: (1) the availability of compatible structural scaffolds, and (2) the introduction of mutations that do not affect the protein structure or stability. To identify compatible structural motifs we use the Erebus webserver, to search the protein data bank (PDB) for user-defined structural scaffolds. To identify potential design mutations we use the Eris webserver, which accurately predicts changes in protein stability resulting from mutations. Mutations that increase the protein stability are more likely to maintain the protein structure and therefore produce the desired function. Together these tools provide effective methods for identifying existing templates and guiding further design experiments. The software tools for scaffold searching and design are available at http://dokhlab.org .
Collapse
Affiliation(s)
- Cheng Zhu
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David D Mowrey
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Nikolay V Dokholyan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
80
|
Wu M, Li M, Yue Y, Xu W. DNA vaccine with discontinuous T-cell epitope insertions into HSP65 scaffold as a potential means to improve immunogenicity of multi-epitope Mycobacterium tuberculosis
vaccine. Microbiol Immunol 2016; 60:634-45. [DOI: 10.1111/1348-0421.12410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Manli Wu
- Institute of Biology and Medical Sciences; Soochow University; Building 703, 199 Ren-ai Road Suzhou 215123 China
| | - Min Li
- Institute of Biology and Medical Sciences; Soochow University; Building 703, 199 Ren-ai Road Suzhou 215123 China
| | - Yan Yue
- Institute of Biology and Medical Sciences; Soochow University; Building 703, 199 Ren-ai Road Suzhou 215123 China
| | - Wei Xu
- Institute of Biology and Medical Sciences; Soochow University; Building 703, 199 Ren-ai Road Suzhou 215123 China
| |
Collapse
|
81
|
Zhu C, Zhang C, Zhang T, Zhang X, Shen Q, Tang B, Liang H, Lai L. Rational design of TNFα binding proteins based on the de novo designed protein DS119. Protein Sci 2016; 25:2066-2075. [PMID: 27571536 DOI: 10.1002/pro.3029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/26/2016] [Indexed: 12/11/2022]
Abstract
De novo protein design offers templates for engineering tailor-made protein functions and orthogonal protein interaction networks for synthetic biology research. Various computational methods have been developed to introduce functional sites in known protein structures. De novo designed protein scaffolds provide further opportunities for functional protein design. Here we demonstrate the rational design of novel tumor necrosis factor alpha (TNFα) binding proteins using a home-made grafting program AutoMatch. We grafted three key residues from a virus 2L protein to a de novo designed small protein, DS119, with consideration of backbone flexibility. The designed proteins bind to TNFα with micromolar affinities. We further optimized the interface residues with RosettaDesign and significantly improved the binding capacity of one protein Tbab1-4. These designed proteins inhibit the activity of TNFα in cellular luciferase assays. Our work illustrates the potential application of the de novo designed protein DS119 in protein engineering, biomedical research, and protein sequence-structure-function studies.
Collapse
Affiliation(s)
- Cheng Zhu
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Changsheng Zhang
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Tao Zhang
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xiaoling Zhang
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Qi Shen
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Bo Tang
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Huanhuan Liang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Luhua Lai
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China. .,Center for Quantitative Biology, Peking University, Beijing, 100871, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
82
|
Gainza P, Nisonoff HM, Donald BR. Algorithms for protein design. Curr Opin Struct Biol 2016; 39:16-26. [PMID: 27086078 PMCID: PMC5065368 DOI: 10.1016/j.sbi.2016.03.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/15/2016] [Accepted: 03/22/2016] [Indexed: 02/05/2023]
Abstract
Computational structure-based protein design programs are becoming an increasingly important tool in molecular biology. These programs compute protein sequences that are predicted to fold to a target structure and perform a desired function. The success of a program's predictions largely relies on two components: first, the input biophysical model, and second, the algorithm that computes the best sequence(s) and structure(s) according to the biophysical model. Improving both the model and the algorithm in tandem is essential to improving the success rate of current programs, and here we review recent developments in algorithms for protein design, emphasizing how novel algorithms enable the use of more accurate biophysical models. We conclude with a list of algorithmic challenges in computational protein design that we believe will be especially important for the design of therapeutic proteins and protein assemblies.
