51
|
Cardoso M, Oliveira D, Araujo H. Expression and Activity of Calpain A in Drosophila melanogaster. Methods Mol Biol 2019; 1915:93-101. [PMID: 30617798 DOI: 10.1007/978-1-4939-8988-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Detecting calpain activity in Drosophila tissues is a fundamental tool to study calpain function. We use differential centrifugation to prepare membrane- versus cytosol-enriched fractions for measuring calpain activity with the fluorogenic substrate N-LY-AMC. With this method one can measure calpain A activity in wild-type flies and in several mutant fly backgrounds, revealing a strong correlation between in situ membrane distribution and in vitro determined activity measurements. Here we describe the steps for tissue preparation and calpain activity measurement in the Drosophila embryo.
Collapse
Affiliation(s)
- Maira Cardoso
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielle Oliveira
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helena Araujo
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Institute of Molecular Entomology, Rio de Janeiro, Brazil.
| |
Collapse
|
52
|
Yoong LF, Pai YJ, Moore AW. Stages and transitions in dendrite arbor differentiation. Neurosci Res 2019; 138:70-78. [DOI: 10.1016/j.neures.2018.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 12/26/2022]
|
53
|
Translating genetic, biochemical and structural information to the calpain view of development. Mech Dev 2018; 154:240-250. [DOI: 10.1016/j.mod.2018.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 01/30/2023]
|
54
|
Almeida RG. The Rules of Attraction in Central Nervous System Myelination. Front Cell Neurosci 2018; 12:367. [PMID: 30374292 PMCID: PMC6196289 DOI: 10.3389/fncel.2018.00367] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/27/2018] [Indexed: 12/12/2022] Open
Abstract
The wrapping of myelin around axons is crucial for the development and function of the central nervous system (CNS) of vertebrates, greatly regulating the conduction of action potentials. Oligodendrocytes, the myelinating glia of the CNS, have an intrinsic tendency to wrap myelin around any permissive structure in vitro, but in vivo, myelin is targeted with remarkable specificity only to certain axons. Despite the importance of myelination, the mechanisms by which oligodendrocytes navigate a complex milieu that includes many types of cells and their cellular projections and select only certain axons for myelination remains incompletely understood. In this Mini-review, I highlight recent studies that shed light on the molecular and cellular rules governing CNS myelin targeting.
Collapse
Affiliation(s)
- Rafael Góis Almeida
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
55
|
Meltzer S, Bagley JA, Perez GL, O'Brien CE, DeVault L, Guo Y, Jan LY, Jan YN. Phospholipid Homeostasis Regulates Dendrite Morphogenesis in Drosophila Sensory Neurons. Cell Rep 2018; 21:859-866. [PMID: 29069593 DOI: 10.1016/j.celrep.2017.09.089] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/29/2017] [Accepted: 09/26/2017] [Indexed: 12/01/2022] Open
Abstract
Disruptions in lipid homeostasis have been observed in many neurodevelopmental disorders that are associated with dendrite morphogenesis defects. However, the molecular mechanisms of how lipid homeostasis affects dendrite morphogenesis are unclear. We find that easily shocked (eas), which encodes a kinase with a critical role in phospholipid phosphatidylethanolamine (PE) synthesis, and two other enzymes in this synthesis pathway are required cell autonomously in sensory neurons for dendrite growth and stability. Furthermore, we show that the level of Sterol Regulatory Element-Binding Protein (SREBP) activity is important for dendrite development. SREBP activity increases in eas mutants, and decreasing the level of SREBP and its transcriptional targets in eas mutants largely suppresses the dendrite growth defects. Furthermore, reducing Ca2+ influx in neurons of eas mutants ameliorates the dendrite morphogenesis defects. Our study uncovers a role for EAS kinase and reveals the in vivo function of phospholipid homeostasis in dendrite morphogenesis.
