51
|
Gao Y, Zhang X, Yuan J, Zhang C, Li S, Li F. CRISPR/Cas9-mediated mutation on an insulin-like peptide encoding gene affects the growth of the ridgetail white prawn Exopalaemon carinicauda. Front Endocrinol (Lausanne) 2022; 13:986491. [PMID: 36246877 PMCID: PMC9556898 DOI: 10.3389/fendo.2022.986491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
Insulin-like peptides (ILPs) play key roles in animal growth, metabolism and reproduction in vertebrates. In crustaceans, one type of ILPs, insulin-like androgenic gland hormone (IAG) had been reported to be related to the sex differentiations. However, the function of other types of ILPs is rarely reported. Here, we identified another type of ILPs in the ridgetail white prawn Exopalaemon carinicauda (EcILP), which is an ortholog of Drosophila melanogaster ILP7. Sequence characterization and expression analyses showed that EcILP is similar to vertebrate insulin/IGFs and insect ILPs in its heterodimeric structure and expression profile. Using CRISPR/Cas9 genome editing technology, we generated EcILP knockout (KO) prawns. EcILP-KO individuals have a significant higher growth-inhibitory trait and mortality than those in the normal group. In addition, knockdown of EcILP by RNA interference (RNAi) resulted in slower growth rate and higher mortality. These results indicated that EcILP was an important growth regulator in E. carinicauda.
Collapse
Affiliation(s)
- Yi Gao
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xiaojun Zhang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jianbo Yuan
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chengsong Zhang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Shihao Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Fuhua Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
52
|
Blanco-Obregon D, El Marzkioui K, Brutscher F, Kapoor V, Valzania L, Andersen DS, Colombani J, Narasimha S, McCusker D, Léopold P, Boulan L. A Dilp8-dependent time window ensures tissue size adjustment in Drosophila. Nat Commun 2022; 13:5629. [PMID: 36163439 PMCID: PMC9512784 DOI: 10.1038/s41467-022-33387-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The control of organ size mainly relies on precise autonomous growth programs. However, organ development is subject to random variations, called developmental noise, best revealed by the fluctuating asymmetry observed between bilateral organs. The developmental mechanisms ensuring bilateral symmetry in organ size are mostly unknown. In Drosophila, null mutations for the relaxin-like hormone Dilp8 increase wing fluctuating asymmetry, suggesting that Dilp8 plays a role in buffering developmental noise. Here we show that size adjustment of the wing primordia involves a peak of dilp8 expression that takes place sharply at the end of juvenile growth. Wing size adjustment relies on a cross-organ communication involving the epidermis as the source of Dilp8. We identify ecdysone signaling as both the trigger for epidermal dilp8 expression and its downstream target in the wing primordia, thereby establishing reciprocal hormonal feedback as a systemic mechanism, which controls organ size and bilateral symmetry in a narrow developmental time window. Mechanisms ensuring developmental precision are poorly understood. Here Blanco-Obregon et al. report reciprocal feedback between Dilp8 and Ecdysone, two hormones required during a precise time window of Drosophila development for organ size adjustment.
Collapse
Affiliation(s)
- D Blanco-Obregon
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 26 Rue d'Ulm, 75005, Paris, France
| | - K El Marzkioui
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 26 Rue d'Ulm, 75005, Paris, France
| | - F Brutscher
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - V Kapoor
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 26 Rue d'Ulm, 75005, Paris, France
| | - L Valzania
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 26 Rue d'Ulm, 75005, Paris, France
| | - D S Andersen
- Depatment of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Stem Cell Research, Faculty of Health and Medical Science, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - J Colombani
- Depatment of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Stem Cell Research, Faculty of Health and Medical Science, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - S Narasimha
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 26 Rue d'Ulm, 75005, Paris, France
| | - D McCusker
- University of Michigan, Ann Arbor, MI, USA
| | - P Léopold
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 26 Rue d'Ulm, 75005, Paris, France
| | - L Boulan
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 26 Rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
53
|
Deliu LP, Turingan M, Jadir D, Lee B, Ghosh A, Grewal SS. Serotonergic neuron ribosomal proteins regulate the neuroendocrine control of Drosophila development. PLoS Genet 2022; 18:e1010371. [PMID: 36048889 PMCID: PMC9473637 DOI: 10.1371/journal.pgen.1010371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 09/14/2022] [Accepted: 07/29/2022] [Indexed: 11/21/2022] Open
Abstract
The regulation of ribosome function is a conserved mechanism of growth control. While studies in single cell systems have defined how ribosomes contribute to cell growth, the mechanisms that link ribosome function to organismal growth are less clear. Here we explore this issue using Drosophila Minutes, a class of heterozygous mutants for ribosomal proteins. These animals exhibit a delay in larval development caused by decreased production of the steroid hormone ecdysone, the main regulator of larval maturation. We found that this developmental delay is not caused by decreases in either global ribosome numbers or translation rates. Instead, we show that they are due in part to loss of Rp function specifically in a subset of serotonin (5-HT) neurons that innervate the prothoracic gland to control ecdysone production. We find that these effects do not occur due to altered protein synthesis or proteostasis, but that Minute animals have reduced expression of synaptotagmin, a synaptic vesicle protein, and that the Minute developmental delay can be partially reversed by overexpression of synaptic vesicle proteins in 5-HTergic cells. These results identify a 5-HT cell-specific role for ribosomal function in the neuroendocrine control of animal growth and development.
Collapse
Affiliation(s)
- Lisa Patricia Deliu
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Michael Turingan
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Deeshpaul Jadir
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Byoungchun Lee
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Abhishek Ghosh
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Savraj Singh Grewal
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| |
Collapse
|
54
|
Milán M. Wing regeneration: Single-cell analysis sheds new light. Curr Biol 2022; 32:R842-R844. [PMID: 35944485 DOI: 10.1016/j.cub.2022.06.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The developing wing primordium of Drosophila displays a remarkable capacity to regenerate in response to different types of damage. A new study shows that this capacity relies on the activation of a pro-regenerative gene regulatory network in two distinct cell populations within the blastema.
Collapse
Affiliation(s)
- Marco Milán
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
55
|
Worley MI, Everetts NJ, Yasutomi R, Chang RJ, Saretha S, Yosef N, Hariharan IK. Ets21C sustains a pro-regenerative transcriptional program in blastema cells of Drosophila imaginal discs. Curr Biol 2022; 32:3350-3364.e6. [PMID: 35820420 PMCID: PMC9387119 DOI: 10.1016/j.cub.2022.06.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 04/06/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022]
Abstract
An important unanswered question in regenerative biology is to what extent regeneration is accomplished by the reactivation of gene regulatory networks used during development versus the activation of regeneration-specific transcriptional programs. Following damage, Drosophila imaginal discs, the larval precursors of adult structures, can regenerate missing portions by localized proliferation of damage-adjacent tissue. Using single-cell transcriptomics in regenerating wing discs, we have obtained a comprehensive view of the transcriptome of regenerating discs and identified two regeneration-specific cell populations within the blastema, Blastema1 and Blastema2. Collectively, these cells upregulate multiple genes encoding secreted proteins that promote regeneration including Pvf1, upd3, asperous, Mmp1, and the maturation delaying factor Ilp8. Expression of the transcription factor Ets21C is restricted to this regenerative secretory zone; it is not expressed in undamaged discs. Ets21C expression is activated by the JNK/AP-1 pathway, and it can function in a type 1 coherent feedforward loop with AP-1 to sustain expression of downstream genes. Without Ets21C function, the blastema cells fail to maintain the expression of a number of genes, which leads to premature differentiation and severely compromised regeneration. As Ets21C is dispensable for normal development, these observations indicate that Ets21C orchestrates a regeneration-specific gene regulatory network. We have also identified cells resembling both Blastema1 and Blastema2 in scribble tumorous discs. They express the Ets21C-dependent gene regulatory network, and eliminating Ets21C function reduces tumorous growth. Thus, mechanisms that function during regeneration can be co-opted by tumors to promote aberrant growth.
Collapse
Affiliation(s)
- Melanie I Worley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| | - Nicholas J Everetts
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; Department of Electrical Engineering and Computer Science, Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Riku Yasutomi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Rebecca J Chang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Shrey Saretha
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Nir Yosef
- Department of Electrical Engineering and Computer Science, Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
56
|
Weasner BP, Kumar JP. The early history of the eye-antennal disc of Drosophila melanogaster. Genetics 2022; 221:6573236. [PMID: 35460415 PMCID: PMC9071535 DOI: 10.1093/genetics/iyac041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/04/2022] [Indexed: 12/15/2022] Open
Abstract
A pair of eye-antennal imaginal discs give rise to nearly all external structures of the adult Drosophila head including the compound eyes, ocelli, antennae, maxillary palps, head epidermis, and bristles. In the earliest days of Drosophila research, investigators would examine thousands of adult flies in search of viable mutants whose appearance deviated from the norm. The compound eyes are dispensable for viability and perturbations to their structure are easy to detect. As such, the adult compound eye and the developing eye-antennal disc emerged as focal points for studies of genetics and developmental biology. Since few tools were available at the time, early researchers put an enormous amount of thought into models that would explain their experimental observations-many of these hypotheses remain to be tested. However, these "ancient" studies have been lost to time and are no longer read or incorporated into today's literature despite the abundance of field-defining discoveries that are contained therein. In this FlyBook chapter, I will bring these forgotten classics together and draw connections between them and modern studies of tissue specification and patterning. In doing so, I hope to bring a larger appreciation of the contributions that the eye-antennal disc has made to our understanding of development as well as draw the readers' attention to the earliest studies of this important imaginal disc. Armed with the today's toolkit of sophisticated genetic and molecular methods and using the old papers as a guide, we can use the eye-antennal disc to unravel the mysteries of development.
Collapse
Affiliation(s)
- Brandon P Weasner
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Justin P Kumar
- Department of Biology, Indiana University, Bloomington, IN 47405, USA,Corresponding author: Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
57
|
Gujar MR, Wang H. A fly's eye view of quiescent neural stem cells. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac001. [PMID: 38596705 PMCID: PMC10913722 DOI: 10.1093/oons/kvac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 04/11/2024]
Abstract
The balance between proliferation and quiescence of stem cells is crucial in maintaining tissue homeostasis. Neural stem cells (NSCs) in the brain have the ability to be reactivated from a reversible quiescent state to generate new neurons. However, how NSCs transit between quiescence and reactivation remains largely elusive. Drosophila larval brain NSCs, also known as neuroblasts, have emerged as an excellent in vivo model to study molecular mechanisms underlying NSC quiescence and reactivation. Here, we discuss our current understanding of the molecular mechanisms underlying the reactivation of quiescent NSCs in Drosophila. We review the most recent advances on epigenetic regulations and microtubule cytoskeleton in Drosophila quiescent NSCs and their cross-talk with signaling pathways that are required in regulating NSC reactivation.