Collapse
Affiliation(s)
- Pablo Gainza
- Department of Computer Science, Duke University, Durham, NC, United States
| | - Hunter M Nisonoff
- Department of Computer Science, Duke University, Durham, NC, United States
| | - Bruce R Donald
- Department of Computer Science, Duke University, Durham, NC, United States; Department of Biochemistry, Duke University Medical Center, Durham, NC, United States; Department of Chemistry, Duke University, Durham, NC, United States.
| |
Collapse
|
83
|
Hasan A, Saliba J, Pezeshgi Modarres H, Bakhaty A, Nasajpour A, Mofrad MRK, Sanati-Nezhad A. Micro and nanotechnologies in heart valve tissue engineering. Biomaterials 2016; 103:278-292. [PMID: 27414719 DOI: 10.1016/j.biomaterials.2016.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/26/2016] [Accepted: 07/01/2016] [Indexed: 02/04/2023]
Abstract
Due to the increased morbidity and mortality resulting from heart valve diseases, there is a growing demand for off-the-shelf implantable tissue engineered heart valves (TEHVs). Despite the significant progress in recent years in improving the design and performance of TEHV constructs, viable and functional human implantable TEHV constructs have remained elusive. The recent advances in micro and nanoscale technologies including the microfabrication, nano-microfiber based scaffolds preparation, 3D cell encapsulated hydrogels preparation, microfluidic, micro-bioreactors, nano-microscale biosensors as well as the computational methods and models for simulation of biological tissues have increased the potential for realizing viable, functional and implantable TEHV constructs. In this review, we aim to present an overview of the importance and recent advances in micro and nano-scale technologies for the development of TEHV constructs.
Collapse
Affiliation(s)
- Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - John Saliba
- Department of Mechanical Engineering, Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Hassan Pezeshgi Modarres
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada; Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, 208A Stanley Hall, Berkeley, CA 94720-1762, USA
| | - Ahmed Bakhaty
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, 208A Stanley Hall, Berkeley, CA 94720-1762, USA
| | - Amir Nasajpour
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, 208A Stanley Hall, Berkeley, CA 94720-1762, USA; Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720, USA
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Canada; Center for BioEngineering Research and Education, University of Calgary, Calgary, Canada.
| |
Collapse
|
84
|
Rosenfeld L, Heyne M, Shifman JM, Papo N. Protein Engineering by Combined Computational and In Vitro Evolution Approaches. Trends Biochem Sci 2016; 41:421-433. [PMID: 27061494 DOI: 10.1016/j.tibs.2016.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/29/2016] [Accepted: 03/09/2016] [Indexed: 12/30/2022]
Abstract
Two alternative strategies are commonly used to study protein-protein interactions (PPIs) and to engineer protein-based inhibitors. In one approach, binders are selected experimentally from combinatorial libraries of protein mutants that are displayed on a cell surface. In the other approach, computational modeling is used to explore an astronomically large number of protein sequences to select a small number of sequences for experimental testing. While both approaches have some limitations, their combination produces superior results in various protein engineering applications. Such applications include the design of novel binders and inhibitors, the enhancement of affinity and specificity, and the mapping of binding epitopes. The combination of these approaches also aids in the understanding of the specificity profiles of various PPIs.
Collapse
Affiliation(s)
- Lior Rosenfeld
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michael Heyne
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Julia M Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Niv Papo
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
85
|
Gori A, Peri C, Quilici G, Nithichanon A, Gaudesi D, Longhi R, Gourlay L, Bolognesi M, Lertmemongkolchai G, Musco G, Colombo G. Flexible vs Rigid Epitope Conformations for Diagnostic- and Vaccine-Oriented Applications: Novel Insights from the Burkholderia pseudomallei BPSL2765 Pal3 Epitope. ACS Infect Dis 2016; 2:221-30. [PMID: 27623032 DOI: 10.1021/acsinfecdis.5b00118] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Peptides seldom retain stable conformations if separated from their native protein structure. In an immunological context, this potentially affects the development of selective peptide-based bioprobes and, from a vaccine perspective, poses inherent limits in the elicitation of cross-reactive antibodies by candidate epitopes. Here, a 1,4-disubstituted-1,2,3-triazole-mediated stapling strategy was used to stabilize the native α-helical fold of the Pal3 peptidic epitope from the protein antigen PalBp (BPSL2765) from Burkholderia pseudomallei, the etiological agent of melioidosis. Whereas Pal3 shows no propensity to fold outside its native protein context, the engineered peptide (Pal3H) forms a stable α-helix, as assessed by MD, NMR, and CD structural analyses. Importantly, Pal3H shows an enhanced ability to discriminate between melioidosis patient subclasses in immune sera reactivity tests, demonstrating the potential of the stapled peptide for diagnostic purposes. With regard to antibody elicitation and related bactericidal activities, the linear peptide is shown to elicit a higher response. On these bases, we critically discuss the implications of epitope structure engineering for diagnostic- and vaccine-oriented applications.