Collapse
Affiliation(s)
- Shan Meltzer
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry, and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joshua A Bagley
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry, and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gerardo Lopez Perez
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry, and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Caitlin E O'Brien
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry, and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Laura DeVault
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry, and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yanmeng Guo
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry, and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lily Yeh Jan
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry, and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuh-Nung Jan
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry, and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
56
|
Liou NF, Lin SH, Chen YJ, Tsai KT, Yang CJ, Lin TY, Wu TH, Lin HJ, Chen YT, Gohl DM, Silies M, Chou YH. Diverse populations of local interneurons integrate into the Drosophila adult olfactory circuit. Nat Commun 2018; 9:2232. [PMID: 29884811 PMCID: PMC5993751 DOI: 10.1038/s41467-018-04675-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/14/2018] [Indexed: 11/09/2022] Open
Abstract
Drosophila olfactory local interneurons (LNs) in the antennal lobe are highly diverse and variable. How and when distinct types of LNs emerge, differentiate, and integrate into the olfactory circuit is unknown. Through systematic developmental analyses, we found that LNs are recruited to the adult olfactory circuit in three groups. Group 1 LNs are residual larval LNs. Group 2 are adult-specific LNs that emerge before cognate sensory and projection neurons establish synaptic specificity, and Group 3 LNs emerge after synaptic specificity is established. Group 1 larval LNs are selectively reintegrated into the adult circuit through pruning and re-extension of processes to distinct regions of the antennal lobe, while others die during metamorphosis. Precise temporal control of this pruning and cell death shapes the global organization of the adult antennal lobe. Our findings provide a road map to understand how LNs develop and contribute to constructing the olfactory circuit. Local interneurons (LNs) in the Drosophila olfactory system are highly diverse. Here, the authors labeled different LN types and described how different LN subtypes are integrated into the developing circuit.
Collapse
Affiliation(s)
- Nan-Fu Liou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Shih-Han Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ying-Jun Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Kuo-Ting Tsai
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chi-Jen Yang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Tzi-Yang Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan.,Research Institute of Molecular Pathology (IMP), Vienna Biocenter, Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Ting-Han Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsin-Ju Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yuh-Tarng Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Daryl M Gohl
- Department of Neurobiology, Stanford University, Stanford, CA, 94305, USA.,University of Minnesota Genomics Center, 1-210 CCRB, 2231 6th Street SE, Minneapolis, MN, 55455, USA
| | - Marion Silies
- Department of Neurobiology, Stanford University, Stanford, CA, 94305, USA.,European Neuroscience Institute, University Medical Center Göttingen, Grisebachstr. 5, 37077, Göttingen, Germany
| | - Ya-Hui Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan. .,Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
57
|
Utashiro N, Williams CR, Parrish JZ, Emoto K. Prior activity of olfactory receptor neurons is required for proper sensory processing and behavior in Drosophila larvae. Sci Rep 2018; 8:8580. [PMID: 29872087 PMCID: PMC5988719 DOI: 10.1038/s41598-018-26825-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/14/2018] [Indexed: 11/10/2022] Open
Abstract
Animal responses to their environment rely on activation of sensory neurons by external stimuli. In many sensory systems, however, neurons display basal activity prior to the external stimuli. This prior activity is thought to modulate neural functions, yet its impact on animal behavior remains elusive. Here, we reveal a potential role for prior activity in olfactory receptor neurons (ORNs) in shaping larval olfactory behavior. We show that prior activity in larval ORNs is mediated by the olfactory receptor complex (OR complex). Mutations of Orco, an odorant co-receptor required for OR complex function, cause reduced attractive behavior in response to optogenetic activation of ORNs. Calcium imaging reveals that Orco mutant ORNs fully respond to optogenetic stimulation but exhibit altered temporal patterns of neural responses. These findings together suggest a critical role for prior activity in information processing upon ORN activation in Drosophila larvae, which in turn contributes to olfactory behavior control.
