51
|
Fu W, MacGregor DR, Comont D, Saski CA. Sequence Characterization of Extra-Chromosomal Circular DNA Content in Multiple Blackgrass ( Alopecurus myosuroides) Populations. Genes (Basel) 2023; 14:1905. [PMID: 37895254 PMCID: PMC10606437 DOI: 10.3390/genes14101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Alopecurus myosuroides (blackgrass) is a problematic weed of Western European winter wheat, and its success is largely due to widespread multiple-herbicide resistance. Previous analysis of F2 seed families derived from two distinct blackgrass populations exhibiting equivalent non-target site resistance (NTSR) phenotypes shows resistance is polygenic and evolves from standing genetic variation. Using a CIDER-seq pipeline, we show that herbicide-resistant (HR) and herbicide-sensitive (HS) F3 plants from these F2 seed families as well as the parent populations they were derived from carry extra-chromosomal circular DNA (eccDNA). We identify the similarities and differences in the coding structures within and between resistant and sensitive populations. Although the numbers and size of detected eccDNAs varied between the populations, comparisons between the HR and HS blackgrass populations identified shared and unique coding content, predicted genes, and functional protein domains. These include genes related to herbicide detoxification such as Cytochrome P450s, ATP-binding cassette transporters, and glutathione transferases including AmGSTF1. eccDNA content was mapped to the A. myosuroides reference genome, revealing genomic regions at the distal end of chromosome 5 and the near center of chromosomes 1 and 7 as regions with a high number of mapped eccDNA gene density. Mapping to 15 known herbicide-resistant QTL regions showed that the eccDNA coding sequences matched twelve, with four QTL matching HS coding sequences; only one region contained HR coding sequences. These findings establish that, like other pernicious weeds, blackgrass has eccDNAs that contain homologs of chromosomal genes, and these may contribute genetic heterogeneity and evolutionary innovation to rapidly adapt to abiotic stresses, including herbicide treatment.
Collapse
Affiliation(s)
- Wangfang Fu
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Dana R. MacGregor
- Rothamsted Research, Protecting Crops and the Environment, Harpenden, Hertfordshire AL5 2JQ, UK; (D.R.M.); (D.C.)
| | - David Comont
- Rothamsted Research, Protecting Crops and the Environment, Harpenden, Hertfordshire AL5 2JQ, UK; (D.R.M.); (D.C.)
| | - Christopher A. Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA;
| |
Collapse
|
52
|
Li F, Ming W, Lu W, Wang Y, Li X, Dong X, Bai Y. FLED: a full-length eccDNA detector for long-reads sequencing data. Brief Bioinform 2023; 24:bbad388. [PMID: 37930031 PMCID: PMC10632013 DOI: 10.1093/bib/bbad388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/24/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023] Open
Abstract
Reconstructing the full-length sequence of extrachromosomal circular DNA (eccDNA) from short sequencing reads has proved challenging given the similarity of eccDNAs and their corresponding linear DNAs. Previous sequencing methods were unable to achieve high-throughput detection of full-length eccDNAs. Herein, a novel algorithm was developed, called Full-Length eccDNA Detection (FLED), to reconstruct the sequence of eccDNAs based on the strategy that combined rolling circle amplification and nanopore long-reads sequencing technology. Seven human epithelial and cancer cell line samples were analyzed by FLED and over 5000 full-length eccDNAs were identified per sample. The structures of identified eccDNAs were validated by both Polymerase Chain Reaction (PCR) and Sanger sequencing. Compared to other published nanopore-based eccDNA detectors, FLED exhibited higher sensitivity. In cancer cell lines, the genes overlapped with eccDNA regions were enriched in cancer-related pathways and cis-regulatory elements can be predicted in the upstream or downstream of intact genes on eccDNA molecules, and the expressions of these cancer-related genes were dysregulated in tumor cell lines, indicating the regulatory potency of eccDNAs in biological processes. The proposed method takes advantage of nanopore long reads and enables unbiased reconstruction of full-length eccDNA sequences. FLED is implemented using Python3 which is freely available on GitHub (https://github.com/FuyuLi/FLED).
Collapse
Affiliation(s)
- Fuyu Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Wenlong Ming
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
| | - Wenxiang Lu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Ying Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Xiaohan Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Xianjun Dong
- Genomics and Bioinformatics Hub, Brigham and Women's Hospital, Boston, MA 02115, USA
- Precision Neurology Program, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Yunfei Bai
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
53
|
Gerovska D, Noer JB, Qin Y, Ain Q, Januzi D, Schwab M, Witte OW, Araúzo-Bravo MJ, Kretz A. A distinct circular DNA profile intersects with proteome changes in the genotoxic stress-related hSOD1 G93A model of ALS. Cell Biosci 2023; 13:170. [PMID: 37705092 PMCID: PMC10498603 DOI: 10.1186/s13578-023-01116-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/27/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Numerous genes, including SOD1, mutated in familial and sporadic amyotrophic lateral sclerosis (f/sALS) share a role in DNA damage and repair, emphasizing genome disintegration in ALS. One possible outcome of chromosomal instability and repair processes is extrachromosomal circular DNA (eccDNA) formation. Therefore, eccDNA might accumulate in f/sALS with yet unknown function. METHODS We combined rolling circle amplification with linear DNA digestion to purify eccDNA from the cervical spinal cord of 9 co-isogenic symptomatic hSOD1G93A mutants and 10 controls, followed by deep short-read sequencing. We mapped the eccDNAs and performed differential analysis based on the split read signal of the eccDNAs, referred as DifCir, between the ALS and control specimens, to find differentially produced per gene circles (DPpGC) in the two groups. Compared were eccDNA abundances, length distributions and genic profiles. We further assessed proteome alterations in ALS by mass spectrometry, and matched the DPpGCs with differentially expressed proteins (DEPs) in ALS. Additionally, we aligned the ALS-specific DPpGCs to ALS risk gene databases. RESULTS We found a six-fold enrichment in the number of unique eccDNAs in the genotoxic ALS-model relative to controls. We uncovered a distinct genic circulome profile characterized by 225 up-DPpGCs, i.e., genes that produced more eccDNAs from distinct gene sequences in ALS than under control conditions. The inter-sample recurrence rate was at least 89% for the top 6 up-DPpGCs. ALS proteome analyses revealed 42 corresponding DEPs, of which 19 underlying genes were itemized for an ALS risk in GWAS databases. The up-DPpGCs and their DEP tandems mainly impart neuron-specific functions, and gene set enrichment analyses indicated an overrepresentation of the adenylate cyclase modulating G protein pathway. CONCLUSIONS We prove, for the first time, a significant enrichment of eccDNA in the ALS-affected spinal cord. Our triple circulome, proteome and genome approach provide indication for a potential importance of certain eccDNAs in ALS neurodegeneration and a yet unconsidered role as ALS biomarkers. The related functional pathways might open up new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014, San Sebastian, Spain
| | - Julie B Noer
- Department of Biology, Section for Ecology and Evolution, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Yating Qin
- Department of Biology, Section for Ecology and Evolution, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Quratul Ain
- Department of Neurology, Jena University Hospital, 07747, Jena, Thuringia, Germany
- Department of Internal Medicine IV, Hepatology, Jena University Hospital, 07747, Jena, Thuringia, Germany
| | - Donjetë Januzi
- Department of Neurology, Jena University Hospital, 07747, Jena, Thuringia, Germany
| | - Matthias Schwab
- Department of Neurology, Jena University Hospital, 07747, Jena, Thuringia, Germany
| | - Otto W Witte
- Department of Neurology, Jena University Hospital, 07747, Jena, Thuringia, Germany
- Jena Center for Healthy Ageing, Jena University Hospital, Jena, Thuringia, Germany
| | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014, San Sebastian, Spain.
- Basque Foundation for Science, IKERBASQUE, 48013, Bilbao, Spain.
- Max Planck Institute for Molecular Biomedicine, Computational Biology and Bioinformatics Group, 48149, Münster, North Rhine-Westphalia, Germany.
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940, Leioa, Spain.
| | - Alexandra Kretz
- Department of Neurology, Jena University Hospital, 07747, Jena, Thuringia, Germany.
- Jena Center for Healthy Ageing, Jena University Hospital, Jena, Thuringia, Germany.
| |
Collapse
|
54
|
Yüksel A, Altungöz O. Gene amplifications and extrachromosomal circular DNAs: function and biogenesis. Mol Biol Rep 2023; 50:7693-7703. [PMID: 37433908 DOI: 10.1007/s11033-023-08649-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 06/28/2023] [Indexed: 07/13/2023]
Abstract
Gene amplification is an increase in the copy number of restricted chromosomal segments that contain gene(s) and frequently results in the over-expression of the corresponding gene(s). Amplification may be found in the form of extrachromosomal circular DNAs (eccDNAs) or as linear repetitive amplicon regions that are integrated into chromosomes, which may form cytogenetically observable homogeneously staining regions or may be scattered throughout the genome. eccDNAs are structurally circular and in terms of their function and content, they can be classified into various subtypes. They play pivotal roles in many physiological and pathological phenomena such as tumor pathogenesis, aging, maintenance of telomere length and ribosomal DNAs (rDNAs), and gain of resistance against chemotherapeutic agents. Amplification of oncogenes is consistently seen in various types of cancers and can be associated with prognostic factors. eccDNAs are known to be originated from chromosomes as a consequence of various cellular events such as repair processes of damaged DNA or DNA replication errors. In this review, we highlighted the role of gene amplification in cancer, the functional aspects of eccDNAs subtypes, the proposed biogenesis mechanisms, and their role in gene or segmental-DNA amplification.
Collapse
Affiliation(s)
- Ali Yüksel
- Department of Medical Biology and Genetics, Institute of Health Sciences, Dokuz Eylul University, 35330, Izmir, Turkey.
| | - Oğuz Altungöz
- Department of Medical Biology and Genetics, Institute of Health Sciences, Dokuz Eylul University, 35330, Izmir, Turkey.
- Department of Medical Biology, Dokuz Eylül Medical School, 35330, Izmir, Turkey.
| |
Collapse
|
55
|
Luo X, Zhang L, Cui J, An Q, Li H, Zhang Z, Sun G, Huang W, Li Y, Li C, Jia W, Zou L, Zhao G, Xiao F. Small extrachromosomal circular DNAs as biomarkers for multi-cancer diagnosis and monitoring. Clin Transl Med 2023; 13:e1393. [PMID: 37649244 PMCID: PMC10468585 DOI: 10.1002/ctm2.1393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Small extrachromosomal circular DNAs (eccDNAs) have the potential to be cancer biomarkers. However, the formation mechanisms and functions of small eccDNAs selected in carcinogenesis are not clear, and whether the small eccDNA profile in the plasma of cancer patients represents that in cancer tissues remains to be elucidated. METHODS A novel sequencing workflow based on the nanopore sequencing platform was used to sequence naturally existing full-length small eccDNAs in tissues and plasma collected from 25 cancer patients (including prostate cancer, hepatocellular carcinoma and colorectal cancer), and from an independent validation cohort (including 7 cancer plasma and 14 healthy plasma). RESULTS Compared with those in non-cancer tissues, small eccDNAs detected in cancer tissues had a significantly larger number and size (P = 0.040 and 2.2e-16, respectively), along with more even distribution and different formation mechanisms. Although small eccDNAs had different general characteristics and genomic annotation between cancer tissues and the paired plasma, they had similar formation mechanisms and cancer-related functions. Small eccDNAs originated from some specific genes had great multi-cancer diagnostic value in tissues (AUC ≥ 0.8) and plasma (AUC > 0.9), especially increasing the accuracy of multi-cancer prediction of CEA/CA19-9 levels. The high multi-cancer diagnostic value of small eccDNAs originated from ALK&ETV6 could be extrapolated from tissues (AUC = 0.804) to plasma and showed high positive predictive value (100%) and negative predictive value (82.35%) in a validation cohort. CONCLUSIONS As independent and stable circular DNA molecules, small eccDNAs in both tissues and plasma can be used as ideal biomarkers for cost-effective multi-cancer diagnosis and monitoring.