Collapse
Affiliation(s)
- Alessandro Gori
- Istituto di Chimica del Riconoscimento Molecolare,
Consiglio Nazionale delle Ricerche, Via Mario Bianco, 9, 20131, Milan, Italy
| | - Claudio Peri
- Istituto di Chimica del Riconoscimento Molecolare,
Consiglio Nazionale delle Ricerche, Via Mario Bianco, 9, 20131, Milan, Italy
| | - Giacomo Quilici
- Biomolecular NMR Laboratory,
Division of Genetics and Cell Biology, S. Raffaele Scientific Institute, 20132 Milan, Italy
| | - Arnone Nithichanon
- Center for Research and Development of
Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical
Sciences, Khon Kaen University, 40002, Khon Kaen, Thailand
| | - Davide Gaudesi
- Biomolecular NMR Laboratory,
Division of Genetics and Cell Biology, S. Raffaele Scientific Institute, 20132 Milan, Italy
| | - Renato Longhi
- Istituto di Chimica del Riconoscimento Molecolare,
Consiglio Nazionale delle Ricerche, Via Mario Bianco, 9, 20131, Milan, Italy
| | - Louise Gourlay
- Department of Biosciences, University of Milan, 20133, Milan, Italy
| | - Martino Bolognesi
- Department of Biosciences, University of Milan, 20133, Milan, Italy
- CNR-IBF and Cimaina,
c/o Department of Biosciences, University of Milan, 20133, Milan, Italy
| | - Ganjana Lertmemongkolchai
- Center for Research and Development of
Medical Diagnostic Laboratories (CMDL), Faculty of Associated Medical
Sciences, Khon Kaen University, 40002, Khon Kaen, Thailand
| | - Giovanna Musco
- Biomolecular NMR Laboratory,
Division of Genetics and Cell Biology, S. Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare,
Consiglio Nazionale delle Ricerche, Via Mario Bianco, 9, 20131, Milan, Italy
| |
Collapse
|
86
|
Garza-Fabre M, Kandathil SM, Handl J, Knowles J, Lovell SC. Generating, Maintaining, and Exploiting Diversity in a Memetic Algorithm for Protein Structure Prediction. EVOLUTIONARY COMPUTATION 2016; 24:577-607. [PMID: 26908350 DOI: 10.1162/evco_a_00176] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Computational approaches to de novo protein tertiary structure prediction, including those based on the preeminent "fragment-assembly" technique, have failed to scale up fully to larger proteins (on the order of 100 residues and above). A number of limiting factors are thought to contribute to the scaling problem over and above the simple combinatorial explosion, but the key ones relate to the lack of exploration of properly diverse protein folds, and to an acute form of "deception" in the energy function, whereby low-energy conformations do not reliably equate with native structures. In this article, solutions to both of these problems are investigated through a multistage memetic algorithm incorporating the successful Rosetta method as a local search routine. We found that specialised genetic operators significantly add to structural diversity and that this translates well to reaching low energies. The use of a generalised stochastic ranking procedure for selection enables the memetic algorithm to handle and traverse deep energy wells that can be considered deceptive, which further adds to the ability of the algorithm to obtain a much-improved diversity of folds. The results should translate to a tangible improvement in the performance of protein structure prediction algorithms in blind experiments such as CASP, and potentially to a further step towards the more challenging problem of predicting the three-dimensional shape of large proteins.
Collapse
Affiliation(s)
- Mario Garza-Fabre
- Decision and Cognitive Sciences Research Centre, University of Manchester, Manchester, M15 6PB, UK
| | - Shaun M Kandathil
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Julia Handl
- Decision and Cognitive Sciences Research Centre, University of Manchester, Manchester, M15 6PB, UK
| | - Joshua Knowles
- School of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK
| | - Simon C Lovell
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
87
|
Mao X, Simon AJ, Pei H, Shi J, Li J, Huang Q, Plaxco KW, Fan C. Activity modulation and allosteric control of a scaffolded DNAzyme using a dynamic DNA nanostructure. Chem Sci 2016; 7:1200-1204. [PMID: 29910875 PMCID: PMC5975834 DOI: 10.1039/c5sc03705k] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/26/2015] [Indexed: 12/31/2022] Open
Abstract
Recognition of the fundamental importance of allosteric regulation in biology dates back to not long after its discovery in the 1960s. Our ability to rationally engineer this potentially useful property into normally non-allosteric catalysts, however, remains limited. In response we report a DNA nanotechnology-enabled approach for introducing allostery into catalytic nucleic acids. Specifically, we have grafted one or two copies of a peroxidase-like DNAzyme, hemin-bound G-quadruplex (hemin-G), onto a DNA tetrahedral nanostructure in such a manner as to cause them to interact, modulating their catalytic activity. We achieve allosteric regulation of these catalysts by incorporating dynamically responsive oligonucleotides that respond to specific "effector" molecules (complementary oligonucleotides or small molecules), altering the spacing between the catalytic sites and thus regulating their activity. This designable approach thus enables subtle allosteric modulation in DNAzymes that is potentially of use for nanomedicine and nanomachines.
