51
|
Bai L, Zhou D, Li G, Liu J, Chen X, Su J. Engineering bone/cartilage organoids: strategy, progress, and application. Bone Res 2024; 12:66. [PMID: 39567500 PMCID: PMC11579019 DOI: 10.1038/s41413-024-00376-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/19/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024] Open
Abstract
The concept and development of bone/cartilage organoids are rapidly gaining momentum, providing opportunities for both fundamental and translational research in bone biology. Bone/cartilage organoids, essentially miniature bone/cartilage tissues grown in vitro, enable the study of complex cellular interactions, biological processes, and disease pathology in a representative and controlled environment. This review provides a comprehensive and up-to-date overview of the field, focusing on the strategies for bone/cartilage organoid construction strategies, progresses in the research, and potential applications. We delve into the significance of selecting appropriate cells, matrix gels, cytokines/inducers, and construction techniques. Moreover, we explore the role of bone/cartilage organoids in advancing our understanding of bone/cartilage reconstruction, disease modeling, drug screening, disease prevention, and treatment strategies. While acknowledging the potential of these organoids, we discuss the inherent challenges and limitations in the field and propose potential solutions, including the use of bioprinting for organoid induction, AI for improved screening processes, and the exploration of assembloids for more complex, multicellular bone/cartilage organoids models. We believe that with continuous refinement and standardization, bone/cartilage organoids can profoundly impact patient-specific therapeutic interventions and lead the way in regenerative medicine.
Collapse
Affiliation(s)
- Long Bai
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
- Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang, China
| | - Dongyang Zhou
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Guangfeng Li
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Jinlong Liu
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China.
| | - Xiao Chen
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China.
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China.
| |
Collapse
|
52
|
Elashry MI, Speer J, De Marco I, Klymiuk MC, Wenisch S, Arnhold S. Extracellular Vesicles: A Novel Diagnostic Tool and Potential Therapeutic Approach for Equine Osteoarthritis. Curr Issues Mol Biol 2024; 46:13078-13104. [PMID: 39590374 PMCID: PMC11593097 DOI: 10.3390/cimb46110780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Osteoarthritis (OA) is a chronic progressive degenerative joint disease that affects a significant portion of the equine population and humans worldwide. Current treatment options for equine OA are limited and incompletely curative. Horses provide an excellent large-animal model for studying human OA. Recent advances in the field of regenerative medicine have led to the exploration of extracellular vesicles (EVs)-cargoes of microRNA, proteins, lipids, and nucleic acids-to evaluate their diagnostic value in terms of disease progression and severity, as well as a potential cell-free therapeutic approach for equine OA. EVs transmit molecular signals that influence various biological processes, including the inflammatory response, apoptosis, proliferation, and cell communication. In the present review, we summarize recent advances in the isolation and identification of EVs, the use of their biologically active components as biomarkers, and the distribution of the gap junction protein connexin 43. Moreover, we highlight the role of mesenchymal stem cell-derived EVs as a potential therapeutic tool for equine musculoskeletal disorders. This review aims to provide a comprehensive overview of the current understanding of the pathogenesis, diagnosis, and treatment strategies for OA. In particular, the roles of EVs as biomarkers in synovial fluid, chondrocytes, and plasma for the early detection of equine OA are discussed.
Collapse
Affiliation(s)
- Mohamed I. Elashry
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.S.); (M.C.K.); (S.A.)
| | - Julia Speer
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.S.); (M.C.K.); (S.A.)
| | - Isabelle De Marco
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (I.D.M.); (S.W.)
| | - Michele C. Klymiuk
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.S.); (M.C.K.); (S.A.)
| | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (I.D.M.); (S.W.)
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (J.S.); (M.C.K.); (S.A.)
| |
Collapse
|
53
|
Zhao J, Fang Z, Wang B, Li J, Bahatibieke A, Meng H, Xie Y, Peng J, Zheng Y. Dual cross-linked polyurethane-alginate biomimetic hydrogel for elastic gradient simulation in osteochondral structures: Microenvironment modulation and tissue regeneration. Int J Biol Macromol 2024; 281:136215. [PMID: 39378917 DOI: 10.1016/j.ijbiomac.2024.136215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
The distinctive composition and functions of osteochondral structures result in constrained regeneration. Insufficient healing processes may precipitate the emergence of tissue growth disorders or excessive subchondral bone formation, which can culminate in the deterioration and failure of osteochondral tissue repair. To overcome these limitations, materials designed for osteochondral repair must provide region-specific modulation of the microenvironment and mechanical compatibility. To address these challenges, we propose a method to create continuous hydrogels with distinct structural and functional properties by a precise cross-linking method. We have developed an innovative polyurethane enriched with dimethylglyoxime, facilitating the coordinated loading and precise release of Zn2+. This strategy enables the meticulous control of alginate cross-linking, resulting in an elastic gradient hydrogel that closely resembles the osteochondral interface. The SeSe within the hydrogel effectively modulates the inflammatory microenvironment and fosters the M2 polarization of macrophages. The hydrogel's lower layer is designed to rapidly release Zn2+, thereby enhancing bone regeneration. The upper layer is intended to prevent bone overgrowth and stimulate chondrogenic differentiation. This dual-layer strategy allows targeted stimuli to each region, promoting the seamless integration of neoosteochondral tissue. Our study demonstrates the potential of this stratified hydrogel in achieving uniform and smooth osteochondral tissue regeneration.
Collapse
Affiliation(s)
- Jianming Zhao
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ziyuan Fang
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Bingxuan Wang
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; PLA Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Jinming Li
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Abudureheman Bahatibieke
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haoye Meng
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; PLA Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China.
| | - Yajie Xie
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiang Peng
- Beijing Key Laboratory of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; PLA Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Yudong Zheng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
54
|
Chang YK, Hao SJ, Wu FG. Recent Biomedical Applications of Functional Materials Based on Polyhedral Oligomeric Silsesquioxane (POSS). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401762. [PMID: 39279395 DOI: 10.1002/smll.202401762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/06/2024] [Indexed: 09/18/2024]
Abstract
Polyhedral oligomeric silsesquioxane (POSS) is a 3D, cage-like nanoparticle with an inorganic Si-O-Si core and eight tunable corner functional groups. Its well-defined structure grants it distinctive physical, chemical, and biological properties and has been widely used for preparing high-performance materials. Recently, click chemistry has enabled the synthesis of various functional POSS-based materials for diverse biomedical applications. This article reviews the recent applications of POSS-based materials in the biomedical field, including cancer treatment, tissue engineering, antibacterial use, and biomedical imaging. Representative examples are discussed in detail. Among the various POSS-based applications, cancer treatment and tissue engineering are the most important. Finally, this review presents the current limitations of POSS-based materials and provides guidance for future research.
Collapse
Affiliation(s)
- Yun-Kai Chang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Shi-Jie Hao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| |
Collapse
|
55
|
Torabi Rahvar P, Abdekhodaie MJ, Jooybar E, Gantenbein B. An enzymatically crosslinked collagen type II/hyaluronic acid hybrid hydrogel: A biomimetic cell delivery system for cartilage tissue engineering. Int J Biol Macromol 2024; 279:134614. [PMID: 39127277 DOI: 10.1016/j.ijbiomac.2024.134614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
This study presents new injectable hydrogels based on hyaluronic acid and collagen type II that mimic the polysaccharide-protein structure of natural cartilage. After collagen isolation from chicken sternal cartilage, tyramine-grafted hyaluronic acid and collagen type II (HA-Tyr and COL-II-Tyr) were synthesized. Hybrid hydrogels were prepared with different ratios of HA-Tyr/COL-II-Tyr using horseradish peroxidase and noncytotoxic concentrations of hydrogen peroxide to encapsulate human bone marrow-derived mesenchymal stromal cells (hBM-MSCs). The findings showed that a higher HA-Tyr content resulted in a higher storage modulus and a lower hydrogel shrinkage, resulting in hydrogel swelling. Incorporating COL-II-Tyr into HA-Tyr hydrogels induced a more favorable microenvironment for hBM-MSCs chondrogenic differentiation. Compared to HA-Tyr alone, the hybrid HA-Tyr/COL-II-Tyr hydrogel promoted enhanced chondrocyte adhesion, spreading, proliferation, and upregulation of cartilage-related gene expression. These results highlight the promising potential of injectable HA-Tyr/COL-II-Tyr hybrid hydrogels to deliver cells for cartilage regeneration.
Collapse
Affiliation(s)
- Parisa Torabi Rahvar
- Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran; Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland
| | - Mohammad J Abdekhodaie
- Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran; Environmental and Applied Science Management, Yeates School of Graduate Studies, Toronto Metropolitan University, Toronto, Canada.
| | - Elaheh Jooybar
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Bern, Switzerland; Inselspital, Bern University Hospital, Department of Orthopedic Surgery & Traumatology, Bern, Switzerland
| |
Collapse
|
56
|
Wu H, Wang X, Wang G, Yuan G, Jia W, Tian L, Zheng Y, Ding W, Pei J. Advancing Scaffold-Assisted Modality for In Situ Osteochondral Regeneration: A Shift From Biodegradable to Bioadaptable. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407040. [PMID: 39104283 DOI: 10.1002/adma.202407040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/10/2024] [Indexed: 08/07/2024]
Abstract
Over the decades, the management of osteochondral lesions remains a significant yet unmet medical challenge without curative solutions to date. Owing to the complex nature of osteochondral units with multi-tissues and multicellularity, and inherently divergent cellular turnover capacities, current clinical practices often fall short of robust and satisfactory repair efficacy. Alternative strategies, particularly tissue engineering assisted with biomaterial scaffolds, achieve considerable advances, with the emerging pursuit of a more cost-effective approach of in situ osteochondral regeneration, as evolving toward cell-free modalities. By leveraging endogenous cell sources and innate regenerative potential facilitated with instructive scaffolds, promising results are anticipated and being evidenced. Accordingly, a paradigm shift is occurring in scaffold development, from biodegradable and biocompatible to bioadaptable in spatiotemporal control. Hence, this review summarizes the ongoing progress in deploying bioadaptable criteria for scaffold-based engineering in endogenous osteochondral repair, with emphases on precise control over the scaffolding material, degradation, structure and biomechanics, and surface and biointerfacial characteristics, alongside their distinguished impact on the outcomes. Future outlooks of a highlight on advanced, frontier materials, technologies, and tools tailoring precision medicine and smart healthcare are provided, which potentially paves the path toward the ultimate goal of complete osteochondral regeneration with function restoration.
Collapse
Affiliation(s)
- Han Wu
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuejing Wang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guocheng Wang
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weitao Jia
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Liangfei Tian
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Wenjiang Ding
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Medical Robotics & National Engineering Research Center for Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
57
|
Khatami SM, Hanaee-Ahvaz H, Parivar K, Soleimani M, Abedin Dargoush S, Naderi Sohi A. Cell-free bilayer functionalized scaffold for osteochondral tissue engineering. J Biosci Bioeng 2024; 138:452-461. [PMID: 39227279 DOI: 10.1016/j.jbiosc.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
Osteochondral tissue engineering using layered scaffolds is a promising approach for treating osteochondral defects as an alternative to microfracture procedure, autologous chondrocyte implantation, and cartilage-bone grafting. The team previously investigated the chondrogenesis of mesenchymal stem cells (MSCs) on a polycaprolactone (PCL)/acetylated hyaluronic acid scaffold. The present study first focused on fabricating a novel osteoconductive scaffold utilizing bismuth-nanohydroxyapatite/reduced graphene oxide (Bi-nHAp/rGO) nanocomposite and electrospun PCL. The osteoconductive ability of the scaffold was investigated by evaluating the alkaline phosphatase (ALP) activity and the osteogenic genes expression in the adipose-derived MSCs. The expression of Runx2, collagen I, ALP, and osteocalcin as well as the result of ALP activity indicated the osteoconductive potential of the Bi-nHA-rGO/PCL scaffold. In the next step, a bilayer scaffold containing Bi-nHAp/rGO/PCL as an osteogenic layer and acetylated hyaluronic acid/PCL as a chondrogenic layer was prepared by the electrospinning technique and transplanted into osteochondral defects of rats. The chondrogenic and osteogenic markers corresponding to the surrounding tissues of the transplanted scaffold were surveyed 60 days later by real-time polymerase chain reaction (PCR) and immunohistochemistry methods. The results showed increased chondrogenic (Sox9 and collagen II) and osteogenic (osteocalcin and ALP) gene expression and augmented secretion of collagens II and X after transplantation. The results strongly support the efficacy of this constructed cell-free bilayer scaffold to induce osteochondral defect regeneration.