Collapse
Affiliation(s)
- Xuanmei Luo
- Peking University Fifth School of Clinical MedicineBeijing HospitalNational Center of GerontologyBeijingChina
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing HospitalNational Center of Gerontology of National Health CommissionBeijingChina
| | - Lili Zhang
- Clinical BiobankBeijing HospitalNational Center of GerontologyNational Health CommissionInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Jian Cui
- Department of General SurgeryBeijing HospitalBeijingChina
| | - Qi An
- Department of General SurgeryBeijing HospitalBeijingChina
| | - Hexin Li
- Clinical BiobankBeijing HospitalNational Center of GerontologyNational Health CommissionInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Zaifeng Zhang
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing HospitalNational Center of Gerontology of National Health CommissionBeijingChina
| | - Gaoyuan Sun
- Clinical BiobankBeijing HospitalNational Center of GerontologyNational Health CommissionInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Wei Huang
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing HospitalNational Center of Gerontology of National Health CommissionBeijingChina
| | - Yifei Li
- Clinical BiobankBeijing HospitalNational Center of GerontologyNational Health CommissionInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Chang Li
- Peking University Fifth School of Clinical MedicineBeijing HospitalNational Center of GerontologyBeijingChina
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing HospitalNational Center of Gerontology of National Health CommissionBeijingChina
| | - Wenzhuo Jia
- Department of General SurgeryBeijing HospitalBeijingChina
- National Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Lihui Zou
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing HospitalNational Center of Gerontology of National Health CommissionBeijingChina
| | - Gang Zhao
- Department of General SurgeryBeijing HospitalBeijingChina
- National Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Fei Xiao
- Peking University Fifth School of Clinical MedicineBeijing HospitalNational Center of GerontologyBeijingChina
- The Key Laboratory of GeriatricsBeijing Institute of GeriatricsInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijing HospitalNational Center of Gerontology of National Health CommissionBeijingChina
- Clinical BiobankBeijing HospitalNational Center of GerontologyNational Health CommissionInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
56
|
dos Santos CR, Hansen LB, Rojas-Triana M, Johansen AZ, Perez-Moreno M, Regenberg B. Variation of extrachromosomal circular DNA in cancer cell lines. Comput Struct Biotechnol J 2023; 21:4207-4214. [PMID: 37705597 PMCID: PMC10495552 DOI: 10.1016/j.csbj.2023.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/26/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023] Open
Abstract
The presence of oncogene carrying eccDNAs is strongly associated with carcinogenesis and poor patient survival. Tumour biopsies and in vitro cancer cell lines are frequently utilized as models to investigate the role of eccDNA in cancer. However, eccDNAs are often lost during the in vitro growth of cancer cell lines, questioning the reproducibility of studies utilizing cancer cell line models. Here, we conducted a comprehensive analysis of eccDNA variability in seven cancer cell lines (MCA3D, PDV, HaCa4, CarC, MIA-PaCa-2, AsPC-1, and PC-3). We compared the content of unique eccDNAs between triplicates of each cell line and found that the number of unique eccDNA is specific to each cell line, while the eccDNA sequence content varied greatly among triplicates (∼ 0-1% eccDNA coordinate commonality). In the PC-3 cell line, we found that the large eccDNA (ecDNA) with MYC is present in high-copy number in an NCI cell line isolate but not present in ATCC isolates. Together, these results reveal that the sequence content of eccDNA is highly variable in cancer cell lines. This highlights the importance of testing cancer cell lines before use, and to enrich for subclones in cell lines with the desired eccDNA to get relatively pure population for studying the role of eccDNA in cancer.
Collapse
Affiliation(s)
| | | | - Monica Rojas-Triana
- Ecology and Evolution, Department of Biology, University of Copenhagen, Denmark
| | - Astrid Zedlitz Johansen
- Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte, DK-2730 Herlev, Denmark
| | - Mirna Perez-Moreno
- Cell biology and Physiology, Department of Biology, University of Copenhagen, Denmark
| | - Birgitte Regenberg
- Ecology and Evolution, Department of Biology, University of Copenhagen, Denmark
| |
Collapse
|
57
|
Zhang P, Mbodj A, Soundiramourtty A, Llauro C, Ghesquière A, Ingouff M, Keith Slotkin R, Pontvianne F, Catoni M, Mirouze M. Extrachromosomal circular DNA and structural variants highlight genome instability in Arabidopsis epigenetic mutants. Nat Commun 2023; 14:5236. [PMID: 37640706 PMCID: PMC10462705 DOI: 10.1038/s41467-023-41023-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Abundant extrachromosomal circular DNA (eccDNA) is associated with transposable element (TE) activity. However, how the eccDNA compartment is controlled by epigenetic regulations and what is its impact on the genome is understudied. Here, using long reads, we sequence both the eccDNA compartment and the genome of Arabidopsis thaliana mutant plants affected in DNA methylation and post-transcriptional gene silencing. We detect a high load of TE-derived eccDNA with truncated and chimeric forms. On the genomic side, on top of truncated and full length TE neo-insertions, we detect complex structural variations (SVs) notably at a disease resistance cluster being a natural hotspot of SV. Finally, we serendipitously identify large tandem duplications in hypomethylated plants, suggesting that SVs could have been overlooked in epigenetic mutants. We propose that a high eccDNA load may alter DNA repair pathways leading to genome instability and the accumulation of SVs, at least in plants.
Collapse
Affiliation(s)
- Panpan Zhang
- Institut de Recherche pour le Développement (IRD), Laboratory of Plant Genome and Development, Perpignan, France
- EMR269 MANGO (CNRS/IRD/UPVD), Laboratory of Plant Genome and Development, Perpignan, France
- University of Montpellier, Montpellier, France
| | - Assane Mbodj
- Institut de Recherche pour le Développement (IRD), Laboratory of Plant Genome and Development, Perpignan, France
- EMR269 MANGO (CNRS/IRD/UPVD), Laboratory of Plant Genome and Development, Perpignan, France
| | - Abirami Soundiramourtty
- EMR269 MANGO (CNRS/IRD/UPVD), Laboratory of Plant Genome and Development, Perpignan, France
- University of Perpignan, Perpignan, France
| | - Christel Llauro
- EMR269 MANGO (CNRS/IRD/UPVD), Laboratory of Plant Genome and Development, Perpignan, France
- Centre National de la Recherche Scientifique (CNRS), Laboratory of Plant Genome and Development, Perpignan, France
| | - Alain Ghesquière
- DIADE, University of Montpellier, IRD, CIRAD, Montpellier, France
| | - Mathieu Ingouff
- DIADE, University of Montpellier, IRD, CIRAD, Montpellier, France
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Frédéric Pontvianne
- Centre National de la Recherche Scientifique (CNRS), Laboratory of Plant Genome and Development, Perpignan, France
| | - Marco Catoni
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Marie Mirouze
- Institut de Recherche pour le Développement (IRD), Laboratory of Plant Genome and Development, Perpignan, France.
- EMR269 MANGO (CNRS/IRD/UPVD), Laboratory of Plant Genome and Development, Perpignan, France.
| |
Collapse
|
58
|
Lin M, Chen Y, Xia S, He Z, Yu X, Huang L, Lin S, Liang B, Huang Z, Mei S, Liu D, Zheng L, Luo Y. Integrative profiling of extrachromosomal circular DNA in placenta and maternal plasma provides insights into the biology of fetal growth restriction and reveals potential biomarkers. Front Genet 2023; 14:1128082. [PMID: 37476414 PMCID: PMC10354665 DOI: 10.3389/fgene.2023.1128082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/24/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction: Fetal growth restriction (FGR) is a placenta-mediated pregnancy complication that predisposes fetuses to perinatal complications. Maternal plasma cell-free DNA harbors DNA originating from placental trophoblasts, which is promising for the prenatal diagnosis and prediction of pregnancy complications. Extrachromosomal circular DNA (eccDNA) is emerging as an ideal biomarker and target for several diseases. Methods: We utilized eccDNA sequencing and bioinformatic pipeline to investigate the characteristics and associations of eccDNA in placenta and maternal plasma, the role of placental eccDNA in the pathogenesis of FGR, and potential plasma eccDNA biomarkers of FGR. Results: Using our bioinformatics pipelines, we identified multi-chromosomal-fragment and single-fragment eccDNA in placenta, but almost exclusively single-fragment eccDNA in maternal plasma. Relative to that in plasma, eccDNA in placenta was larger and substantially more abundant in exons, untranslated regions, promoters, repetitive elements [short interspersed nuclear elements (SINEs)/Alu, SINEs/mammalian-wide interspersed repeats, long terminal repeats/endogenous retrovirus-like elements, and single recognition particle RNA], and transcription factor binding motifs. Placental multi-chromosomal-fragment eccDNA was enriched in confident enhancer regions predicted to pertain to genes in apoptosis, energy, cell growth, and autophagy pathways. Placental eccDNA-associated genes whose abundance differed between the FGR and control groups were associated with immunity-related gene ontology (GO) terms. The combined analysis of plasma and placental eccDNA-associated genes in the FGR and control groups led to the identification of potential biomarkers that were assigned to the GO terms of the epigenetic regulation of gene expression and nutrient-related processes, respectively. Conclusion: Together, our results highlight links between placenta functions and multi-chromosomal-fragment and single-fragment eccDNA. The integrative analysis of placental and plasma eccDNA confirmed the potential of these molecules as disease-specific biomarkers of FGR.
Collapse
Affiliation(s)
- Minhuan Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yiqing Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuting Xia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiming He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xuegao Yu
- Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Linhuan Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shaobin Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Binrun Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ziliang Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shiqiang Mei
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dong Liu
- Clinical Laboratory, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lingling Zheng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yanmin Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
59
|
Dong Y, He Q, Chen X, Yang F, He L, Zheng Y. Extrachromosomal DNA (ecDNA) in cancer: mechanisms, functions, and clinical implications. Front Oncol 2023; 13:1194405. [PMID: 37448518 PMCID: PMC10338009 DOI: 10.3389/fonc.2023.1194405] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/05/2023] [Indexed: 07/15/2023] Open
Abstract
Extrachromosomal DNA (ecDNA) is circular DNA that plays an important role in the development and heterogeneity of cancer. The rapid evolution of methods to detect ecDNA, including microscopic and sequencing approaches, has greatly enhanced our knowledge of the role of ecDNA in cancer development and evolution. Here, we review the molecular characteristics, functions, mechanisms of formation, and detection methods of ecDNA, with a focus on the potential clinical implications of ecDNA in cancer. Specifically, we consider the role of ecDNA in acquired drug resistance, as a diagnostic and prognostic biomarker, and as a therapeutic target in the context of cancer. As the pathological and clinical significance of ecDNA continues to be explored, it is anticipated that ecDNA will have broad applications in the diagnosis, prognosis, and treatment of patients with cancer.
Collapse
Affiliation(s)
- Yucheng Dong
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qi He
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinyu Chen
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fan Yang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li He
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Yongchang Zheng
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
60
|
Jiang X, Pan X, Li W, Han P, Yu J, Li J, Zhang H, Lv W, Zhang Y, He Y, Xiang X. Genome-wide characterization of extrachromosomal circular DNA in gastric cancer and its potential role in carcinogenesis and cancer progression. Cell Mol Life Sci 2023; 80:191. [PMID: 37369919 DOI: 10.1007/s00018-023-04838-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/03/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Extrachromosomal circular DNAs (eccDNAs) carrying random genomic segments are broadly found across different cancer types, but their molecular functions and impact in gastric cancer (GC) are rarely known. In this study, we aimed to investigate the potential role of eccDNA in GC. Using the Circle-seq strategy, we observed the eccDNA abundance in gastric cancer tissues (GCT) was aberrantly higher than that of normal adjacent tissues (NAT). The high abundance of eccDNAs carrying oncogene-segments in GCT may represent the DNA damage products of amplified oncogenes. Analysis of GCT over-represented eccDNA carrying enhancer (eccEnhancer) based on data from FANTOM5 project combined with TCGA database suggested the GC over-represented eccEnhancers may contribute to development of GC. GC over-represented eccDNAs carrying pre-miRNA (eccMIR) were enriched to multiple cancer-relevant signal pathways by KEGG analysis. We then synthesized the top six GC over-represented eccMIRs and found four of them enabled high expression of miRNAs and down-regulation of miRNA-target genes in MGC803 cells. Furthermore, we observed the inheritance of GC over-represented eccMIRs benefited host cell proliferation and promoted the aggressive features of host cells. Altogether, this study revealed the GC over-represented eccDNAs carrying functional genomic segments were related to the carcinogenesis of GC and presented the capability to facilitate cancer progression, suggesting the cancerous eccDNAs may serve as a dynamic reservoir for genome plasticity and rapid adaptive evolution of cancer. Therefore, blocking the pathways for eccDNAs generation may provide a novel therapeutic strategy for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Xianming Jiang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Xiaoguang Pan
- Department of Biology, University of Copenhagen, 2200, Copenhagen, Denmark
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, 266555, Shandong, China
| | - Wenchao Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Peng Han
- Department of Biology, University of Copenhagen, 2200, Copenhagen, Denmark
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, 266555, Shandong, China
| | - Jiaying Yu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Jing Li
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shanxi, China
| | - Haoran Zhang
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shanxi, China
| | - Wei Lv
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, 266555, Shandong, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Ying Zhang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| | - Xi Xiang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
61
|
Jiang R, Yang M, Zhang S, Huang M. Advances in sequencing-based studies of microDNA and ecDNA: Databases, identification methods, and integration with single-cell analysis. Comput Struct Biotechnol J 2023; 21:3073-3080. [PMID: 37273851 PMCID: PMC10238454 DOI: 10.1016/j.csbj.2023.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is a class of circular DNA molecules that originate from genomic DNA but are separate from chromosomes. They are common in various organisms, with sizes ranging from a few hundred to millions of base pairs. A special type of large extrachromosomal DNA (ecDNA) is prevalent in cancer cells. Research on ecDNA has significantly contributed to our comprehension of cancer development, progression, evolution, and drug resistance. The use of next-generation (NGS) and third-generation sequencing (TGS) techniques to identify eccDNAs throughout the genome has become a trend in current research. Here, we briefly review current advances in the biological mechanisms and applications of two distinct types of eccDNAs: microDNA and ecDNA. In addition to presenting available identification tools based on sequencing data, we summarize the most recent efforts to integrate ecDNA with single-cell analysis and put forth suggestions to promote the process.
Collapse
Affiliation(s)
| | | | - Shufan Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Moli Huang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
62
|
Wright GM, Menzel J, Tatman PD, Black JC. Transition from Transient DNA Rereplication to Inherited Gene Amplification Following Prolonged Environmental Stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539886. [PMID: 37214911 PMCID: PMC10197558 DOI: 10.1101/2023.05.08.539886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cells require the ability to adapt to changing environmental conditions, however, it is unclear how these changes elicit stable permanent changes in genomes. We demonstrate that, in response to environmental metal exposure, the metallothionein (MT) locus undergoes DNA rereplication generating transient site-specific gene amplifications (TSSGs). Chronic metal exposure allows transition from MT TSSG to inherited MT gene amplification through homologous recombination within and outside of the MT locus. DNA rereplication of the MT locus is suppressed by H3K27me3 and EZH2. Long-term ablation of EZH2 activity eventually leads to integration and inheritance of MT gene amplifications without the selective pressure of metal exposure. The rereplication and inheritance of MT gene amplification is an evolutionarily conserved response to environmental metal from yeast to human. Our results describe a new paradigm for adaptation to environmental stress where targeted, transient DNA rereplication precedes stable inherited gene amplification.