Collapse
Affiliation(s)
- Xiuhai Mao
- Division of Physical Biology & Bioimaging Center , Shanghai Synchrotron Radiation Facility , CAS Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai , China .
| | - Anna J Simon
- Department of Chemistry and Biomolecular Science and Engineering Program , University of California , Santa Barbara , California 93106 , USA
| | - Hao Pei
- Division of Physical Biology & Bioimaging Center , Shanghai Synchrotron Radiation Facility , CAS Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai , China .
| | - Jiye Shi
- Kellogg College , University of Oxford , Oxford , OX2 6PN , UK
- UCB Pharma , 208 Bath Road, Slough , SL1 3WE , UK .
| | - Jiang Li
- Division of Physical Biology & Bioimaging Center , Shanghai Synchrotron Radiation Facility , CAS Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai , China .
| | - Qing Huang
- Division of Physical Biology & Bioimaging Center , Shanghai Synchrotron Radiation Facility , CAS Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai , China .
| | - Kevin W Plaxco
- Department of Chemistry and Biomolecular Science and Engineering Program , University of California , Santa Barbara , California 93106 , USA
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center , Shanghai Synchrotron Radiation Facility , CAS Key Laboratory of Interfacial Physics and Technology , Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai , China .
- School of Life Science and Technology , ShanghaiTech University , Shanghai 201200 , China
| |
Collapse
|
88
|
Liu CC, Zheng XJ, Ye XS. Broadly Neutralizing Antibody-Guided Carbohydrate-Based HIV Vaccine Design: Challenges and Opportunities. ChemMedChem 2016; 11:357-62. [PMID: 26762799 DOI: 10.1002/cmdc.201500498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Indexed: 11/12/2022]
Abstract
The HIV envelope (Env) is heavily glycosylated, facilitating the spread and survival of HIV in many ways. Some potent broadly neutralizing antibodies (bnAbs) such as 2G12, PG9, PG16, and PGTs can recognize the conserved glycan residues on Env. The bnAbs, which often emerge after many years of chronic infection, provide insight into the vulnerability of HIV and can therefore guide the design of vaccines. Many carbohydrate-conjugated vaccines have been designed to induce bnAb-like antibodies, but none have yet been successful. The low antigenicity of these vaccines is one possible explanation. New strategies have been applied to obtain high-affinity antigens of glycan-dependent and other bnAbs. However, when used as immunogens in vivo, high-affinity antigens are still insufficient in eliciting bnAb-like antibodies. bnAbs generally possess some unusual features and may therefore be suppressed by the host immune system. In view of this situation, some immunization regimens based on the affinity maturation of antibodies have been tested. Herein we summarize recent studies into the design of carbohydrate-based HIV vaccines and some valuable experiences gained in work with other bnAb-based HIV vaccines.
Collapse
Affiliation(s)
- Chang-Cheng Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiu-Jing Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
89
|
Sliepen K, Sanders RW. HIV-1 envelope glycoprotein immunogens to induce broadly neutralizing antibodies. Expert Rev Vaccines 2016; 15:349-65. [PMID: 26654478 DOI: 10.1586/14760584.2016.1129905] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The long pursuit for a vaccine against human immunodeficiency virus 1 (HIV-1) has recently been boosted by a number of exciting developments. An HIV-1 subunit vaccine ideally should elicit potent broadly neutralizing antibodies (bNAbs), but raising bNAbs by vaccination has proved extremely difficult because of the characteristics of the HIV-1 envelope glycoprotein complex (Env). However, the isolation of bNAbs from HIV-1-infected patients demonstrates that the human humoral immune system is capable of making such antibodies. Therefore, a focus of HIV-1 vaccinology is the elicitation of bNAbs by engineered immunogens and by using vaccination strategies aimed at mimicking the bNAb maturation pathways in HIV-infected patients. Important clues can also be taken from the successful subunit vaccines against hepatitis B virus and human papillomavirus. Here, we review the different types of HIV-1 immunogens and vaccination strategies that are being explored in the search for an HIV-1 vaccine that induces bNAbs.