Collapse
Affiliation(s)
- Seyedeh Mahsa Khatami
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Soleimani
- Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Alireza Naderi Sohi
- Department of Stem Cells and Regenerative Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
58
|
Zhang M, Ye Q, Zhu Z, Shi S, Xu C, Xie R, Li Y. Hyaluronic Acid-Based Dynamic Hydrogels for Cartilage Repair and Regeneration. Gels 2024; 10:703. [PMID: 39590059 PMCID: PMC11594165 DOI: 10.3390/gels10110703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Hyaluronic acid (HA), an important natural polysaccharide and meanwhile, an essential component of extracellular matrix (ECM), has been widely used in tissue repair and regeneration due to its high biocompatibility, biodegradation, and bioactivity, and the versatile chemical groups for modification. Specially, HA-based dynamic hydrogels, compared with the conventional hydrogels, offer an adaptable network and biomimetic microenvironment to optimize tissue repair and the regeneration process with a striking resemblance to ECM. Herein, this review comprehensively summarizes the recent advances of HA-based dynamic hydrogels and focuses on their applications in articular cartilage repair. First, the fabrication methods and advantages of HA dynamic hydrogels are presented. Then, the applications of HA dynamic hydrogels in cartilage repair are illustrated from the perspective of cell-free and cell-encapsulated and/or bioactive molecules (drugs, factors, and ions). Finally, the current challenges and prospective directions are outlined.
Collapse
Affiliation(s)
- Mingshuo Zhang
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Qianwen Ye
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Zebo Zhu
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Shuanglian Shi
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
| | - Chunming Xu
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Renjian Xie
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; (M.Z.); (Q.Y.); (Z.Z.); (S.S.)
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China
| | - Yumei Li
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China;
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
59
|
Haghwerdi F, Haririan I, Soleimani M. Chondrogenic potential of PMSCs cultured on chondroitin sulfate/gelatin-modified DBM scaffold. BIOIMPACTS : BI 2024; 15:30003. [PMID: 40161935 PMCID: PMC11954754 DOI: 10.34172/bi.2023.30003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/15/2023] [Accepted: 10/15/2023] [Indexed: 04/02/2025]
Abstract
Introduction Osteoarthritis is one of the most common orthopedic diseases that gradually causes wear and damage to the articular Subchondral bone due to the destruction of articular cartilage. One of the basic challenges in cartilage tissue engineering is the choice of scaffold. In the design of the cartilage scaffold, it is useful to consider parameters such as porosity, water absorption, high mechanical resistance, biocompatibility, and biodegradability. Therefore, in this study, demineralized bone matrix (DBM), which inherently has these characteristics to some extent, was chosen as the basic scaffold. Methods The gelatin/DBM (G/DBM) and the chondroitin sulfate-gelatin/DBM (GCS/DBM) scaffolds were prepared, respectively, by incorporating gelatin or chondroitin sulfate/gelatin solution inside DBM pores, freeze-drying and crosslinking with EDC/NHS. The physicochemical, biological characteristics and chondrogenic potential of scaffolds were studied. Results According to the SEM results, the size of the DBM pores in the G/DBM and GCS/DBM scaffolds decreased (from almost 100-1500 µm to less than 200 µm), which reduced cell escape compared to the DBM scaffold. Also, crosslinking the scaffolds has greatly increased their compressive E-modulus (more than 8 times). The cytocompatibility and non- toxicity of all scaffolds were confirmed by acridine orange/ethidium bromide (AO/EB) staining. The evaluation results of chondrogenic differentiation of placenta-derived mesenchymal stem cells (PMSCs) on modified scaffolds, using the real-time PCR method, showed that the presence of CS in the GCS/DBM scaffold improved the expression of chondrogenesis markers such as Aggrecan (AGC) (~4 times) and collagen 2 (COL-2) (~2.2 times) compared to the DBM scaffold. Also, Alcian blue staining and immunohistochemical analyses of the scaffolds showed denser and more coherent GAGs and COL-2 protein synthesis on the GCS/DBM than the G/DBM and DBM scaffolds. Conclusion According to the results, the GCS/DBM scaffold can be a suitable scaffold for cartilage tissue engineering.
Collapse
Affiliation(s)
- Fatemeh Haghwerdi
- Department of Pharmaceutical Biomaterials and Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
60
|
He F, Wu H, He B, Han Z, Chen J, Huang L. Antioxidant hydrogels for the treatment of osteoarthritis: mechanisms and recent advances. Front Pharmacol 2024; 15:1488036. [PMID: 39525636 PMCID: PMC11543442 DOI: 10.3389/fphar.2024.1488036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Articular cartilage has limited self-healing ability, resulting in injuries often evolving into osteoarthritis (OA), which poses a significant challenge in the medical field. Although some treatments exist to reduce pain and damage, there is a lack of effective means to promote cartilage regeneration. Reactive Oxygen Species (ROS) have been found to increase significantly in the OA micro-environment. They play a key role in biological systems by participating in cell signaling and maintaining cellular homeostasis. Abnormal ROS expression, caused by internal and external stimuli and tissue damage, leads to elevated levels of oxidative stress, inflammatory responses, cell damage, and impaired tissue repair. To prevent excessive ROS accumulation at injury sites, biological materials can be engineered to respond to the damaged microenvironment, release active components in an orderly manner, regulate ROS levels, reduce oxidative stress, and promote tissue regeneration. Hydrogels have garnered significant attention due to their excellent biocompatibility, tunable physicochemical properties, and drug delivery capabilities. Numerous antioxidant hydrogels have been developed and proven effective in alleviating oxidative stress. This paper discusses a comprehensive treatment strategy that combines antioxidant hydrogels with existing treatments for OA and explores the potential applications of antioxidant hydrogels in cartilage tissue engineering.
Collapse
Affiliation(s)
- Feng He
- Department of Orthopedics, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Hongwei Wu
- Department of Orthopedics, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Bin He
- Department of Orthopedics, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Zun Han
- Department of Orthopedics, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Jiayi Chen
- Department of Orthopedics, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Lei Huang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| |
Collapse
|
61
|
Li D, Zheng S, Wei P, Xu Y, Hu W, Ma S, Tang C, Wang L. Synchronized long-term delivery of growth hormone and insulin-like growth factor 1 through poly (lactic-co-glycolic acid) nanoparticles on polycaprolactone scaffolds for enhanced osteochondral regeneration. Int J Biol Macromol 2024; 282:136781. [PMID: 39454927 DOI: 10.1016/j.ijbiomac.2024.136781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/05/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
The regeneration of osteochondral defects is challenging due to the complex structure of the osteochondral unit. This study aimed to develop a biomimetic scaffold by loading growth hormone (GH) and insulin-like growth factor-1 (IGF-1) into poly (lactic-co-glycolic acid) (PLGA) nanoparticles and incorporating them into polycaprolactone (PCL) scaffolds to promote synchronized osteochondral regeneration. The nanoparticles were successfully immobilized onto PCL scaffolds pre-modified with polydopamine (PDA) to enhance cell adhesion and proliferation. The scaffolds exhibited a sustained release of GH and IGF-1 over 30 days. In vitro studies using rabbit adipose-derived stem cells (ADSCs) showed that the GH/IGF-1 nanoparticle-loaded scaffolds (PCL/PDA/M-PLGA) significantly promoted cell proliferation, chondrogenic differentiation, and osteogenic differentiation compared to control PCL/PDA scaffolds. In vivo experiments using a rabbit osteochondral defect model revealed that the PCL/PDA/M-PLGA scaffolds facilitated superior osteochondral regeneration, evidenced by increased subchondral bone formation and cartilage matrix deposition. Overall, this study demonstrates the potential of GH/IGF-1 nanoparticle-loaded PCL scaffolds for synchronized osteochondral regeneration and provides a promising strategy for treating osteochondral defects.
Collapse
Affiliation(s)
- Dong Li
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China; Department of Trauma Center, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People's Republic of China
| | - Suyang Zheng
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China; Department of Orthopedics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Peiran Wei
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Yan Xu
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China; Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Wenhao Hu
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China; Department of Orthopedics, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, People's Republic of China
| | - Shengshan Ma
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China; Department of Sports Medicine, The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu Province, People's Republic of China
| | - Cheng Tang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China.
| | - Liming Wang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China; Key Lab of Additive Manufacturing Technology, Institute of Digital Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China; Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China.
| |
Collapse
|
62
|
Liu X, Jiang S, Jiang T, Lan Z, Zhang X, Zhong Z, Wu X, Xu C, Du Y, Zhang S. Bioenergetic-active exosomes for cartilage regeneration and homeostasis maintenance. SCIENCE ADVANCES 2024; 10:eadp7872. [PMID: 39423269 PMCID: PMC11488572 DOI: 10.1126/sciadv.adp7872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/16/2024] [Indexed: 10/21/2024]
Abstract
Cartilage regeneration relies on adequate and continuous bioenergy supply to facilitate cellular differentiation and extracellular matrix synthesis. Chondrocytes frequently undergo energy stress under pathological conditions, characterized by disrupted cellular metabolism and reduced adenosine triphosphate (ATP) levels. However, there has limited progress in modulating energy metabolism for cartilage regeneration thus far. Here, we developed bioenergetic-active exosomes (Suc-EXO) to promote cartilage regeneration and homeostasis maintenance. Suc-EXO exhibited a 5.42-fold increase in ATP content, enabling the manipulation of cellular energy metabolism by fueling the TCA cycle. With continuous energy supply, Suc-EXO promoted BMSC chondrogenic differentiation via the P2X7-mediated PI3K-AKT pathway. Moreover, Suc-EXO improved chondrocyte anabolism and mitochondrial homeostasis via the P2X7-mediated SIRT3 pathway. In a rabbit cartilage defect model, the Suc-EXO-encapsulated hydrogel notably promoted cartilage regeneration and maintained neocartilage homeostasis, leading to 2.26 and 1.53 times increase in Col2 and ACAN abundance, respectively. These findings make a remarkable breakthrough in modulating energy metabolism for cartilage regeneration, offering immense potential for clinical translation.
Collapse
Affiliation(s)
- Xulong Liu
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shangtong Jiang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ting Jiang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ziyang Lan
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Zhang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhenyu Zhong
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaodan Wu
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Cunjing Xu
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yingying Du
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, China
- Research Base of Regulatory Science for Medical Devices, National Medical Products Administration, Wuhan 430074, China
- Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shengmin Zhang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, China
- Research Base of Regulatory Science for Medical Devices, National Medical Products Administration, Wuhan 430074, China
- Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
63
|
Zimmermann J, Farooqi AR, van Rienen U. Electrical stimulation for cartilage tissue engineering - A critical review from an engineer's perspective. Heliyon 2024; 10:e38112. [PMID: 39416819 PMCID: PMC11481755 DOI: 10.1016/j.heliyon.2024.e38112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/31/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Cartilage has a limited intrinsic healing capacity. Hence, cartilage degradation and lesions pose a huge clinical challenge, particularly in an ageing society. Osteoarthritis impacts a significant number of the population and requires the development of repair and tissue engineering methods for hyaline articular cartilage. In this context, electrical stimulation has been investigated for more than 50 years already. Yet, no well-established clinical therapy to treat osteoarthritis by means of electrical stimulation exists. We argue that one reason is the lack of replicability of electrical stimulation devices from a technical perspective together with lacking hypotheses of the biophysical mechanism. Hence, first, the electrical stimulation studies reported in the context of cartilage tissue engineering with a special focus on technical details are summarized. Then, an experimental and numerical approach is discussed to make the electrical stimulation experiments replicable. Finally, biophysical hypotheses have been reviewed on the interaction of electric fields and cells that are relevant for cartilage tissue engineering. With that, the aim is to inspire future research to enable clinical electrical stimulation therapies to fight osteoarthritis.
Collapse
Affiliation(s)
- Julius Zimmermann
- Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany
| | - Abdul Razzaq Farooqi
- Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany
- Department of Electronic Engineering, Faculty of Engineering, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany
- Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, 18051 Rostock, Germany
- Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany
| |
Collapse
|
64
|
Boretti G, Amirfallah A, Edmunds KJ, Hamzehpour H, Sigurjónsson ÓE. Advancing Cartilage Tissue Engineering: A Review of 3D Bioprinting Approaches and Bioink Properties. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39381849 DOI: 10.1089/ten.teb.2024.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Articular cartilage is crucial in human physiology, and its degeneration poses a significant public health challenge. While recent advancements in 3D bioprinting and tissue engineering show promise for cartilage regeneration, there remains a gap between research findings and clinical application. This review critically examines the mechanical and biological properties of hyaline cartilage, along with current 3D manufacturing methods and analysis techniques. Moreover, we provide a quantitative synthesis of bioink properties used in cartilage tissue engineering. After screening 181 initial works, 33 studies using extrusion bioprinting were analyzed and synthesized, presenting results that indicate the main materials, cells, and methods utilized for mechanical and biological evaluation. Altogether, this review motivates the standardization of mechanical analyses and biomaterial assessments of 3D bioprinted constructs to clarify their chondrogenic potential.