Collapse
Affiliation(s)
- Nao Utashiro
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Claire R Williams
- Department of Biology, University of Washington, 24 Kincaid Hall, Box 351800, Seattle, WA, 98195, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA
| | - Jay Z Parrish
- Department of Biology, University of Washington, 24 Kincaid Hall, Box 351800, Seattle, WA, 98195, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA
| | - Kazuo Emoto
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
58
|
Abstract
Synaptic pruning is dominant in early ontogenesis when a large number of unnecessary synapses are eliminated, and it maintains synaptic plasticity in the mature healthy brain, e.g., in memory processes. Its malfunction is involved in degenerative diseases such as Alzheimer’s disease. C1q, a member of the immune complement system, plays a central role in the selective pruning of synapses by microglial phagocytosis. Understanding the molecular aspects of complement-mediated synapse elimination is of high importance for developing effective therapeutic interventions in the future. Our analysis on C1q-tagged synaptosomes revealed that C1q label-based synaptic pruning is linked to local apoptotic-like processes in synapses. C1q, a member of the immune complement cascade, is implicated in the selective pruning of synapses by microglial phagocytosis. C1q-mediated synapse elimination has been shown to occur during brain development, while increased activation and complement-dependent synapse loss is observed in neurodegenerative diseases. However, the molecular mechanisms underlying C1q-controlled synaptic pruning are mostly unknown. This study addresses distortions in the synaptic proteome leading to C1q-tagged synapses. Our data demonstrated the preferential localization of C1q to the presynapse. Proteomic investigation and pathway analysis of C1q-tagged synaptosomes revealed the presence of apoptotic-like processes in C1q-tagged synapses, which was confirmed experimentally with apoptosis markers. Moreover, the induction of synaptic apoptotic-like mechanisms in a model of sensory deprivation-induced synaptic depression led to elevated C1q levels. Our results unveiled that C1q label-based synaptic pruning is triggered by and directly linked to apoptotic-like processes in the synaptic compartment.
Collapse
|
59
|
A Critical Neurodevelopmental Role for L-Type Voltage-Gated Calcium Channels in Neurite Extension and Radial Migration. J Neurosci 2018; 38:5551-5566. [PMID: 29773754 DOI: 10.1523/jneurosci.2357-17.2018] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/28/2017] [Accepted: 04/21/2018] [Indexed: 11/21/2022] Open
Abstract
Despite many association studies linking gene polymorphisms and mutations of L-type voltage-gated Ca2+ channels (VGCCs) in neurodevelopmental disorders such as autism and schizophrenia, the roles of specific L-type VGCC during brain development remain unclear. Calcium signaling has been shown to be essential for neurodevelopmental processes such as sculpting of neurites, functional wiring, and fine tuning of growing networks. To investigate this relationship, we performed submembraneous calcium imaging using a membrane-tethered genetically encoded calcium indicator (GECI) Lck-G-CaMP7. We successfully recorded spontaneous regenerative calcium transients (SRCaTs) in developing mouse excitatory cortical neurons prepared from both sexes before synapse formation. SRCaTs originated locally in immature neurites independently of somatic calcium rises and were significantly more elevated in the axons than in dendrites. SRCaTs were not blocked by tetrodoxin, a Na+ channel blocker, but were strongly inhibited by hyperpolarization, suggesting a voltage-dependent source. Pharmacological and genetic manipulations revealed the critical importance of the Cav1.2 (CACNA1C) pore-forming subunit of L-type VGCCs, which were indeed expressed in immature mouse brains. Consistently, knocking out Cav1.2 resulted in significant alterations of neurite outgrowth. Furthermore, expression of a gain-of-function Cav1.2 mutant found in Timothy syndrome, an autosomal dominant multisystem disorder exhibiting syndromic autism, resulted in impaired radial migration of layer 2/3 excitatory neurons, whereas postnatal abrogation of Cav1.2 enhancement could rescue cortical malformation. Together, these lines of evidence suggest a critical role for spontaneous opening of L-type VGCCs in neural development and corticogenesis and indicate that L-type VGCCs might constitute a perinatal therapeutic target for neuropsychiatric calciochannelopathies.SIGNIFICANCE STATEMENT Despite many association studies linking gene polymorphisms and mutations of L-type voltage-gated Ca2+ channels (VGCCs) in neurodevelopmental disorders such as autism and schizophrenia, the roles of specific L-type VGCCs during brain development remain unclear. We here combined the latest Ca2+ indicator technology, quantitative pharmacology, and in utero electroporation and found a hitherto unsuspected role for L-type VGCCs in determining the Ca2+ signaling landscape of mouse immature neurons. We found that malfunctional L-type VGCCs in immature neurons before birth might cause errors in neuritic growth and cortical migration. Interestingly, the retarded corticogenesis phenotype was rescued by postnatal correction of L-type VGCC signal aberration. These findings suggest that L-type VGCCs might constitute a perinatal therapeutic target for neurodevelopment-associated psychiatric disorders.