Collapse
Affiliation(s)
- Mahekta R Gujar
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Hongyan Wang
- Neuroscience & Behavioral Disorders Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, 117456, Singapore
| |
Collapse
|
58
|
Nakai J, Chikamoto N, Fujimoto K, Totani Y, Hatakeyama D, Dyakonova VE, Ito E. Insulin and Memory in Invertebrates. Front Behav Neurosci 2022; 16:882932. [PMID: 35558436 PMCID: PMC9087806 DOI: 10.3389/fnbeh.2022.882932] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022] Open
Abstract
Insulin and insulin-like peptides (ILP) help to maintain glucose homeostasis, whereas insulin-like growth factor (IGF) promotes the growth and differentiation of cells in both vertebrates and invertebrates. It is sometimes difficult to distinguish between ILP and IGF in invertebrates, however, because in some cases ILP has the same function as IGF. In the present review, therefore, we refer to these peptides as ILP/IGF signaling (IIS) in invertebrates, and discuss the role of IIS in memory formation after classical conditioning in invertebrates. In the arthropod Drosophila melanogaster, IIS is involved in aversive olfactory memory, and in the nematode Caenorhabditis elegans, IIS controls appetitive/aversive response to NaCl depending on the duration of starvation. In the mollusk Lymnaea stagnalis, IIS has a critical role in conditioned taste aversion. Insulin in mammals is also known to play an important role in cognitive function, and many studies in humans have focused on insulin as a potential treatment for Alzheimer’s disease. Although analyses of tissue and cellular levels have progressed in mammals, the molecular mechanisms, such as transcriptional and translational levels, of IIS function in cognition have been far advanced in studies using invertebrates. We anticipate that the present review will help to pave the way for studying the effects of insulin, ILPs, and IGFs in cognitive function across phyla.
Collapse
Affiliation(s)
- Junko Nakai
- Department of Biology, Waseda University, Tokyo, Japan
| | | | | | - Yuki Totani
- Department of Biology, Waseda University, Tokyo, Japan
| | - Dai Hatakeyama
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Varvara E. Dyakonova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Etsuro Ito
- Department of Biology, Waseda University, Tokyo, Japan
- Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- *Correspondence: Etsuro Ito
| |
Collapse
|
59
|
Abstract
Theoretically, symmetry in bilateral animals is subject to sexual selection, since it can serve as a proxy for genetic quality of competing mates during mate choice. Here, we report female preference for symmetric males in Drosophila, using a mate-choice paradigm where males with environmentally or genetically induced wing asymmetry were competed. Analysis of courtship songs revealed that males with asymmetric wings produced songs with asymmetric features that served as acoustic cues, facilitating this female preference. Females experimentally evolved in the absence of mate choice lost this preference for symmetry, suggesting that it is maintained by sexual selection. In many species, including humans and Drosophila, symmetric individuals secure more matings, suggesting that bilateral symmetry signals the quality of potential mates and is subject to sexual selection. However, this idea remains controversial, largely because obtaining conclusive experimental evidence has been hindered by confounding effects arising from the methods used to increase asymmetry in test subjects. Here, we show that altering gravity during development increases asymmetry in Drosophila melanogaster without a detrimental effect on survival, growth, and behavior. Testing males with altered-gravity–induced asymmetry in female mate-choice assays revealed symmetry-based discrimination of males via auditory cues. Females similarly discriminated against males with genetically induced asymmetry, suggesting that their preference for symmetry is not specific to altered gravity. By segmenting the male courtship song into left and right wing-generated song-bouts, we detected asymmetry in the courtship song of altered-gravity males with asymmetric wings that experienced rejection. Females experimentally evolved in the absence of mate choice lacked this preference for symmetry, suggesting that symmetry is maintained by sexual selection. Our data provide evidence for the role of symmetry in sexual selection and reveal how nonvisual cues can flag mate asymmetry during courtship.
Collapse
|
60
|
Pulianmackal AJ, Kanakousaki K, Flegel K, Grushko OG, Gourley E, Rozich E, Buttitta LA. Misregulation of Nucleoporins 98 and 96 leads to defects in protein synthesis that promote hallmarks of tumorigenesis. Dis Model Mech 2022; 15:dmm049234. [PMID: 35107131 PMCID: PMC8938402 DOI: 10.1242/dmm.049234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/15/2022] [Indexed: 11/20/2022] Open
Abstract
Nucleoporin 98KD (Nup98) is a promiscuous translocation partner in hematological malignancies. Most disease models of Nup98 translocations involve ectopic expression of the fusion protein under study, leaving the endogenous Nup98 loci unperturbed. Overlooked in these approaches is the loss of one copy of normal Nup98 in addition to the loss of Nup96 - a second Nucleoporin encoded within the same mRNA and reading frame as Nup98 - in translocations. Nup98 and Nup96 are also mutated in a number of other cancers, suggesting that their disruption is not limited to blood cancers. We found that reducing Nup98-96 function in Drosophila melanogaster (in which the Nup98-96 shared mRNA and reading frame is conserved) de-regulates the cell cycle. We found evidence of overproliferation in tissues with reduced Nup98-96, counteracted by elevated apoptosis and aberrant signaling associated with chronic wounding. Reducing Nup98-96 function led to defects in protein synthesis that triggered JNK signaling and contributed to hallmarks of tumorigenesis when apoptosis was inhibited. We suggest that partial loss of Nup98-96 function in translocations could de-regulate protein synthesis, leading to signaling that cooperates with other mutations to promote tumorigenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Laura A. Buttitta
- Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
61
|
Texada MJ, Lassen M, Pedersen LH, Koyama T, Malita A, Rewitz K. Insulin signaling couples growth and early maturation to cholesterol intake in Drosophila. Curr Biol 2022; 32:1548-1562.e6. [PMID: 35245460 DOI: 10.1016/j.cub.2022.02.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/10/2021] [Accepted: 02/04/2022] [Indexed: 11/28/2022]
Abstract
Nutrition is one of the most important influences on growth and the timing of maturational transitions including mammalian puberty and insect metamorphosis. Childhood obesity is associated with precocious puberty, but the assessment mechanism that links body fat to early maturation is unknown. During development, the intake of nutrients promotes signaling through insulin-like systems that govern the growth of cells and tissues and also regulates the timely production of the steroid hormones that initiate the juvenile-adult transition. We show here that the dietary lipid cholesterol, which is required as a component of cell membranes and as a substrate for steroid biosynthesis, also governs body growth and maturation in Drosophila via promoting the expression and release of insulin-like peptides. This nutritional input acts via the nutrient sensor TOR, which is regulated by the Niemann-Pick-type-C 1 (Npc1) cholesterol transporter, in the glia of the blood-brain barrier and cells of the adipose tissue to remotely drive systemic insulin signaling and body growth. Furthermore, increasing intracellular cholesterol levels in the steroid-producing prothoracic gland strongly promotes endoreduplication, leading to an accelerated attainment of a nutritional checkpoint that normally ensures that animals do not initiate maturation prematurely. These findings, therefore, show that a Npc1-TOR signaling system couples the sensing of the lipid cholesterol with cellular and systemic growth control and maturational timing, which may help explain both the link between cholesterol and cancer as well as the connection between body fat (obesity) and early puberty.
Collapse
Affiliation(s)
- Michael J Texada
- Department of Biology, Section for Cell and Neurobiology, University of Copenhagen, Universitetsparken 15, Building 3, 2100 Copenhagen, Denmark.
| | - Mette Lassen
- Department of Biology, Section for Cell and Neurobiology, University of Copenhagen, Universitetsparken 15, Building 3, 2100 Copenhagen, Denmark
| | - Lisa H Pedersen
- Department of Biology, Section for Cell and Neurobiology, University of Copenhagen, Universitetsparken 15, Building 3, 2100 Copenhagen, Denmark
| | - Takashi Koyama
- Department of Biology, Section for Cell and Neurobiology, University of Copenhagen, Universitetsparken 15, Building 3, 2100 Copenhagen, Denmark
| | - Alina Malita
- Department of Biology, Section for Cell and Neurobiology, University of Copenhagen, Universitetsparken 15, Building 3, 2100 Copenhagen, Denmark
| | - Kim Rewitz
- Department of Biology, Section for Cell and Neurobiology, University of Copenhagen, Universitetsparken 15, Building 3, 2100 Copenhagen, Denmark.
| |
Collapse
|
62
|
Li Z, Qian W, Song W, Zhao T, Yang Y, Wang W, Wei L, Zhao D, Li Y, Perrimon N, Xia Q, Cheng D. A salivary gland-secreted peptide regulates insect systemic growth. Cell Rep 2022; 38:110397. [PMID: 35196492 DOI: 10.1016/j.celrep.2022.110397] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/10/2021] [Accepted: 01/26/2022] [Indexed: 11/03/2022] Open
Abstract
Insect salivary glands have been previously shown to function in pupal attachment and food lubrication by secreting factors into the lumen via an exocrine way. Here, we find in Drosophila that a salivary gland-derived secreted factor (Sgsf) peptide regulates systemic growth via an endocrine way. Sgsf is specifically expressed in salivary glands and secreted into the hemolymph. Sgsf knockout or salivary gland-specific Sgsf knockdown decrease the size of both the body and organs, phenocopying the effects of genetic ablation of salivary glands, while salivary gland-specific Sgsf overexpression increases their size. Sgsf promotes systemic growth by modulating the secretion of the insulin-like peptide Dilp2 from the brain insulin-producing cells (IPCs) and affecting mechanistic target of rapamycin (mTOR) signaling in the fat body. Altogether, our study demonstrates that Sgsf mediates the roles of salivary glands in Drosophila systemic growth, establishing an endocrine function of salivary glands.
Collapse
Affiliation(s)
- Zheng Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Wenliang Qian
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Wei Song
- Medical Research Institute, Wuhan University, Wuhan 430071, China; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Tujing Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Yan Yang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Weina Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Ling Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Dongchao Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Yaoyao Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China.
| | - Daojun Cheng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
63
|
Abstract
The Drosophila wing imaginal disc is a tissue of undifferentiated cells that are precursors of the wing and most of the notum of the adult fly. The wing disc first forms during embryogenesis from a cluster of ∼30 cells located in the second thoracic segment, which invaginate to form a sac-like structure. They undergo extensive proliferation during larval stages to form a mature larval wing disc of ∼35,000 cells. During this time, distinct cell fates are assigned to different regions, and the wing disc develops a complex morphology. Finally, during pupal stages the wing disc undergoes morphogenetic processes and then differentiates to form the adult wing and notum. While the bulk of the wing disc comprises epithelial cells, it also includes neurons and glia, and is associated with tracheal cells and muscle precursor cells. The relative simplicity and accessibility of the wing disc, combined with the wealth of genetic tools available in Drosophila, have combined to make it a premier system for identifying genes and deciphering systems that play crucial roles in animal development. Studies in wing imaginal discs have made key contributions to many areas of biology, including tissue patterning, signal transduction, growth control, regeneration, planar cell polarity, morphogenesis, and tissue mechanics.
Collapse
Affiliation(s)
- Bipin Kumar Tripathi
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D Irvine
- Department of Molecular Biology and Biochemistry, Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
64
|
Hutfilz C. Endocrine Regulation of Lifespan in Insect Diapause. Front Physiol 2022; 13:825057. [PMID: 35242054 PMCID: PMC8886022 DOI: 10.3389/fphys.2022.825057] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
Diapause is a physiological adaptation to conditions that are unfavorable for growth or reproduction. During diapause, animals become long-lived, stress-resistant, developmentally static, and non-reproductive, in the case of diapausing adults. Diapause has been observed at all developmental stages in both vertebrates and invertebrates. In adults, diapause traits weaken into adaptations such as hibernation, estivation, dormancy, or torpor, which represent evolutionarily diverse versions of the traditional diapause traits. These traits are regulated through modifications of the endocrine program guiding development. In insects, this typically includes changes in molting hormones, as well as metabolic signals that limit growth while skewing the organism's energetic demands toward conservation. While much work has been done to characterize these modifications, the interactions between hormones and their downstream consequences are incompletely understood. The current state of diapause endocrinology is reviewed here to highlight the relevance of diapause beyond its use as a model to study seasonality and development. Specifically, insect diapause is an emerging model to study mechanisms that determine lifespan. The induction of diapause represents a dramatic change in the normal progression of age. Hormones such as juvenile hormone, 20-hydroxyecdysone, and prothoracicotropic hormone are well-known to modulate this plasticity. The induction of diapause-and by extension, the cessation of normal aging-is coordinated by interactions between these pathways. However, research directly connecting diapause endocrinology to the biology of aging is lacking. This review explores connections between diapause and aging through the perspective of endocrine signaling. The current state of research in both fields suggests appreciable overlap that will greatly contribute to our understanding of diapause and lifespan determination.