Collapse
|
63
|
Chamorro González R, Conrad T, Stöber MC, Xu R, Giurgiu M, Rodriguez-Fos E, Kasack K, Brückner L, van Leen E, Helmsauer K, Dorado Garcia H, Stefanova ME, Hung KL, Bei Y, Schmelz K, Lodrini M, Mundlos S, Chang HY, Deubzer HE, Sauer S, Eggert A, Schulte JH, Schwarz RF, Haase K, Koche RP, Henssen AG. Parallel sequencing of extrachromosomal circular DNAs and transcriptomes in single cancer cells. Nat Genet 2023; 55:880-890. [PMID: 37142849 PMCID: PMC10181933 DOI: 10.1038/s41588-023-01386-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/28/2023] [Indexed: 05/06/2023]
Abstract
Extrachromosomal DNAs (ecDNAs) are common in cancer, but many questions about their origin, structural dynamics and impact on intratumor heterogeneity are still unresolved. Here we describe single-cell extrachromosomal circular DNA and transcriptome sequencing (scEC&T-seq), a method for parallel sequencing of circular DNAs and full-length mRNA from single cells. By applying scEC&T-seq to cancer cells, we describe intercellular differences in ecDNA content while investigating their structural heterogeneity and transcriptional impact. Oncogene-containing ecDNAs were clonally present in cancer cells and drove intercellular oncogene expression differences. In contrast, other small circular DNAs were exclusive to individual cells, indicating differences in their selection and propagation. Intercellular differences in ecDNA structure pointed to circular recombination as a mechanism of ecDNA evolution. These results demonstrate scEC&T-seq as an approach to systematically characterize both small and large circular DNA in cancer cells, which will facilitate the analysis of these DNA elements in cancer and beyond.
Collapse
Affiliation(s)
- Rocío Chamorro González
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center of the MDC and Charité Berlin, Berlin, Germany
| | - Thomas Conrad
- Genomics Technology Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Maja C Stöber
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
- Faculty of Life Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Robin Xu
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center of the MDC and Charité Berlin, Berlin, Germany
| | - Mădălina Giurgiu
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center of the MDC and Charité Berlin, Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
| | - Elias Rodriguez-Fos
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center of the MDC and Charité Berlin, Berlin, Germany
| | - Katharina Kasack
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses IZI-BB, Potsdam, Germany
| | - Lotte Brückner
- Experimental and Clinical Research Center of the MDC and Charité Berlin, Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Eric van Leen
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center of the MDC and Charité Berlin, Berlin, Germany
| | - Konstantin Helmsauer
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center of the MDC and Charité Berlin, Berlin, Germany
| | - Heathcliff Dorado Garcia
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center of the MDC and Charité Berlin, Berlin, Germany
| | - Maria E Stefanova
- RG Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - King L Hung
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Yi Bei
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center of the MDC and Charité Berlin, Berlin, Germany
| | - Karin Schmelz
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marco Lodrini
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Mundlos
- RG Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Hedwig E Deubzer
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center of the MDC and Charité Berlin, Berlin, Germany
- German Cancer Consortium, partner site Berlin, and German Cancer Research Center, Heidelberg, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Sascha Sauer
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium, partner site Berlin, and German Cancer Research Center, Heidelberg, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Johannes H Schulte
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium, partner site Berlin, and German Cancer Research Center, Heidelberg, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Roland F Schwarz
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Institute for Computational Cancer Biology, Center for Integrated Oncology, Cancer Research Center Cologne Essen Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
| | - Kerstin Haase
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center of the MDC and Charité Berlin, Berlin, Germany
- German Cancer Consortium, partner site Berlin, and German Cancer Research Center, Heidelberg, Germany
| | - Richard P Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anton G Henssen
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
- Experimental and Clinical Research Center of the MDC and Charité Berlin, Berlin, Germany.
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany.
- German Cancer Consortium, partner site Berlin, and German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
64
|
Yang Y, Yang Y, Huang H, Song T, Mao S, Liu D, Zhang L, Li W. PLCG2 can exist in eccDNA and contribute to the metastasis of non-small cell lung cancer by regulating mitochondrial respiration. Cell Death Dis 2023; 14:257. [PMID: 37031207 PMCID: PMC10082821 DOI: 10.1038/s41419-023-05755-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/10/2023]
Abstract
Extrachromosomal circular DNAs (eccDNAs) participate in tumorigenesis and tumor progression. However, the role and mechanism of eccDNAs have yet to be elucidated in non-small cell lung cancer (NSCLC). In our research, three surgically matched NSCLC tissue samples, NSCLC cell lines (H1299, A549, and H460), and a normal lung cell line (MRC-5) were used as study objects. High-throughput eccDNA sequencing and bioinformatics analysis were performed to study the distribution pattern and level of eccDNA expression. The upregulated candidate eccDNA-encoding PLCG2 was validated by routine PCR. Plasmid transfection, RNA interference, qRT‒PCR and western blotting experiments were used to verify the expression level of PLCG2. Our results showed that the chromosome distribution, length distribution, and genomic annotation of the eccDNAs were comparable between the NSCLC and normal groups. Nevertheless, there were no significant differences in eccDNAs between NSCLC tissues and matched normal lung tissues. The eccDNA derived from PLCG2 was upregulated in NSCLC cells. TCGA analysis and immunohistochemistry showed that PLCG2 was highly expressed in lung cancer tissues and tended to be associated with poor outcome. We also demonstrated that PLCG2 can promote metastasis through the regulation of mitochondrial respiration. These results suggested that PLCG2 identified by eccDNA sequencing acts as an oncogene and might be a new biomarker for NSCLC diagnosis and prognosis evaluation.
Collapse
Affiliation(s)
- Yongfeng Yang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Precision Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ying Yang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Precision Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Hong Huang
- Institute of Clinical Pathology, Key Laboratory of Transplantation Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tingting Song
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Precision Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shengqiang Mao
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Precision Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Dan Liu
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Precision Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Precision Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Precision Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
65
|
Zeng Y, Wang A, Lv W, Wang Q, Jiang S, Pan X, Wang F, Yang H, Bolund L, Lin C, Han P, Luo Y. Recent development of urinary biomarkers for bladder cancer diagnosis and monitoring. CLINICAL AND TRANSLATIONAL DISCOVERY 2023; 3. [DOI: 10.1002/ctd2.183] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/11/2023] [Indexed: 01/04/2025]
Abstract
AbstractUrine‐based liquid biopsy has emerged as a non‐invasive and effective tool for early screening and diagnosis of bladder cancer. This review provides a comprehensive overview of the current urine‐based biomarkers and methods for the detection and monitoring of bladder cancer. We focus on biomarkers including tumour DNAs, proteins, microbiome, tumour RNAs, long non‐coding RNAs, transfer RNA‐derived fragments, messenger RNAs, microRNAs, circular RNAs, exosomes and extrachromosomal circular DNA.
Collapse
Affiliation(s)
- Yuchen Zeng
- College of Life Sciences Tianjin University Tianjin China
- IBMC‐BGI Center, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou Zhejiang China
| | - Anqi Wang
- Department of Biological Sciences Xi'an Jiaotong‐Liverpool University Suzhou China
- Lars Bolund Institute of Regenerative Medicine Qingdao‐Europe Advanced Institute for Life Sciences, BGI‐Qingdao Qingdao China
| | - Wei Lv
- College of Life Sciences University of Chinese Academy of Science Beijing China
- Department of Biomedicine Aarhus University Aarhus Denmark
| | - Qingqing Wang
- College of Life Sciences University of Chinese Academy of Science Beijing China
| | - Shiqi Jiang
- College of Life Sciences Tianjin University Tianjin China
- Intelligent Diagnosis Center Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences Hangzhou Zhejiang China
| | - Xiaoguang Pan
- Lars Bolund Institute of Regenerative Medicine Qingdao‐Europe Advanced Institute for Life Sciences, BGI‐Qingdao Qingdao China
| | - Fei Wang
- Lars Bolund Institute of Regenerative Medicine Qingdao‐Europe Advanced Institute for Life Sciences, BGI‐Qingdao Qingdao China
- Department of Biomedicine Aarhus University Aarhus Denmark
| | - Huanming Yang
- IBMC‐BGI Center, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou Zhejiang China
| | - Lars Bolund
- Lars Bolund Institute of Regenerative Medicine Qingdao‐Europe Advanced Institute for Life Sciences, BGI‐Qingdao Qingdao China
- Department of Biomedicine Aarhus University Aarhus Denmark
| | - Chunhua Lin
- Department of Urology The Affiliated Yantai Yuhuangding Hospital of Qingdao University Yantai Shandong China
| | - Peng Han
- Lars Bolund Institute of Regenerative Medicine Qingdao‐Europe Advanced Institute for Life Sciences, BGI‐Qingdao Qingdao China
| | - Yonglun Luo
- IBMC‐BGI Center, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences Hangzhou Zhejiang China
- Lars Bolund Institute of Regenerative Medicine Qingdao‐Europe Advanced Institute for Life Sciences, BGI‐Qingdao Qingdao China
- Department of Biomedicine Aarhus University Aarhus Denmark
| |
Collapse
|
66
|
Ding W, Zhu Y, Han J, Zhang H, Xu Z, Khurshid H, Liu F, Hasterok R, Shen X, Wang K. Characterization of centromeric DNA of Gossypium anomalum reveals sequence-independent enrichment dynamics of centromeric repeats. Chromosome Res 2023; 31:12. [PMID: 36971835 DOI: 10.1007/s10577-023-09721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 03/29/2023]
Abstract
Centromeres in eukaryotes are composed of highly repetitive DNAs, which evolve rapidly and are thought to achieve a favorable structure in mature centromeres. However, how the centromeric repeat evolves into an adaptive structure is largely unknown. We characterized the centromeric sequences of Gossypium anomalum through chromatin immunoprecipitation against CENH3 antibodies. We revealed that the G. anomalum centromeres contained only retrotransposon-like repeats but were depleted in long arrays of satellites. These retrotransposon-like centromeric repeats were present in the African-Asian and Australian lineage species, suggesting that they might have arisen in the common ancestor of these diploid species. Intriguingly, we observed a substantial increase and decrease in copy numbers among African-Asian and Australian lineages, respectively, for the retrotransposon-derived centromeric repeats without apparent structure or sequence variation in cotton. This result indicates that the sequence content is not a decisive aspect of the adaptive evolution of centromeric repeats or at least retrotransposon-like centromeric repeats. In addition, two active genes with potential roles in gametogenesis or flowering were identified in CENH3 nucleosome-binding regions. Our results provide new insights into the constitution of centromeric repetitive DNA and the adaptive evolution of centromeric repeats in plants.
Collapse
Affiliation(s)
- Wenjie Ding
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Yuanbin Zhu
- School of Life Sciences, Nantong University, Nantong, 226019, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Hui Zhang
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Zhenzhen Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Haris Khurshid
- Oilseeds Research Program, National Agricultural Research Centre, Islamabad, 44500, Pakistan
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland.
| | - Xinlian Shen
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, 226019, China.
| |
Collapse
|
67
|
Zhong T, Wang W, Liu H, Zeng M, Zhao X, Guo Z. eccDNA Atlas: a comprehensive resource of eccDNA catalog. Brief Bioinform 2023; 24:7032933. [PMID: 36757087 DOI: 10.1093/bib/bbad037] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Extrachromosomal circular DNA (eccDNA) represents a large category of non-mitochondrial and non-plasmid circular extrachromosomal DNA, playing an indispensable role in various aspects such as tumorigenesis, immune responses. However, the information of characteristics and functions about eccDNA is fragmented, hiding behind abundant literatures and massive whole-genome sequencing (WGS) data, which has not been sufficiently used for the identification of eccDNAs. Therefore, establishing an integrated repository portal is essential for identifying and analyzing eccDNAs. Here, we developed eccDNA Atlas (http://lcbb.swjtu.edu.cn/eccDNAatlas), a user-friendly database of eccDNAs that aims to provide a high-quality and integrated resource for browsing, searching and analyzing eccDNAs from multiple species. eccDNA Atlas currently contains 629 987 eccDNAs and 8221 ecDNAs manually curated from literatures and 1105 ecDNAs predicted by AmpliconArchitect based on WGS data involved in 66 diseases, 57 tissues and 319 cell lines. The content of each eccDNA entry includes multiple aspects such as sequence, disease, function, characteristic, validation strategies. Furthermore, abundant annotations and analyzing utilities were provided to explore existing eccDNAs in eccDNA Atlas or user-defined eccDNAs including oncogenes, typical enhancers, super enhancers, CTCF-binding sites, SNPs, chromatin accessibility, eQTLs, gene expression, survival and genome visualization. Overall, eccDNA Atlas provides an integrated eccDNA data warehouse and serves as an important tool for future research.