Collapse
Affiliation(s)
- Gabriele Boretti
- School of Science and Engineering, Reykjavík University, Reykjavík, Iceland
| | - Arsalan Amirfallah
- The Blood Bank, Landspitali, The National University Hospital of Iceland, Reykjavík, Iceland
| | - Kyle J Edmunds
- School of Science and Engineering, Reykjavík University, Reykjavík, Iceland
| | - Helena Hamzehpour
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
| | - Ólafur E Sigurjónsson
- School of Science and Engineering, Reykjavík University, Reykjavík, Iceland
- The Blood Bank, Landspitali, The National University Hospital of Iceland, Reykjavík, Iceland
| |
Collapse
|
65
|
Court AC, Vega-Letter AM, Parra-Crisóstomo E, Velarde F, García C, Ortloff A, Vernal R, Pradenas C, Luz-Crawford P, Khoury M, Figueroa FE. Mitochondrial transfer balances cell redox, energy and metabolic homeostasis in the osteoarthritic chondrocyte preserving cartilage integrity. Theranostics 2024; 14:6471-6486. [PMID: 39479450 PMCID: PMC11519804 DOI: 10.7150/thno.96723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/22/2024] [Indexed: 11/02/2024] Open
Abstract
Osteoarthrosis (OA) is a leading cause of disability and early mortality, with no disease modifying treatment. Mitochondrial (MT) dysfunction and changes in energy metabolism, leading to oxidative stress and apoptosis, are main drivers of disease. In reaction to stress, mesenchymal stromal/stem cells (MSCs) donate their MT to damaged tissues. Methods: To evaluate the capacity of clinically validated MSCs to spontaneously transfer their MT to human OA chondrocytes (OA-Ch), primary cultured Ch isolated from the articular cartilage of OA patients were co-cultured with MT-labeled MSCs. MT transfer (MitoT) was evidenced by flow cytometry and confocal microscopy of MitoTracker-stained and YFP-tagged MT protein. MT persistence and metabolic analysis on target cells were assessed by direct transfer of MSC-derived MT to OA-Chs (Mitoception), through SNP-qPCR analysis, ATP measurements and Seahorse technology. The effects of MitoT on MT dynamics, oxidative stress and cell viability were gauged by western blot of fusion/fission proteins, confocal image analysis, ROS levels, Annexin V/7AAD and TUNEL assays. Intra-articular injection of MSC-derived MT was tested in a collagenase-induced murine model of OA. Results: Dose-dependent cell-to-cell MitoT from MSCs to cultured OA-Chs was detected starting at 4 hours of co-culture, with increasing MT-fluorescence levels at higher MSC:Ch ratios. PCR analysis confirmed the presence of exogenous MSC-MT within MitoT+ OA-Chs up to 9 days post Mitoception. MitoT from MSCs to OA-Ch restores energetic status, with a higher ATP production and metabolic OXPHOS/Glycolisis ratio. Significant changes in the expression of MT network regulators, increased MFN2 and decreased p-DRP1, reveal that MitoT promotes MT fusion restoring the MT dynamics in the OA-Ch. Additionally, MitoT increases SOD2 transcripts, protein, and activity levels, and reduces ROS levels, confering resistance to oxidative stress and enhancing resistance to apoptosis. Intra-articular injection of MSC-derived MT improves histologic scores and bone density of the affected joints in the OA mouse model, demonstrating a protective effect of MT transplantation on cartilage degradation. Conclusion: The Mitochondria transfer of MSC-derived MT induced reversal of the metabolic dysfunction by restoring the energetic status and mitochondrial dynamics in the OA chondrocyte, while conferring resistance to oxidative stress and apoptosis. Intra-articular injection of MT improved the disease in collagenase-induced OA mouse model. The restoration of the cellular homeostasis and the preclinical benefit of the intra-articular MT treatment offer a new approach for the treatment of OA.
Collapse
Affiliation(s)
- Angela C. Court
- Cell for Cells, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Ana María Vega-Letter
- Laboratory Cell and Molecular Immunology, CIIB, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Eliseo Parra-Crisóstomo
- Cell for Cells, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Francesca Velarde
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Cynthia García
- Laboratory Cell and Molecular Immunology, CIIB, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Alexander Ortloff
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Rolando Vernal
- Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Carolina Pradenas
- Laboratory Cell and Molecular Immunology, CIIB, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Patricia Luz-Crawford
- Laboratory Cell and Molecular Immunology, CIIB, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Maroun Khoury
- Cell for Cells, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Fernando E. Figueroa
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Laboratory Cell and Molecular Immunology, CIIB, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| |
Collapse
|
66
|
Dong X, Shi L, Ma S, Chen X, Cao S, Li W, Zhao Z, Chen C, Deng H. Chitin/Chitosan Nanofibers Toward a Sustainable Future: From Hierarchical Structural Regulation to Functionalization Applications. NANO LETTERS 2024; 24:12014-12026. [PMID: 39255018 DOI: 10.1021/acs.nanolett.4c02632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Owing to its multiple fascinating properties of renewability, biodegradability, biocompatibility, and antibacterial activity, chitin is expected to become a green cornerstone of next-generation functional materials. Chitin nanofibers, as building blocks, form multiscale hierarchical structures spanning nano- and macrolevels in living organisms, which pave the way for sophisticated functions. Therefore, from a biomimetic perspective, exploiting chitin nanofibers for use in multifunctional, high-performance materials is a promising approach. Here, we first summarize the latest advances in the multiscale hierarchical structure assembly mode of chitin and its derivative nanofibers, including top-down exfoliation and bottom-up synthesis. Subsequently, we emphasize the environmental impacts of these methods, which are crucial for whether chitin nanofibers can truly contribute to a more eco-friendly era. Furthermore, the latest progress of chitin nanofibers in environmental and medical applications is also discussed. Finally, the potential challenges and tailored solutions of chitin nanofibers are further proposed, covering raw material, structure, function, manufacturing, policies, etc.
Collapse
Affiliation(s)
- Xiangyang Dong
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, Hubei 430079, China
| | - Lei Shi
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, Hubei 430079, China
| | - Shuai Ma
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xinyi Chen
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, Hubei 430079, China
| | - Shiyi Cao
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Li
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, Hubei 430079, China
| | - Ze Zhao
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, Hubei 430079, China
| | - Chaoji Chen
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, Hubei 430079, China
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, Hubei 430079, China
| |
Collapse
|
67
|
Fu L, Wu J, Li P, Zheng Y, Zhang Z, Yuan X, Ding Z, Ning C, Sui X, Liu S, Shi S, Guo Q, Lin Y. A novel mesenchymal stem cell-targeting dual-miRNA delivery system based on aptamer-functionalized tetrahedral framework nucleic acids: Application to endogenous regeneration of articular cartilage. Bioact Mater 2024; 40:634-648. [PMID: 39253616 PMCID: PMC11381621 DOI: 10.1016/j.bioactmat.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
Articular cartilage injury (ACI) remains one of the key challenges in regenerative medicine, as current treatment strategies do not result in ideal regeneration of hyaline-like cartilage. Enhancing endogenous repair via microRNAs (miRNAs) shows promise as a regenerative therapy. miRNA-140 and miRNA-455 are two key and promising candidates for regulating the chondrogenic differentiation of mesenchymal stem cells (MSCs). In this study, we innovatively synthesized a multifunctional tetrahedral framework in which a nucleic acid (tFNA)-based targeting miRNA codelivery system, named A-T-M, was used. With tFNAs as vehicles, miR-140 and miR-455 were connected to and modified on tFNAs, while Apt19S (a DNA aptamer targeting MSCs) was directly integrated into the nanocomplex. The relevant results showed that A-T-M efficiently delivered miR-140 and miR-455 into MSCs and subsequently regulated MSC chondrogenic differentiation through corresponding mechanisms. Interestingly, a synergistic effect between miR-140 and miR-455 was revealed. Furthermore, A-T-M successfully enhanced the endogenous repair capacity of articular cartilage in vivo and effectively inhibited hypertrophic chondrocyte formation. A-T-M provides a new perspective and strategy for the regeneration of articular cartilage, showing strong clinical application value in the future treatment of ACI.
Collapse
Affiliation(s)
- Liwei Fu
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, People's Republic of China
| | - Jiang Wu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, People's Republic of China
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Pinxue Li
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
| | - Yazhe Zheng
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, People's Republic of China
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Zhichao Zhang
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, People's Republic of China
| | - Xun Yuan
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, People's Republic of China
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Zhengang Ding
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, People's Republic of China
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Chao Ning
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, People's Republic of China
| | - Xiang Sui
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, People's Republic of China
| | - Shuyun Liu
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, People's Republic of China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Quanyi Guo
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, People's Republic of China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| |
Collapse
|
68
|
Janipour M, Soltaniesmaeili A, Owji SH, Shahhossein Z, Hashemi SS. Auricular cartilage regeneration using chondroitin sulfate-based hydrogel with mesenchymal stem cells in rabbits. Artif Organs 2024; 48:1100-1111. [PMID: 39031117 DOI: 10.1111/aor.14807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/14/2024] [Accepted: 06/02/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Cartilage is an avascular and alymphatic tissue that lacks the intrinsic ability to undergo spontaneous repair and regeneration in the event of significant injury. The efficacy of conventional therapies for invasive cartilage injuries is limited, thereby prompting the emergence of cartilage tissue engineering as a possible alternative. In this study, we fabricated three-dimensional hydrogel films utilizing sodium alginate (SA), gelatin (Gel), and chondroitin sulfate (CS). These films were included with Wharton's jelly mesenchymal stem cells (WJ-MSCs) and intended for cartilage tissue regeneration. METHODS The hydrogel film that were prepared underwent evaluation using various techniques including scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectroscopy, assessment of the degree of swelling, degradation analysis, determination of water vapor transmission rate (WVTR), measurement of water contact angle (WCA), evaluation of mechanical strength, and assessment of biocompatibility. The rabbit ear cartilage regeneration by hydrogel films with and without of WJ-MSCs was studied by histopathological investigations during 15, 30, and 60 days. RESULTS The hydrogel films containing CS exhibited superior metrics compared to other nanocomposites such as better mechanical strength (12.87 MPa in SA/Gel compared to 15.56 in SA/Gel/CS), stability, hydrophilicity, WVTR (3103.33 g/m2/day in SA/Gel compared to 2646.67 in nanocomposites containing CS), and swelling ratio (6.97 to 12.11% in SA/Gel composite compared to 5.03 to 10.90% in SA/Gel/CS). Histopathological studies showed the presence of chondrocyte cells in the lacunae on the 30th day and the complete restoration of the cartilage tissue on the 60th day following the injury in the group of SA/Gel/CS hydrogel containing WJ-MSCs. CONCLUSIONS We successfully fabricated a scaffold composed of alginate, gelatin, and chondroitin sulfate. This scaffold was further enhanced by the incorporation of Wharton's jelly mesenchymal stem cells. Our findings demonstrate that this composite scaffold has remarkable biocompatibility and mechanical characteristics. The present study successfully demonstrated the therapeutic potential of the SA-Gel-CS hydrogel containing WJ-MSCs for cartilage regeneration in rabbits.
Collapse
Affiliation(s)
- Masoud Janipour
- Otolaryngology Research Centre, Department of Otolaryngology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Soltaniesmaeili
- Otolaryngology Research Centre, Department of Otolaryngology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Hossein Owji
- Otolaryngology Research Centre, Department of Otolaryngology, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Shahhossein
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh-Sara Hashemi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
69
|
Wongin-Sangphet S, Chotiyarnwong P, Viravaidya-Pasuwat K. Reduced Cell Migration in Human Chondrocyte Sheets Increases Tissue Stiffness and Cartilage Protein Production. Tissue Eng Regen Med 2024; 21:1021-1036. [PMID: 39037474 PMCID: PMC11416440 DOI: 10.1007/s13770-024-00662-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Chondrogenic differentiation medium (CDM) is usually used to maintain chondrogenic activity during chondrocyte sheet production. However, tissue qualities remain to be determined as to what factors improve cell functions. Moreover, the relationship between CDM and cell migration proteins has not been reported. METHOD In this study, the effect of CDM on the behavior of chondrocyte sheets was investigated. Structural analysis, mechanical testing and proteomics were performed to observe tissue qualities. The relationship between CDM and cell migration proteins were investigated using time-lapse observations and bioinformatic analysis. RESULTS During 48 h, CDM affected the chondrocyte behaviors by reducing cell migration. Compared to the basal medium, CDM impacted the contraction of monolayered chondrocyte sheets. At day 7, the contracted sheets increased tissue thickness and improved tissue stiffness. Cartilage specific proteins were also upregulated. Remarkedly, the chondrocyte sheets in CDM displayed downregulated proteins related to cell migration. Bioinformatic analysis revealed that TGFβ1 was shown to be associated with cartilage functions and cell migration. Pathway analysis of chondrocyte sheets in CDM also revealed the presence of a TGFβ pathway without activating actin production, which might be involved in synthesizing cartilage-specific proteins. Cell migration pathway showed MAPK signaling in both cultures of the chondrocyte sheets. CONCLUSION Reduced cell migration in the chondrocyte sheet affected the tissue quality. Using CDM, TGFβ1 might trigger cartilage protein production through the TGFβ pathway and be involved in cell migration via the MAPK signaling pathway. Understanding cell behaviors and their protein expression would be beneficial for developing high-quality tissue-engineered cartilage.