Collapse
|
65
|
Karanja F, Sahu S, Weintraub S, Bhandari R, Jaszczak R, Sitt J, Halme A. Ecdysone exerts biphasic control of regenerative signaling, coordinating the completion of regeneration with developmental progression. Proc Natl Acad Sci U S A 2022; 119:e2115017119. [PMID: 35086929 PMCID: PMC8812538 DOI: 10.1073/pnas.2115017119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/13/2021] [Indexed: 12/12/2022] Open
Abstract
In Drosophila melanogaster, loss of regenerative capacity in wing imaginal discs coincides with an increase in systemic levels of the steroid hormone ecdysone, a key coordinator of their developmental progression. Regenerating discs release the relaxin hormone Dilp8 (Drosophila insulin-like peptide 8) to limit ecdysone synthesis and extend the regenerative period. Here, we describe how regenerating tissues produce a biphasic response to ecdysone levels: lower concentrations of ecdysone promote local and systemic regenerative signaling, whereas higher concentrations suppress regeneration through the expression of broad splice isoforms. Ecdysone also promotes the expression of wingless during both regeneration and normal development through a distinct regulatory pathway. This dual role for ecdysone explains how regeneration can still be completed successfully in dilp8- mutant larvae: higher ecdysone levels increase the regenerative activity of tissues, allowing regeneration to reach completion in a shorter time. From these observations, we propose that ecdysone hormone signaling functions to coordinate regeneration with developmental progression.
Collapse
Affiliation(s)
- Faith Karanja
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22902
| | - Subhshri Sahu
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22902
| | - Sara Weintraub
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22902
| | - Rajan Bhandari
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22902
| | - Rebecca Jaszczak
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22902
| | - Jason Sitt
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22902
| | - Adrian Halme
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22902
| |
Collapse
|
66
|
Huygens C, Ribeiro Lopes M, Gaget K, Duport G, Peignier S, De Groef S, Parisot N, Calevro F, Callaerts P. Evolutionary diversification of insulin-related peptides (IRPs) in aphids and spatiotemporal distribution in Acyrthosiphon pisum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 141:103670. [PMID: 34666188 DOI: 10.1016/j.ibmb.2021.103670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Members of the insulin superfamily activate the evolutionarily highly conserved insulin/insulin-like growth factor signaling pathway, involved in regulation of growth, energy homeostasis, and longevity. In the current study we focus on aphids to gain more insight into the evolution of the IRPs and how they may contribute to regulation of the insulin-signaling pathway. Using the latest annotation of the pea aphid (Acyrthosiphon pisum) genome, and combining sequence alignments and phylogenetic analyses, we identified seven putative IRP encoding-genes, with IRP1-IRP4 resembling the classical insulin and insulin-like protein structures, and IRP5 and IRP6 bearing insulin-like growth factor (IGF) features. We also identified IRP11 as a new and structurally divergent IRP present in at least eight aphid genomes. Globally the ten aphid genomes analyzed in this work contain four to 15 IRPs, while only three IRPs were found in the genome of the grape phylloxera, a hemipteran insect representing an earlier evolutionary branch of the aphid group. Expression analyses revealed spatial and temporal variation in the expression patterns of the different A. pisum IRPs. IRP1 and IRP4 are expressed throughout all developmental stages and morphs in neuroendocrine cells of the brain, while IRP5 and IRP6 are expressed in the fat body. IRP2 is expressed in specific cells of the gut in aphids in non-crowded conditions and in the head of aphids under crowded conditions, IRP3 in salivary glands, and both IRP2 and IRP3 in the male morph. IRP11 expression is enriched in the carcass. This complex spatiotemporal expression pattern suggests functional diversification of the IRPs.
Collapse
Affiliation(s)
- C Huygens
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KULeuven, University of Leuven, B-3000, Leuven, Belgium; Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - M Ribeiro Lopes
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - K Gaget
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - G Duport
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - S Peignier
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - S De Groef
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KULeuven, University of Leuven, B-3000, Leuven, Belgium
| | - N Parisot
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - F Calevro
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France.
| | - P Callaerts
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KULeuven, University of Leuven, B-3000, Leuven, Belgium.
| |
Collapse
|
67
|
Dye NA. Cultivation and Live Imaging of Drosophila Imaginal Discs. Methods Mol Biol 2022; 2540:317-334. [PMID: 35980586 DOI: 10.1007/978-1-0716-2541-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this chapter, I present a method for the ex vivo cultivation and live imaging of Drosophila imaginal disc explants using low concentrations of the steroid hormone 20-hydroxyecdysone (20E). This method has been optimized for analyzing cellular dynamics during wing disc growth and leverages recent insights from in vivo experiments demonstrating that 20E is required for growth and patterning of the imaginal tissues. Using this protocol, we directly observe wing disc proliferation at a rapid rate for at least 13 h during live imaging. The orientation of tissue growth is also consistent with that inferred from indirect in vivo techniques. Thus, this method provides an improved way of studying dynamic cellular processes and tissue movements during imaginal disc development. I first describe the preparation of the growth medium and the dissection, and then I include a protocol for mounting and live imaging of the explants.
Collapse
Affiliation(s)
- Natalie A Dye
- Mildred Scheel Nachwuchszentrum (MSNZ) P2 & Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
68
|
Minelli A. On the Nature of Organs and Organ Systems – A Chapter in the History and Philosophy of Biology. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.745564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Contrasting definitions of organs based either on function or on strictly morphological criteria are the legacy of a tradition starting with Aristotle. This floating characterization of organs in terms of both form and function extends also to organ systems. The first section of this review outlines the notions of organ and body part as defined, explicitly or implicitly, in representative works of nineteenth century’s comparative morphology. The lack of a clear distinction between the two notions led to problems in Owen’s approach to the comparative method (definition of homolog vs. nature of the vertebrate archetype) and to a paradoxical formulation, by Anton Dohrn, of the principle of functional change. Starting from the second half of the twentieth century, with the extensive use of morphological data in phylogenetic analyses, both terms – organ and body part – have been often set aside, to leave room for a comparison between variously characterized attributes (character states) of the taxa to be compared. Throughout the last two centuries, there have been also efforts to characterize organs or body parts in terms of the underlying developmental dynamics, both in the context of classical descriptive embryology and according to models suggested by developmental genetics. Functionally defined organ are occasionally co-extensive with morphologically defined body parts, nevertheless a clear distinction between the former and the latter is a necessary prerequisite to a study of their evolution: this issue is discussed here on the example of the evolution of hermaphroditism and gonad structure and function.
Collapse
|
69
|
Cao X, Rojas M, Pastor-Pareja JC. Intrinsic and damage-induced JAK/STAT signaling regulate developmental timing by the Drosophila prothoracic gland. Dis Model Mech 2021; 15:273570. [PMID: 34842272 PMCID: PMC8807578 DOI: 10.1242/dmm.049160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Development involves tightly paced, reproducible sequences of events, yet it must adjust to conditions external to it, such as resource availability and organismal damage. A major mediator of damage-induced immune responses in vertebrates and insects is JAK/STAT signaling. At the same time, JAK/STAT activation by the Drosophila Upd cytokines is pleiotropically involved in normal development of multiple organs. Whether inflammatory and developmental JAK/STAT roles intersect is unknown. Here, we show that JAK/STAT is active during development of the prothoracic gland (PG), which controls metamorphosis onset through ecdysone production. Reducing JAK/STAT signaling decreased PG size and advanced metamorphosis. Conversely, JAK/STAT hyperactivation by overexpression of pathway components or SUMOylation loss caused PG hypertrophy and metamorphosis delay. Tissue damage and tumors, known to secrete Upd cytokines, also activated JAK/STAT in the PG and delayed metamorphosis, at least in part by inducing expression of the JAK/STAT target Apontic. JAK/STAT damage signaling, therefore, regulates metamorphosis onset by co-opting its developmental role in the PG. Our findings in Drosophila provide insights on how systemic effects of damage and cancer can interfere with hormonally controlled development and developmental transitions. Summary: Damage signaling from tumors mediated by JAK/STAT-activating Upd cytokines delays the Drosophila larva–pupa transition through co-option of a JAK/STAT developmental role in the prothoracic gland.
Collapse
Affiliation(s)
- Xueya Cao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Marta Rojas
- School of Medicine, Tsinghua University, Beijing, China
| | - José Carlos Pastor-Pareja
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
70
|
A Blueprint for Cancer-Related Inflammation and Host Innate Immunity. Cells 2021; 10:cells10113211. [PMID: 34831432 PMCID: PMC8623541 DOI: 10.3390/cells10113211] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/27/2021] [Accepted: 11/10/2021] [Indexed: 12/30/2022] Open
Abstract
Both in situ and allograft models of cancer in juvenile and adult Drosophila melanogaster fruit flies offer a powerful means for unravelling cancer gene networks and cancer-host interactions. They can also be used as tools for cost-effective drug discovery and repurposing. Moreover, in situ modeling of emerging tumors makes it possible to address cancer initiating events-a black box in cancer research, tackle the innate antitumor immune responses to incipient preneoplastic cells and recurrent growing tumors, and decipher the initiation and evolution of inflammation. These studies in Drosophila melanogaster can serve as a blueprint for studies in more complex organisms and help in the design of mechanism-based therapies for the individualized treatment of cancer diseases in humans. This review focuses on new discoveries in Drosophila related to the diverse innate immune responses to cancer-related inflammation and the systemic effects that are so detrimental to the host.
Collapse
|
71
|
Yamazoe T, Nakahara Y, Katsube H, Inoue YH. Expression of Human Mutant Preproinsulins Induced Unfolded Protein Response, Gadd45 Expression, JAK-STAT Activation, and Growth Inhibition in Drosophila. Int J Mol Sci 2021; 22:12038. [PMID: 34769468 PMCID: PMC8584581 DOI: 10.3390/ijms222112038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Mutations in the insulin gene (INS) are frequently associated with human permanent neonatal diabetes mellitus. However, the mechanisms underlying the onset of this genetic disease is not sufficiently decoded. We induced expression of two types of human mutant INSs in Drosophila using its ectopic expression system and investigated the resultant responses in development. Expression of the wild-type preproinsulin in the insulin-producing cells (IPCs) throughout the larval stage led to a stimulation of the overall and wing growth. However, ectopic expression of human mutant preproinsulins, hINSC96Y and hINSLB15YB16delinsH, neither of which secreted from the β-cells, could not stimulate the Drosophila growth. Furthermore, neither of the mutant polypeptides induced caspase activation leading to apoptosis. Instead, they induced expression of several markers indicating the activation of unfolded protein response, such as ER stress-dependent Xbp1 mRNA splicing and ER chaperone induction. We newly found that the mutant polypeptides induced the expression of Growth arrest and DNA-damage-inducible 45 (Gadd45) in imaginal disc cells. ER stress induced by hINSC96Y also activated the JAK-STAT signaling, involved in inflammatory responses. Collectively, we speculate that the diabetes-like growth defects appeared as a consequence of the human mutant preproinsulin expression was involved in dysfunction of the IPCs, rather than apoptosis.