Collapse
Affiliation(s)
- Tengwei Zhong
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Wenqing Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Houyan Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Maolin Zeng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Xinyu Zhao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Zhiyun Guo
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| |
Collapse
|
68
|
Wang Y, Wang M, Zhang Y. Purification, full-length sequencing and genomic origin mapping of eccDNA. Nat Protoc 2023; 18:683-699. [PMID: 36517607 DOI: 10.1038/s41596-022-00783-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/23/2022] [Indexed: 12/23/2022]
Abstract
Extrachromosomal circular DNA (eccDNA) was discovered more than half a century ago. However, its biogenesis and function have just begun to be elucidated. One hurdle that has prevented our understanding of eccDNA is the difficulty in obtaining pure eccDNA from cells. The current eccDNA purification methods mainly rely on depleting linear DNAs by exonuclease digestion after obtaining crude circles by alkaline lysis. Owing to eccDNA's low abundance and heterogeneous size, the current purification methods are not efficient in obtaining pure eccDNA. Here we describe a new three-step eccDNA purification (3SEP) procedure that adds a step to recover circular DNA, but not linear DNA that escape from the exonuclease digestion, whereby 3SEP results in eccDNA preparations with high purity and reproducibility. Additionally, we developed a full-length eccDNA sequencing technique by combining rolling-circle amplification with Nanopore sequencing. Accordingly, we developed a full-length eccDNA caller (Flec) to call the consensus sequence of multiple tandem copies of eccDNA contained within the debranched rolling-circle amplification product and map the consensus to its genomic origin. Collectively, our protocol will facilitate eccDNA identification and characterization, and has the potential for diagnostic and clinical applications. For a well-trained molecular biologist, it takes ~1-2 d to purify eccDNAs, another 5-6 d to carry out Nanopore library preparation and sequencing, and 1-5 d for an experienced bioinformatic scientist to analyze the data.
Collapse
Affiliation(s)
- Yuangao Wang
- Howard Hughes Medical Institute, Boston, MA, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Meng Wang
- Howard Hughes Medical Institute, Boston, MA, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston, MA, USA. .,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA. .,Department of Genetics, Boston, MA, USA. .,Harvard Stem Cell Institute WAB-149G, Boston, MA, USA.
| |
Collapse
|
69
|
Gerovska D, Araúzo-Bravo MJ. Skeletal Muscles of Sedentary and Physically Active Aged People Have Distinctive Genic Extrachromosomal Circular DNA Profiles. Int J Mol Sci 2023; 24:ijms24032736. [PMID: 36769072 PMCID: PMC9917053 DOI: 10.3390/ijms24032736] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
To bring new extrachromosomal circular DNA (eccDNA) enrichment technologies closer to the clinic, specifically for screening, early diagnosis, and monitoring of diseases or lifestyle conditions, it is paramount to identify the differential pattern of the genic eccDNA signal between two states. Current studies using short-read sequenced purified eccDNA data are based on absolute numbers of unique eccDNAs per sample or per gene, length distributions, or standard methods for RNA-seq differential analysis. Previous analyses of RNA-seq data found significant transcriptomics difference between sedentary and active life style skeletal muscle (SkM) in young people but very few in old. The first attempt using circulomics data from SkM and blood of aged lifelong sedentary and physically active males found no difference at eccDNA level. To improve the capability of finding differences between circulomics data groups, we designed a computational method to identify Differentially Produced per Gene Circles (DPpGCs) from short-read sequenced purified eccDNA data based on the circular junction, split-read signal, of the eccDNA, and implemented it into a software tool DifCir in Matlab. We employed DifCir to find to the distinctive features of the influence of the physical activity or inactivity in the aged SkM that would have remained undetected by transcriptomics methods. We mapped the data from tissue from SkM and blood from two groups of aged lifelong sedentary and physically active males using Circle_finder and subsequent merging and filtering, to find the number and length distribution of the unique eccDNA. Next, we used DifCir to find up-DPpGCs in the SkM of the sedentary and active groups. We assessed the functional enrichment of the DPpGCs using Disease Gene Network and Gene Set Enrichment Analysis. To find genes that produce eccDNA in a group without comparison with another group, we introduced a method to find Common PpGCs (CPpGCs) and used it to find CPpGCs in the SkM of the sedentary and active group. Finally, we found the eccDNA that carries whole genes. We discovered that the eccDNA in the SkM of the sedentary group is not statistically different from that of physically active aged men in terms of number and length distribution of eccDNA. In contrast, with DifCir we found distinctive gene-associated eccDNA fingerprints. We identified statistically significant up-DPpGCs in the two groups, with the top up-DPpGCs shed by the genes AGBL4, RNF213, DNAH7, MED13, and WWTR1 in the sedentary group, and ZBTB7C, TBCD, ITPR2, and DDX11-AS1 in the active group. The up-DPpGCs in both groups carry mostly gene fragments rather than whole genes. Though the subtle transcriptomics difference, we found RYR1 to be both transcriptionally up-regulated and up-DPpGCs gene in sedentary SkM. DifCir emphasizes the high sensitivity of the circulome compared to the transcriptome to detect the molecular fingerprints of exercise in aged SkM. It allows efficient identification of gene hotspots that excise more eccDNA in a health state or disease compared to a control condition.
Collapse
Affiliation(s)
- Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain
- Correspondence: (D.G.); (M.J.A.-B.)
| | - Marcos J. Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain
- Basque Foundation for Science, IKERBASQUE, Calle María Díaz Harokoa 3, 48013 Bilbao, Spain
- CIBER of Frailty and Healthy Aging (CIBERfes), 28029 Madrid, Spain
- Max Planck Institute for Molecular Biomedicine, Computational Biology and Bioinformatics, Röntgenstr. 20, 48149 Münster, Germany
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain
- Correspondence: (D.G.); (M.J.A.-B.)
| |
Collapse
|
70
|
Kang J, Dai Y, Li J, Fan H, Zhao Z. Investigating cellular heterogeneity at the single-cell level by the flexible and mobile extrachromosomal circular DNA. Comput Struct Biotechnol J 2023; 21:1115-1121. [PMID: 36789262 PMCID: PMC9900259 DOI: 10.1016/j.csbj.2023.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is a special class of DNA derived from linear chromosomes. It coexists independently with linear chromosomes in the nucleus. eccDNA has been identified in multiple organisms, including Homo sapiens, and has been shown to play important roles relevant to tumor progression and drug resistance. To date, computational tools developed for eccDNA detection are only applicable to bulk tissue. Investigating eccDNA at the single-cell level using a computational approach will elucidate the heterogeneous and cell-type-specific landscape of eccDNA within cellular context. Here, we performed the first eccDNA analysis at the single-cell level using data generated by single-cell Assay for Transposase-Accessible Chromatin with sequencing (scATAC-seq) in adult and pediatric glioblastoma (GBM) samples. Glioblastoma multiforme (GBM) is an aggressive tumor of the central nervous system with a poor prognosis. Our analysis provides an overview of cellular origins, genomic distribution, as well as the differential regulations between linear and circular genome under disease- and cell-type-specific conditions across the open chromatin regions in GBM. We focused on some eccDNA elements that are potential mobile enhancers acting in a trans-regulation manner. In summary, this pilot study revealed novel eccDNA features in the cellular context of brain tumor, supporting the strong need for eccDNA investigation at the single-cell level.
Collapse
Affiliation(s)
- Jiajinlong Kang
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jinze Li
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA,Department of Epidemiology, Human Genetics, and Environment Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Huihui Fan
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA,Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA,Correspondence to: Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St. Suite 600, Houston, TX 77030, USA.
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA,Department of Epidemiology, Human Genetics, and Environment Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA,Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA,Correspondence to: Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St. Suite 600, Houston, TX 77030, USA.
| |
Collapse
|
71
|
Sun H, Lu X, Zou L. EccBase: A high-quality database for exploration and characterization of extrachromosomal circular DNAs in cancer. Comput Struct Biotechnol J 2023; 21:2591-2601. [PMID: 37114214 PMCID: PMC10126927 DOI: 10.1016/j.csbj.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Extrachromosomal circular DNAs (eccDNAs) are widely observed in eukaryotes. Previous studies have demonstrated that eccDNAs are essential to cancer progression, and found that they can not only express in normal cells to regulate RNA, but also function differently in different tissues. It is of major interest to conduct computational or experiments assay to elucidate the mechanisms of eccDNA function, uncover key eccDNAs associated with diseases, and even develop related algorithms for liquid biopsy. Naturally, a comprehensive eccDNAs data resource is urgently needed to provide annotation and analysis more in-depth research. In this study, we constructed the eccBase (http://www.eccbase.net) in literature curation and database retrieval, which was the first database mainly collecting eccDNAs from Homo sapiens (n = 754,391) and Mus musculus (n = 481,381). Homo sapiens eccDNAs were taken from 50 kinds of cancer tissue and/or cell line, and 5 kinds of healthy tissues. The Mus musculus eccDNAs were sourced from 13 kinds of healthy tissue and/or cell line. We thoroughly annotated all eccDNA molecules in terms of basic information, genomic composition, regulatory elements, epigenetic modifications, and raw data. EccBase provided users with the ability to browse, search, download for targets of interest, as well as similarity alignment by the integrated BLAST. Further, comparative analysis suggested the cancer eccDNA is composed of nucleosomes and is prominently derived from the gene-dense regions. We also initially revealed that eccDNAs are strongly tissue-specific. In short, we have started a robust database for eccDNA resource utilization, which may facilitate studying the role of eccDNA in cancer development and therapy, cell function maintenance, and tissue differentiation.
Collapse
Affiliation(s)
- Haiyang Sun
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 300350 Tianjin, China
- Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, 518102 Shenzhen, China
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 300350 Tianjin, China
| | - Lingyun Zou
- Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing University Central Hospital, Chongqing University, 400014 Chongqing, China
- Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, 518102 Shenzhen, China
- Corresponding author at: Department of Clinical Data Research, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing University Central Hospital, Chongqing University, 400014 Chongqing, China.
| |
Collapse
|
72
|
Yi E, Chamorro González R, Henssen AG, Verhaak RGW. Extrachromosomal DNA amplifications in cancer. Nat Rev Genet 2022; 23:760-771. [PMID: 35953594 PMCID: PMC9671848 DOI: 10.1038/s41576-022-00521-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2022] [Indexed: 12/19/2022]
Abstract
Extrachromosomal DNA (ecDNA) amplification is an important driver alteration in cancer. It has been observed in most cancer types and is associated with worse patient outcome. The functional impact of ecDNA has been linked to its unique properties, such as its circular structure that is associated with altered chromatinization and epigenetic regulatory landscape, as well as its ability to randomly segregate during cell division, which fuels intercellular copy number heterogeneity. Recent investigations suggest that ecDNA is structurally more complex than previously anticipated and that it localizes to specialized nuclear bodies (hubs) and can act in trans as an enhancer for genes on other ecDNAs or chromosomes. In this Review, we synthesize what is currently known about how ecDNA is generated and how its genetic and epigenetic architecture affects proto-oncogene deregulation in cancer. We discuss how recently identified ecDNA functions may impact oncogenesis but also serve as new therapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Eunhee Yi
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Rocío Chamorro González
- Department of Paediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin (BIMSB/BIH), Berlin, Germany
| | - Anton G Henssen
- Department of Paediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany.
- Max-Delbrück-Centrum für Molekulare Medizin (BIMSB/BIH), Berlin, Germany.
- Berlin Institute of Health, Berlin, Germany.
- German Cancer Consortium (DKTK), partner site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Department of Neurosurgery, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
73
|
Joubert PM, Krasileva KV. The extrachromosomal circular DNAs of the rice blast pathogen Magnaporthe oryzae contain a wide variety of LTR retrotransposons, genes, and effectors. BMC Biol 2022; 20:260. [PMID: 36424609 PMCID: PMC9694575 DOI: 10.1186/s12915-022-01457-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND One of the ways genomes respond to stress is by producing extrachromosomal circular DNAs (eccDNAs). EccDNAs can contain genes and dramatically increase their copy number. They can also reinsert into the genome, generating structural variation. They have been shown to provide a source of phenotypic and genotypic plasticity in several species. However, whole circularome studies have so far been limited to a few model organisms. Fungal plant pathogens are a serious threat to global food security in part because of their rapid adaptation to disease prevention strategies. Understanding the mechanisms fungal pathogens use to escape disease control is paramount to curbing their threat. RESULTS We present a whole circularome sequencing study of the rice blast pathogen, Magnaporthe oryzae. We find that M. oryzae has a highly diverse circularome that contains many genes and shows evidence of large LTR retrotransposon activity. We find that genes enriched on eccDNAs in M. oryzae occur in genomic regions prone to presence-absence variation and that disease-associated genes are frequently on eccDNAs. Finally, we find that a subset of genes is never present on eccDNAs in our data, which indicates that the presence of these genes on eccDNAs is selected against. CONCLUSIONS Our study paves the way to understanding how eccDNAs contribute to adaptation in M. oryzae. Our analysis also reveals how M. oryzae eccDNAs differ from those of other species and highlights the need for further comparative characterization of eccDNAs across species to gain a better understanding of these molecules.
Collapse
Affiliation(s)
- Pierre M Joubert
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| | - Ksenia V Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
74
|
Wanchai V, Jenjaroenpun P, Leangapichart T, Arrey G, Burnham CM, Tümmler MC, Delgado-Calle J, Regenberg B, Nookaew I. CReSIL: accurate identification of extrachromosomal circular DNA from long-read sequences. Brief Bioinform 2022; 23:bbac422. [PMID: 36198068 PMCID: PMC10144670 DOI: 10.1093/bib/bbac422] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA) of chromosomal origin is found in many eukaryotic species and cell types, including cancer, where eccDNAs with oncogenes drive tumorigenesis. Most studies of eccDNA employ short-read sequencing for their identification. However, short-read sequencing cannot resolve the complexity of genomic repeats, which can lead to missing eccDNA products. Long-read sequencing technologies provide an alternative to constructing complete eccDNA maps. We present a software suite, Construction-based Rolling-circle-amplification for eccDNA Sequence Identification and Location (CReSIL), to identify and characterize eccDNA from long-read sequences. CReSIL's performance in identifying eccDNA, with a minimum F1 score of 0.98, is superior to the other bioinformatic tools based on simulated data. CReSIL provides many useful features for genomic annotation, which can be used to infer eccDNA function and Circos visualization for eccDNA architecture investigation. We demonstrated CReSIL's capability in several long-read sequencing datasets, including datasets enriched for eccDNA and whole genome datasets from cells containing large eccDNA products. In conclusion, the CReSIL suite software is a versatile tool for investigating complex and simple eccDNA in eukaryotic cells.