Collapse
Affiliation(s)
- Kwinten Sliepen
- a Department of Medical Microbiology, Academic Medical Center , University of Amsterdam , Amsterdam , The Netherlands
| | - Rogier W Sanders
- a Department of Medical Microbiology, Academic Medical Center , University of Amsterdam , Amsterdam , The Netherlands.,b Department of Microbiology and Immunology , Weill Medical College of Cornell University , New York , NY , USA
| |
Collapse
|
90
|
Abstract
Protein-protein interfaces regulate many critical processes for cellular function. The ability to accurately control and regulate these molecular interactions is of major interest for biomedical and synthetic biology applications, as well as to address fundamental biological questions. In recent years, computational protein design has emerged as a tool for designing novel protein-protein interactions with functional relevance. Although attractive, these computational tools carry a steep learning curve. In order to make some of these methods more accessible, we present detailed descriptions and examples of ROSETTA computational protocols for the design of functional protein binders using seeded protein interface design. In these protocols, a motif of known structure that interacts with the target site is grafted into a scaffold protein, followed by design of the surrounding interaction surface.
Collapse
Affiliation(s)
| | - Bruno E Correia
- Institute of Bioengineering, Ecole polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Erik Procko
- Department of Biochemistry, University of Illinois, 600 S. Matthews, Urbana, IL, 61801, USA.
| |
Collapse
|
91
|
Sangphukieo A, Nawae W, Laomettachit T, Supasitthimethee U, Ruengjitchatchawalya M. Computational Design of Hypothetical New Peptides Based on a Cyclotide Scaffold as HIV gp120 Inhibitor. PLoS One 2015; 10:e0139562. [PMID: 26517259 PMCID: PMC4627658 DOI: 10.1371/journal.pone.0139562] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/15/2015] [Indexed: 11/19/2022] Open
Abstract
Cyclotides are a family of triple disulfide cyclic peptides with exceptional resistance to thermal/chemical denaturation and enzymatic degradation. Several cyclotides have been shown to possess anti-HIV activity, including kalata B1 (KB1). However, the use of cyclotides as anti-HIV therapies remains limited due to the high toxicity in normal cells. Therefore, grafting anti-HIV epitopes onto a cyclotide might be a promising approach for reducing toxicity and simultaneously improving anti-HIV activity. Viral envelope glycoprotein gp120 is required for entry of HIV into CD4+ T cells. However, due to a high degree of variability and physical shielding, the design of drugs targeting gp120 remains challenging. We created a computational protocol in which molecular modeling techniques were combined with a genetic algorithm (GA) to automate the design of new cyclotides with improved binding to HIV gp120. We found that the group of modified cyclotides has better binding scores (23.1%) compared to the KB1. By using molecular dynamic (MD) simulation as a post filter for the final candidates, we identified two novel cyclotides, GA763 and GA190, which exhibited better interaction energies (36.6% and 22.8%, respectively) when binding to gp120 compared to KB1. This computational design represents an alternative tool for modifying peptides, including cyclotides and other stable peptides, as therapeutic agents before the synthesis process.