Collapse
Affiliation(s)
| | | | | | - Yoshihiro H. Inoue
- Department of Insect Biomedical Research, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-0962, Sakyo, Japan; (T.Y.); (Y.N.); (H.K.)
| |
Collapse
|
72
|
Biglou SG, Bendena WG, Chin-Sang I. An overview of the insulin signaling pathway in model organisms Drosophila melanogaster and Caenorhabditis elegans. Peptides 2021; 145:170640. [PMID: 34450203 DOI: 10.1016/j.peptides.2021.170640] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/01/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022]
Abstract
The insulin/insulin-like growth factor signaling pathway is an evolutionary conserved pathway across metazoans and is required for development, metabolism and behavior. This pathway is associated with various human metabolic disorders and cancers. Thus, model organisms including Drosophila melanogaster and Caenorhabditis elegans provide excellent opportunities to examine the structure and function of this pathway and its influence on cellular metabolism and proliferation. In this review, we will provide an overview of human insulin and the human insulin signaling pathway and explore the recent discoveries in model organisms Drosophila melanogaster and Caenorhabditis elegans. Our review will provide information regarding the various insulin-like peptides in model organisms as well as the conserved functions of insulin signaling pathways. Further investigation of the insulin signaling pathway in model organisms could provide a promising opportunity to develop novel therapies for various metabolic disorders and insulin-mediated cancers.
Collapse
Affiliation(s)
- Sanaz G Biglou
- Department of Biology, Queen's University Kingston, ON, K7L3N6, Canada
| | - William G Bendena
- Department of Biology, Queen's University Kingston, ON, K7L3N6, Canada; Centre for Neuroscience, Queen's University, Kingston, ON, K7L3N6, Canada.
| | - Ian Chin-Sang
- Department of Biology, Queen's University Kingston, ON, K7L3N6, Canada
| |
Collapse
|
73
|
Bilder D, Ong K, Hsi TC, Adiga K, Kim J. Tumour-host interactions through the lens of Drosophila. Nat Rev Cancer 2021; 21:687-700. [PMID: 34389815 PMCID: PMC8669834 DOI: 10.1038/s41568-021-00387-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
There is a large gap between the deep understanding of mechanisms driving tumour growth and the reasons why patients ultimately die of cancer. It is now appreciated that interactions between the tumour and surrounding non-tumour (sometimes referred to as host) cells play critical roles in mortality as well as tumour progression, but much remains unknown about the underlying molecular mechanisms, especially those that act beyond the tumour microenvironment. Drosophila has a track record of high-impact discoveries about cell-autonomous growth regulation, and is well suited to now probe mysteries of tumour - host interactions. Here, we review current knowledge about how fly tumours interact with microenvironmental stroma, circulating innate immune cells and distant organs to influence disease progression. We also discuss reciprocal regulation between tumours and host physiology, with a particular focus on paraneoplasias. The fly's simplicity along with the ability to study lethality directly provide an opportunity to shed new light on how cancer actually kills.
Collapse
Affiliation(s)
- David Bilder
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| | - Katy Ong
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Tsai-Ching Hsi
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Kavya Adiga
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Jung Kim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
74
|
Rivera MJ, Contreras A, Nguyen LT, Eldon ED, Klig LS. Regulated inositol synthesis is critical for balanced metabolism and development in Drosophila melanogaster. Biol Open 2021; 10:272639. [PMID: 34710213 PMCID: PMC8565467 DOI: 10.1242/bio.058833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/31/2021] [Indexed: 01/23/2023] Open
Abstract
Myo-inositol is a precursor of the membrane phospholipid, phosphatidylinositol (PI). It is involved in many essential cellular processes including signal transduction, energy metabolism, endoplasmic reticulum stress, and osmoregulation. Inositol is synthesized from glucose-6-phosphate by myo-inositol-3-phosphate synthase (MIPSp). The Drosophila melanogaster Inos gene encodes MIPSp. Abnormalities in myo-inositol metabolism have been implicated in type 2 diabetes, cancer, and neurodegenerative disorders. Obesity and high blood (hemolymph) glucose are two hallmarks of diabetes, which can be induced in Drosophila melanogaster third-instar larvae by high-sucrose diets. This study shows that dietary inositol reduces the obese-like and high-hemolymph glucose phenotypes of third-instar larvae fed high-sucrose diets. Furthermore, this study demonstrates Inos mRNA regulation by dietary inositol; when more inositol is provided there is less Inos mRNA. Third-instar larvae with dysregulated high levels of Inos mRNA and MIPSp show dramatic reductions of the obese-like and high-hemolymph glucose phenotypes. These strains, however, also display developmental defects and pupal lethality. The few individuals that eclose die within two days with striking defects: structural alterations of the wings and legs, and heads lacking proboscises. This study is an exciting extension of the use of Drosophila melanogaster as a model organism for exploring the junction of development and metabolism. Summary: Inositol reduces obesity and high blood (hemolymph) glucose, but can cause dramatic developmental defects. This study uses the model organism Drosophila melanogaster to explore the junction of development and metabolism.
Collapse
Affiliation(s)
- Maria J Rivera
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Altagracia Contreras
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - LongThy T Nguyen
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Elizabeth D Eldon
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| | - Lisa S Klig
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, USA
| |
Collapse
|
75
|
Juarez-Carreño S, Vallejo DM, Carranza-Valencia J, Palomino-Schätzlein M, Ramon-Cañellas P, Santoro R, de Hartog E, Ferres-Marco D, Romero A, Peterson HP, Ballesta-Illan E, Pineda-Lucena A, Dominguez M, Morante J. Body-fat sensor triggers ribosome maturation in the steroidogenic gland to initiate sexual maturation in Drosophila. Cell Rep 2021; 37:109830. [PMID: 34644570 DOI: 10.1016/j.celrep.2021.109830] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 06/25/2021] [Accepted: 09/23/2021] [Indexed: 12/18/2022] Open
Abstract
Fat stores are critical for reproductive success and may govern maturation initiation. Here, we report that signaling and sensing fat sufficiency for sexual maturation commitment requires the lipid carrier apolipophorin in fat cells and Sema1a in the neuroendocrine prothoracic gland (PG). Larvae lacking apolpp or Sema1a fail to initiate maturation despite accruing sufficient fat stores, and they continue gaining weight until death. Mechanistically, sensing peripheral body-fat levels via the apolipophorin/Sema1a axis regulates endocytosis, endoplasmic reticulum remodeling, and ribosomal maturation for the acquisition of the PG cells' high biosynthetic and secretory capacity. Downstream of apolipophorin/Sema1a, leptin-like upd2 triggers the cessation of feeding and initiates sexual maturation. Human Leptin in the insect PG substitutes for upd2, preventing obesity and triggering maturation downstream of Sema1a. These data show how peripheral fat levels regulate the control of the maturation decision-making process via remodeling of endomembranes and ribosomal biogenesis in gland cells.
Collapse
Affiliation(s)
- Sergio Juarez-Carreño
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Diana Marcela Vallejo
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Juan Carranza-Valencia
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | | | - Pol Ramon-Cañellas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Roberto Santoro
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Emily de Hartog
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Dolors Ferres-Marco
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Aitana Romero
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Hannah Payette Peterson
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Esther Ballesta-Illan
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Antonio Pineda-Lucena
- Instituto de Investigación Sanitaria La Fe, Hospital Universitario y Politécnico La Fe, Avenida Fernando Abril Martorell, 106, 46026 Valencia, Spain; Programa de Terapias Moleculares, Centro de Investigación Médica Aplicada, Universidad de Navarra, Avenida Pío XII, 55, 31008 Pamplona, Spain
| | - Maria Dominguez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain.
| | - Javier Morante
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain.
| |
Collapse
|
76
|
Coordination among multiple receptor tyrosine kinase signals controls Drosophila developmental timing and body size. Cell Rep 2021; 36:109644. [PMID: 34469735 PMCID: PMC8428980 DOI: 10.1016/j.celrep.2021.109644] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 05/10/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
In holometabolous insects, metamorphic timing and body size are controlled by a neuroendocrine axis composed of the ecdysone-producing prothoracic gland (PG) and its presynaptic neurons (PGNs) producing PTTH. Although PTTH/Torso signaling is considered the primary mediator of metamorphic timing, recent studies indicate that other unidentified PGN-derived factors also affect timing. Here, we demonstrate that the receptor tyrosine kinases anaplastic lymphoma kinase (Alk) and PDGF and VEGF receptor-related (Pvr), function in coordination with PTTH/Torso signaling to regulate pupariation timing and body size. Both Alk and Pvr trigger Ras/Erk signaling in the PG to upregulate expression of ecdysone biosynthetic enzymes, while Alk also suppresses autophagy by activating phosphatidylinositol 3-kinase (PI3K)/Akt. The Alk ligand Jelly belly (Jeb) is produced by the PGNs and serves as a second PGN-derived tropic factor, while Pvr activation mainly relies on autocrine signaling by PG-derived Pvf2 and Pvf3. These findings illustrate that a combination of juxtacrine and autocrine signaling regulates metamorphic timing, the defining event of holometabolous development.
Collapse
|
77
|
Dillard C, Reis JGT, Rusten TE. RasV12; scrib-/- Tumors: A Cooperative Oncogenesis Model Fueled by Tumor/Host Interactions. Int J Mol Sci 2021; 22:ijms22168873. [PMID: 34445578 PMCID: PMC8396170 DOI: 10.3390/ijms22168873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
The phenomenon of how oncogenes and tumor-suppressor mutations can synergize to promote tumor fitness and cancer progression can be studied in relatively simple animal model systems such as Drosophila melanogaster. Almost two decades after the landmark discovery of cooperative oncogenesis between oncogenic RasV12 and the loss of the tumor suppressor scribble in flies, this and other tumor models have provided new concepts and findings in cancer biology that has remarkable parallels and relevance to human cancer. Here we review findings using the RasV12; scrib-/- tumor model and how it has contributed to our understanding of how these initial simple genetic insults cooperate within the tumor cell to set in motion the malignant transformation program leading to tumor growth through cell growth, cell survival and proliferation, dismantling of cell-cell interactions, degradation of basement membrane and spreading to other organs. Recent findings have demonstrated that cooperativity goes beyond cell intrinsic mechanisms as the tumor interacts with the immediate cells of the microenvironment, the immune system and systemic organs to eventually facilitate malignant progression.