Collapse
Affiliation(s)
- Visanu Wanchai
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Piroon Jenjaroenpun
- Division of Bioinformatics and Data Management for Research, Research Group and Research Network Division, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thongpan Leangapichart
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Gerard Arrey
- Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Charles M Burnham
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Maria C Tümmler
- Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jesus Delgado-Calle
- Department of Physiology and Cell Biology, College of Medicine, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Birgitte Regenberg
- Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| |
Collapse
|
75
|
Zhu Y, Liu Z, Guo Y, Li S, Qu Y, Dai L, Chen Y, Ning W, Zhang H, Ma L. Whole-genome sequencing of extrachromosomal circular DNA of cerebrospinal fluid of medulloblastoma. Front Oncol 2022; 12:934159. [PMID: 36452490 PMCID: PMC9703567 DOI: 10.3389/fonc.2022.934159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/12/2022] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Medulloblastoma (MB) is a malignant tumor associated with a poor prognosis in part due to a lack of effective detection methods. Extrachromosomal circular DNA (eccDNA) has been associated with multiple tumors. Nonetheless, little is currently known on eccDNA in MB. METHODS Genomic features of eccDNAs were identified in MB tissues and matched cerebrospinal fluid (CSF) and compared with corresponding normal samples using Circle map. The nucleotides on both sides of the eccDNAs' breakpoint were analyzed to understand the mechanisms of eccDNA formation. Bioinformatics analysis combined with the Gene Expression Omnibus (GEO) database identified features of eccDNA-related genes in MB. Lasso Cox regression model, univariate and multivariate Cox regression analysis, time-dependent ROC, and Kaplan-Meier curve were used to assess the potential diagnostic and prognostic value of the hub genes. RESULTS EccDNA was profiled in matched tumor and CSF samples from MB patients, and control, eccDNA-related genes enriched in MB were identified. The distribution of eccDNAs in the genome was closely related to gene density and the mechanism of eccDNA formation was evaluated. EccDNAs in CSF exhibited similar distribution with matched MB tissues but were differentially expressed between tumor and normal. Ten hub genes prominent in both the eccDNA dataset and the GEO database were selected to classify MB patients to either high- or low-risk groups, and a prognostic nomogram was thus established. CONCLUSIONS This study provides preliminary evidence of the characteristics and formation mechanism of eccDNAs in MB and CSF. Importantly, eccDNA-associated hub genes in CSF could be used as diagnostic and prognostic biomarkers for MB.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, China
| | - Zhihui Liu
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yuduo Guo
- Chinese Academy of Sciences (CAS) Key Laboratory of Infection and Immunity, Institute of biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shenglun Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yanming Qu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Lin Dai
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, China
| | - Yujia Chen
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Weihai Ning
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Hongwei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Lixin Ma
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
76
|
Wu M, Rai K. Demystifying extrachromosomal DNA circles: Categories, biogenesis, and cancer therapeutics. Comput Struct Biotechnol J 2022; 20:6011-6022. [PMID: 36382182 PMCID: PMC9647416 DOI: 10.1016/j.csbj.2022.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 12/01/2022] Open
Abstract
Since the advent of sequencing technologies in the 1990s, researchers have focused on the association between aberrations in chromosomal DNA and disease. However, not all forms of the DNA are linear and chromosomal. Extrachromosomal circular DNAs (eccDNAs) are double-stranded, closed-circled DNA constructs free from the chromosome that reside in the nuclei. Although widely overlooked, the eccDNAs have recently gained attention for their potential roles in physiological response, intratumoral heterogeneity and cancer therapeutics. In this review, we summarize the history, classifications, biogenesis, and highlight recent progresses on the emerging topic of eccDNAs and comment on their potential application as biomarkers in clinical settings.
Collapse
Affiliation(s)
- Manrong Wu
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kunal Rai
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
77
|
Zhao Y, Yu L, Zhang S, Su X, Zhou X. Extrachromosomal circular DNA: Current status and future prospects. eLife 2022; 11:81412. [PMID: 36256570 PMCID: PMC9578701 DOI: 10.7554/elife.81412] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is a double-stranded DNA molecule found in various organisms, including humans. In the past few decades, the research on eccDNA has mainly focused on cancers and their associated diseases. Advancements in modern omics technologies have reinvigorated research on eccDNA and shed light on the role of these molecules in a range of diseases and normal cell phenotypes. In this review, we first summarize the formation of eccDNA and its modes of action in eukaryotic cells. We then outline eccDNA as a disease biomarker and reveal its regulatory mechanism. We finally discuss the future prospects of eccDNA, including basic research and clinical application. Thus, with the deepening of understanding and exploration of eccDNAs, they hold great promise in future biomedical research and clinical translational application.
Collapse
Affiliation(s)
- Yiheng Zhao
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Linchan Yu
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuchen Zhang
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiangyu Su
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Zhou
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
78
|
Li F, Yang L, Han J, Han X, Peng L, Du Y, Xia H, Yang L, Zhou Y. Characterization of extrachromosomal circular DNA in cattle using 676 whole genome sequencing datasets. Anim Genet 2022; 53:761-768. [PMID: 36226728 DOI: 10.1111/age.13269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/28/2022]
Abstract
Extrachromosomal circular DNA (eccDNA) is an important fraction of the genome. Recent studies proved that eccDNA plays important roles in genetic variation, aging and environmental adaptation, which have drawn wide attention. However, the characteristics of eccDNA in cattle remain unclear. Here, we studied eccDNAs from 676 cattle of 58 breeds using whole genome sequencing datasets. In total, 47 355 high-confidence eccDNAs were identified and covered 4.6% of the cattle autosomes in length. Similarly to other species, the cattle eccDNA preferentially located in the genic and repeat sequences. Cattle eccDNAs contained complete sequences of 661 genes, which were significantly (p < 0.05) enriched in immunity-related functions. The eccDNA was further proved to have inverted repeats on the boundaries, which contained a high proportion of A/T and ranged from 4 to 17 bp. Interestingly, we successfully separated animals according to their geographical distributions and their tissues where DNA was isolated. This implied possible roles for eccDNA in cattle selection and tissue development. Our study supplies basic knowledges on eccDNAs in cattle, which will promote understanding of extrachromosomal DNA.
Collapse
Affiliation(s)
- Fan Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Lv Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jiazheng Han
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xiaotao Han
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Lingwei Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yuqin Du
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Han Xia
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, China.,Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, China
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,National Center for International Research on Animal Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, China.,Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
79
|
Extrachromosomal circular DNA: biogenesis, structure, functions and diseases. Signal Transduct Target Ther 2022; 7:342. [PMID: 36184613 PMCID: PMC9527254 DOI: 10.1038/s41392-022-01176-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/14/2022] [Accepted: 09/01/2022] [Indexed: 11/08/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA), ranging in size from tens to millions of base pairs, is independent of conventional chromosomes. Recently, eccDNAs have been considered an unanticipated major source of somatic rearrangements, contributing to genomic remodeling through chimeric circularization and reintegration of circular DNA into the linear genome. In addition, the origin of eccDNA is considered to be associated with essential chromatin-related events, including the formation of super-enhancers and DNA repair machineries. Moreover, our understanding of the properties and functions of eccDNA has continuously and greatly expanded. Emerging investigations demonstrate that eccDNAs serve as multifunctional molecules in various organisms during diversified biological processes, such as epigenetic remodeling, telomere trimming, and the regulation of canonical signaling pathways. Importantly, its special distribution potentiates eccDNA as a measurable biomarker in many diseases, especially cancers. The loss of eccDNA homeostasis facilitates tumor initiation, malignant progression, and heterogeneous evolution in many cancers. An in-depth understanding of eccDNA provides novel insights for precision cancer treatment. In this review, we summarized the discovery history of eccDNA, discussed the biogenesis, characteristics, and functions of eccDNA. Moreover, we emphasized the role of eccDNA during tumor pathogenesis and malignant evolution. Therapeutically, we summarized potential clinical applications that target aberrant eccDNA in multiple diseases.
Collapse
|
80
|
Zhou T, Ma S, Zhao Y, Guo D, Wang H, Kuang M, Li X. Identification and characterization of extrachromosomal circular DNA in alcohol induced osteonecrosis of femoral head. Front Genet 2022; 13:918379. [PMID: 36246642 PMCID: PMC9561878 DOI: 10.3389/fgene.2022.918379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Alcohol-induced osteonecrosis of the femoral head (AIONFH) is a complicated refractory bone disease seen in the clinic. The pathogenesis of AIONFH is still controversial. Extrachromosomal circular DNA (eccDNA) elements have been indicated ubiquitously exist in eukaryotic genomes. However, the characteristics and biological functions of eccDNAs remain unclear in AIONFH. In this study, eccDNAs from AIONFH samples (n = 7) and fracture of femoral neck samples as a control (n = 7) were purified by removing linear DNA and rolling circle amplification. High-throughput sequencing and bioinformatics analysis were performed to study the characterization and biofunction of eccDNAs. We identified more than 600,000 unique eccDNAs. The number of detected eccDNAs in AIONFH was less than that in the control, and eccDNA formation may be related to transcription or other characteristics of coding genes. The eccDNA lengths are mainly distributed between 0.1 kb and 1 kb, with a major peak in 0.358 kb. The bioinformatic analysis showed that 25 significant genes were detected, including MAP3K1, ADCY1, CACNA1S, and MACF1, which contributed to regulating bone formation. GO and KEGG analyses suggested that the related genes derived from exons mainly affected metabolic processes and signal transduction, and bone metabolism-related pathways, such as the MAPK pathway and TGF-β pathway, were enriched. EccDNAs in AIONFH are common and may play an important role in pathogenesis by regulating bone metabolism.
Collapse
Affiliation(s)
- Tingting Zhou
- Department of Orthopedics, Traditional Chinese Medicine-Western Medicine Hospital of Cangzhou City, Cangzhou, China
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, China
| | - Shiqiang Ma
- Department of Orthopedics, Traditional Chinese Medicine-Western Medicine Hospital of Cangzhou City, Cangzhou, China
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, China
| | - Yunchao Zhao
- Department of Orthopedics, Traditional Chinese Medicine-Western Medicine Hospital of Cangzhou City, Cangzhou, China
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, China
| | - Donghui Guo
- Department of Orthopedics, Traditional Chinese Medicine-Western Medicine Hospital of Cangzhou City, Cangzhou, China
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, China
| | - Hengjun Wang
- Department of Orthopedics, Traditional Chinese Medicine-Western Medicine Hospital of Cangzhou City, Cangzhou, China
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, China
| | - Mingjie Kuang
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, China
- Department of Orthopedics, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Xiaoming Li, ; Mingjie Kuang,
| | - Xiaoming Li
- Department of Orthopedics, Traditional Chinese Medicine-Western Medicine Hospital of Cangzhou City, Cangzhou, China
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, China
- *Correspondence: Xiaoming Li, ; Mingjie Kuang,
| |
Collapse
|
81
|
The landscape of extrachromosomal circular DNA (eccDNA) in the normal hematopoiesis and leukemia evolution. Cell Death Dis 2022; 8:400. [PMID: 36171187 PMCID: PMC9519993 DOI: 10.1038/s41420-022-01189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022]
Abstract
Elevated extrachromosomal circular DNA (eccDNA) has been reported to accelerate tumor pathogenesis. Although the eccDNA profiles of other tumors have been established, the landscape of the eccDNA of acute myeloid leukemia (AML) has not been revealed. Our study first depicted the eccDNA profile of normal hematopoiesis and AML evolution by exploiting the ATAC-seq and RNA-seq data from nine healthy donors and 12 AML patients, which contained a total of 137 cell samples and 96 RNA-seq samples (including 16 blood cell types of the normal hematopoietic and AML hierarchies). We found the number of eccDNAs generally increased with the evolution of normal hematopoiesis and AML. The ecDNAs and ring chromosomes were found to reappear both in normal hematopoiesis and AML cells. Furthermore, we compared the eccDNAs of AML with normal cells. There were almost 300 AML-specific genes, including the known oncogenes NRAS, MCL1, EVI1, GATA2, WT1, and PAK1. And the ecDNA (chr11: 58668376-58826008) occurred in five out of 17 AML evolution-related cells, which was associated with the high expression of the GLYATL1 gene and the high expressed GLYATL1 was a poor prognostic factor. In conclusion, the eccDNA profiles of normal hematopoiesis and AML evolution were depicted and the recurrent eccDNAs we revealed might be utilized in the treatment of AML as biomarkers.
Collapse
|
82
|
Che H, Stanley K, Jatsenko T, Thienpont B, Vermeesch JR. Expanded knowledge of cell-free DNA biology: potential to broaden the clinical utility. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:216-234. [PMID: 39697489 PMCID: PMC11648412 DOI: 10.20517/evcna.2022.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 12/20/2024]
Abstract
Noninvasive sampling of an individual's body fluids is an easy means to capture circulating cell-free DNA (cfDNA). These small fragments of DNA carry information on the contributing cell's genome, epigenome, and nuclease content. Analysis of cfDNA for the assessment of genetic risk has already revolutionized clinical practice, and a compendium of increasingly higher-resolution approaches based on epigenetic and fragmentomic cfDNA signatures continues to expand. Profiling cfDNA has unlocked a wealth of molecular information that can be translated to the clinic. This review covers the biological characteristics of cfDNA, recent advances in liquid biopsy and the clinical utility of cfDNA.