Collapse
Affiliation(s)
- Apiwat Sangphukieo
- Bioinformatics and Systems Biology program, King Mongkut’s University of Technology Thonburi (KMUTT), Bang Khun Thian, Bangkok, 10150, Thailand
| | - Wanapinun Nawae
- Pilot Plant Development and Training Institute, KMUTT (Bang Khun Thian), Bangkok, 10150, Thailand
| | - Teeraphan Laomettachit
- Bioinformatics and Systems Biology program, King Mongkut’s University of Technology Thonburi (KMUTT), Bang Khun Thian, Bangkok, 10150, Thailand
| | | | - Marasri Ruengjitchatchawalya
- Bioinformatics and Systems Biology program, King Mongkut’s University of Technology Thonburi (KMUTT), Bang Khun Thian, Bangkok, 10150, Thailand
- Biotechnology program, School of Bioresources and Technology, KMUTT (Bang Khun Thian), Bangkok, 10150, Thailand
- * E-mail:
| |
Collapse
|
92
|
Guntas G, Lewis SM, Mulvaney KM, Cloer EW, Tripathy A, Lane TR, Major MB, Kuhlman B. Engineering a genetically encoded competitive inhibitor of the KEAP1-NRF2 interaction via structure-based design and phage display. Protein Eng Des Sel 2015; 29:1-9. [PMID: 26489878 DOI: 10.1093/protein/gzv055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 09/24/2015] [Indexed: 12/31/2022] Open
Abstract
In its basal state, KEAP1 binds the transcription factor NRF2 (Kd = 5 nM) and promotes its degradation by ubiquitylation. Changes in the redox environment lead to modification of key cysteines within KEAP1, resulting in NRF2 protein accumulation and the transcription of genes important for restoring the cellular redox state. Using phage display and a computational loop grafting protocol, we engineered a monobody (R1) that is a potent competitive inhibitor of the KEAP1-NRF2 interaction. R1 bound to KEAP1 with a Kd of 300 pM and in human cells freed NRF2 from KEAP1 resulting in activation of the NRF2 promoter. Unlike cysteine-reactive small molecules that lack protein specificity, R1 is a genetically encoded, reversible inhibitor designed specifically for KEAP1. R1 should prove useful for studying the role of the KEAP1-NRF2 interaction in several disease states. The structure-based phage display strategy employed here is a general approach for engineering high-affinity binders that compete with naturally occurring interactions.
Collapse
Affiliation(s)
| | | | - Kathleen M Mulvaney
- Department of Cell Biology and Physiology Lineberger Comprehensive Cancer Center, University of North Carolina, 120 Mason Farm Road, Genetic Medicine Building 3010, Chapel Hill, NC 27599-7260, USA
| | - Erica W Cloer
- Department of Cell Biology and Physiology Lineberger Comprehensive Cancer Center, University of North Carolina, 120 Mason Farm Road, Genetic Medicine Building 3010, Chapel Hill, NC 27599-7260, USA
| | | | | | - Michael B Major
- Department of Cell Biology and Physiology Lineberger Comprehensive Cancer Center, University of North Carolina, 120 Mason Farm Road, Genetic Medicine Building 3010, Chapel Hill, NC 27599-7260, USA
| | - Brian Kuhlman
- Department of Cell Biology and Physiology Lineberger Comprehensive Cancer Center, University of North Carolina, 120 Mason Farm Road, Genetic Medicine Building 3010, Chapel Hill, NC 27599-7260, USA
| |
Collapse
|
93
|
Structural and Computational Biology in the Design of Immunogenic Vaccine Antigens. J Immunol Res 2015; 2015:156241. [PMID: 26526043 PMCID: PMC4615220 DOI: 10.1155/2015/156241] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/02/2015] [Indexed: 01/08/2023] Open
Abstract
Vaccination is historically one of the most important medical interventions for the prevention of infectious disease. Previously, vaccines were typically made of rather crude mixtures of inactivated or attenuated causative agents. However, over the last 10–20 years, several important technological and computational advances have enabled major progress in the discovery and design of potently immunogenic recombinant protein vaccine antigens. Here we discuss three key breakthrough approaches that have potentiated structural and computational vaccine design. Firstly, genomic sciences gave birth to the field of reverse vaccinology, which has enabled the rapid computational identification of potential vaccine antigens. Secondly, major advances in structural biology, experimental epitope mapping, and computational epitope prediction have yielded molecular insights into the immunogenic determinants defining protective antigens, enabling their rational optimization. Thirdly, and most recently, computational approaches have been used to convert this wealth of structural and immunological information into the design of improved vaccine antigens. This review aims to illustrate the growing power of combining sequencing, structural and computational approaches, and we discuss how this may drive the design of novel immunogens suitable for future vaccines urgently needed to increase the global prevention of infectious disease.
Collapse
|
94
|
Porter JR, Weitzner BD, Lange OF. A Framework to Simplify Combined Sampling Strategies in Rosetta. PLoS One 2015; 10:e0138220. [PMID: 26381271 PMCID: PMC4575156 DOI: 10.1371/journal.pone.0138220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/27/2015] [Indexed: 11/19/2022] Open
Abstract
A core task in computational structural biology is the search of conformational space for low energy configurations of a biological macromolecule. Because conformational space has a very high dimensionality, the most successful search methods integrate some form of prior knowledge into a general sampling algorithm to reduce the effective dimensionality. However, integrating multiple types of constraints can be challenging. To streamline the incorporation of diverse constraints, we developed the Broker: an extension of the Rosetta macromolecular modeling suite that can express a wide range of protocols using constraints by combining small, independent modules, each of which implements a different set of constraints. We demonstrate expressiveness of the Broker through several code vignettes. The framework enables rapid protocol development in both biomolecular design and structural modeling tasks and thus is an important step towards exposing the rich functionality of Rosetta's core libraries to a growing community of users addressing a diverse set of tasks in computational biology.