Collapse
Affiliation(s)
- Caroline Dillard
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway;
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway
- Correspondence: (C.D.); (T.E.R.)
| | - José Gerardo Teles Reis
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway;
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Tor Erik Rusten
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway;
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway
- Correspondence: (C.D.); (T.E.R.)
| |
Collapse
|
78
|
Tian Y, Smith-Bolton RK. Regulation of growth and cell fate during tissue regeneration by the two SWI/SNF chromatin-remodeling complexes of Drosophila. Genetics 2021; 217:1-16. [PMID: 33683366 DOI: 10.1093/genetics/iyaa028] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 11/10/2020] [Indexed: 11/12/2022] Open
Abstract
To regenerate, damaged tissue must heal the wound, regrow to the proper size, replace the correct cell types, and return to the normal gene-expression program. However, the mechanisms that temporally and spatially control the activation or repression of important genes during regeneration are not fully understood. To determine the role that chromatin modifiers play in regulating gene expression after tissue damage, we induced ablation in Drosophila melanogaster imaginal wing discs, and screened for chromatin regulators that are required for epithelial tissue regeneration. Here, we show that many of these genes are indeed important for promoting or constraining regeneration. Specifically, the two SWI/SNF chromatin-remodeling complexes play distinct roles in regulating different aspects of regeneration. The PBAP complex regulates regenerative growth and developmental timing, and is required for the expression of JNK signaling targets and the growth promoter Myc. By contrast, the BAP complex ensures correct patterning and cell fate by stabilizing the expression of the posterior gene engrailed. Thus, both SWI/SNF complexes are essential for proper gene expression during tissue regeneration, but they play distinct roles in regulating growth and cell fate.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rachel K Smith-Bolton
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
79
|
Drosophila Larval Models of Invasive Tumorigenesis for In Vivo Studies on Tumour/Peripheral Host Tissue Interactions during Cancer Cachexia. Int J Mol Sci 2021; 22:ijms22158317. [PMID: 34361081 PMCID: PMC8347517 DOI: 10.3390/ijms22158317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 01/06/2023] Open
Abstract
Cancer cachexia is a common deleterious paraneoplastic syndrome that represents an area of unmet clinical need, partly due to its poorly understood aetiology and complex multifactorial nature. We have interrogated multiple genetically defined larval Drosophila models of tumourigenesis against key features of human cancer cachexia. Our results indicate that cachectic tissue wasting is dependent on the genetic characteristics of the tumour and demonstrate that host malnutrition or tumour burden are not sufficient to drive wasting. We show that JAK/STAT and TNF-α/Egr signalling are elevated in cachectic muscle and promote tissue wasting. Furthermore, we introduce a dual driver system that allows independent genetic manipulation of tumour and host skeletal muscle. Overall, we present a novel Drosophila larval paradigm to study tumour/host tissue crosstalk in vivo, which may contribute to future research in cancer cachexia and impact the design of therapeutic approaches for this pathology.
Collapse
|
80
|
Meschi E, Delanoue R. Adipokine and fat body in flies: Connecting organs. Mol Cell Endocrinol 2021; 533:111339. [PMID: 34082046 DOI: 10.1016/j.mce.2021.111339] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Under conditions of nutritional and environmental stress, organismal homeostasis is preserved through inter-communication between multiple organs. To do so, higher organisms have developed a system of interorgan communication through which one tissue can affect the metabolism, activity or fate of remote organs, tissues or cells. In this review, we discuss the latest findings emphasizing Drosophila melanogaster as a powerful model organism to study these interactions and may constitute one of the best documented examples depicting the long-distance communication between organs. In flies, the adipose tissue appears to be one of the main organizing centers for the regulation of insect development and behavior: it senses nutritional and hormonal signals and in turn, orchestrates the release of appropriate adipokines. We discuss the nature and the role of recently uncovered adipokines, their regulations by external cues, their secretory routes and their modes of action to adjust developmental growth and timing accordingly. These findings have the potential for identification of candidate factors and signaling pathways that mediate conserved interorgan crosstalk.
Collapse
Affiliation(s)
- Eleonora Meschi
- Centre for Neural Circuit and Behaviour, University of Oxford, Mansfield road, OX3 1SR, Oxford, UK
| | - Renald Delanoue
- University Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose Parc Valrose, 06108, Nice, France.
| |
Collapse
|
81
|
Khezri R, Holland P, Schoborg TA, Abramovich I, Takáts S, Dillard C, Jain A, O'Farrell F, Schultz SW, Hagopian WM, Quintana EM, Ng R, Katheder NS, Rahman MM, Teles Reis JG, Brech A, Jasper H, Rusan NM, Jahren AH, Gottlieb E, Rusten TE. Host autophagy mediates organ wasting and nutrient mobilization for tumor growth. EMBO J 2021; 40:e107336. [PMID: 34309071 PMCID: PMC8441431 DOI: 10.15252/embj.2020107336] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/14/2021] [Accepted: 06/01/2021] [Indexed: 11/15/2022] Open
Abstract
During tumor growth—when nutrient and anabolic demands are high—autophagy supports tumor metabolism and growth through lysosomal organelle turnover and nutrient recycling. Ras‐driven tumors additionally invoke non‐autonomous autophagy in the microenvironment to support tumor growth, in part through transfer of amino acids. Here we uncover a third critical role of autophagy in mediating systemic organ wasting and nutrient mobilization for tumor growth using a well‐characterized malignant tumor model in Drosophila melanogaster. Micro‐computed X‐ray tomography and metabolic profiling reveal that RasV12; scrib−/− tumors grow 10‐fold in volume, while systemic organ wasting unfolds with progressive muscle atrophy, loss of body mass, ‐motility, ‐feeding, and eventually death. Tissue wasting is found to be mediated by autophagy and results in host mobilization of amino acids and sugars into circulation. Natural abundance Carbon 13 tracing demonstrates that tumor biomass is increasingly derived from host tissues as a nutrient source as wasting progresses. We conclude that host autophagy mediates organ wasting and nutrient mobilization that is utilized for tumor growth.
Collapse
Affiliation(s)
- Rojyar Khezri
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Petter Holland
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Todd Andrew Schoborg
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ifat Abramovich
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Bat Galim, Haifa, Israel
| | - Szabolcs Takáts
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Caroline Dillard
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ashish Jain
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Fergal O'Farrell
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Sebastian Wolfgang Schultz
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - William M Hagopian
- Centre for Earth Evolution and Dynamics, University of Oslo, Oslo, Norway
| | - Eduardo Martin Quintana
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Rachel Ng
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nadja Sandra Katheder
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Immunology Discovery, Genentech, Inc., South San Francisco, CA, USA
| | - Mohammed Mahidur Rahman
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - José Gerardo Teles Reis
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Andreas Brech
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Heinrich Jasper
- Immunology Discovery, Genentech, Inc., South San Francisco, CA, USA.,Buck Institute for Research on Aging, Novato, CA, USA
| | - Nasser M Rusan
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anne Hope Jahren
- Centre for Earth Evolution and Dynamics, University of Oslo, Oslo, Norway
| | - Eyal Gottlieb
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Bat Galim, Haifa, Israel
| | - Tor Erik Rusten
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
82
|
Cohen E, Peterson NG, Sawyer JK, Fox DT. Accelerated cell cycles enable organ regeneration under developmental time constraints in the Drosophila hindgut. Dev Cell 2021; 56:2059-2072.e3. [PMID: 34019841 PMCID: PMC8319103 DOI: 10.1016/j.devcel.2021.04.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/10/2021] [Accepted: 04/28/2021] [Indexed: 12/22/2022]
Abstract
Individual organ development must be temporally coordinated with development of the rest of the organism. As a result, cell division cycles in a developing organ occur on a relatively fixed timescale. Despite this, many developing organs can regenerate cells lost to injury. How organs regenerate within the time constraints of organism development remains unclear. Here, we show that the developing Drosophila hindgut regenerates by accelerating the mitotic cell cycle. This process is achieved by decreasing G1 length and requires the JAK/STAT ligand unpaired-3. Mitotic capacity is then terminated by the steroid hormone ecdysone receptor and the Sox transcription factor Dichaete. These two factors converge on regulation of a hindgut-specific enhancer of fizzy-related, a negative regulator of mitotic cyclins. Our findings reveal how the cell-cycle machinery and cytokine signaling can be adapted to accomplish developmental organ regeneration.
Collapse
Affiliation(s)
- Erez Cohen
- Department of Cell Biology, Duke University School of Medicine, Durham, USA
| | - Nora G Peterson
- Department of Cell Biology, Duke University School of Medicine, Durham, USA
| | - Jessica K Sawyer
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, USA
| | - Donald T Fox
- Department of Cell Biology, Duke University School of Medicine, Durham, USA; Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, USA; Regeneration Next Initiative, Duke University School of Medicine, Durham, USA.
| |
Collapse
|
83
|
Lobo-Cabrera FJ, Navarro T, Iannini A, Casares F, Cuetos A. Quantitative Relationships Between Growth, Differentiation, and Shape That Control Drosophila Eye Development and Its Variation. Front Cell Dev Biol 2021; 9:681933. [PMID: 34350178 PMCID: PMC8326509 DOI: 10.3389/fcell.2021.681933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/24/2021] [Indexed: 11/30/2022] Open
Abstract
The size of organs is critical for their function and often a defining trait of a species. Still, how organs reach a species-specific size or how this size varies during evolution are problems not yet solved. Here, we have investigated the conditions that ensure growth termination, variation of final size and the stability of the process for developmental systems that grow and differentiate simultaneously. Specifically, we present a theoretical model for the development of the Drosophila eye, a system where a wave of differentiation sweeps across a growing primordium. This model, which describes the system in a simplified form, predicts universal relationships linking final eye size and developmental time to a single parameter which integrates genetically-controlled variables, the rates of cell proliferation and differentiation, with geometrical factors. We find that the predictions of the theoretical model show good agreement with previously published experimental results. We also develop a new computational model that recapitulates the process more realistically and find concordance between this model and theory as well, but only when the primordium is circular. However, when the primordium is elliptical both models show discrepancies. We explain this difference by the mechanical interactions between cells, an aspect that is not included in the theoretical model. Globally, our work defines the quantitative relationships between rates of growth and differentiation and organ primordium size that ensure growth termination (and, thereby, specify final eye size) and determine the duration of the process; identifies geometrical dependencies of both size and developmental time; and uncovers potential instabilities of the system which might constraint developmental strategies to evolve eyes of different size.