Collapse
Affiliation(s)
- Sopita Wongin-Sangphet
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
| | - Pojchong Chotiyarnwong
- Department of Orthopedic Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Kwanchanok Viravaidya-Pasuwat
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
- Department of Chemical Engineering and Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| |
Collapse
|
70
|
Feng H, Ang K, Guan P, Li J, Meng H, Yang J, Fan L, Sun Y. Application of adhesives in the treatment of cartilage repair. INTERDISCIPLINARY MEDICINE 2024; 2. [DOI: 10.1002/inmd.20240015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/08/2024] [Indexed: 01/04/2025]
Abstract
AbstractFrom degeneration causing intervertebral disc issues to trauma‐induced meniscus tears, diverse factors can injure the different types of cartilage. This review highlights adhesives as a promising and rapidly implemented repair strategy. Compared to traditional techniques such as sutures and wires, adhesives offer several advantages. Importantly, they seamlessly connect with the injured tissue, deliver bioactive substances directly to the repair site, and potentially alleviate secondary problems like inflammation or degeneration. This review delves into the cutting‐edge advancements in adhesive technology, specifically focusing on their effectiveness in cartilage injury treatment and their underlying mechanisms. We begin by exploring the material characteristics of adhesives used in cartilage tissue, focusing on essential aspects like adhesion, biocompatibility, and degradability. Subsequently, we investigate the various types of adhesives currently employed in this context. Our discussion then moves to the unique role adhesives play in addressing different cartilage injuries. Finally, we acknowledge the challenges currently faced by this promising technology.
Collapse
Affiliation(s)
- Haoyang Feng
- Department of Pediatric Orthopedics The Third Affiliated Hospital of Southern Medical University Guangzhou China
| | - Kai Ang
- Department of Pediatric Orthopedics The Third Affiliated Hospital of Southern Medical University Guangzhou China
| | - Pengfei Guan
- Department of Pediatric Orthopedics The Third Affiliated Hospital of Southern Medical University Guangzhou China
| | - Junji Li
- Department of Pediatric Orthopedics The Third Affiliated Hospital of Southern Medical University Guangzhou China
| | - Huan Meng
- Postdoc Cartilage Biology AO Research Institute Davos Davos Platz Wellington Switzerland
| | - Jian Yang
- Biomedical Engineering Program School of Engineering Westlake University Hangzhou China
| | - Lei Fan
- Department of Orthopedic Surgery Nanfang Hospital Southern Medical University Guangzhou China
| | - Yongjian Sun
- Department of Pediatric Orthopedics The Third Affiliated Hospital of Southern Medical University Guangzhou China
| |
Collapse
|
71
|
Cheng R, Xie T, Ma W, Deng P, Liu C, Hong Y, Liu C, Tian J, Xu Y. Application of polydopamine-modified triphasic PLA/PCL-PLGA/Mg(OH) 2-velvet antler polypeptides scaffold loaded with fibrocartilage stem cells for the repair of osteochondral defects. Front Bioeng Biotechnol 2024; 12:1460623. [PMID: 39372430 PMCID: PMC11450761 DOI: 10.3389/fbioe.2024.1460623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
Articular cartilage defects often involve damage to both the cartilage and subchondral bone, requiring a scaffold that can meet the unique needs of each tissue type and establish an effective barrier between the bone and cartilage. In this study, we used 3D printing technology to fabricate a tri-phasic scaffold composed of PLA/PCL-PLGA/Mg(OH)₂, which includes a cartilage layer, an osteochondral interface, and a bone layer. The scaffold was filled with Velvet antler polypeptides (VAP), and its characterization was assessed using compression testing, XRD, FTIR, SEM, fluorescence microscopy, and EDS. In vitro investigation demonstrated that the scaffold not only supported osteogenesis but also promoted chondrogenic differentiation of fibrocartilage stem cells (FCSCs). n vivo experiments showed that the tri-phasic PLA/PCL-PLGA/Mg(OH)2-VAP scaffold together with FCSC, when transplanted to animal models, increased the recovery of osteochondral defects. Those results demonstrate the promising future of illustrated tri-phasic PLA/PCL-PLGA/Mg(OH)2-VAP scaffold loaded with FCSCs as a new bone and cartilage tissue engineering approach for osteochondral defects treatment.
Collapse
Affiliation(s)
- Renyi Cheng
- Department of Orthodontics, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Tao Xie
- Department of Orthodontics, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Wen Ma
- Yunnan Key Laboratory of Stomatology, Kunming, China
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Peishen Deng
- Department of Orthodontics, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Chaofeng Liu
- Yunnan Key Laboratory of Stomatology, Kunming, China
- Second Clinic, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuchen Hong
- Department of Orthodontics, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Changyu Liu
- Department of Orthodontics, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Jinjun Tian
- Department of Orthodontics, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Yanhua Xu
- Department of Orthodontics, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| |
Collapse
|
72
|
Karami P, Laurent A, Philippe V, Applegate LA, Pioletti DP, Martin R. Cartilage Repair: Promise of Adhesive Orthopedic Hydrogels. Int J Mol Sci 2024; 25:9984. [PMID: 39337473 PMCID: PMC11432485 DOI: 10.3390/ijms25189984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Cartilage repair remains a major challenge in human orthopedic medicine, necessitating the application of innovative strategies to overcome existing technical and clinical limitations. Adhesive hydrogels have emerged as promising candidates for cartilage repair promotion and tissue engineering, offering key advantages such as enhanced tissue integration and therapeutic potential. This comprehensive review navigates the landscape of adhesive hydrogels in cartilage repair, discussing identified challenges, shortcomings of current treatment options, and unique advantages of adhesive hydrogel products and scaffolds. While emphasizing the critical need for in situ lateral integration with surrounding tissues, we dissect current limitations and outline future perspectives for hydrogel scaffolds in cartilage repair. Moreover, we examine the clinical translation pathway and regulatory considerations specific to adhesive hydrogels. Overall, this review synthesizes the existing insights and knowledge gaps and highlights directions for future research regarding adhesive hydrogel-based devices in advancing cartilage tissue engineering.
Collapse
Affiliation(s)
- Peyman Karami
- Department of Orthopedic Surgery and Traumatology, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
- Laboratory of Biomechanical Orthopaedics, Institute of Bioengineering, School of Engineering, EPFL, CH-1015 Lausanne, Switzerland
| | - Alexis Laurent
- Manufacturing Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
- Regenerative Therapy Unit, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Virginie Philippe
- Department of Orthopedic Surgery and Traumatology, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
- Regenerative Therapy Unit, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Dominique P Pioletti
- Laboratory of Biomechanical Orthopaedics, Institute of Bioengineering, School of Engineering, EPFL, CH-1015 Lausanne, Switzerland
| | - Robin Martin
- Department of Orthopedic Surgery and Traumatology, University Hospital of Lausanne, CH-1011 Lausanne, Switzerland
| |
Collapse
|
73
|
Chen Y, Yan Y, Tian R, Sheng Z, Li L, Chen J, Liao Y, Wen Y, Lu J, Liu X, Sun W, Wu H, Liao Y, Zhang X, Chen X, An C, Zhao K, Liu W, Gao J, Hay DC, Ouyang H. Chemically programmed metabolism drives a superior cell fitness for cartilage regeneration. SCIENCE ADVANCES 2024; 10:eadp4408. [PMID: 39259800 PMCID: PMC11389791 DOI: 10.1126/sciadv.adp4408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/02/2024] [Indexed: 09/13/2024]
Abstract
The rapid advancement of cell therapies underscores the importance of understanding fundamental cellular attributes. Among these, cell fitness-how transplanted cells adapt to new microenvironments and maintain functional stability in vivo-is crucial. This study identifies a chemical compound, FPH2, that enhances the fitness of human chondrocytes and the repair of articular cartilage, which is typically nonregenerative. Through drug screening, FPH2 was shown to broadly improve cell performance, especially in maintaining chondrocyte phenotype and enhancing migration. Single-cell transcriptomics indicated that FPH2 induced a super-fit cell state. The mechanism primarily involves the inhibition of carnitine palmitoyl transferase I and the optimization of metabolic homeostasis. In animal models, FPH2-treated human chondrocytes substantially improved cartilage regeneration, demonstrating well-integrated tissue interfaces in rats. In addition, an acellular FPH2-loaded hydrogel proved effective in preventing the onset of osteoarthritis. This research provides a viable and safe method to enhance chondrocyte fitness, offering insights into the self-regulatory mechanisms of cell fitness.
Collapse
Affiliation(s)
- Yishan Chen
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Yiyang Yan
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Ruonan Tian
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Zixuan Sheng
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Liming Li
- Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Jiachen Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yuan Liao
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ya Wen
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Junting Lu
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Xinyu Liu
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Wei Sun
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Haoyu Wu
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Youguo Liao
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianzhu Zhang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuri Chen
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengrui An
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Zhao
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Wanlu Liu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - David C Hay
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Hongwei Ouyang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| |
Collapse
|
74
|
Nordberg RC, Wen DH, Wang D, Hu JC, Athanasiou KA. Challenges and recent advances in engineering the osteochondral interface. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2024; 31:100546. [PMID: 39494386 PMCID: PMC11526383 DOI: 10.1016/j.cobme.2024.100546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Due to the high incidence of cartilage-related pathologies such as focal defects and osteoarthritis, strategies are needed to restore the structure and function of osteochondral tissue. Articular cartilage and bone have distinctly different properties, rendering challenging the engineering of a robust interface that reduces stress concentrations and delamination. The osteochondral interface, which consists of a tidemark, calcified cartilage, cement line, and surrounding tissues, has a unique structure and function, but there is a dearth of quantitative data to describe it. Elucidating the structure-function relationships through characterization will be essential in defining design criteria for tissue engineering. Osteochondral engineering has used scaffold-based methods that, for example, use polymers in conjunction with ceramics. Excitingly, scaffold-free methods are emerging for engineering the articular cartilage layer, which can be interfaced with an underlying bone substrate. Critical must be the objective of designing an interface that displays mechanics robust enough to withstand the native environment.
Collapse
Affiliation(s)
- Rachel C. Nordberg
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, USA
| | - Deborah H. Wen
- Department of Orthopaedic Surgery, University of California Irvine Medical Center, Orange, CA, USA
| | - Dean Wang
- Department of Orthopaedic Surgery, University of California Irvine Medical Center, Orange, CA, USA
| | - Jerry C. Hu
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, USA
| | - Kyriacos A. Athanasiou
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, USA
| |
Collapse
|
75
|
Enayati M, Liu W, Madry H, Neisiany RE, Cucchiarini M. Functionalized hydrogels as smart gene delivery systems to treat musculoskeletal disorders. Adv Colloid Interface Sci 2024; 331:103232. [PMID: 38889626 DOI: 10.1016/j.cis.2024.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Despite critical advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy based on the delivery of therapeutic genetic sequences has strong value to offer effective, durable options to decisively manage such disorders. Furthermore, scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy, allowing for the spatiotemporal delivery of candidate genes to sites of injury. Among the many scaffolds for musculoskeletal research, hydrogels raised increasing attention in addition to other potent systems (solid, hybrid scaffolds) due to their versatility and competence as drug and cell carriers in tissue engineering and wound dressing. Attractive functionalities of hydrogels for musculoskeletal therapy include their injectability, stimuli-responsiveness, self-healing, and nanocomposition that may further allow to upgrade of them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. Such functionalized hydrogels may also be tuned to successfully transfer therapeutic genes in a minimally invasive manner in order to protect their cargos and allow for their long-term effects. In light of such features, this review focuses on functionalized hydrogels and demonstrates their competence for the treatment of musculoskeletal disorders using gene therapy procedures, from gene therapy principles to hydrogel functionalization methods and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are being discussed in the perspective of translation in patients. STATEMENT OF SIGNIFICANCE: Despite advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy has strong value in offering effective, durable options to decisively manage such disorders. Scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy. Among many scaffolds for musculoskeletal research, hydrogels raised increasing attention. Functionalities including injectability, stimuli-responsiveness, and self-healing, tune them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. This review introduces functionalized hydrogels for musculoskeletal disorder treatment using gene therapy procedures, from gene therapy principles to functionalized hydrogels and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are discussed from the perspective of translation in patients.
Collapse
Affiliation(s)
- Mohammadsaeid Enayati
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany.
| |
Collapse
|
76
|
Zhang JY, Xiang XN, Yu X, Liu Y, Jiang HY, Peng JL, He CQ, He HC. Mechanisms and applications of the regenerative capacity of platelets-based therapy in knee osteoarthritis. Biomed Pharmacother 2024; 178:117226. [PMID: 39079262 DOI: 10.1016/j.biopha.2024.117226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/25/2024] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease in the elderly population and its substantial morbidity and disability impose a heavy economic burden on patients and society. Knee osteoarthritis (KOA) is the most common subtype of OA, which is characterized by damage to progressive articular cartilage, synovitis, and subchondral bone sclerosis. Most current treatments for OA are palliative, primarily aim at symptom management, and do not prevent the progression of the disease or restore degraded cartilage. The activation of α-granules in platelets releases various growth factors that are involved in multiple stages of tissue repair, suggesting potential for disease modification. In recent years, platelet-based therapies, such as platelet-rich plasma, platelet-rich fibrin, and platelet lysates, have emerged as promising regenerative treatments for KOA, but their related effects and mechanisms are still unclear. Therefore, this review aims to summarize the biological characteristics and functions of platelets, classify the products of platelet-based therapy and related preparation methods. Moreover, we summarize the basic research of platelet-based regeneration strategies for KOA and discuss the cellular effects and molecular mechanisms. Further, we describe the general clinical application of platelet-based therapy in the treatment of KOA and the results of the meta-analysis of randomized controlled trials.