Collapse
Affiliation(s)
- Justin R. Porter
- School of Medicine, Washington University in St. Louis, Missouri, Washington, United States of America
| | - Brian D. Weitzner
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Oliver F. Lange
- Lehrstuhl für Biomolekulare NMR-Spektroskopie, Fakultät Chemie, Techniche Universität München, Munich, Germany
| |
Collapse
|
95
|
Abstract
In this brief review, we discuss immune tolerance as a factor that determines the magnitude and quality of serum antibody responses to HIV-1 infection and vaccination in the context of recent work. We propose that many conserved, neutralizing epitopes of HIV-1 are weakly immunogenic because they mimic host antigens. In consequence, B cells that strongly bind these determinants are removed by the physiological process of immune tolerance. This structural mimicry may represent a significant impediment to designing protective HIV-1 vaccines, but we note that several vaccine strategies may be able to mitigate this evolutionary adaptation of HIV and other microbial pathogens.
Collapse
|
96
|
Watanabe H, Honda S. Adaptive Assembly: Maximizing the Potential of a Given Functional Peptide with a Tailor-Made Protein Scaffold. ACTA ACUST UNITED AC 2015; 22:1165-73. [PMID: 26299673 DOI: 10.1016/j.chembiol.2015.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/18/2015] [Accepted: 07/05/2015] [Indexed: 01/28/2023]
Abstract
Protein engineering that exploits known functional peptides holds great promise for generating novel functional proteins. Here we propose a combinatorial approach, termed adaptive assembly, which provides a tailor-made protein scaffold for a given functional peptide. A combinatorial library was designed to create a tailor-made scaffold, which was generated from β hairpins derived from a 10-residue minimal protein "chignolin" and randomized amino acid sequences. We applied adaptive assembly to a peptide with low affinity for the Fc region of human immunoglobulin G, generating a 54-residue protein AF.p17 with a 40,600-fold enhanced affinity. The crystal structure of AF.p17 complexed with the Fc region revealed that the scaffold fixed the active conformation with a unique structure composed of a short α helix, β hairpins, and a loop-like structure. Adaptive assembly can take full advantage of known peptides as assets for generating novel functional proteins.
Collapse
Affiliation(s)
- Hideki Watanabe
- Biomedical Research Institute, the National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Shinya Honda
- Biomedical Research Institute, the National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| |
Collapse
|
97
|
Abstract
Antimicrobial resistance is a serious healthcare concern affecting millions of people around the world. Antiviral resistance has been viewed as a lesser threat than antibiotic resistance, but it is important to consider approaches to address this growing issue. While vaccination is a logical strategy, and has been shown to be successful many times over, next generation viral vaccines with a specific goal of curbing antiviral resistance will need to clear several hurdles including vaccine design, evaluation and implementation. This article suggests that a new model of vaccination may need to be considered: rather than focusing on public health, this model would primarily target sectors of the population who are at high risk for complications from certain infections.