Collapse
Affiliation(s)
| | - Tomás Navarro
- DMC2-GEM Unit, The CABD, CSIC-Pablo de Olavide University-JA, Seville, Spain
| | - Antonella Iannini
- DMC2-GEM Unit, The CABD, CSIC-Pablo de Olavide University-JA, Seville, Spain
| | - Fernando Casares
- DMC2-GEM Unit, The CABD, CSIC-Pablo de Olavide University-JA, Seville, Spain
| | - Alejandro Cuetos
- Department of Physical, Chemical and Natural Systems, Pablo de Olavide University, Sevilla, Spain
| |
Collapse
|
84
|
Veenstra JA. Ambulacrarian insulin-related peptides and their putative receptors suggest how insulin and similar peptides may have evolved from insulin-like growth factor. PeerJ 2021; 9:e11799. [PMID: 34316411 PMCID: PMC8286064 DOI: 10.7717/peerj.11799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/25/2021] [Indexed: 01/23/2023] Open
Abstract
Background Some insulin/IGF-related peptides (irps) stimulate a receptor tyrosine kinase (RTK) that transfers the extracellular hormonal signal into an intracellular response. Other irps, such as relaxin, do not use an RTK, but a G-protein coupled receptor (GPCR). This is unusual since evolutionarily related hormones typically either use the same or paralogous receptors. In arthropods three different irps, i.e. arthropod IGF, gonadulin and Drosophila insulin-like peptide 7 (dilp7), likely evolved from a gene triplication, as in several species genes encoding these three peptides are located next to one another on the same chromosomal fragment. These arthropod irps have homologs in vertebrates, suggesting that the initial gene triplication was perhaps already present in the last common ancestor of deuterostomes and protostomes. It would be interesting to know whether this is indeed so and how insulin might be related to this trio of irps. Methodology Genes encoding irps as well as their putative receptors were identified in genomes and transcriptomes from echinoderms and hemichordates. Results A similar triplet of genes coding for irps also occurs in some ambulacrarians. Two of these are orthologs of arthropod IGF and dilp7 and the third is likely a gonadulin ortholog. In echinoderms, two novel irps emerged, gonad stimulating substance (GSS) and multinsulin, likely from gene duplications of the IGF and dilp7-like genes respectively. The structures of GSS diverged considerably from IGF, which would suggest they use different receptors from IGF, but no novel irp receptors evolved. If IGF and GSS use different receptors, and the evolution of GSS from a gene duplication of IGF is not associated with the appearance of a novel receptor, while irps are known to use two different types of receptors, the ancestor of GSS and IGF might have acted on both types of receptors while one or both of its descendants act on only one. There are three ambulacrarian GPCRs that have amino acid sequences suggestive of being irp GPCRs, two of these are orthologs of the gonadulin and dilp7 receptors. This suggests that the third might be an IGF receptor, and that by deduction, GSS only acts on the RTK. The evolution of GSS from IGF may represent a pattern, where IGF gene duplications lead to novel genes coding for shorter peptides that activate an RTK. It is likely this is how insulin and the insect neuroendocrine irps evolved independently from IGF. Conclusion The local gene triplication described from arthropods that yielded three genes encoding irps was already present in the last common ancestor of protostomes and deuterostomes. It seems plausible that irps, such as those produced by neuroendocrine cells in the brain of insects and echinoderm GSS evolved independently from IGF and, thus, are not true orthologs, but the result of convergent evolution.
Collapse
Affiliation(s)
- Jan A Veenstra
- INCIA UMR 5287 CNRS, Université de Bordeaux, Pessac, Gironde, France
| |
Collapse
|
85
|
Léopold P. Sizes, proportions and environment. C R Biol 2021; 344:165-175. [PMID: 34213854 DOI: 10.5802/crbiol.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 11/24/2022]
Abstract
The sizes of living organisms range over twenty orders of magnitude. Within the same species, the size of individuals also varies according to the environmental conditions to which they are subjected. From the studies conducted on organisms as diverse as the drosophila, the salamander or the mouse, laws and conserved mechanisms emerge that shed light on the fundamental aspects of growth, but also on more medical issues such as tissue regeneration, metabolic homeostasis and cancer.
Collapse
Affiliation(s)
- Pierre Léopold
- Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, 26 Rue d'Ulm, 75005, Paris, France
| |
Collapse
|
86
|
Oliveira AC, Rebelo AR, Homem CCF. Integrating animal development: How hormones and metabolism regulate developmental transitions and brain formation. Dev Biol 2021; 475:256-264. [PMID: 33549549 PMCID: PMC7617117 DOI: 10.1016/j.ydbio.2021.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/15/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
Our current knowledge on how individual tissues or organs are formed during animal development is considerable. However, the development of each organ does not occur in isolation and thus their formation needs to be done in a coordinated manner. This coordination is regulated by hormones, systemic signals that instruct the simultaneous development of all organs and direct tissue specific developmental programs. In addition, multi- and individual-organ development requires the integration of the nutritional state of the animal, since this affects nutrient availability necessary for the progression of development and growth. Variations in the nutritional state of the animal are normal during development, as the sources and access to nutrients greatly differ depending on the animal stage. Furthermore, adversities of the external environment also exert major alterations in extrinsic nutritional conditions. Thus, both in normal and malnutrition circumstances, the animal needs to trigger metabolic changes to maintain energy homeostasis and sustain growth and development. This metabolic flexibility is mediated by hormones, that drive both developmental encoded metabolic transitions throughout development and adaptation responses according to the nutritional state of the animal. This review aims to provide a comprehensive summary of the current knowledge of how endocrine regulation coordinates multi-organ development by orchestrating metabolic transitions and how it integrates metabolic adaptation responses to starvation. We also focus on the particular case of brain development, as it is extremely sensitive to hormonally induced metabolic changes. Finally, we discuss how brain development is prioritized over the development of other organs, as its growth can be spared from nutrient deprivation.
Collapse
Affiliation(s)
- Andreia C Oliveira
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - Ana R Rebelo
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal
| | - Catarina C F Homem
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal.
| |
Collapse
|
87
|
Racing against the clock: How flies regenerate just in time. Dev Cell 2021; 56:2012-2013. [PMID: 34314696 DOI: 10.1016/j.devcel.2021.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this issue of Developmental Cell, Cohen et al. show that the Drosophila hindgut is a genetically tractable model for studying tissue regeneration. This tissue exhibits different regeneration strategies at different developmental times, demonstrating that the hindgut developmental clock, not tissue type, dictates the mode and capacity for regeneration.
Collapse
|
88
|
Chowański S, Walkowiak-Nowicka K, Winkiel M, Marciniak P, Urbański A, Pacholska-Bogalska J. Insulin-Like Peptides and Cross-Talk With Other Factors in the Regulation of Insect Metabolism. Front Physiol 2021; 12:701203. [PMID: 34267679 PMCID: PMC8276055 DOI: 10.3389/fphys.2021.701203] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
The insulin-like peptide (ILP) and insulin-like growth factor (IGF) signalling pathways play a crucial role in the regulation of metabolism, growth and development, fecundity, stress resistance, and lifespan. ILPs are encoded by multigene families that are expressed in nervous and non-nervous organs, including the midgut, salivary glands, and fat body, in a tissue- and stage-specific manner. Thus, more multidirectional and more complex control of insect metabolism can occur. ILPs are not the only factors that regulate metabolism. ILPs interact in many cross-talk interactions of different factors, for example, hormones (peptide and nonpeptide), neurotransmitters and growth factors. These interactions are observed at different levels, and three interactions appear to be the most prominent/significant: (1) coinfluence of ILPs and other factors on the same target cells, (2) influence of ILPs on synthesis/secretion of other factors regulating metabolism, and (3) regulation of activity of cells producing/secreting ILPs by various factors. For example, brain insulin-producing cells co-express sulfakinins (SKs), which are cholecystokinin-like peptides, another key regulator of metabolism, and express receptors for tachykinin-related peptides, the next peptide hormones involved in the control of metabolism. It was also shown that ILPs in Drosophila melanogaster can directly and indirectly regulate AKH. This review presents an overview of the regulatory role of insulin-like peptides in insect metabolism and how these factors interact with other players involved in its regulation.
Collapse
Affiliation(s)
- Szymon Chowański
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Karolina Walkowiak-Nowicka
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Magdalena Winkiel
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Pawel Marciniak
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Arkadiusz Urbański
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.,HiProMine S.A., Robakowo, Poland
| | - Joanna Pacholska-Bogalska
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
89
|
Mykles DL. Signaling Pathways That Regulate the Crustacean Molting Gland. Front Endocrinol (Lausanne) 2021; 12:674711. [PMID: 34234741 PMCID: PMC8256442 DOI: 10.3389/fendo.2021.674711] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 12/25/2022] Open
Abstract
A pair of Y-organs (YOs) are the molting glands of decapod crustaceans. They synthesize and secrete steroid molting hormones (ecdysteroids) and their activity is controlled by external and internal signals. The YO transitions through four physiological states over the molt cycle, which are mediated by molt-inhibiting hormone (MIH; basal state), mechanistic Target of Rapamycin Complex 1 (mTORC1; activated state), Transforming Growth Factor-β (TGFβ)/Activin (committed state), and ecdysteroid (repressed state) signaling pathways. MIH, produced in the eyestalk X-organ/sinus gland complex, inhibits the synthesis of ecdysteroids. A model for MIH signaling is organized into a cAMP/Ca2+-dependent triggering phase and a nitric oxide/cGMP-dependent summation phase, which maintains the YO in the basal state during intermolt. A reduction in MIH release triggers YO activation, which requires mTORC1-dependent protein synthesis, followed by mTORC1-dependent gene expression. TGFβ/Activin signaling is required for YO commitment in mid-premolt. The YO transcriptome has 878 unique contigs assigned to 23 KEGG signaling pathways, 478 of which are differentially expressed over the molt cycle. Ninety-nine contigs encode G protein-coupled receptors (GPCRs), 65 of which bind a variety of neuropeptides and biogenic amines. Among these are putative receptors for MIH/crustacean hyperglycemic hormone neuropeptides, corazonin, relaxin, serotonin, octopamine, dopamine, allatostatins, Bursicon, ecdysis-triggering hormone (ETH), CCHamide, FMRFamide, and proctolin. Contigs encoding receptor tyrosine kinase insulin-like receptor, epidermal growth factor (EGF) receptor, and fibroblast growth factor (FGF) receptor and ligands EGF and FGF suggest that the YO is positively regulated by insulin-like peptides and growth factors. Future research should focus on the interactions of signaling pathways that integrate physiological status with environmental cues for molt control.
Collapse
Affiliation(s)
- Donald L. Mykles
- Department of Biology, Colorado State University, Fort Collins, CO, United States
- University of California-Davis Bodega Marine Laboratory, Bodega Bay, CA, United States
| |
Collapse
|
90
|
Azuma M, Ogata T, Yamazoe K, Tanaka Y, Inoue YH. Heat shock cognate 70 genes contribute to Drosophila spermatocyte growth progression possibly through the insulin signaling pathway. Dev Growth Differ 2021; 63:231-248. [PMID: 34050930 DOI: 10.1111/dgd.12734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 11/28/2022]
Abstract
Drosophila spermatocytes grow up to 25 times their original volume before the onset of male meiosis. Several insulin-like peptides and their cognate receptors (InR) are essential for the cell growth process in Drosophila. Here, we aimed to identify additional signaling pathways and other regulatory factors required for germline cell growth in Drosophila males. Spermatocyte-specific expression of the dominant-negative form of InR inhibits cell growth. Conversely, constitutively active forms of signaling factors downstream of InR suppress growth inhibition. Furthermore, hypomorphic mutations in the target of rapamycin (Tor) inhibit spermatocyte growth. These data indicate that the insulin/TOR pathway is essential for the growth of premeiotic spermatocytes. RNA interference (RNAi) screening for the identification of other novel genes associated with cell growth showed that the silencing of each of the five members of heat shock cognate 70 (Hsc70) genes significantly inhibited the process. Hsc70-silenced spermatocytes showed Akt inhibition downstream of the insulin signaling pathway. Our pleckstrin homology domain-green fluorescent protein (PH-GFP) reporter studies indicated that PI3K remained activated in Hsc70-4-silenced cells, suggesting that the Hsc70-4 protein possibly targets Akt or Pdk1 acting downstream of PI3K. Moreover, each of the Hsc70 proteins showed different subcellular localizations. Hsc70-2 exhibited cytoplasmic colocalization with Akt in spermatocytes before nuclear entry of the kinase during the growth phase. These results indicated the involvement of Hsc70 proteins in the activation of various steps in the insulin signaling pathway, which is essential for spermatocyte growth. Our findings provide insights into the mechanism(s) that enhance signal transduction to stimulate the growth of Drosophila spermatocytes.