Collapse
|
60
|
Baraban M, Koudelka S, Lyons DA. Ca 2+ activity signatures of myelin sheath formation and growth in vivo. Nat Neurosci 2018; 21:19-23. [PMID: 29230058 PMCID: PMC5742537 DOI: 10.1038/s41593-017-0040-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 11/05/2017] [Indexed: 12/19/2022]
Abstract
During myelination, individual oligodendrocytes initially over-produce short myelin sheaths, which are either retracted or stabilized. By live-imaging oligodendrocyte Ca2+ activity in vivo, we find that high-amplitude, long-duration Ca2+ transients in sheaths prefigure retractions, mediated by calpain. Following stabilization, myelin sheaths grow along axons, and we find that higher-frequency Ca2+ transient activity in sheaths precedes faster elongation. Our data implicate local Ca2+ signaling in regulating distinct stages of myelination.
Collapse
Affiliation(s)
- Marion Baraban
- Centre for Neuroregeneration, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
| | - Sigrid Koudelka
- Centre for Neuroregeneration, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - David A Lyons
- Centre for Neuroregeneration, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
61
|
Common and Divergent Mechanisms in Developmental Neuronal Remodeling and Dying Back Neurodegeneration. Curr Biol 2017; 26:R628-R639. [PMID: 27404258 DOI: 10.1016/j.cub.2016.05.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell death is an inherent process that is required for the proper wiring of the nervous system. Studies over the last four decades have shown that, in a parallel developmental pathway, axons and dendrites are eliminated without the death of the neuron. This developmentally regulated 'axonal death' results in neuronal remodeling, which is an essential mechanism to sculpt neuronal networks in both vertebrates and invertebrates. Studies across various organisms have demonstrated that a conserved strategy in the formation of adult neuronal circuitry often involves generating too many connections, most of which are later eliminated with high temporal and spatial resolution. Can neuronal remodeling be regarded as developmentally and spatially regulated neurodegeneration? It has been previously speculated that injury-induced degeneration (Wallerian degeneration) shares some molecular features with 'dying back' neurodegenerative diseases. In this opinion piece, we examine the similarities and differences between the mechanisms regulating neuronal remodeling and those being perturbed in dying back neurodegenerative diseases. We focus primarily on amyotrophic lateral sclerosis and peripheral neuropathies and highlight possible shared pathways and mechanisms. While mechanistic data are only just beginning to emerge, and despite the inherent differences between disease-oriented and developmental processes, we believe that some of the similarities between these developmental and disease-initiated degeneration processes warrant closer collaborations and crosstalk between these different fields.
Collapse
|
62
|
Yoshino J, Morikawa RK, Hasegawa E, Emoto K. Neural Circuitry that Evokes Escape Behavior upon Activation of Nociceptive Sensory Neurons in Drosophila Larvae. Curr Biol 2017; 27:2499-2504.e3. [PMID: 28803873 DOI: 10.1016/j.cub.2017.06.068] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/31/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022]
Abstract
Noxious stimuli trigger a stereotyped escape response in animals. In Drosophila larvae, class IV dendrite arborization (C4 da) sensory neurons in the peripheral nervous system are responsible for perception of multiple nociceptive modalities, including noxious heat and harsh mechanical stimulation, through distinct receptors [1-9]. Silencing or ablation of C4 da neurons largely eliminates larval responses to noxious stimuli [10-12], whereas optogenetic activation of C4 da neurons is sufficient to provoke corkscrew-like rolling behavior similar to what is observed when larvae receive noxious stimuli, such as high temperature or harsh mechanical stimulation [10-12]. The receptors and the regulatory mechanisms for C4 da activation in response to a variety of noxious stimuli have been well studied [13-23], yet how C4 da activation triggers the escape behavior in the circuit level is still incompletely understood. Here we identify segmentally arrayed local interneurons (medial clusters of C4 da second-order interneurons [mCSIs]) in the ventral nerve cord that are necessary and sufficient to trigger rolling behavior. GFP reconstitution across synaptic partners (GRASP) analysis indicates that C4 da axons form synapses with mCSI dendrites. Optogenetic activation of mCSIs induces the rolling behavior, whereas silencing mCSIs reduces the probability of rolling behavior upon C4 da activation. Further anatomical and functional studies suggest that the C4 da-mCSI nociceptive circuit evokes rolling behavior at least in part through segmental nerve a (SNa) motor neurons. Our findings thus uncover a local circuit that promotes escape behavior upon noxious stimuli in Drosophila larvae and provide mechanistic insights into how noxious stimuli are transduced into the stereotyped escape behavior in the circuit level.