Collapse
Affiliation(s)
- Huiwen Che
- Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven 3000, Belgium
| | - Kate Stanley
- Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven 3000, Belgium
| | - Tatjana Jatsenko
- Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven 3000, Belgium
| | - Bernard Thienpont
- Department of Human Genetics, Laboratory for Functional Epigenetics, KU Leuven, Leuven 3000, Belgium
| | - Joris Robert Vermeesch
- Department of Human Genetics, Laboratory for Cytogenetics and Genome Research, KU Leuven, Leuven 3000, Belgium
- Center for Human Genetics, University Hospitals Leuven, Leuven 3000, Belgium
| |
Collapse
|
83
|
Arrey G, Keating ST, Regenberg B. A unifying model for extrachromosomal circular DNA load in eukaryotic cells. Semin Cell Dev Biol 2022; 128:40-50. [PMID: 35292190 DOI: 10.1016/j.semcdb.2022.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023]
Abstract
Extrachromosomal circular DNA (eccDNA) with exons and whole genes are common features of eukaryotic cells. Work from especially tumours and the yeast Saccharomyces cerevisiae has revealed that eccDNA can provide large selective advantages and disadvantages. Besides the phenotypic effect due to expression of an eccDNA fragment, eccDNA is different from other mutations in that it is released from 1:1 segregation during cell division. This means that eccDNA can quickly change copy number, pickup secondary mutations and reintegrate into a chromosome to establish substantial genetic variation that could not have evolved via canonical mechanisms. We propose a unifying 5-factor model for conceptualizing the eccDNA load of a eukaryotic cell, emphasizing formation, replication, segregation, selection and elimination. We suggest that the magnitude of these sequential events and their interactions determine the copy number of eccDNA in mitotically dividing cells. We believe that our model will provide a coherent framework for eccDNA research, to understand its biology and the factors that can be manipulated to modulate eccDNA load in eukaryotic cells.
Collapse
Affiliation(s)
- Gerard Arrey
- Section for Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark
| | - Samuel T Keating
- Section for Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Regenberg
- Section for Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
84
|
Li R, Wang Y, Li J, Zhou X. Extrachromosomal circular DNA (eccDNA): an emerging star in cancer. Biomark Res 2022; 10:53. [PMID: 35883211 PMCID: PMC9327165 DOI: 10.1186/s40364-022-00399-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/13/2022] [Indexed: 02/08/2023] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is defined as a type of circular DNA that exists widely in nature and is independent of chromosomes. EccDNA has attracted the attention of researchers due to its broad, random distribution, complex biogenesis and tumor-relevant functions. EccDNA can carry complete gene information, especially the oncogenic driver genes that are often carried in tumors, with increased copy number and high transcriptional activity. The high overexpression of oncogenes by eccDNA leads to malignant growth of tumors. Regardless, the exact generation and functional mechanisms of eccDNA in disease progression are not yet clear. There is, however, an emerging body of evidence characterizing that eccDNA can be generated from multiple pathways, including DNA damage repair pathways, breakage-fusion-bridge (BFB) mechanisms, chromothripsis and cell apoptosis, and participates in the regulation of tumor progression with multiplex functions. This up-to-date review summarizes and discusses the origins, biogenesis and functions of eccDNA, including its contribution to the formation of oncogene instability and mutations, the heterogeneity and cellular senescence of tumor cells, and the proinflammatory response of tumors. We highlight the possible cancer-related applications of eccDNA, such as its potential use in the diagnosis, targeted therapy and prognostic assessment of cancer.
Collapse
Affiliation(s)
- Ruomeng Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Ying Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
85
|
Tüns AI, Hartmann T, Magin S, González RC, Henssen AG, Rahmann S, Schramm A, Köster J. Detection and Validation of Circular DNA Fragments Using Nanopore Sequencing. Front Genet 2022; 13:867018. [PMID: 35711922 PMCID: PMC9195511 DOI: 10.3389/fgene.2022.867018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022] Open
Abstract
Occurrence of extra-chromosomal circular DNA is a phenomenon frequently observed in tumor cells, and the presence of such DNA has been recognized as a marker of adverse outcome across cancer types. We here describe a computational workflow for identification of DNA circles from long-read sequencing data. The workflow is implemented based on the Snakemake workflow management system. Its key step uses a graph-theoretic approach to identify putative circular fragments validated on simulated reads. We then demonstrate robustness of our approach using nanopore sequencing of selectively enriched circular DNA by highly sensitive and specific recovery of plasmids and the mitochondrial genome, which is the only circular DNA in normal human cells. Finally, we show that the workflow facilitates detection of larger circular DNA fragments containing extrachromosomal copies of the MYCN oncogene and the respective breakpoints, which is a potentially useful application in disease monitoring of several cancer types.
Collapse
Affiliation(s)
- Alicia Isabell Tüns
- Laboratory of Molecular Oncology, West German Cancer Center, Department of Medical Oncology, University Hospital Essen, Essen, Germany
| | - Till Hartmann
- Algorithms for Reproducible Bioinformatics, Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Simon Magin
- Institute for Artificial Intelligence in Medicine, IKIM, University Hospital Essen, Essen, Germany
| | - Rocío Chamorro González
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (BIMSB/BIH), Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Essen, Germany
| | - Anton George Henssen
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Max-Delbrück-Centrum für Molekulare Medizin (BIMSB/BIH), Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Essen, Germany
| | - Sven Rahmann
- Center for Bioinformatics and Department of Computer Science, Saarland University, Saarbrücken, Germany
| | - Alexander Schramm
- Laboratory of Molecular Oncology, West German Cancer Center, Department of Medical Oncology, University Hospital Essen, Essen, Germany
| | - Johannes Köster
- Algorithms for Reproducible Bioinformatics, Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
86
|
Li Z, Wang B, Liang H, Han L. Pioneering insights of extrachromosomal DNA (ecDNA) generation, action and its implications for cancer therapy. Int J Biol Sci 2022; 18:4006-4025. [PMID: 35844796 PMCID: PMC9274496 DOI: 10.7150/ijbs.73479] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/29/2022] [Indexed: 11/19/2022] Open
Abstract
Extrachromosomal DNA (ecDNA) is a cancer-specific circular DNA molecule that is derived from chromosomes. In contrast with linear chromosomes, ecDNA exhibits a unique structure that can be representative of high chromosome accessibility, contributing to hyperactivated proto-oncogenes and malignant behaviours. Meanwhile, nonchromosomal inheritance and recurrent mutations of ecDNA fuel tumour heterogeneity and evolution. Recent studies have demonstrated that ecDNA drives tumorigenesis and progression and is related to poor clinical outcomes and drug resistance across widespread cancers. Although ecDNA was first observed in 1965, with technological advancements, its critical functions in tumorigenesis are currently coming forth. In this review, we summarize the current understanding of the origin, biogenesis process, discovery history, molecular mechanisms, and physiological functions of ecDNAs in cancer. Additionally, we highlight the effective research methods to study ecDNA and offer novel insights for ecDNA-directed therapies.
Collapse
Affiliation(s)
| | | | | | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, 300052, P.R. China
| |
Collapse
|
87
|
Wu X, Li P, Yimiti M, Ye Z, Fang X, Chen P, Gu Z. Identification and Characterization of Extrachromosomal Circular DNA in Plasma of Lung Adenocarcinoma Patients. Int J Gen Med 2022; 15:4781-4791. [PMID: 35592538 PMCID: PMC9113459 DOI: 10.2147/ijgm.s363425] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Xiaoqiong Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Pu Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Maimaitiaili Yimiti
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Zhiqiu Ye
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xuqian Fang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Peizhan Chen
- Clinical Research Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Peizhan Chen, Clinical Research Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201821, People’s Republic of China, Tel +86 13918550745, Email
| | - Zhidong Gu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Department of Laboratory Medicine, Ruijin-Hainan Hospital, Shanghai Jiao Tong University School of Medicine (Hainan Boao Research Hospital), Shanghai, People’s Republic of China
- Correspondence: Zhidong Gu, Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201821, People’s Republic of China, Tel +86 13801653534, Email
| |
Collapse
|
88
|
Lv W, Pan X, Han P, Wang Z, Feng W, Xing X, Wang Q, Qu K, Zeng Y, Zhang C, Xu Z, Li Y, Zheng T, Lin L, Liu C, Liu X, Li H, Henriksen RA, Bolund L, Lin L, Jin X, Yang H, Zhang X, Yin T, Regenberg B, He F, Luo Y. Circle-Seq reveals genomic and disease-specific hallmarks in urinary cell-free extrachromosomal circular DNAs. Clin Transl Med 2022; 12:e817. [PMID: 35474296 PMCID: PMC9042798 DOI: 10.1002/ctm2.817] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/08/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Extrachromosomal circular deoxyribonucleic acid (eccDNA) is evolving as a valuable biomarker, while little is known about its presence in urine. METHODS Here, we report the discovery and analysis of urinary cell-free eccDNAs (ucf-eccDNAs) in healthy controls and patients with advanced chronic kidney disease (CKD) by Circle-Seq. RESULTS Millions of unique ucf-eccDNAs were identified and comprehensively characterised. The ucf-eccDNAs are GC-rich. Most ucf-eccDNAs are less than 1000 bp and are enriched in four pronounced peaks at 207, 358, 553 and 732 bp. Analysis of the genomic distribution of ucf-eccDNAs shows that eccDNAs are found on all chromosomes but enriched on chromosomes 17, 19 and 20 with a high density of protein-coding genes, CpG islands, short interspersed transposable elements (SINEs) and simple repeat elements. Analysis of eccDNA junction sequences further suggests that microhomology and palindromic repeats might be involved in eccDNA formation. The ucf-eccDNAs in CKD patients are significantly higher than those in healthy controls. Moreover, eccDNA with miRNA genes is highly enriched in CKD ucf-eccDNA. CONCLUSIONS This work discovers and provides the first deep characterisation of ucf-eccDNAs and suggests ucf-eccDNA as a valuable noninnvasive biomarker for urogenital disorder diagnosis and monitoring.
Collapse
Affiliation(s)
- Wei Lv
- College of Life Sciences, University of Chinese Academy of Science, Beijing, China.,IBMC-BGI Center, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xiaoguang Pan
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, China
| | - Peng Han
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, China.,Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ziyu Wang
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Weijia Feng
- Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xue Xing
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingqing Wang
- College of Life Sciences, University of Chinese Academy of Science, Beijing, China.,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Kunli Qu
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, China.,Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yuchen Zeng
- IBMC-BGI Center, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.,College of Life Sciences, Tianjin University, Tianjin, China
| | - Cailin Zhang
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Xu
- College of Life Sciences, University of Chinese Academy of Science, Beijing, China.,Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, China
| | - Yi Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Tianyu Zheng
- College of Life Sciences, University of Chinese Academy of Science, Beijing, China.,Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, China
| | - Ling Lin
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, China
| | - Chengxun Liu
- College of Life Sciences, University of Chinese Academy of Science, Beijing, China.,Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, China
| | - Xuemei Liu
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, China
| | - Hanbo Li
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, China
| | - Rasmus Amund Henriksen
- Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Section for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Lars Bolund
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, China.,BGI-Shenzhen, Shenzhen, China.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, China
| | - Huanming Yang
- College of Life Sciences, University of Chinese Academy of Science, Beijing, China.,IBMC-BGI Center, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.,Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, China.,Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen, China
| | - Xiuqing Zhang
- College of Life Sciences, University of Chinese Academy of Science, Beijing, China.,IBMC-BGI Center, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.,BGI-Shenzhen, Shenzhen, China
| | - Tailang Yin
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Birgitte Regenberg
- Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Fan He
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonglun Luo
- IBMC-BGI Center, the Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.,Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, China.,BGI-Shenzhen, Shenzhen, China.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
89
|
Provasek VE, Mitra J, Malojirao VH, Hegde ML. DNA Double-Strand Breaks as Pathogenic Lesions in Neurological Disorders. Int J Mol Sci 2022; 23:ijms23094653. [PMID: 35563044 PMCID: PMC9099445 DOI: 10.3390/ijms23094653] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
The damage and repair of DNA is a continuous process required to maintain genomic integrity. DNA double-strand breaks (DSBs) are the most lethal type of DNA damage and require timely repair by dedicated machinery. DSB repair is uniquely important to nondividing, post-mitotic cells of the central nervous system (CNS). These long-lived cells must rely on the intact genome for a lifetime while maintaining high metabolic activity. When these mechanisms fail, the loss of certain neuronal populations upset delicate neural networks required for higher cognition and disrupt vital motor functions. Mammalian cells engage with several different strategies to recognize and repair chromosomal DSBs based on the cellular context and cell cycle phase, including homologous recombination (HR)/homology-directed repair (HDR), microhomology-mediated end-joining (MMEJ), and the classic non-homologous end-joining (NHEJ). In addition to these repair pathways, a growing body of evidence has emphasized the importance of DNA damage response (DDR) signaling, and the involvement of heterogeneous nuclear ribonucleoprotein (hnRNP) family proteins in the repair of neuronal DSBs, many of which are linked to age-associated neurological disorders. In this review, we describe contemporary research characterizing the mechanistic roles of these non-canonical proteins in neuronal DSB repair, as well as their contributions to the etiopathogenesis of selected common neurological diseases.
Collapse
Affiliation(s)
- Vincent E. Provasek
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- College of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Joy Mitra
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- Correspondence: (J.M.); (M.L.H.)
| | - Vikas H. Malojirao
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
| | - Muralidhar L. Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (V.E.P.); (V.H.M.)