Collapse
Affiliation(s)
- Maho Azuma
- Department of Insect Biomedical Research, Research Center for Insect Advanced Studies, Kyoto Institute of Technology, Kyoto, Japan
| | - Tsubasa Ogata
- Department of Insect Biomedical Research, Research Center for Insect Advanced Studies, Kyoto Institute of Technology, Kyoto, Japan
| | - Kanta Yamazoe
- Department of Insect Biomedical Research, Research Center for Insect Advanced Studies, Kyoto Institute of Technology, Kyoto, Japan
| | - Yuri Tanaka
- Department of Insect Biomedical Research, Research Center for Insect Advanced Studies, Kyoto Institute of Technology, Kyoto, Japan
| | - Yoshihiro H Inoue
- Department of Insect Biomedical Research, Research Center for Insect Advanced Studies, Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
91
|
Heredia F, Volonté Y, Pereirinha J, Fernandez-Acosta M, Casimiro AP, Belém CG, Viegas F, Tanaka K, Menezes J, Arana M, Cardoso GA, Macedo A, Kotowicz M, Prado Spalm FH, Dibo MJ, Monfardini RD, Torres TT, Mendes CS, Garelli A, Gontijo AM. The steroid-hormone ecdysone coordinates parallel pupariation neuromotor and morphogenetic subprograms via epidermis-to-neuron Dilp8-Lgr3 signal induction. Nat Commun 2021; 12:3328. [PMID: 34099654 PMCID: PMC8184853 DOI: 10.1038/s41467-021-23218-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Innate behaviors consist of a succession of genetically-hardwired motor and physiological subprograms that can be coupled to drastic morphogenetic changes. How these integrative responses are orchestrated is not completely understood. Here, we provide insight into these mechanisms by studying pupariation, a multi-step innate behavior of Drosophila larvae that is critical for survival during metamorphosis. We find that the steroid-hormone ecdysone triggers parallel pupariation neuromotor and morphogenetic subprograms, which include the induction of the relaxin-peptide hormone, Dilp8, in the epidermis. Dilp8 acts on six Lgr3-positive thoracic interneurons to couple both subprograms in time and to instruct neuromotor subprogram switching during behavior. Our work reveals that interorgan feedback gates progression between subunits of an innate behavior and points to an ancestral neuromodulatory function of relaxin signaling.
Collapse
Affiliation(s)
- Fabiana Heredia
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Yanel Volonté
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- INIBIBB, Instituto de Investigaciones Bioquímicas de Bahia Blanca, Universidad Nacional del Sur - CONICET, Bahía Blanca, Argentina
| | - Joana Pereirinha
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Institute of Molecular Biology, Mainz, Germany
| | - Magdalena Fernandez-Acosta
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Andreia P Casimiro
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Cláudia G Belém
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- The Francis Crick Institute, London, UK
| | - Filipe Viegas
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Kohtaro Tanaka
- Instituto Gulbenkian de Ciências, Oeiras, Portugal
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Juliane Menezes
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Maite Arana
- INIBIBB, Instituto de Investigaciones Bioquímicas de Bahia Blanca, Universidad Nacional del Sur - CONICET, Bahía Blanca, Argentina
| | - Gisele A Cardoso
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Laboratório de Genômica e Evolução de Artrópodes, Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil
- CBMEG, Universidade Estadual de Campinas, Campinas, Brazil
| | - André Macedo
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Malwina Kotowicz
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- DZNE, Helmholtz Association, Bonn, Germany
| | - Facundo H Prado Spalm
- INIBIBB, Instituto de Investigaciones Bioquímicas de Bahia Blanca, Universidad Nacional del Sur - CONICET, Bahía Blanca, Argentina
| | - Marcos J Dibo
- INIBIBB, Instituto de Investigaciones Bioquímicas de Bahia Blanca, Universidad Nacional del Sur - CONICET, Bahía Blanca, Argentina
| | - Raquel D Monfardini
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Laboratório de Genômica e Evolução de Artrópodes, Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil
| | - Tatiana T Torres
- Laboratório de Genômica e Evolução de Artrópodes, Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil
| | - César S Mendes
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Andres Garelli
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.
- INIBIBB, Instituto de Investigaciones Bioquímicas de Bahia Blanca, Universidad Nacional del Sur - CONICET, Bahía Blanca, Argentina.
| | - Alisson M Gontijo
- CEDOC, Chronic Diseases Research Center, NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Rua do Instituto Bacteriológico 5, 1150-190, Lisbon, Portugal.
| |
Collapse
|
92
|
McDonald JMC, Nabili P, Thorsen L, Jeon S, Shingleton AW. Sex-specific plasticity and the nutritional geometry of insulin-signaling gene expression in Drosophila melanogaster. EvoDevo 2021; 12:6. [PMID: 33990225 PMCID: PMC8120840 DOI: 10.1186/s13227-021-00175-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/17/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Sexual-size dimorphism (SSD) is replete among animals, but while the selective pressures that drive the evolution of SSD have been well studied, the developmental mechanisms upon which these pressures act are poorly understood. Ours and others' research has shown that SSD in D. melanogaster reflects elevated levels of nutritional plasticity in females versus males, such that SSD increases with dietary intake and body size, a phenomenon called sex-specific plasticity (SSP). Additional data indicate that while body size in both sexes responds to variation in protein level, only female body size is sensitive to variation in carbohydrate level. Here, we explore whether these difference in sensitivity at the morphological level are reflected by differences in how the insulin/IGF-signaling (IIS) and TOR-signaling pathways respond to changes in carbohydrates and proteins in females versus males, using a nutritional geometry approach. RESULTS The IIS-regulated transcripts of 4E-BP and InR most strongly correlated with body size in females and males, respectively, but neither responded to carbohydrate level and so could not explain the sex-specific response to body size to dietary carbohydrate. Transcripts regulated by TOR-signaling did, however, respond to dietary carbohydrate in a sex-specific manner. In females, expression of dILP5 positively correlated with body size, while expression of dILP2,3 and 8, was elevated on diets with a low concentration of both carbohydrate and protein. In contrast, we detected lower levels of dILP2 and 5 protein in the brains of females fed on low concentration diets. We could not detect any effect of diet on dILP expression in males. CONCLUSION Although females and males show sex-specific transcriptional responses to changes in protein and carbohydrate, the patterns of expression do not support a simple model of the regulation of body-size SSP by either insulin- or TOR-signaling. The data also indicate a complex relationship between carbohydrate and protein level, dILP expression and dILP peptide levels in the brain. In general, diet quality and sex both affect the transcriptional response to changes in diet quantity, and so should be considered in future studies that explore the effect of nutrition on body size.
Collapse
Affiliation(s)
- Jeanne M C McDonald
- Department of Ecology and Evolutionary Biology, Cornell University, Corson Hall Ithaca, NY, 14853, USA
- Department of Biology, Lake Forest College, 555 North Sheridan Road, Lake Forest, IL, 60045, USA
| | - Pegah Nabili
- Department of Biology, Lake Forest College, 555 North Sheridan Road, Lake Forest, IL, 60045, USA
| | - Lily Thorsen
- Department of Biology, Lake Forest College, 555 North Sheridan Road, Lake Forest, IL, 60045, USA
| | - Sohee Jeon
- Department of Biological Sciences, University of Illinois at Chicago, 840 W Taylor Street, Chicago, IL, 60607, USA
| | - Alexander W Shingleton
- Department of Biology, Lake Forest College, 555 North Sheridan Road, Lake Forest, IL, 60045, USA.
- Department of Biological Sciences, University of Illinois at Chicago, 840 W Taylor Street, Chicago, IL, 60607, USA.
| |
Collapse
|
93
|
DaCrema D, Bhandari R, Karanja F, Yano R, Halme A. Ecdysone regulates the Drosophila imaginal disc epithelial barrier, determining the length of regeneration checkpoint delay. Development 2021; 148:dev.195057. [PMID: 33658221 DOI: 10.1242/dev.195057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
Regeneration of Drosophila imaginal discs, larval precursors to adult tissues, activates a regeneration checkpoint that coordinates regenerative growth with developmental progression. This regeneration checkpoint results from the release of the relaxin-family peptide Dilp8 from regenerating imaginal tissues. Secreted Dilp8 protein is detected within the imaginal disc lumen, in which it is separated from its receptor target Lgr3, which is expressed in the brain and prothoracic gland, by the disc epithelial barrier. Here, we demonstrate that following damage the imaginal disc epithelial barrier limits Dilp8 signaling and the duration of regeneration checkpoint delay. We also find that the barrier becomes increasingly impermeable to the transepithelial diffusion of labeled dextran during the second half of the third instar. This change in barrier permeability is driven by the steroid hormone ecdysone and correlates with changes in localization of Coracle, a component of the septate junctions that is required for the late-larval impermeable epithelial barrier. Based on these observations, we propose that the imaginal disc epithelial barrier regulates the duration of the regenerative checkpoint, providing a mechanism by which tissue function can signal the completion of regeneration.
Collapse
Affiliation(s)
- Danielle DaCrema
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22902, USA
| | - Rajan Bhandari
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22902, USA
| | - Faith Karanja
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22902, USA
| | - Ryunosuke Yano
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22902, USA
| | - Adrian Halme
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22902, USA
| |
Collapse
|
94
|
Romão D, Muzzopappa M, Barrio L, Milán M. The Upd3 cytokine couples inflammation to maturation defects in Drosophila. Curr Biol 2021; 31:1780-1787.e6. [PMID: 33609452 DOI: 10.1016/j.cub.2021.01.080] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/05/2020] [Accepted: 01/22/2021] [Indexed: 12/20/2022]
Abstract
Developmental transitions, such as puberty or metamorphosis, are tightly controlled by steroid hormones and can be delayed by the appearance of growth abnormalities, developmental tumors, or inflammatory disorders such as inflammatory bowel disease or cystic fibrosis.1-4 Here, we used a highly inflammatory epithelial model of malignant transformation in Drosophila5,6 to unravel the role of Upd3-a cytokine with homology to interleukin-6-and the JAK/STAT signaling pathway in coupling inflammation to a delay in metamorphosis. We present evidence that Upd3 produced by malignant and nearby cell populations signals to the prothoracic gland-an endocrine tissue primarily dedicated to the production of the steroid hormone ecdysone-to activate JAK/STAT and bantam microRNA (miRNA) and to delay metamorphosis. Upd cytokines produced by the tumor site contribute to increasing the systemic levels of Upd3 by amplifying its expression levels in a cell-autonomous manner and by inducing Upd3 expression in neighboring tissues in a non-autonomous manner, culminating in a major systemic response to prevent larvae from initiating pupa transition. Our results identify a new regulatory network impacting on ecdysone biosynthesis and provide new insights into the potential role of inflammatory cytokines and the JAK/STAT signaling pathway in coupling inflammation to delays in puberty.
Collapse
Affiliation(s)
- Daniela Romão
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Mariana Muzzopappa
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Lara Barrio
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Marco Milán
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
95
|
Gong S, Zhang Y, Bao H, Wang X, Chang CH, Huang YC, Deng WM. Tumor Allotransplantation in Drosophila melanogaster with a Programmable Auto-Nanoliter Injector. J Vis Exp 2021. [PMID: 33616117 DOI: 10.3791/62229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This protocol describes the allotransplantation of tumors in Drosophila melanogaster using an auto-nanoliter injection apparatus. With the use of an autoinjector apparatus, trained operators can achieve more efficient and consistent transplantation results compared to those obtained using a manual injector. Here, we cover topics in a chronological fashion: from the crossing of Drosophila lines, to the induction and dissection of the primary tumor, transplantation of the primary tumor into a new adult host and continued generational transplantation of the tumor for extended studies. As a demonstration, here we use Notch intracellular domain (NICD) overexpression induced salivary gland imaginal ring tumors for generational transplantation. These tumors can first be reliably induced in a transition-zone microenvironment within larval salivary gland imaginal rings, then allografted and cultured in vivo to study continued tumor growth, evolution, and metastasis. This allotransplantation method can be useful in potential drug screening programs, as well as for studying tumor-host interactions.