Collapse
Affiliation(s)
- Catherine Laughlin
- Division of Microbiology & Infectious Diseases, National Institute of Allergy & Infectious Diseases (NIAID), NIH, 5601 Fishers Lane, Bethesda, MD 20852, USA
| | - Amanda Schleif
- Division of Microbiology & Infectious Diseases, National Institute of Allergy & Infectious Diseases (NIAID), NIH, 5601 Fishers Lane, Bethesda, MD 20852, USA
| | - Carole A Heilman
- Division of Microbiology & Infectious Diseases, National Institute of Allergy & Infectious Diseases (NIAID), NIH, 5601 Fishers Lane, Bethesda, MD 20852, USA
| |
Collapse
|
98
|
Chino M, Maglio O, Nastri F, Pavone V, DeGrado WF, Lombardi A. Artificial Diiron Enzymes with a De Novo Designed Four-Helix Bundle Structure. Eur J Inorg Chem 2015; 2015:3371-3390. [PMID: 27630532 PMCID: PMC5019575 DOI: 10.1002/ejic.201500470] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Indexed: 12/26/2022]
Abstract
A single polypeptide chain may provide an astronomical number of conformers. Nature selected only a trivial number of them through evolution, composing an alphabet of scaffolds, that can afford the complete set of chemical reactions needed to support life. These structural templates are so stable that they allow several mutations without disruption of the global folding, even having the ability to bind several exogenous cofactors. With this perspective, metal cofactors play a crucial role in the regulation and catalysis of several processes. Nature is able to modulate the chemistry of metals, adopting only a few ligands and slightly different geometries. Several scaffolds and metal-binding motifs are representing the focus of intense interest in the literature. This review discusses the widespread four-helix bundle fold, adopted as a scaffold for metal binding sites in the context of de novo protein design to obtain basic biochemical components for biosensing or catalysis. In particular, we describe the rational refinement of structure/function in diiron-oxo protein models from the due ferri (DF) family. The DF proteins were developed by us through an iterative process of design and rigorous characterization, which has allowed a shift from structural to functional models. The examples reported herein demonstrate the importance of the synergic application of de novo design methods as well as spectroscopic and structural characterization to optimize the catalytic performance of artificial enzymes.
Collapse
Affiliation(s)
- Marco Chino
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
- IBB, CNR, Via Mezzocannone 16, 80134 Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - Vincenzo Pavone
- Department of Structural and Functional Biology, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco San Francisco, CA 94158, USA
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
| |
Collapse
|
99
|
Malito E, Carfi A, Bottomley MJ. Protein Crystallography in Vaccine Research and Development. Int J Mol Sci 2015; 16:13106-40. [PMID: 26068237 PMCID: PMC4490488 DOI: 10.3390/ijms160613106] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/01/2015] [Indexed: 12/14/2022] Open
Abstract
The use of protein X-ray crystallography for structure-based design of small-molecule drugs is well-documented and includes several notable success stories. However, it is less well-known that structural biology has emerged as a major tool for the design of novel vaccine antigens. Here, we review the important contributions that protein crystallography has made so far to vaccine research and development. We discuss several examples of the crystallographic characterization of vaccine antigen structures, alone or in complexes with ligands or receptors. We cover the critical role of high-resolution epitope mapping by reviewing structures of complexes between antigens and their cognate neutralizing, or protective, antibody fragments. Most importantly, we provide recent examples where structural insights obtained via protein crystallography have been used to design novel optimized vaccine antigens. This review aims to illustrate the value of protein crystallography in the emerging discipline of structural vaccinology and its impact on the rational design of vaccines.
Collapse
Affiliation(s)
- Enrico Malito
- Protein Biochemistry Department, Novartis Vaccines & Diagnostics s.r.l. (a GSK Company), Via Fiorentina 1, 53100 Siena, Italy.
| | - Andrea Carfi
- Protein Biochemistry Department, GSK Vaccines, Cambridge, MA 02139, USA.
| | - Matthew J Bottomley
- Protein Biochemistry Department, Novartis Vaccines & Diagnostics s.r.l. (a GSK Company), Via Fiorentina 1, 53100 Siena, Italy.
| |
Collapse
|
100
|
Molecular Engineering of Ghfp, the Gonococcal Orthologue of Neisseria meningitidis Factor H Binding Protein. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:769-77. [PMID: 25947148 DOI: 10.1128/cvi.00794-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/28/2015] [Indexed: 11/20/2022]
Abstract
Knowledge of the sequences and structures of proteins produced by microbial pathogens is continuously increasing. Besides offering the possibility of unraveling the mechanisms of pathogenesis at the molecular level, structural information provides new tools for vaccine development, such as the opportunity to improve viral and bacterial vaccine candidates by rational design. Structure-based rational design of antigens can optimize the epitope repertoire in terms of accessibility, stability, and variability. In the present study, we used epitope mapping information on the well-characterized antigen of Neisseria meningitidis factor H binding protein (fHbp) to engineer its gonococcal homologue, Ghfp. Meningococcal fHbp is typically classified in three distinct antigenic variants. We introduced epitopes of fHbp variant 1 onto the surface of Ghfp, which is naturally able to protect against meningococcal strains expressing fHbp of variants 2 and 3. Heterologous epitopes were successfully transplanted, as engineered Ghfp induced functional antibodies against all three fHbp variants. These results confirm that structural vaccinology represents a successful strategy for modulating immune responses, and it is a powerful tool for investigating the extension and localization of immunodominant epitopes.
Collapse
|