Collapse
Affiliation(s)
- Jiang-Yin Zhang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xiao-Na Xiang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xi Yu
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yan Liu
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hong-Ying Jiang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jia-Lei Peng
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Cheng-Qi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hong-Chen He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
77
|
Ajam A, Huang Y, Islam MS, Kilian KA, Kruzic JJ. Mechanical and biological behavior of double network hydrogels reinforced with alginate versus gellan gum. J Mech Behav Biomed Mater 2024; 157:106642. [PMID: 38963998 DOI: 10.1016/j.jmbbm.2024.106642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/06/2024] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
Alginate and gellan gum have both been used by researchers as reinforcing networks to create tough and biocompatible polyethylene glycol (PEG) based double network (DN) hydrogels; however, the relative advantages and disadvantages of each approach are not understood. This study directly compares the mechanical and biological properties of polyethylene glycol di-methacrylate (PEGDMA) hybrid DN hydrogels reinforced with either gellan gum or sodium alginate using PEGDMA concentrations from 10 to 20 wt% and reinforcing network concentrations of 1 and 2 wt%. The findings demonstrate that gellan gum reinforcement is more effective at increasing the strength, stiffness, and toughness of PEGDMA DN hydrogels. In contrast, alginate reinforcement yields DN hydrogels with greater stretchability compared to gellan gum reinforced PEGDMA. Furthermore, separate measurements of toughness via unnotched work of rupture testing and notched fracture toughness testing showed a strong correlation of these two properties for a single reinforcing network type, but not across the two types of reinforcing networks. This suggests that additional notched fracture toughness experiments are important for understanding the full mechanical response when comparing different tough DN hydrogel systems. Regarding the biological response, after conjugation of matrix protein to the surface of both materials robust cell attachment and spreading was supported with higher yes associated protein (YAP) nuclear expression observed in populations adhering to the stiffer gellan gum-PEGDMA material. This study provides valuable insights regarding how to design double network hydrogels for specific property requirements, e.g., for use in biomedical devices, as scaffolding for tissue engineering, or in soft robotic applications.
Collapse
Affiliation(s)
- Alaa Ajam
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Yuwan Huang
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Md Shariful Islam
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Kristopher A Kilian
- School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia; School of Chemistry, Australian Centre for NanoMedicine, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Jamie J Kruzic
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia.
| |
Collapse
|
78
|
Xiong Y, Mi B, Liu G, Zhao Y. Microenvironment-sensitive nanozymes for tissue regeneration. Biomaterials 2024; 309:122585. [PMID: 38692147 DOI: 10.1016/j.biomaterials.2024.122585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Tissue defect is one of the significant challenges encountered in clinical practice. Nanomaterials, including nanoparticles, nanofibers, and metal-organic frameworks, have demonstrated an extensive potential in tissue regeneration, offering a promising avenue for future clinical applications. Nonetheless, the intricate landscape of the inflammatory tissue microenvironment has engendered challenges to the efficacy of nanomaterial-based therapies. This quandary has spurred researchers to pivot towards advanced nanotechnological remedies for overcoming these therapeutic constraints. Among these solutions, microenvironment-sensitive nanozymes have emerged as a compelling instrument with the capacity to reshape the tissue microenvironment and enhance the intricate process of tissue regeneration. In this review, we summarize the microenvironmental characteristics of damaged tissues, offer insights into the rationale guiding the design and engineering of microenvironment-sensitive nanozymes, and explore the underlying mechanisms that underpin these nanozymes' responsiveness. This analysis includes their roles in orchestrating cellular signaling, modulating immune responses, and promoting the delicate process of tissue remodeling. Furthermore, we discuss the diverse applications of microenvironment-sensitive nanozymes in tissue regeneration, including bone, soft tissue, and cartilage regeneration. Finally, we shed our sights on envisioning the forthcoming milestones in this field, prospecting a future where microenvironment-sensitive nanozymes contribute significantly to the development of tissue regeneration and improved clinical outcomes.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Bobin Mi
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore; Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| |
Collapse
|
79
|
van der Weiden G, Mastbergen S, Both S, Karperien M, Lafeber F, van Egmond N, Custers R. Dextran-tryamine hydrogel maintains position and integrity under simulated loading in a human cadaver knee model. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100492. [PMID: 38946794 PMCID: PMC11211881 DOI: 10.1016/j.ocarto.2024.100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Objective This dextran-tyramine hydrogel is a novel cartilage repair technique, filling focal cartilage defects to provide a cell-free scaffold for subsequent cartilage repair. We aim to asses this techniques' operative feasibility in the knee joint and its ability to maintain position and integrity under expected loading conditions. Method Seven fresh-frozen human cadaver legs (age range 55-88) were used to create 30 cartilage defects on the medial and lateral femoral condyles dependent of cartilage quality, starting with 1.0 cm2; augmenting to 1.5 cm2 and eventually 2.0 cm2. The defects were operatively filled with the injectable hydrogel scaffold. The knees were subsequently placed on a continues passive motion machine for 30 min of non-load bearing movement, mimicking post-operative rehabilitation. High resolution digital photographs documented the hydrogel scaffold after placement and directly after movement. Three independent observers blinded for the moment compared the photographs on outline attachment, area coverage and hydrogel integrity. Results The operative procedure was uncomplicated in all defects, application of the hydrogel was straightforward and comparable to common cartilage repair techniques. No macroscopic iatrogenic damage was observed. The hydrogel scaffold remained predominately unchanged after non-load bearing movement. Outline attachment, area coverage and hydrogel integrity were unaffected in 87%, 93% and 83% of defects respectively. Larger defects appear to be more affected than smaller defects, although not statistically significant (p > 0.05). Conclusion The results of this study show operative feasibility of this cell-free hydrogel scaffold for chondral defects of the knee joint. Sustained outline attachment, area coverage and hydrogel integrity were observed after non-load bearing knee movement.
Collapse
Affiliation(s)
- G.S. van der Weiden
- Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Developmental BioEngineering, University of Twente, Enschede, the Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - S.C. Mastbergen
- Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - S.K. Both
- Developmental BioEngineering, University of Twente, Enschede, the Netherlands
| | - M. Karperien
- Developmental BioEngineering, University of Twente, Enschede, the Netherlands
| | - F.P. Lafeber
- Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - N. van Egmond
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - R.J.H. Custers
- Department of Orthopedics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
80
|
Zhang Z, Hu X, Jin M, Mu Y, Zhou H, Ma C, Ma L, Liu B, Yao H, Huang Y, Wang DA. Collagen Type II-Based Injectable Materials for In situ Repair and Regeneration of Articular Cartilage Defect. Biomater Res 2024; 28:0072. [PMID: 39220112 PMCID: PMC11362811 DOI: 10.34133/bmr.0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Repairing and regenerating articular cartilage defects (ACDs) have long been challenging for physicians and scientists. The rise of injectable materials provides a novel strategy for minimally invasive surgery to repair ACDs. In this study, we successfully developed injectable materials based on collagen type II, achieving hyaline cartilage repair and regeneration of ACDs. Analysis was conducted on the regenerated cartilage after materials injection. The histology staining demonstrated complete healing of the ACDs with the attainment of a hyaline cartilage phenotype. The biochemical and biomechanical properties are similar to the adjacent native cartilage without noticeable adverse effects on the subchondral bone. Further transcriptome analysis found that compared with the Native cartilage adjacent to the defect area, the Regenerated cartilage in the defect area repaired with type II collagen-based injection materials showed changes in cartilage-related pathways, as well as down-regulation of T cell receptor signaling pathways and interleukin-17 signaling pathways, which changed the immune microenvironment of the ACD area. Overall, these findings offer a promising injectable approach to treating ACDs, providing a potential solution to the challenges associated with achieving hyaline cartilage in situ repair and regeneration while minimizing damage to the surrounding cartilage.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Biomedical Engineering,
City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Xu Hu
- Department of Biomedical Engineering,
City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Min Jin
- Department of Biomedical Engineering,
City University of Hong Kong, Kowloon, Hong Kong SAR
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine,
HKSTP, Sha Tin, Hong Kong SAR
| | - Yulei Mu
- Department of Biomedical Engineering,
City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Huiqun Zhou
- Department of Biomedical Engineering,
City University of Hong Kong, Kowloon, Hong Kong SAR
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine,
HKSTP, Sha Tin, Hong Kong SAR
| | - Cheng Ma
- Department of Biomedical Engineering,
City University of Hong Kong, Kowloon, Hong Kong SAR
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine,
HKSTP, Sha Tin, Hong Kong SAR
| | - Liang Ma
- Department of Biomedical Engineering,
City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Bangheng Liu
- Department of Biomedical Engineering,
City University of Hong Kong, Kowloon, Hong Kong SAR
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine,
HKSTP, Sha Tin, Hong Kong SAR
| | - Hang Yao
- School of Chemistry and Chemical Engineering,
Yangzhou University, Yangzhou, China
| | - Ye Huang
- Knee Preservation Clinical and Research Center,
Beijing Jishuitan Hospital, Beijing, China
| | - Dong-An Wang
- Department of Biomedical Engineering,
City University of Hong Kong, Kowloon, Hong Kong SAR
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine,
HKSTP, Sha Tin, Hong Kong SAR
- Center for Neuromusculoskeletal Restorative Medicine,
HKSTP, Shatin, Hong Kong SAR
| |
Collapse
|
81
|
Tong Y, Yuan J, Li Z, Deng C, Cheng Y. Drug-Loaded Bioscaffolds for Osteochondral Regeneration. Pharmaceutics 2024; 16:1095. [PMID: 39204440 PMCID: PMC11360256 DOI: 10.3390/pharmaceutics16081095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Osteochondral defect is a complex tissue loss disease caused by arthritis, high-energy trauma, and many other reasons. Due to the unique structural characteristics of osteochondral tissue, the repair process is sophisticated and involves the regeneration of both hyaline cartilage and subchondral bone. However, the current clinical treatments often fall short of achieving the desired outcomes. Tissue engineering bioscaffolds, especially those created via three-dimensional (3D) printing, offer promising solutions for osteochondral defects due to their precisely controllable 3D structures. The microstructure of 3D-printed bioscaffolds provides an excellent physical environment for cell adhesion and proliferation, as well as nutrient transport. Traditional 3D-printed bioscaffolds offer mere physical stimulation, while drug-loaded 3D bioscaffolds accelerate the tissue repair process by synergistically combining drug therapy with physical stimulation. In this review, the physiological characteristics of osteochondral tissue and current treatments of osteochondral defect were reviewed. Subsequently, the latest progress in drug-loaded bioscaffolds was discussed and highlighted in terms of classification, characteristics, and applications. The perspectives of scaffold design, drug control release, and biosafety were also discussed. We hope this article will serve as a valuable reference for the design and development of osteochondral regenerative bioscaffolds and pave the way for the use of drug-loaded bioscaffolds in clinical therapy.
Collapse
Affiliation(s)
| | | | | | - Cuijun Deng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China; (Y.T.); (J.Y.); (Z.L.)
| | - Yu Cheng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, China; (Y.T.); (J.Y.); (Z.L.)
| |
Collapse
|
82
|
Lewis JA, Nemke B, Lu Y, Sather NA, McClendon MT, Mullen M, Yuan SC, Ravuri SK, Bleedorn JA, Philippon MJ, Huard J, Markel MD, Stupp SI. A bioactive supramolecular and covalent polymer scaffold for cartilage repair in a sheep model. Proc Natl Acad Sci U S A 2024; 121:e2405454121. [PMID: 39106310 PMCID: PMC11331086 DOI: 10.1073/pnas.2405454121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/01/2024] [Indexed: 08/09/2024] Open
Abstract
Regeneration of hyaline cartilage in human-sized joints remains a clinical challenge, and it is a critical unmet need that would contribute to longer healthspans. Injectable scaffolds for cartilage repair that integrate both bioactivity and sufficiently robust physical properties to withstand joint stresses offer a promising strategy. We report here on a hybrid biomaterial that combines a bioactive peptide amphiphile supramolecular polymer that specifically binds the chondrogenic cytokine transforming growth factor β-1 (TGFβ-1) and crosslinked hyaluronic acid microgels that drive formation of filament bundles, a hierarchical motif common in natural musculoskeletal tissues. The scaffold is an injectable slurry that generates a porous rubbery material when exposed to calcium ions once placed in cartilage defects. The hybrid material was found to support in vitro chondrogenic differentiation of encapsulated stem cells in response to sustained delivery of TGFβ-1. Using a sheep model, we implanted the scaffold in shallow osteochondral defects and found it can remain localized in mechanically active joints. Evaluation of resected joints showed significantly improved repair of hyaline cartilage in osteochondral defects injected with the scaffold relative to defects injected with the growth factor alone, including implantation in the load-bearing femoral condyle. These results demonstrate the potential of the hybrid biomimetic scaffold as a niche to favor cartilage repair in mechanically active joints using a clinically relevant large-animal model.