- College of Medicine, Texas A&M University, College Station, TX 77843, USA
- Department of Neurosciences, Weill Cornell Medical College, New York, NY 11021, USA
- Correspondence: (J.M.); (M.L.H.)
| |
Collapse
|
90
|
Sin ST, Deng J, Ji L, Yukawa M, Chan RW, Volpi S, Vaglio A, Fenaroli P, Bocca P, Cheng SH, Wong DK, Lui KO, Jiang P, Chan KCA, Chiu RW, Lo YMD. Effects of nucleases on cell-free extrachromosomal circular DNA. JCI Insight 2022; 7:156070. [PMID: 35451374 PMCID: PMC9089787 DOI: 10.1172/jci.insight.156070] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/09/2022] [Indexed: 01/09/2023] Open
Abstract
Cell-free extrachromosomal circular DNA (eccDNA) as a distinct topological form from linear DNA has recently gained increasing research interest, with possible clinical applications as a class of biomarkers. In this study, we aimed to explore the relationship between nucleases and eccDNA characteristics in plasma. By using knockout mouse models with deficiencies in deoxyribonuclease 1 (DNASE1) or deoxyribonuclease 1 like 3 (DNASE1L3), we found that cell-free eccDNA in Dnase1l3-/- mice exhibited larger size distributions than that in wild-type mice. Such size alterations were not found in tissue eccDNA of either Dnase1-/- or Dnase1l3-/- mice, suggesting that DNASE1L3 could digest eccDNA extracellularly but did not seem to affect intracellular eccDNA. Using a mouse pregnancy model, we observed that in Dnase1l3-/- mice pregnant with Dnase1l3+/- fetuses, the eccDNA in the maternal plasma was shorter compared with that of Dnase1l3-/- mice carrying Dnase1l3-/- fetuses, highlighting the systemic effects of circulating fetal DNASE1L3 degrading the maternal eccDNA extracellularly. Furthermore, plasma eccDNA in patients with DNASE1L3 mutations also exhibited longer size distributions than that in healthy controls. Taken together, this study provided a hitherto missing link between nuclease activity and the biological manifestations of eccDNA in plasma, paving the way for future biomarker development of this special form of DNA molecules.
Collapse
Affiliation(s)
- Sarah Tk Sin
- Li Ka Shing Institute of Health Sciences and.,Department of Chemical Pathology, Prince of Wales Hospital, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Centre for Novostics, Hong Kong Science Park, the Chinese University of Hong Kong, Pak Shek Kok, New Territories, Hong Kong SAR, China
| | - Jiaen Deng
- Li Ka Shing Institute of Health Sciences and.,Department of Chemical Pathology, Prince of Wales Hospital, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Centre for Novostics, Hong Kong Science Park, the Chinese University of Hong Kong, Pak Shek Kok, New Territories, Hong Kong SAR, China
| | - Lu Ji
- Li Ka Shing Institute of Health Sciences and.,Department of Chemical Pathology, Prince of Wales Hospital, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Centre for Novostics, Hong Kong Science Park, the Chinese University of Hong Kong, Pak Shek Kok, New Territories, Hong Kong SAR, China
| | - Masashi Yukawa
- Li Ka Shing Institute of Health Sciences and.,Department of Chemical Pathology, Prince of Wales Hospital, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Centre for Novostics, Hong Kong Science Park, the Chinese University of Hong Kong, Pak Shek Kok, New Territories, Hong Kong SAR, China
| | - Rebecca Wy Chan
- Li Ka Shing Institute of Health Sciences and.,Department of Chemical Pathology, Prince of Wales Hospital, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Centre for Novostics, Hong Kong Science Park, the Chinese University of Hong Kong, Pak Shek Kok, New Territories, Hong Kong SAR, China
| | - Stefano Volpi
- Pediatric and Rheumatology Clinic, Center of Autoinflammatory Diseases and Immunodeficiencies, Scientific Hospitalization and Treatment Institute (IRCCS), Giannina Gaslini Institute, Genova, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal-Child Sciences (DINOGMI), University of Genova, Genova, Italy
| | - Augusto Vaglio
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio," School of Human Health Sciences, University of Florence, Florence, Italy.,Medical Genetics Unit and.,Nephrology and Dialysis Unit, Meyer Children's Hospital, Florence, Italy
| | | | - Paola Bocca
- Pediatric and Rheumatology Clinic, Center of Autoinflammatory Diseases and Immunodeficiencies, Scientific Hospitalization and Treatment Institute (IRCCS), Giannina Gaslini Institute, Genova, Italy
| | - Suk Hang Cheng
- Li Ka Shing Institute of Health Sciences and.,Department of Chemical Pathology, Prince of Wales Hospital, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Centre for Novostics, Hong Kong Science Park, the Chinese University of Hong Kong, Pak Shek Kok, New Territories, Hong Kong SAR, China
| | - Danny Kl Wong
- Li Ka Shing Institute of Health Sciences and.,Department of Chemical Pathology, Prince of Wales Hospital, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Kathy O Lui
- Li Ka Shing Institute of Health Sciences and.,Department of Chemical Pathology, Prince of Wales Hospital, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Peiyong Jiang
- Li Ka Shing Institute of Health Sciences and.,Department of Chemical Pathology, Prince of Wales Hospital, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Centre for Novostics, Hong Kong Science Park, the Chinese University of Hong Kong, Pak Shek Kok, New Territories, Hong Kong SAR, China
| | - K C Allen Chan
- Li Ka Shing Institute of Health Sciences and.,Department of Chemical Pathology, Prince of Wales Hospital, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Centre for Novostics, Hong Kong Science Park, the Chinese University of Hong Kong, Pak Shek Kok, New Territories, Hong Kong SAR, China
| | - Rossa Wk Chiu
- Li Ka Shing Institute of Health Sciences and.,Department of Chemical Pathology, Prince of Wales Hospital, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Centre for Novostics, Hong Kong Science Park, the Chinese University of Hong Kong, Pak Shek Kok, New Territories, Hong Kong SAR, China
| | - Y M Dennis Lo
- Li Ka Shing Institute of Health Sciences and.,Department of Chemical Pathology, Prince of Wales Hospital, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Centre for Novostics, Hong Kong Science Park, the Chinese University of Hong Kong, Pak Shek Kok, New Territories, Hong Kong SAR, China
| |
Collapse
|
91
|
Wu P, Liu Y, Zhou R, Liu L, Zeng H, Xiong F, Zhang S, Gong Z, Zhang W, Guo C, Wang F, Zhou M, Zu X, Zeng Z, Li Y, Li G, Huang H, Xiong W. Extrachromosomal Circular DNA: A New Target in Cancer. Front Oncol 2022; 12:814504. [PMID: 35494014 PMCID: PMC9046939 DOI: 10.3389/fonc.2022.814504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Genomic instability and amplification are intrinsically important traits determining the development and heterogeneity of tumors. The role of extrachromosomal circular DNA (eccDNA) in tumors has recently been highlighted. EccDNAs are unique genetic materials located off the chromosomal DNA. They have been detected in a variety of tumors. This review analyzes the mechanisms involved in the formation of eccDNAs and their genetic characteristics. In addition, the high-copy number and transcriptional levels of oncogenes located in eccDNA molecules contribute to the acceleration of tumor evolution and drug resistance and drive the development of genetic heterogeneity. Understanding the specific genomic forms of eccDNAs and characterizing their potential functions will provide new strategies for tumor therapy. Further research may yield new targets and molecular markers for the early diagnosis and treatment of human cancer.
Collapse
Affiliation(s)
- Pan Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuhang Liu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ruijia Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lingyun Liu
- Cancer Research Institute, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Hongli Zeng
- Cancer Research Institute, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Fang Xiong
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenling Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Zhaoyang Zeng
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Guiyuan Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - He Huang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: He Huang, ; Wei Xiong,
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: He Huang, ; Wei Xiong,
| |
Collapse
|
92
|
Noer JB, Hørsdal OK, Xiang X, Luo Y, Regenberg B. Extrachromosomal circular DNA in cancer: history, current knowledge, and methods. Trends Genet 2022; 38:766-781. [PMID: 35277298 DOI: 10.1016/j.tig.2022.02.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022]
Abstract
Extrachromosomal circular DNA (eccDNA) is a closed-circle, nuclear, nonplasmid DNA molecule found in all tested eukaryotes. eccDNA plays important roles in cancer pathogenesis, evolution of tumor heterogeneity, and therapeutic resistance. It is known under many names, including very large cancer-specific circular extrachromosomal DNA (ecDNA), which carries oncogenes and is often amplified in cancer cells. Our understanding of eccDNA has historically been limited and fragmented. To provide better a context of new and previous research on eccDNA, in this review we give an overview of the various names given to eccDNA at different times. We describe the different mechanisms for formation of eccDNA and the methods used to study eccDNA thus far. Finally, we explore the potential clinical value of eccDNA.
Collapse
Affiliation(s)
- Julie B Noer
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Oskar K Hørsdal
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Xi Xiang
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, China
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, China; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
| | | |
Collapse
|
93
|
Yang N, Srivastav SP, Rahman R, Ma Q, Dayama G, Li S, Chinen M, Lei EP, Rosbash M, Lau NC. Transposable element landscapes in aging Drosophila. PLoS Genet 2022; 18:e1010024. [PMID: 35239675 PMCID: PMC8893327 DOI: 10.1371/journal.pgen.1010024] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/10/2022] [Indexed: 11/28/2022] Open
Abstract
Genetic mechanisms that repress transposable elements (TEs) in young animals decline during aging, as reflected by increased TE expression in aged animals. Does increased TE expression during aging lead to more genomic TE copies in older animals? To address this question, we quantified TE Landscapes (TLs) via whole genome sequencing of young and aged Drosophila strains of wild-type and mutant backgrounds. We quantified TLs in whole flies and dissected brains and validated the feasibility of our approach in detecting new TE insertions in aging Drosophila genomes when small RNA and RNA interference (RNAi) pathways are compromised. We also describe improved sequencing methods to quantify extra-chromosomal DNA circles (eccDNAs) in Drosophila as an additional source of TE copies that accumulate during aging. Lastly, to combat the natural progression of aging-associated TE expression, we show that knocking down PAF1, a conserved transcription elongation factor that antagonizes RNAi pathways, may bolster suppression of TEs during aging and extend lifespan. Our study suggests that in addition to a possible influence by different genetic backgrounds, small RNA and RNAi mechanisms may mitigate genomic TL expansion despite the increase in TE transcripts during aging. Transposable elements, also called transposons, are genetic parasites found in all animal genomes. Normally, transposons are compacted away in silent chromatin in young animals. But, as animals age and transposon-silencing defense mechanisms break down, transposon RNAs accumulate to significant levels in old animals like fruit flies. An open question is whether the increased levels of transposon RNAs in older animals also correspond to increased genomic copies of transposons. This study approached this question by sequencing the whole genomes of young and old wild-type and mutant flies lacking a functional RNA interference (RNAi) pathway, which naturally silences transposon RNAs. Although the wild-type flies with intact RNAi activity had little new accumulation of transposon copies, the sequencing approach was able to detect several transposon accumulation occurrences in some RNAi mutants. In addition, we found that some fly transposon families can also accumulate as extra-chromosomal circular DNA copies. Lastly, we showed that genetically augmenting the expression of RNAi factors can counteract the rising transposon RNA levels in aging and promote longevity. This study improves our understanding of the animal host genome relationship with transposons during natural aging processes.
Collapse
Affiliation(s)
- Nachen Yang
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
| | - Satyam P. Srivastav
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
| | - Reazur Rahman
- Brandeis University, Department of Biology and Howard Hughes Medical Institute, Waltham, Massachusetts, United States of America
| | - Qicheng Ma
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
| | - Gargi Dayama
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
| | - Sizheng Li
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
| | - Madoka Chinen
- Nuclear Organization and Gene Expression Section, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Elissa P. Lei
- Nuclear Organization and Gene Expression Section, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Michael Rosbash
- Brandeis University, Department of Biology and Howard Hughes Medical Institute, Waltham, Massachusetts, United States of America
| | - Nelson C. Lau
- Boston University School of Medicine, Department of Biochemistry, Boston, Massachusetts, United States of America
- Boston University Genome Science Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
94
|
Yang H, He J, Huang S, Yang H, Yi Q, Tao Y, Chen M, Zhang X, Qi H. Identification and Characterization of Extrachromosomal Circular DNA in Human Placentas With Fetal Growth Restriction. Front Immunol 2022; 12:780779. [PMID: 34992600 PMCID: PMC8724250 DOI: 10.3389/fimmu.2021.780779] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Many studies have confirmed that extrachromosomal circular DNAs (eccDNAs/ecDNAs) exist in tumor and normal cells independently of the chromosome and are essential for oncogene plasticity and drug resistance. Studies have confirmed that there are many eccDNAs/ecDNAs in maternal plasma derived from the fetus. Fetal growth restriction (FGR) is a pregnancy-related disease associated with high newborn morbidity and mortality. However, the characteristics and nature of eccDNAs/ecDNAs in FGR are poorly understood. This study aims to deconstruct the properties and potential functions of eccDNAs/ecDNAs in FGR. We performed circle-seq to identify the expression profile of eccDNAs/ecDNAs, analyzed by bioinformatics, and verified by real-time Polymerase Chain Reaction (PCR) combined with southern blot in FGR compared with the normal groups. A total of 45,131 eccDNAs/ecDNAs (including 2,118 unique ones) were identified, which had significantly higher abundance in FRG group than in normal group, and was bimodal in length, peaking at ~146bp and ~340bp, respectively. Gestational age may be one independent factor affecting the production of eccDNAs/ecDNAs, most of which come from genomic regions with high gene density, with a 4~12bp repeat around the junction, and their origin had a certain genetic preference. In addition, some of the host-genes overlapped with non-coding RNAs (ncRNAs) partially or even completely. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that host-genes on the differentially expressed eccDNAs/ecDNAs (DEEECs/DEECs) were mainly enriched in immune-related functions and pathways. The presence of some ecDNAs were verified, and whose variability were consistent with the circle-seq results. We identified and characterized eccDNAs/ecDNAs in placentas with FGR, and elucidated the formation mechanisms and the networks with ncRNAs, which provide a new vision for the screening of new biomarkers and therapeutic targets for FGR.