Collapse
Affiliation(s)
- Jiro Yoshino
- Department of Biological Sciences, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Rei K Morikawa
- Department of Biological Sciences, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eri Hasegawa
- Department of Biological Sciences, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuo Emoto
- Department of Biological Sciences, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
63
|
Herzmann S, Krumkamp R, Rode S, Kintrup C, Rumpf S. PAR-1 promotes microtubule breakdown during dendrite pruning in Drosophila. EMBO J 2017; 36:1981-1991. [PMID: 28554895 DOI: 10.15252/embj.201695890] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 04/21/2017] [Accepted: 04/26/2017] [Indexed: 11/09/2022] Open
Abstract
Pruning of unspecific neurites is an important mechanism during neuronal morphogenesis. Drosophila sensory neurons prune their dendrites during metamorphosis. Pruning dendrites are severed in their proximal regions. Prior to severing, dendritic microtubules undergo local disassembly, and dendrites thin extensively through local endocytosis. Microtubule disassembly requires a katanin homologue, but the signals initiating microtubule breakdown are not known. Here, we show that the kinase PAR-1 is required for pruning and dendritic microtubule breakdown. Our data show that neurons lacking PAR-1 fail to break down dendritic microtubules, and PAR-1 is required for an increase in neuronal microtubule dynamics at the onset of metamorphosis. Mammalian PAR-1 is a known Tau kinase, and genetic interactions suggest that PAR-1 promotes microtubule breakdown largely via inhibition of Tau also in Drosophila Finally, PAR-1 is also required for dendritic thinning, suggesting that microtubule breakdown might precede ensuing plasma membrane alterations. Our results shed light on the signaling cascades and epistatic relationships involved in neurite destabilization during dendrite pruning.
Collapse
Affiliation(s)
- Svende Herzmann
- Institute for Neurobiology, University of Münster, Münster, Germany
| | - Rafael Krumkamp
- Institute for Neurobiology, University of Münster, Münster, Germany
| | - Sandra Rode
- Institute for Neurobiology, University of Münster, Münster, Germany
| | - Carina Kintrup
- Institute for Neurobiology, University of Münster, Münster, Germany
| | - Sebastian Rumpf
- Institute for Neurobiology, University of Münster, Münster, Germany
| |
Collapse
|
64
|
Thompson-Peer KL, DeVault L, Li T, Jan LY, Jan YN. In vivo dendrite regeneration after injury is different from dendrite development. Genes Dev 2017; 30:1776-89. [PMID: 27542831 PMCID: PMC5002981 DOI: 10.1101/gad.282848.116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/25/2016] [Indexed: 12/22/2022]
Abstract
Thompson-Peer et al. show that, in intact Drosophila larvae, a discrete injury that removes all dendrites induces robust dendritic growth that recreates many features of uninjured dendrites. However, the growth and patterning of injury-induced dendrites is significantly different from uninjured dendrites. Neurons receive information along dendrites and send signals along axons to synaptic contacts. The factors that control axon regeneration have been examined in many systems, but dendrite regeneration has been largely unexplored. Here we report that, in intact Drosophila larvae, a discrete injury that removes all dendrites induces robust dendritic growth that recreates many features of uninjured dendrites, including the number of dendrite branches that regenerate and responsiveness to sensory stimuli. However, the growth and patterning of injury-induced dendrites is significantly different from uninjured dendrites. We found that regenerated arbors cover much less territory than uninjured neurons, fail to avoid crossing over other branches from the same neuron, respond less strongly to mechanical stimuli, and are pruned precociously. Finally, silencing the electrical activity of the neurons specifically blocks injury-induced, but not developmental, dendrite growth. By elucidating the essential features of dendrites grown in response to acute injury, our work builds a framework for exploring dendrite regeneration in physiological and pathological conditions.