Collapse
Affiliation(s)
- Jacob A. Lewis
- Department of Biomedical Engineering, Northwestern University, Evanston, IL60208
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL60611
| | - Brett Nemke
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI53706
| | - Yan Lu
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI53706
| | - Nicholas A. Sather
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL60611
| | - Mark T. McClendon
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL60611
| | - Michael Mullen
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO81657
| | - Shelby C. Yuan
- Department of Biomedical Engineering, Northwestern University, Evanston, IL60208
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL60611
| | - Sudheer K. Ravuri
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO81657
| | - Jason A. Bleedorn
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI53706
| | - Marc J. Philippon
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO81657
| | - Johnny Huard
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO81657
| | - Mark D. Markel
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin–Madison, Madison, WI53706
| | - Samuel I. Stupp
- Department of Biomedical Engineering, Northwestern University, Evanston, IL60208
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL60611
- Department of Chemistry, Northwestern University, Evanston, IL60208
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL60208
- Department of Medicine, Northwestern University, Chicago, IL60611
| |
Collapse
|
83
|
Yuan SC, Álvarez Z, Lee SR, Pavlović RZ, Yuan C, Singer E, Weigand SJ, Palmer LC, Stupp SI. Supramolecular Motion Enables Chondrogenic Bioactivity of a Cyclic Peptide Mimetic of Transforming Growth Factor-β1. J Am Chem Soc 2024; 146:21555-21567. [PMID: 39054767 DOI: 10.1021/jacs.4c05170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Transforming growth factor (TGF)-β1 is a multifunctional protein that is essential in many cellular processes that include fibrosis, inflammation, chondrogenesis, and cartilage repair. In particular, cartilage repair is important to avoid physical disability since this tissue does not have the inherent capacity to regenerate beyond full development. We report here on supramolecular coassemblies of two peptide amphiphile molecules, one containing a TGF-β1 mimetic peptide, and another which is one of two constitutional isomers lacking bioactivity. Using human articular chondrocytes, we investigated the bioactivity of the supramolecular copolymers of each isomer displaying either the previously reported linear form of the mimetic peptide or a novel cyclic analogue. Based on fluorescence depolarization and 1H NMR spin-lattice relaxation times, we found that coassemblies containing the cyclic compound and the most dynamic isomer exhibited the highest intracellular TGF-β1 signaling and gene expression of cartilage extracellular matrix components. We conclude that control of supramolecular motion is emerging as an important factor in the binding of synthetic molecules to receptors that can be tuned through chemical structure.
Collapse
Affiliation(s)
- Shelby C Yuan
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Zaida Álvarez
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08028, Spain
| | - Sieun Ruth Lee
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Radoslav Z Pavlović
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Chunhua Yuan
- Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ethan Singer
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Steven J Weigand
- DuPont-Northwestern-Dow Collaborative Access Team Synchrotron Research Center, Northwestern University, Advanced Photon Source/Argonne National Laboratory 432-A004, Argonne, Illinois 60439, United States
| | - Liam C Palmer
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
84
|
Eckstein KN, Hergert JE, Uzcategui AC, Schoonraad SA, Bryant SJ, McLeod RR, Ferguson VL. Controlled Mechanical Property Gradients Within a Digital Light Processing Printed Hydrogel-Composite Osteochondral Scaffold. Ann Biomed Eng 2024; 52:2162-2177. [PMID: 38684606 PMCID: PMC11989580 DOI: 10.1007/s10439-024-03516-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/07/2024] [Indexed: 05/02/2024]
Abstract
Tissue engineered scaffolds are needed to support physiological loads and emulate the micrometer-scale strain gradients within tissues that guide cell mechanobiological responses. We designed and fabricated micro-truss structures to possess spatially varying geometry and controlled stiffness gradients. Using a custom projection microstereolithography (μSLA) system, using digital light projection (DLP), and photopolymerizable poly(ethylene glycol) diacrylate (PEGDA) hydrogel monomers, three designs with feature sizes < 200 μm were formed: (1) uniform structure with 1 MPa structural modulus ( E ) designed to match equilibrium modulus of healthy articular cartilage, (2) E = 1 MPa gradient structure designed to vary strain with depth, and (3) osteochondral bilayer with distinct cartilage ( E = 1 MPa) and bone ( E = 7 MPa) layers. Finite element models (FEM) guided design and predicted the local mechanical environment. Empty trusses and poly(ethylene glycol) norbornene hydrogel-infilled composite trusses were compressed during X-ray microscopy (XRM) imaging to evaluate regional stiffnesses. Our designs achieved target moduli for cartilage and bone while maintaining 68-81% porosity. Combined XRM imaging and compression of empty and hydrogel-infilled micro-truss structures revealed regional stiffnesses that were accurately predicted by FEM. In the infilling hydrogel, FEM demonstrated the stress-shielding effect of reinforcing structures while predicting strain distributions. Composite scaffolds made from stiff μSLA-printed polymers support physiological load levels and enable controlled mechanical property gradients which may improve in vivo outcomes for osteochondral defect tissue regeneration. Advanced 3D imaging and FE analysis provide insights into the local mechanical environment surrounding cells in composite scaffolds.
Collapse
Affiliation(s)
- Kevin N Eckstein
- Paul M. Rady Department of Mechanical Engineering, University of Colorado at Boulder, 427 UCB, Boulder, CO, 80309, USA
| | - John E Hergert
- Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, CO, USA
| | - Asais Camila Uzcategui
- Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, CO, USA
| | - Sarah A Schoonraad
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA
| | - Stephanie J Bryant
- Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA
| | - Robert R McLeod
- Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, CO, USA
- Department of Electrical, Computer & Energy Engineering, University of Colorado at Boulder, Boulder, CO, USA
| | - Virginia L Ferguson
- Paul M. Rady Department of Mechanical Engineering, University of Colorado at Boulder, 427 UCB, Boulder, CO, 80309, USA.
- Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, CO, USA.
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA.
| |
Collapse
|
85
|
Shi J, Liu Y, Ling Y, Tang H. Polysaccharide-protein based scaffolds for cartilage repair and regeneration. Int J Biol Macromol 2024; 274:133495. [PMID: 38944089 DOI: 10.1016/j.ijbiomac.2024.133495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Cartilage repair and regeneration have become a global issue that millions of patients from all over the world need surgical intervention to repair the articular cartilage annually due to the limited self-healing capability of the cartilage tissues. Cartilage tissue engineering has gained significant attention in cartilage repair and regeneration by integration of the chondrocytes (or stem cells) and the artificial scaffolds. Recently, polysaccharide-protein based scaffolds have demonstrated unique and promising mechanical and biological properties as the artificial extracellular matrix of natural cartilage. In this review, we summarize the modification methods for polysaccharides and proteins. The preparation strategies for the polysaccharide-protein based hydrogel scaffolds are presented. We discuss the mechanical, physical and biological properties of the polysaccharide-protein based scaffolds. Potential clinical translation and challenges on the artificial scaffolds are also discussed.
Collapse
Affiliation(s)
- Jin Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Yu Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Ying Ling
- Institute of Neuroscience, Soochow University, Suzhou 215123, China.
| | - Haoyu Tang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.
| |
Collapse
|
86
|
Fang W, Yu Z, Gao G, Yang M, Du X, Wang Y, Fu Q. Light-based 3D bioprinting technology applied to repair and regeneration of different tissues: A rational proposal for biomedical applications. Mater Today Bio 2024; 27:101135. [PMID: 39040222 PMCID: PMC11262185 DOI: 10.1016/j.mtbio.2024.101135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
3D bioprinting technology, a subset of 3D printing technology, is currently witnessing widespread utilization in tissue repair and regeneration endeavors. In particular, light-based 3D bioprinting technology has garnered significant interest and favor. Central to its successful implementation lies the judicious selection of photosensitive polymers. Moreover, by fine-tuning parameters such as light irradiation time, choice of photoinitiators and crosslinkers, and their concentrations, the properties of the scaffolds can be tailored to suit the specific requirements of the targeted tissue repair sites. In this comprehensive review, we provide an overview of commonly utilized bio-inks suitable for light-based 3D bioprinting, delving into the distinctive characteristics of each material. Furthermore, we delineate strategies for bio-ink selection tailored to diverse repair locations, alongside methods for optimizing printing parameters. Ultimately, we present a coherent synthesis aimed at enhancing the practical application of light-based 3D bioprinting technology in tissue engineering, while also addressing current challenges and future prospects.
Collapse
Affiliation(s)
- Wenzhuo Fang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Zhenwei Yu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Guo Gao
- Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ming Yang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Xuan Du
- Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Wang
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Qiang Fu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai, 200233, China
| |
Collapse
|
87
|
Jia W, Liu Z, Ma Z, Hou P, Cao Y, Shen Z, Li M, Zhang H, Guo X, Sang S. 3D Bioprinting-Based Dopamine-Coupled Flexible Material for Nasal Cartilage Repair. Aesthetic Plast Surg 2024; 48:2951-2964. [PMID: 38528127 DOI: 10.1007/s00266-024-03982-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024]
Abstract
INTRODUCTION Since 3D printing can be used to design implants according to the specific conditions of patients, it has become an emerging technology in tissue engineering and regenerative medicine. How to improve the mechanical, elastic and adhesion properties of 3D-printed photocrosslinked hydrogels is the focus of cartilage tissue repair and reconstruction research. MATERIALS AND METHODS We established a strategy for toughening hydrogels by mixing GelMA-DOPA (GD), which is prepared by coupling dopamine (DA) with GelMA, with HAMA, bacterial cellulose (BC) to produce composite hydrogels (HB-GD). HB-GD hydrogel scaffolds were characterized in vitro by scanning electron microscopy (SEM), Young's modulus, swelling property and rheological property tests. And biocompatibility and chondrogenic ability were tested by live/dead staining, DNA quantitative analysis and immunofluorescence staining. Combined with 3D bioprinting technology, mouse chondrocytes (ADTC5) were added to form a biological chain to construct an in vitro model, and the feasibility of the model for nasal cartilage regeneration was verified by cytology evaluation. RESULTS With the increase of GD concentration, the toughness of the composite hydrogel increased (47.0 ± 2.7 kPa (HB-5GD)-158 ± 3.2 kPa (HB-20GD)), and it had excellent swelling properties, rheological properties and printing properties. The HB-GD composite hydrogel promoted the proliferation and differentiation of ATDC5. Cells in 3D printed scaffolds had higher survival rates (> 95%) and better protein expression than the encapsulated cultures. CONCLUSION The HB-10GD hydrogel can be made into a porous scaffold with precise shape, good internal pore structure, high mechanical strength and good swelling rate through extrusion 3D printing. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Collapse
Affiliation(s)
- Wendan Jia
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030024, China
| | - Zixian Liu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zhuwei Ma
- Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, 030031, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030024, China
| | - Peiyi Hou
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yanyan Cao
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- College of Information Science and Engineering, Hebei North University, Zhangjiakou, 075000, China
| | - Zhizhong Shen
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, 030031, China
| | - Meng Li
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030024, China
| | - Hulin Zhang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xing Guo
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
88
|
Grottkau BE, Hui Z, Pang Y. Cellular Patterning Alone Using Bioprinting Regenerates Articular Cartilage Through Native-Like Cartilagenesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308694. [PMID: 38763898 DOI: 10.1002/smll.202308694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/12/2024] [Indexed: 05/21/2024]
Abstract
Few studies have proved that bioprinting itself helps recapitulate native tissue functions mainly because the bioprinted macro shape can rarely, if ever, influence cell function. This can be more problematic in bioprinting cartilage, generally considered more challenging to engineer. Here a new method is shown to micro-pattern chondrocytes within bioprinted sub-millimeter micro tissues, denoted as patterned micro-articular-cartilages tissues (PA-MCTs). Under the sole influence of bioprinted cellular patterns. A pattern scoring system is developed after over 600 bioprinted cellular patterns are analyzed. The top-scored pattern mimics that of the isogenous group in native articular cartilage. Under the sole influence of this pattern during PA-MCTs bio-assembling into macro-cartilage and repairing cartilage defects, chondrogenic cell phenotype is preserved, and cartilagenesis is initiated and maintained. Neocartilage tissues from individual and assembled PA-MCTs are comparable to native articular cartilage and superior to cartilage bioprinted with homogeneously distributed cells in morphology, biochemical components, cartilage-specific protein and gene expression, mechanical properties, integration with host tissues, zonation forming and stem cell chondrogenesis. PA-MCTs can also be used as osteoarthritic and healthy cartilage models for therapeutic drug screening and cartilage development studies. This cellular patterning technique can pave a new way for bioprinting to recapitulate native tissue functions via tissue genesis.