Collapse
Affiliation(s)
- Shangyu Gong
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine
| | - Yichi Zhang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine
| | - Hongcun Bao
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine
| | - Xianfeng Wang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine
| | - Chih-Hsuan Chang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine
| | - Yi-Chun Huang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine
| | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine;
| |
Collapse
|
96
|
Kannangara JR, Mirth CK, Warr CG. Regulation of ecdysone production in Drosophila by neuropeptides and peptide hormones. Open Biol 2021; 11:200373. [PMID: 33593157 PMCID: PMC8103234 DOI: 10.1098/rsob.200373] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
In both mammals and insects, steroid hormones play a major role in directing the animal's progression through developmental stages. To maximize fitness outcomes, steroid hormone production is regulated by the environmental conditions experienced by the animal. In insects, the steroid hormone ecdysone mediates transitions between developmental stages and is regulated in response to environmental factors such as nutrition. These environmental signals are communicated to the ecdysone-producing gland via the action of neuropeptide and peptide hormone signalling pathways. While some of these pathways have been well characterized, there is evidence to suggest more signalling pathways than has previously been thought function to control ecdysone production, potentially in response to a greater range of environmental conditions. Here, we review the neuropeptide and peptide hormone signalling pathways known to regulate the production of ecdysone in the model genetic insect Drosophila melanogaster, as well as what is known regarding the environmental signals that trigger these pathways. Areas for future research are highlighted that can further contribute to our overall understanding of the complex orchestration of environmental, physiological and developmental cues that together produce a functioning adult organism.
Collapse
Affiliation(s)
- Jade R. Kannangara
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Christen K. Mirth
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Coral G. Warr
- Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia
| |
Collapse
|
97
|
Srivastava D, de Toledo M, Manchon L, Tazi J, Juge F. Modulation of Yorkie activity by alternative splicing is required for developmental stability. EMBO J 2021; 40:e104895. [PMID: 33320356 PMCID: PMC7849169 DOI: 10.15252/embj.2020104895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 10/21/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
The Hippo signaling pathway is a major regulator of organ growth, which controls the activity of the transcription coactivator Yorkie (Yki) in Drosophila and its homolog YAP in mammals. Both Yki and YAP proteins exist as alternatively spliced isoforms containing either one or two WW domains. The biological importance of this conserved alternative splicing event is unknown. Here, we identify the splicing factor B52 as a regulator of yki alternative splicing in Drosophila and show that B52 modulates growth in part through modulation of yki alternative splicing. Yki isoforms differ by their transcriptional activity as well as their ability to bind and bridge PPxY motifs-containing partners, and can compete in vivo. Strikingly, flies in which yki alternative splicing has been abrogated, thus expressing only Yki2 isoform, exhibit fluctuating wing asymmetry, a signal of developmental instability. Our results identify yki alternative splicing as a new level of modulation of the Hippo pathway, that is required for growth equilibration during development. This study provides the first demonstration that the process of alternative splicing contributes to developmental robustness.
Collapse
Affiliation(s)
- Diwas Srivastava
- Institut de Génétique Moléculaire de MontpellierUniversity of MontpellierCNRSMontpellierFrance
| | - Marion de Toledo
- Institut de Génétique Moléculaire de MontpellierUniversity of MontpellierCNRSMontpellierFrance
| | - Laurent Manchon
- Institut de Génétique Moléculaire de MontpellierUniversity of MontpellierCNRSMontpellierFrance
| | - Jamal Tazi
- Institut de Génétique Moléculaire de MontpellierUniversity of MontpellierCNRSMontpellierFrance
| | - François Juge
- Institut de Génétique Moléculaire de MontpellierUniversity of MontpellierCNRSMontpellierFrance
| |
Collapse
|
98
|
Yeom E, Shin H, Yoo W, Jun E, Kim S, Hong SH, Kwon DW, Ryu TH, Suh JM, Kim SC, Lee KS, Yu K. Tumour-derived Dilp8/INSL3 induces cancer anorexia by regulating feeding neuropeptides via Lgr3/8 in the brain. Nat Cell Biol 2021; 23:172-183. [PMID: 33558728 DOI: 10.1038/s41556-020-00628-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 12/16/2020] [Indexed: 01/30/2023]
Abstract
In patients with advanced-stage cancer, cancer-associated anorexia affects treatment success and patient survival. However, the underlying mechanism is poorly understood. Here, we show that Dilp8, a Drosophila homologue of mammalian insulin-like 3 peptide (INSL3), is secreted from tumour tissues and induces anorexia through the Lgr3 receptor in the brain. Activated Dilp8-Lgr3 signalling upregulated anorexigenic nucleobinding 1 (NUCB1) and downregulated orexigenic short neuropeptide F (sNPF) and NPF expression in the brain. In the cancer condition, the protein expression of Lgr3 and NUCB1 was significantly upregulated in neurons expressing sNPF and NPF. INSL3 levels were increased in tumour-implanted mice and INSL3-treated mouse hypothalamic cells showed Nucb2 upregulation and Npy downregulation. Food consumption was significantly reduced in intracerebrospinal INSL3-injected mice. In patients with pancreatic cancer, higher serum INSL3 levels increased anorexia. These results indicate that tumour-derived Dilp8/INSL3 induces cancer anorexia by regulating feeding hormones through the Lgr3/Lgr8 receptor in Drosophila and mammals.
Collapse
Affiliation(s)
- Eunbyul Yeom
- Metabolism and Neurophysiology Research Group, Disease Target Structure Research Center, KRIBB, Daejeon, Korea
- Tunneling Nanotube Research Center, Korea University, Seoul, Korea
| | - Hyemi Shin
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Korea
| | - Wonbeak Yoo
- Environmental Disease Research Center, KRIBB, Daejeon, Korea
| | - Eunsung Jun
- Department of Convergence Medicine and Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Institute for Life Sciences, AMIST, Asan Medical Center, Seoul, Korea
| | - Seokho Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Korea
| | - Seung Hyun Hong
- Metabolism and Neurophysiology Research Group, Disease Target Structure Research Center, KRIBB, Daejeon, Korea
| | - Dae-Woo Kwon
- Metabolism and Neurophysiology Research Group, Disease Target Structure Research Center, KRIBB, Daejeon, Korea
- Department of Functional Genomics, UST, Daejeon, Korea
| | - Tae Hoon Ryu
- Metabolism and Neurophysiology Research Group, Disease Target Structure Research Center, KRIBB, Daejeon, Korea
- Department of Functional Genomics, UST, Daejeon, Korea
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, Korea.
| | - Song Cheol Kim
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Asan Biomedical Engineering Research Center, AMIST, Seoul, Korea.
| | - Kyu-Sun Lee
- Metabolism and Neurophysiology Research Group, Disease Target Structure Research Center, KRIBB, Daejeon, Korea.
- Department of Functional Genomics, UST, Daejeon, Korea.
| | - Kweon Yu
- Metabolism and Neurophysiology Research Group, Disease Target Structure Research Center, KRIBB, Daejeon, Korea.
- Department of Functional Genomics, UST, Daejeon, Korea.
- Convergence Research Center of Dementia, KIST, Seoul, Korea.
| |
Collapse
|
99
|
Malita A, Rewitz K. Interorgan communication in the control of metamorphosis. CURRENT OPINION IN INSECT SCIENCE 2021; 43:54-62. [PMID: 33214126 DOI: 10.1016/j.cois.2020.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Steroid hormones control major developmental transitions such as metamorphosis in insects and puberty in mammals. The juvenile must attain a sufficient size before it begins maturation in order to give rise to a properly sized and reproductively fit adult. Studies in the insect Drosophila have begun to reveal a remarkable example of the complex interplay between different organs and the neuroendocrine system that controls the production of the steroid ecdysone, which triggers metamorphosis. This review discusses the inter-organ signals mediating this crosstalk, which allows the neuroendocrine system to assess nutrient availability and growth status of internal organs, ensuring that maturation is initiated at the appropriate time. We discuss how the neuroendocrine system integrates signals from different tissues to coordinate growth and maturation. These studies are still unraveling the organ-to-organ signaling networks that control the timing of metamorphosis, defining important principles underlying the logic of growth and maturation coordination in animals.
Collapse
Affiliation(s)
- Alina Malita
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
100
|
Akai N, Ohsawa S, Sando Y, Igaki T. Epithelial cell-turnover ensures robust coordination of tissue growth in Drosophila ribosomal protein mutants. PLoS Genet 2021; 17:e1009300. [PMID: 33507966 PMCID: PMC7842893 DOI: 10.1371/journal.pgen.1009300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/07/2020] [Indexed: 12/30/2022] Open
Abstract
Highly reproducible tissue development is achieved by robust, time-dependent coordination of cell proliferation and cell death. To study the mechanisms underlying robust tissue growth, we analyzed the developmental process of wing imaginal discs in Drosophila Minute mutants, a series of heterozygous mutants for a ribosomal protein gene. Minute animals show significant developmental delay during the larval period but develop into essentially normal flies, suggesting there exists a mechanism ensuring robust tissue growth during abnormally prolonged developmental time. Surprisingly, we found that both cell death and compensatory cell proliferation were dramatically increased in developing wing pouches of Minute animals. Blocking the cell-turnover by inhibiting cell death resulted in morphological defects, indicating the essential role of cell-turnover in Minute wing morphogenesis. Our analyses showed that Minute wing discs elevate Wg expression and JNK-mediated Dilp8 expression that causes developmental delay, both of which are necessary for the induction of cell-turnover. Furthermore, forced increase in Wg expression together with developmental delay caused by ecdysone depletion induced cell-turnover in the wing pouches of non-Minute animals. Our findings suggest a novel paradigm for robust coordination of tissue growth by cell-turnover, which is induced when developmental time axis is distorted. Animal development can be disturbed by various stimuli such as genetic mutations, environmental fluctuations, and physical injuries. However, animals often accomplish normal tissue growth and morphogenesis even in the presence of developmental perturbations. Drosophila Minute mutants, a series of fly mutants for a ribosomal protein gene, show significantly prolonged larval period but develop into essentially normal flies. We found an unexpected massive cell death and subsequent compensatory cell proliferation in developing wing discs of Minute animals. This ‘cell-turnover’ was essential for normal wing morphogenesis in Minute flies. We found that the cell-turnover was induced by elevated Wg expression in the wing pouch and JNK-mediated Dilp8 expression that causes developmental delay. Indeed, cell-turnover was reproduced in non-Minute animals’ wing discs by overexpressing Wg using the wg promoter together with developmental delay caused by ecdysone depletion. Our findings propose a novel paradigm for morphogenetic robustness by cell-turnover, which ensures normal wing growth during the abnormally prolonged larval period, possibly by creating a flexible cell death and proliferation platform to adjust cell numbers in the prospective wing blade.
Collapse
Affiliation(s)
- Nanami Akai
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Group of Genetics, Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Shizue Ohsawa
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Group of Genetics, Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yukari Sando
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|