Collapse
Affiliation(s)
- Huan Yang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Obstetrics, Chongqing University Three Gorges Hospital, Chongqing, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,China-Canada-New Zealand Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Jie He
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,China-Canada-New Zealand Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Shuai Huang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,China-Canada-New Zealand Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hongbing Yang
- Department of Obstetrics, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Qingjie Yi
- Department of Obstetrics, Chongqing University Three Gorges Hospital, Chongqing, China.,Department of Epidemiology and Health Statistics, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yuelan Tao
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,China-Canada-New Zealand Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Miaomiao Chen
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,China-Canada-New Zealand Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,China-Canada-New Zealand Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,China-Canada-New Zealand Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| |
Collapse
|
95
|
Yi E, Gujar AD, Guthrie M, Kim H, Zhao D, Johnson KC, Amin SB, Costa ML, Yu Q, Das S, Jillette N, Clow PA, Cheng AW, Verhaak RGW. Live-Cell Imaging Shows Uneven Segregation of Extrachromosomal DNA Elements and Transcriptionally Active Extrachromosomal DNA Hubs in Cancer. Cancer Discov 2022; 12:468-483. [PMID: 34819316 PMCID: PMC8831456 DOI: 10.1158/2159-8290.cd-21-1376] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022]
Abstract
Oncogenic extrachromosomal DNA elements (ecDNA) play an important role in tumor evolution, but our understanding of ecDNA biology is limited. We determined the distribution of single-cell ecDNA copy number across patient tissues and cell line models and observed how cell-to-cell ecDNA frequency varies greatly. The exceptional intratumoral heterogeneity of ecDNA suggested ecDNA-specific replication and propagation mechanisms. To evaluate the transfer of ecDNA genetic material from parental to offspring cells during mitosis, we established the CRISPR-based ecTag method. ecTag leverages ecDNA-specific breakpoint sequences to tag ecDNA with fluorescent markers in living cells. Applying ecTag during mitosis revealed disjointed ecDNA inheritance patterns, enabling rapid ecDNA accumulation in individual cells. After mitosis, ecDNAs clustered into ecDNA hubs, and ecDNA hubs colocalized with RNA polymerase II, promoting transcription of cargo oncogenes. Our observations provide direct evidence for uneven segregation of ecDNA and shed new light on mechanisms through which ecDNAs contribute to oncogenesis. SIGNIFICANCE: ecDNAs are vehicles for oncogene amplification. The circular nature of ecDNA affords unique properties, such as mobility and ecDNA-specific replication and segregation behavior. We uncovered fundamental ecDNA properties by tracking ecDNAs in live cells, highlighting uneven and random segregation and ecDNA hubs that drive cargo gene transcription.See related commentary by Henssen, p. 293.This article is highlighted in the In This Issue feature, p. 275.
Collapse
Affiliation(s)
- Eunhee Yi
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Amit D Gujar
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Molly Guthrie
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Hoon Kim
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
- Department of Biopharmaceutical Convergence, Department of Pharmacy, Sungkyunkwan University, Suwon-si, Gyeong gi-do, Korea
| | - Dacheng Zhao
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Kevin C Johnson
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Samirkumar B Amin
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Megan L Costa
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Qianru Yu
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Sunit Das
- Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for SickKids, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Division of Neurosurgery, Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | | | - Patricia A Clow
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Albert W Cheng
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut.
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut
- Institute for Systems Genomics, University of Connecticut Health Center, Farmington, Connecticut
| | - Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut.
- Department of Neurosurgery, Amsterdam UMC, Amsterdam, the Netherlands
| |
Collapse
|
96
|
Zuo S, Yi Y, Wang C, Li X, Zhou M, Peng Q, Zhou J, Yang Y, He Q. Extrachromosomal Circular DNA (eccDNA): From Chaos to Function. Front Cell Dev Biol 2022; 9:792555. [PMID: 35083218 PMCID: PMC8785647 DOI: 10.3389/fcell.2021.792555] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/16/2021] [Indexed: 11/15/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is a type of double-stranded circular DNA that is derived and free from chromosomes. It has a strong heterogeneity in sequence, length, and origin and has been identified in both normal and cancer cells. Although many studies suggested its potential roles in various physiological and pathological procedures including aging, telomere and rDNA maintenance, drug resistance, and tumorigenesis, the functional relevance of eccDNA remains to be elucidated. Recently, due to technological advancements, accumulated evidence highlighted that eccDNA plays an important role in cancers by regulating the expression of oncogenes, chromosome accessibility, genome replication, immune response, and cellular communications. Here, we review the features, biogenesis, physiological functions, potential functions in cancer, and research methods of eccDNAs with a focus on some open problems in the field and provide a perspective on how eccDNAs evolve specific functions out of the chaos in cells.
Collapse
Affiliation(s)
- Shanru Zuo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China.,The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yihu Yi
- Department of Orthopaedics, Wuhan Union Hospital, Wuhan, China
| | - Chen Wang
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xueguang Li
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Mingqing Zhou
- Zhongshan Hospital Affiliated to Sun Yat-Sen University, Zhongshan People's Hospital, Zhongshan, China
| | - Qiyao Peng
- Institute of Chinese Medicine, Hunan Academy of Traditional Chinese Medicine and Innovation Centre for Science and Technology, Hunan University of Chinese Medicine, Changsa, China.,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Junhua Zhou
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Yide Yang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Quanyuan He
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
97
|
Mann L, Seibt KM, Weber B, Heitkam T. ECCsplorer: a pipeline to detect extrachromosomal circular DNA (eccDNA) from next-generation sequencing data. BMC Bioinformatics 2022; 23:40. [PMID: 35030991 PMCID: PMC8760651 DOI: 10.1186/s12859-021-04545-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/20/2021] [Indexed: 11/14/2022] Open
Abstract
Background Extrachromosomal circular DNAs (eccDNAs) are ring-like DNA structures physically separated from the chromosomes with 100 bp to several megabasepairs in size. Apart from carrying tandemly repeated DNA, eccDNAs may also harbor extra copies of genes or recently activated transposable elements. As eccDNAs occur in all eukaryotes investigated so far and likely play roles in stress, cancer, and aging, they have been prime targets in recent research—with their investigation limited by the scarcity of computational tools. Results Here, we present the ECCsplorer, a bioinformatics pipeline to detect eccDNAs in any kind of organism or tissue using next-generation sequencing techniques. Following Illumina-sequencing of amplified circular DNA (circSeq), the ECCsplorer enables an easy and automated discovery of eccDNA candidates. The data analysis encompasses two major procedures: first, read mapping to the reference genome allows the detection of informative read distributions including high coverage, discordant mapping, and split reads. Second, reference-free comparison of read clusters from amplified eccDNA against control sample data reveals specifically enriched DNA circles. Both software parts can be run separately or jointly, depending on the individual aim or data availability. To illustrate the wide applicability of our approach, we analyzed semi-artificial and published circSeq data from the model organisms Homo sapiens and Arabidopsis thaliana, and generated circSeq reads from the non-model crop plant Beta vulgaris. We clearly identified eccDNA candidates from all datasets, with and without reference genomes. The ECCsplorer pipeline specifically detected mitochondrial mini-circles and retrotransposon activation, showcasing the ECCsplorer’s sensitivity and specificity. Conclusion The ECCsplorer (available online at https://github.com/crimBubble/ECCsplorer) is a bioinformatics pipeline to detect eccDNAs in any kind of organism or tissue using next-generation sequencing data. The derived eccDNA targets are valuable for a wide range of downstream investigations—from analysis of cancer-related eccDNAs over organelle genomics to identification of active transposable elements. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04545-2.
Collapse
Affiliation(s)
- Ludwig Mann
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Kathrin M Seibt
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Beatrice Weber
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany
| | - Tony Heitkam
- Institute of Botany, Technische Universität Dresden, 01069, Dresden, Germany.
| |
Collapse
|
98
|
Robert M, Crasta K. Breaking the vicious circle: Extrachromosomal circular DNA as an emerging player in tumour evolution. Semin Cell Dev Biol 2021; 123:140-150. [PMID: 34857471 DOI: 10.1016/j.semcdb.2021.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 12/16/2022]
Abstract
Extrachromosomal circular DNA (ecDNA) or double minutes have gained renewed interest since its discovery more than five decades ago, emerging as potent drivers of tumour evolution. This has largely been motivated by recent discovery that the tumour-exclusive ecDNA are highly prevalent in almost all cancers unlike previously thought. EcDNAs contribute to elevated oncogene expression, intratumoural heterogeneity, tumour adaptation and therapy resistance independently of canonical chromosomal alterations. Importantly, ecDNAs play a critical role in patient survival as ecDNA-based oncogene amplification adversely affects clinical outcome to a significantly greater extent than intrachromosomal amplification. Chromothripsis, a major driver of ecDNA biogenesis and gene amplification, is a mutational process characterised by chromosomal shattering and localised complex genome rearrangement. Chemotherapeutic drugs can lead to chromothriptic rearrangements and therapy resistance. In this review, we examine how ecDNAs mediate oncogene overexpression, facilitate accelerated tumour malignancy and enhance rapid adaptation independently of linear chromosomes. We delve into discoveries pertaining to mechanisms of biogenesis, distinctive features of ecDNA, gene regulation and topological interactions with active chromatin. We also discuss the critical role of chromothripsis in engendering ecDNA amplification and evolution. One envisions that insights into ecDNA biology not only hold importance for the cancer genome and tumour evolutionary dynamics, but could also inform prognostication and clinical intervention, particularly for cancers characterised by high oncogene amplification.
Collapse
Affiliation(s)
- Matius Robert
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Healthy Longevity Translational Research Program, National University of Singapore, Singapore
| | - Karen Crasta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Healthy Longevity Translational Research Program, National University of Singapore, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Agency for Science, Technology & Research (A⁎STAR), Institute of Molecular and Cell Biology, Singapore.
| |
Collapse
|
99
|
Quantitative assessment reveals the dominance of duplicated sequences in germline-derived extrachromosomal circular DNA. Proc Natl Acad Sci U S A 2021; 118:2102842118. [PMID: 34789574 PMCID: PMC8617514 DOI: 10.1073/pnas.2102842118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 01/08/2023] Open
Abstract
Extrachromosomal circular DNA (eccDNA) plays a role in human diseases such as cancer, but little is known about the impact of eccDNA in healthy human biology. Since eccDNA is a tiny fraction of nuclear DNA, artificial amplification has been employed to increase eccDNA amounts, resulting in the loss of native compositions. We developed an approach to enrich eccDNA populations at the native state (naïve small circular DNA, nscDNA) and investigated their origins in the human genome. We found that, in human sperm, the vast majority of nscDNA came from high-copy genomic regions, including the most variable regions between individuals. Because eccDNA can be incorporated back into chromosomes, eccDNA may promote human genetic variation. Extrachromosomal circular DNA (eccDNA) originates from linear chromosomal DNA in various human tissues under physiological and disease conditions. The genomic origins of eccDNA have largely been investigated using in vitro–amplified DNA. However, in vitro amplification obscures quantitative information by skewing the total population stoichiometry. In addition, the analyses have focused on eccDNA stemming from single-copy genomic regions, leaving eccDNA from multicopy regions unexamined. To address these issues, we isolated eccDNA without in vitro amplification (naïve small circular DNA, nscDNA) and assessed the populations quantitatively by integrated genomic, molecular, and cytogenetic approaches. nscDNA of up to tens of kilobases were successfully enriched by our approach and were predominantly derived from multicopy genomic regions including segmental duplications (SDs). SDs, which account for 5% of the human genome and are hotspots for copy number variations, were significantly overrepresented in sperm nscDNA, with three times more sequencing reads derived from SDs than from the entire single-copy regions. SDs were also overrepresented in mouse sperm nscDNA, which we estimated to comprise 0.2% of nuclear DNA. Considering that eccDNA can be integrated into chromosomes, germline-derived nscDNA may be a mediator of genome diversity.
Collapse
|
100
|
Paulsen T, Malapati P, Shibata Y, Wilson B, Eki R, Benamar M, Abbas T, Dutta A. MicroDNA levels are dependent on MMEJ, repressed by c-NHEJ pathway, and stimulated by DNA damage. Nucleic Acids Res 2021; 49:11787-11799. [PMID: 34718766 PMCID: PMC8599734 DOI: 10.1093/nar/gkab984] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 12/23/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA) are present within all eukaryotic organisms and actively contribute to gene expression changes. MicroDNA (200-1000bp) are the most abundant type of eccDNA and can amplify tRNA, microRNA, and novel si-like RNA sequences. Due to the heterogeneity of microDNA and the limited technology to directly quantify circular DNA molecules, the specific DNA repair pathways that contribute to microDNA formation have not been fully elucidated. Using a sensitive and quantitative assay that quantifies eight known abundant microDNA, we report that microDNA levels are dependent on resection after double-strand DNA break (DSB) and repair by Microhomology Mediated End Joining (MMEJ). Further, repair of DSB without resection by canonical Non-Homologous End Joining (c-NHEJ) diminishes microDNA formation. MicroDNA levels are induced locally even by a single site-directed DSB, suggesting that excision of genomic DNA by two closely spaced DSB is not necessary for microDNA formation. Consistent with all this, microDNA levels accumulate as cells undergo replication in S-phase, when DNA breaks and repair are elevated, and microDNA levels are decreased if DNA synthesis is prevented. Thus, formation of microDNA occurs during the repair of endogenous or induced DNA breaks by resection-based DNA repair pathways.
Collapse
Affiliation(s)
- Teressa Paulsen
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.,Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Pumoli Malapati
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yoshiyuki Shibata
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.,Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294-0024, USA
| | - Briana Wilson
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Rebeka Eki
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.,Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mouadh Benamar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.,Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Tarek Abbas
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.,Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.,Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294-0024, USA
| |
Collapse
|