Collapse
Affiliation(s)
- Brian E Grottkau
- The Laboratory for Therapeutic 3D Bioprinting, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Zhixin Hui
- The Laboratory for Therapeutic 3D Bioprinting, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Yonggang Pang
- The Laboratory for Therapeutic 3D Bioprinting, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
89
|
Li CJ, Park JH, Jin GS, Mandakhbayar N, Yeo D, Lee JH, Lee JH, Kim HS, Kim HW. Strontium/Silicon/Calcium-Releasing Hierarchically Structured 3D-Printed Scaffolds Accelerate Osteochondral Defect Repair. Adv Healthc Mater 2024; 13:e2400154. [PMID: 38647029 DOI: 10.1002/adhm.202400154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/24/2024] [Indexed: 04/25/2024]
Abstract
Articular cartilage defects are a global challenge, causing substantial disability. Repairing large defects is problematic, often exceeding cartilage's self-healing capacity and damaging bone structures. To tackle this problem, a scaffold-mediated therapeutic ion delivery system is developed. These scaffolds are constructed from poly(ε-caprolactone) and strontium (Sr)-doped bioactive nanoglasses (SrBGn), creating a unique hierarchical structure featuring macropores from 3D printing, micropores, and nanotopologies due to SrBGn integration. The SrBGn-embedded scaffolds (SrBGn-µCh) release Sr, silicon (Si), and calcium (Ca) ions, which improve chondrocyte activation, adhesion, proliferation, and maturation-related gene expression. This multiple ion delivery significantly affects metabolic activity and maturation of chondrocytes. Importantly, Sr ions may play a role in chondrocyte regulation through the Notch signaling pathway. Notably, the scaffold's structure and topological cues expedite the recruitment, adhesion, spreading, and proliferation of chondrocytes and bone marrow-derived mesenchymal stem cells. Si and Ca ions accelerate osteogenic differentiation and blood vessel formation, while Sr ions enhance the polarization of M2 macrophages. The findings show that SrBGn-µCh scaffolds accelerate osteochondral defect repair by delivering multiple ions and providing structural/topological cues, ultimately supporting host cell functions and defect healing. This scaffold holds great promise for osteochondral repair applications.
Collapse
Affiliation(s)
- Cheng Ji Li
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jeong-Hui Park
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Gang Shi Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Donghyeon Yeo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Dankook Physician Scientist Research Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Dankook Physician Scientist Research Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hye Sung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Dankook Physician Scientist Research Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Dankook Physician Scientist Research Center, Dankook University Hospital, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
90
|
Camarero-Espinosa S, Beeren I, Liu H, Gomes DB, Zonderland J, Lourenço AFH, van Beurden D, Peters M, Koper D, Emans P, Kessler P, Rademakers T, Baker MB, Bouvy N, Moroni L. 3D Niche-Inspired Scaffolds as a Stem Cell Delivery System for the Regeneration of the Osteochondral Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310258. [PMID: 38226666 DOI: 10.1002/adma.202310258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/08/2024] [Indexed: 01/17/2024]
Abstract
The regeneration of the osteochondral unit represents a challenge due to the distinct cartilage and bone phases. Current strategies focus on the development of multiphasic scaffolds that recapitulate features of this complex unit and promote the differentiation of implanted bone-marrow derived stem cells (BMSCs). In doing so, challenges remain from the loss of stemness during in vitro expansion of the cells and the low control over stem cell activity at the interface with scaffolds in vitro and in vivo. Here, this work scaffolds inspired by the bone marrow niche that can recapitulate the natural healing process after injury. The construct comprises an internal depot of quiescent BMSCs, mimicking the bone marrow cavity, and an electrospun (ESP) capsule that "activates" the cells to migrate into an outer "differentiation-inducing" 3D printed unit functionalized with TGF-β and BMP-2 peptides. In vitro, niche-inspired scaffolds retained a depot of nonproliferative cells capable of migrating and proliferating through the ESP capsule. Invasion of the 3D printed cavity results in location-specific cell differentiation, mineralization, secretion of alkaline phosphatase (ALP) and glycosaminoglycans (GAGs), and genetic upregulation of collagen II and collagen I. In vivo, niche-inspired scaffolds are biocompatible, promoted tissue formation in rat subcutaneous models, and regeneration of the osteochondral unit in rabbit models.
Collapse
Affiliation(s)
- Sandra Camarero-Espinosa
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia / San, Sebastián 20018, Gipuzkoa, Spain
- IKERBASQUE, Basque Foundation for Science, Euskadi Pl., 5, Bilbao, 48009, Spain
| | - Ivo Beeren
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
| | - Hong Liu
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
- Department of General Surgery, Maastricht University Medical Center, P.O. Box 616, 6200MD, Maastricht, The Netherlands
| | - David B Gomes
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
| | - Jip Zonderland
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
| | - Ana Filipa H Lourenço
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
| | - Denis van Beurden
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
| | - Marloes Peters
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
- Department of Orthopaedic Surgery, CAPHRI School for Public Health and Primary Care, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - David Koper
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
- Department of Cranio-Maxillofacial Surgery, Maastricht University Medical Center, PO Box 5800, Maastricht, 6202, The Netherlands
| | - Pieter Emans
- Department of Orthopaedic Surgery, CAPHRI School for Public Health and Primary Care, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Peter Kessler
- Department of Cranio-Maxillofacial Surgery, Maastricht University Medical Center, PO Box 5800, Maastricht, 6202, The Netherlands
| | - Timo Rademakers
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
| | - Matthew B Baker
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
| | - Nicole Bouvy
- Department of General Surgery, Maastricht University Medical Center, P.O. Box 616, 6200MD, Maastricht, The Netherlands
| | - Lorenzo Moroni
- MERLN Institute for Technology-inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, P.O. Box 616, 6200MD, Maastricht, The Netherlands
| |
Collapse
|
91
|
Yan WT, Wang JS, Guo SY, Zhu JH, Zhang ZZ. Isolation and Characterization of Meniscus Progenitor Cells From Rat, Rabbit, Goat, and Human. Cartilage 2024:19476035241266579. [PMID: 39058020 PMCID: PMC11569696 DOI: 10.1177/19476035241266579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/22/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
OBJECTIVE Meniscus progenitor cells (MPCs) have been identified as promising candidates for meniscus regeneration, and it is crucial for us to understand meniscus injury repair mechanism at the cellular level. In this study, we investigate the biological properties of MPCs isolated from different species using the differential adhesion to fibronectin (DAF) technique. We aim to characterize MPCs in different species and evaluate the feasibility of these models for future meniscal investigation. DESIGN MPCs were isolated from freshly digested meniscus from rat, rabbit, goat, and human cells using DAF. Biological properties, including proliferation, colony-forming, multilineage differentiation, and migration abilities, were compared in MPCs and their corresponding mixed meniscus cell (MCs) population in each species. RESULTS MPCs were successfully isolated by the DAF technique in all species. Rat MPCs appeared cobblestone-like, rabbit MPCs were more polygonal, goat MPCs had a spindle-shaped morphology, human MPCs appear more fibroblast-like. Compared with MCs, isolated MPCs showed progenitor cell characteristics, including multilineage differentiation ability and MSC (mesenchymal stem cells) markers (CD166, CD90, CD44, Stro-1) expression. They also highly expressed fibronectin receptors CD49e and CD49c. MPCs also showed greater proliferation capacity and retained colony-forming ability. Except for goat MPCs showed greater migration abilities than MCs, no significant differences were found in the migration ability between MPCs and MCs in other species. CONCLUSION Our study shows that DAF is an effective method for isolating MPCs from rat, rabbit, goat, and human. MPCs in these species demonstrated similar characteristics, including greater proliferation ability and better chondrogenic potential.
Collapse
Affiliation(s)
- Wan-Ting Yan
- Department of Sports Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Jing-Song Wang
- Department of Sports Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Shu-Yang Guo
- Department of Sports Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Jia-Hao Zhu
- Department of Sports Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Zheng-Zheng Zhang
- Department of Sports Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| |
Collapse
|
92
|
Sangiorgio A, Andriolo L, Gersoff W, Kon E, Nakamura N, Nehrer S, Vannini F, Filardo G. Subchondral bone: An emerging target for the treatment of articular surface lesions of the knee. J Exp Orthop 2024; 11:e12098. [PMID: 39040436 PMCID: PMC11260998 DOI: 10.1002/jeo2.12098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Purpose When dealing with the health status of the knee articular surface, the entire osteochondral unit has gained increasing attention, and in particular the subchondral bone, which plays a key role in the integrity of the osteochondral unit. The aim of this article was to discuss the current evidence on the role of the subchondral bone. Methods Experts from different geographical regions were involved in performing a review on highly discussed topics about the subchondral bone, ranging from its etiopathogenetic role in joint degeneration processes to its prognostic role in chondral and osteochondral defects, up to treatment strategies to address both the subchondral bone and the articular surface. Discussion Subchondral bone has a central role both from an aetiologic point of view and as a diagnostic tool, and its status was found to be relevant also as a prognostic factor in the follow-up of chondral treatment. Finally, the recognition of its importance in the natural history of these lesions led to consider subchondral bone as a treatment target, with the development of osteochondral scaffolds and procedures to specifically address osteochondral lesions. Conclusion Subchondral bone plays a central role in articular surface lesions from different points of view. Several aspects still need to be understood, but a growing interest in subchondral bone is to be expected in the upcoming future towards the optimization of joint preservation strategies. Level of Evidence Level V, expert opinion.
Collapse
Affiliation(s)
| | - Luca Andriolo
- Clinica Ortopedica e Traumatologica 2IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Wayne Gersoff
- Orthopedic Centers of Colorado Joint Preservation Institute, Clinical InstructorUniversity of Colorado Health Sciences CenterAuroraColoradoUSA
| | - Elizaveta Kon
- IRCCS Humanitas Research HospitalRozzanoItaly
- Department of Biomedical SciencesHumanitas University, Pieve EmanueleMilanItaly
- Department of Traumatology, Orthopaedics and Disaster SurgerySechenov First Moscow State Medical University (Sechenov University)MoscowRussia
| | - Norimasa Nakamura
- Institute for Medical Science in SportsOsaka Health Science UniversityOsakaJapan
- Center for Advanced Medical Engineering and InformaticsOsaka UniversitySuitaJapan
| | - Stefan Nehrer
- Faculty Health & MedicineUniversity for Continuing EducationKremsAustria
- Department of Orthopaedics and TraumatologyUniversity Hospital Krems, Karl Landsteiner University of Health SciencesKremsAustria
| | - Francesca Vannini
- Clinica Ortopedica e Traumatologica1 IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Giuseppe Filardo
- Service of Orthopaedics and Traumatology, Department of SurgeryEOCLuganoSwitzerland
- Faculty of Biomedical SciencesUniversità della Svizzera ItalianaLuganoSwitzerland
- Applied and Translational Research (ATR) CenterIRCCS Istituto Ortopedico RizzoliBolognaItaly
| |
Collapse
|
93
|
Gonzales N, Garrity C, Rivas I, McEligot H, Vapniarsky N. Auricular Chondrocytes as a Cell Source for Scaffold-Free Elastic Cartilage Tissue Engineering. Tissue Eng Part C Methods 2024; 30:314-322. [PMID: 38946581 DOI: 10.1089/ten.tec.2024.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Current tissue engineering (TE) methods utilize chondrocytes primarily from costal or articular sources. Despite the robust mechanical properties of neocartilages sourced from these cells, the lack of elasticity and invasiveness of cell collection from these sources negatively impact clinical translation. These limitations invited the exploration of naturally elastic auricular cartilage as an alternative cell source. This study aimed to determine if auricular chondrocytes (AuCs) can be used for TE scaffold-free neocartilage constructs and assess their biomechanical properties. Neocartilages were successfully generated from a small quantity of primary neonatal AuCs of three minipig donors (n = 3). Neocartilage constructs had instantaneous moduli of 200.5 kPa ± 43.34 and 471.9 ± 92.8 kPa at 10% and 20% strain, respectively. TE constructs' relaxation moduli (Er) were 36.99 ± 6.47 kPa Er and 110.3 ± 16.99 kPa at 10% and 20% strain, respectively. The Young's modulus was 2.0 MPa ± 0.63, and the ultimate tensile strength was 0.619 ± 0.177 MPa. AuC-derived neocartilages contained 0.144 ± 0.011 µg collagen, 0.185 µg ± 0.002 glycosaminoglycans per µg dry weight, and 1.7e-3 µg elastin per µg dry weight. In conclusion, this study shows that AuCs can be used as a reliable and easily accessible cell source for TE of biomimetic and mechanically robust elastic neocartilage implants.
Collapse
Affiliation(s)
- Nicole Gonzales
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California, USA
| | - Carissa Garrity
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California, USA
| | - Iris Rivas
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California, USA
| | - Heather McEligot
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California, USA
| | - Natalia Vapniarsky
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California, USA
| |
Collapse
|
94
|
Torabizadeh F, Talaei-Khozani T, Yaghobi A, Walker M, Mirzaei E. Enhancing chondrogenic differentiation of mesenchymal stem cells through synergistic effects of cellulose nanocrystals and plastic compression in collagen-based hydrogel for cartilage formation. Int J Biol Macromol 2024; 272:132848. [PMID: 38830491 DOI: 10.1016/j.ijbiomac.2024.132848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Collagen-based (COL) hydrogels could be a promising treatment option for injuries to the articular cartilage (AC) becuase of their similarity to AC native extra extracellular matrix. However, the high hydration of COL hydrogels poses challenges for AC's mechanical properties. To address this, we developed a hydrogel platform that incorporating cellulose nanocrystals (CNCs) within COL and followed by plastic compression (PC) procedure to expel the excessive fluid out. This approach significantly improved the mechanical properties of the hydrogels and enhanced the chondrogenic differentiation of mesenchymal stem cells (MSCs). Radially confined PC resulted in higher collagen fibrillar densities together with reducing fibril-fibril distances. Compressed hydrogels containing CNCs exhibited the highest compressive modulus and toughness. MSCs encapsulated in these hydrogels were initially affected by PC, but their viability improved after 7 days. Furthermore, the morphology of the cells and their secretion of glycosaminoglycans (GAGs) were positively influenced by the compressed COL-CNC hydrogel. Our findings shed light on the combined effects of PC and CNCs in improving the physical and mechanical properties of COL and their role in promoting chondrogenesis.
Collapse
Affiliation(s)
- Farid Torabizadeh
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefeh Yaghobi
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Matthew Walker
- Centre for the Cellular Microenvironment, University of Glasgow, UK
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
95
|
Wu Z, Yao H, Sun H, Gu Z, Hu X, Yang J, Shi J, Yang H, Dai J, Chong H, Wang DA, Lin L, Zhang W. Enhanced hyaline cartilage formation and continuous osteochondral regeneration via 3D-Printed heterogeneous hydrogel with multi-crosslinking inks. Mater Today Bio 2024; 26:101080. [PMID: 38757056 PMCID: PMC11097081 DOI: 10.1016/j.mtbio.2024.101080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
The unique gradient structure and complex composition of osteochondral tissue pose significant challenges in defect regeneration. Restoration of tissue heterogeneity while maintaining hyaline cartilage components has been a difficulty of an osteochondral tissue graft. A novel class of multi-crosslinked polysaccharide-based three-dimensional (3D) printing inks, including decellularized natural cartilage (dNC) and nano-hydroxyapatite, was designed to create a gradient scaffold with a robust interface-binding force. Herein, we report combining a dual-nozzle cross-printing technology and a gradient crosslinking method to create the scaffolds, demonstrating stable mechanical properties and heterogeneous bilayer structures. Biofunctional assessments revealed the remarkable regenerative effects of the scaffold, manifesting three orders of magnitude of mRNA upregulation during chondrogenesis and the formation of pure hyaline cartilage. Transcriptomics of the regeneration site in vivo and scaffold cell interaction tests in vitro showed that printed porous multilayer scaffolds could form the correct tissue structure for cell migration. More importantly, polysaccharides with dNC provided a hydrophilic microenvironment. The microenvironment is crucial in osteochondral regeneration because it could guide the regenerated cartilage to ensure the hyaline phenotype.
Collapse
Affiliation(s)
- Zhonglian Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Haidi Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Zehao Gu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Xu Hu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, 999077, PR China
| | - Jian Yang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, PR China
| | - Junli Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Haojun Yang
- The Affiliated Changzhou, No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, 213004, PR China
| | - Jihang Dai
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225001, PR China
| | - Hui Chong
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, 999077, PR China
| | - Liwei Lin
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, PR China
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Wang Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
96
|
Chen H, Gong Y, He J, Qiao Z, Hong B, Li W, Zhou C, Zhou R, Shao H. 3D Printing Process Research and Performance Tests on Sodium Alginate-Xanthan Gum-Hydroxyapatite Hybridcartilage Regenerative Scaffolds. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:e1271-e1286. [PMID: 39359579 PMCID: PMC11442156 DOI: 10.1089/3dp.2022.0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Cartilage injury is a common occurrence in the modern world. Compared with traditional treatment methods, bio-3D printing technology features better utility in the field of cartilage repair and regeneration, but still faces great challenges. For example, there is currently no means to generate blood vessels inside the scaffolds, and there remains the question of how to improve the biocompatibility of the generated scaffolds, all of which limit the application of bio-3D printing technology in this area. The main objective of this article was to prepare sodium alginate-xanthan gum-hydroxyapatite (SA-XG-HA) porous cartilage scaffolds that can naturally degrade in the human body and be used to promote cartilage damage repair by 3D printing technology. First, the viscosities of SA and XG were analyzed, and their optimal ratio was determined. Second, a mathematical model of the hybrid slurry was established based on the power-law fluid model, in which the printing pressure, needle movement speed, and fiber spacing were established as important parameters affecting the printing performance of the composite. Third, by performing a finite element simulation of the printing process and combining it with the actual printing process, suitable printing parameters were determined (air pressure of 1 bar, moving speed of 9 mm/s, line spacing of 1.6 mm, and adjacent layers of 0-90°). Fourth, composite scaffolds were prepared and tested for their compressive properties, degradation properties, cytotoxicity, and biocompatibility. The results showed that the novel composite scaffolds prepared in this study possessed good mechanical and biological properties. Young's modulus of the composite scaffolds reached 130 KPa and was able to maintain a low degradation rate in simulated body fluid solution for >1 month. The activity of the C5.18 chondrocytes in the scaffold leach solution exceeded 120%. The cells were also able to proliferate densely on the scaffold surface.
Collapse
Affiliation(s)
- Honghao Chen
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Youping Gong
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Junlin He
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Zizhou Qiao
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Bo Hong
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Wenxin Li
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Chuanping Zhou
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Rougang Zhou
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Huifeng Shao
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing, China
| |
Collapse
|
97
|
Nordberg RC, Bielajew BJ, Takahashi T, Dai S, Hu JC, Athanasiou KA. Recent advancements in cartilage tissue engineering innovation and translation. Nat Rev Rheumatol 2024; 20:323-346. [PMID: 38740860 PMCID: PMC11524031 DOI: 10.1038/s41584-024-01118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2024] [Indexed: 05/16/2024]
Abstract
Articular cartilage was expected to be one of the first successfully engineered tissues, but today, cartilage repair products are few and they exhibit considerable limitations. For example, of the cell-based products that are available globally, only one is marketed for non-knee indications, none are indicated for severe osteoarthritis or rheumatoid arthritis, and only one is approved for marketing in the USA. However, advances in cartilage tissue engineering might now finally lead to the development of new cartilage repair products. To understand the potential in this field, it helps to consider the current landscape of tissue-engineered products for articular cartilage repair and particularly cell-based therapies. Advances relating to cell sources, bioactive stimuli and scaffold or scaffold-free approaches should now contribute to progress in therapeutic development. Engineering for an inflammatory environment is required because of the need for implants to withstand immune challenge within joints affected by osteoarthritis or rheumatoid arthritis. Bringing additional cartilage repair products to the market will require an understanding of the translational vector for their commercialization. Advances thus far can facilitate the future translation of engineered cartilage products to benefit the millions of patients who suffer from cartilage injuries and arthritides.
Collapse
Affiliation(s)
- Rachel C Nordberg
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Benjamin J Bielajew
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Takumi Takahashi
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Shuyan Dai
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
98
|
Wei B, Xu Y, Tang C, Liu NQ, Li X, Yao Q, Wang L. An injectable active hydrogel based on BMSC-derived extracellular matrix for cartilage regeneration enhancement. BIOMATERIALS ADVANCES 2024; 160:213857. [PMID: 38657287 DOI: 10.1016/j.bioadv.2024.213857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/20/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Articular cartilage injury impairs joint function and necessitates orthopedic intervention to restore the structure and function of the cartilage. Extracellular matrix (ECM) scaffolds derived from bone marrow mesenchymal stem cells (BMSCs) can effectively promote cell adhesion, proliferation, and chondrogenesis. However, pre-shaped ECM scaffolds have limited applicability due to their poor fit with the irregular surface of most articular cartilage defects. In this study, we fabricated an injectable active ECM hydrogel from autologous BMSCs-derived ECM by freeze-drying, liquid nitrogen milling, and enzymatic digestion. Moreover, our in vitro and in vivo results demonstrated that the prepared hydrogel enhanced chondrocyte adhesion and proliferation, chondrogenesis, cartilage regeneration, and integration with host tissue, respectively. These findings indicate that active ECM components can provide trophic support for cell proliferation and differentiation, restoring the structure and function of damaged cartilage.
Collapse
Affiliation(s)
- Bo Wei
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China.
| | - Yan Xu
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Cheng Tang
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Nancy Q Liu
- Department of Orthopaedic Surgery, University of Southern California, Los Angeles, CA 90007, USA
| | - Xuxiang Li
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Liming Wang
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; Cartilage Regeneration Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China.
| |
Collapse
|
99
|
Shimomura K, Ando W, Hart DA, Nakamura N. A novel scaffold-free mesenchymal stem cell-derived tissue engineered construct for articular cartilage restoration - From basic to clinic. Regen Ther 2024; 26:124-131. [PMID: 38883147 PMCID: PMC11176953 DOI: 10.1016/j.reth.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/04/2024] [Accepted: 05/19/2024] [Indexed: 06/18/2024] Open
Abstract
Treatments for articular cartilage injuries are still challenging, due in part to its avascular and aneural surroundings. Since the first report of autologous chondrocyte implantation, cell-based therapies have been extensively studied with a variety of cell sources, including chondrocytes and mesenchymal stem/stromal cells (MSCs). Recently, MSC-based therapy has received considerable research attention because of the relative ease in handling for tissue harvest, and subsequent cell expansion and differentiation. Using such cells, we have originally developed a 3-dimensional scaffold-free tissue-engineered construct (TEC) through simple-cell culture methods and demonstrated its feasibility for cartilage repair and regeneration in the first-in-human clinical trial. This review summarizes our novel scaffold-free approaches to use MSC for the restoration of damaged articular cartilage, documenting the progression from basic to clinical studies.
Collapse
Affiliation(s)
- Kazunori Shimomura
- Department of Rehabilitation, Kansai University of Welfare Sciences, Osaka, Japan
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Wataru Ando
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Orthopaedic Surgery, Kansai Rosai Hospital, Hyogo, Japan
| | - David A Hart
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Norimasa Nakamura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- Institute for Medical Science in Sports, Osaka Health Science University, Osaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| |
Collapse
|
100
|
Shi L, Ura K, Takagi Y. Effects of self-assembled type II collagen fibrils on the morphology and growth of pre-chondrogenic ATDC5 cells. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100450. [PMID: 38444516 PMCID: PMC10914481 DOI: 10.1016/j.ocarto.2024.100450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/22/2024] [Indexed: 03/07/2024] Open
Abstract
Objective Although type II collagen could have marked potential for developing cartilage tissue engineering (CTE) scaffolds, its erratic supply and viscous nature have limited these studies, and there are no studies on the use of marine-derived type II collagen fibrils for CTE scaffold materials. In this study, we aimed to generate a fibril-based, thin-layered scaffold from marine-derived type II collagen and investigate its chondrogenic potential. Methods Time-lapse observations revealed the cell adhesion process. The Cell Counting Kit-8 (CCK-8) assay, light microscopy, and scanning electron microscopy were performed to detect proliferation and filopodium morphology. Alcian blue staining was used to show the deposition of extracellular secretions, and qRT-PCR was performed to reveal the expression levels of chondrogenesis-related genes. Results The cell adhesion speed was similar in both fibril-coated and control molecule-coated groups, but the cellular morphology, proliferation, and chondrogenesis activity differed. On fibrils, more elongated finer filopodia showed inter-cell communications, whereas the slower proliferation suggested an altered cell cycle. Extracellular secretions occurred before day 14 and continued until day 28 on fibrils, and on fibrils, the expression of the chondrogenesis-related genes Sox9 (p < 0.001), Col10a1 (p < 0.001), Acan (p < 0.001), and Col2a1 (p = 0.0049) was significantly upregulated on day 21. Conclusion Marine-derived type II collagen was, for the first time, fabricated into a fibril state. It showed rapid cellular affinity and induced chondrogenesis with extracellular secretions. We presented a new model for studying chondrogenesis in vitro and a potential alternative material for cell-laden CTE research.
Collapse
Affiliation(s)
- Linyan Shi
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-Cho, Hakodate, Hokkaido, 041-8611, Japan
| | - Kazuhiro Ura
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido, 041-8611, Japan
| | - Yasuaki Takagi
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido, 041-8611, Japan
| |
Collapse
|