Collapse
Affiliation(s)
- Katherine L Thompson-Peer
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Laura DeVault
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Tun Li
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Lily Yeh Jan
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| | - Yuh Nung Jan
- Howard Hughes Medical Institute, Department of Physiology, Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
65
|
In Vivo Calcium Signaling during Synaptic Refinement at the Drosophila Neuromuscular Junction. J Neurosci 2017; 37:5511-5526. [PMID: 28476946 DOI: 10.1523/jneurosci.2922-16.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 11/21/2022] Open
Abstract
Neural activity plays a key role in pruning aberrant synapses in various neural systems, including the mammalian cortex, where low-frequency (0.01 Hz) calcium oscillations refine topographic maps. However, the activity-dependent molecular mechanisms remain incompletely understood. Activity-dependent pruning also occurs at embryonic Drosophila neuromuscular junctions (NMJs), where low-frequency Ca2+ oscillations are required for synaptic refinement and the response to the muscle-derived chemorepellant Sema2a. We examined embryonic growth cone filopodia in vivo to directly observe their exploration and to analyze the episodic Ca2+ oscillations involved in refinement. Motoneuron filopodia repeatedly contacted off-target muscle fibers over several hours during late embryogenesis, with episodic Ca2+ signals present in both motile filopodia as well as in later-stabilized synaptic boutons. The Ca2+ transients matured over several hours into regular low-frequency (0.03 Hz) oscillations. In vivo imaging of intact embryos of both sexes revealed that the formation of ectopic filopodia is increased in Sema2a heterozygotes. We provide genetic evidence suggesting a complex presynaptic Ca2+-dependent signaling network underlying refinement that involves the phosphatases calcineurin and protein phosphatase-1, as well the serine/threonine kinases CaMKII and PKA. Significantly, this network influenced the neuron's response to the muscle's Sema2a chemorepellant, critical for the removal of off-target contacts.SIGNIFICANCE STATEMENT To address the question of how synaptic connectivity is established during development, we examined the behavior of growth cone filopodia during the exploration of both correct and off-target muscle fibers in Drosophila embryos. We demonstrate that filopodia repeatedly contact off-target muscles over several hours, until they ultimately retract. We show that intracellular signals are observed in motile and stabilized "ectopic" contacts. Several genetic experiments provide insight in the molecular pathway underlying network refinement, which includes oscillatory calcium signals via voltage-gated calcium channels as a key component. Calcium orchestrates the activity of several kinases and phosphatases, which interact in a coordinated fashion to regulate chemorepulsion exerted by the muscle.
Collapse
|
66
|
Vonhoff F, Keshishian H. Activity-Dependent Synaptic Refinement: New Insights from Drosophila. Front Syst Neurosci 2017; 11:23. [PMID: 28484377 PMCID: PMC5399093 DOI: 10.3389/fnsys.2017.00023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/03/2017] [Indexed: 01/26/2023] Open
Abstract
During development, neurons establish inappropriate connections as they seek out their synaptic partners, resulting in supernumerary synapses that must be pruned away. The removal of miswired synapses usually involves electrical activity, often through a Hebbian spike-timing mechanism. A novel form of activity-dependent refinement is used by Drosophila that may be non-Hebbian, and is critical for generating the precise connectivity observed in that system. In Drosophila, motoneurons use both glutamate and the biogenic amine octopamine for neurotransmission, and the muscle fibers receive multiple synaptic inputs. Motoneuron growth cones respond in a time-regulated fashion to multiple chemotropic signals arising from their postsynaptic partners. Central to this mechanism is a very low frequency (<0.03 Hz) oscillation of presynaptic cytoplasmic calcium, that regulates and coordinates the action of multiple downstream effectors involved in the withdrawal from off-target contacts. Low frequency calcium oscillations are widely observed in developing neural circuits in mammals, and have been shown to be critical for normal connectivity in a variety of neural systems. In Drosophila these mechanisms allow the growth cone to sample widely among possible synaptic partners, evaluate opponent chemotropic signals, and withdraw from off-target contacts. It is possible that the underlying molecular mechanisms are conserved widely among invertebrates and vertebrates.
Collapse
Affiliation(s)
- Fernando Vonhoff
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew Haven, CT, USA
| | - Haig Keshishian
- Department of Molecular, Cellular and Developmental Biology, Yale UniversityNew Haven, CT, USA
| |
Collapse
|
67
|
Chakraborty S, Hasan G. Spontaneous Ca 2+ Influx in Drosophila Pupal Neurons Is Modulated by IP 3-Receptor Function and Influences Maturation of the Flight Circuit. Front Mol Neurosci 2017; 10:111. [PMID: 28473752 PMCID: PMC5398029 DOI: 10.3389/fnmol.2017.00111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/04/2017] [Indexed: 11/14/2022] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3R) are Ca2+ channels on the neuronal endoplasmic reticulum (ER) membrane. They are gated by IP3, produced upon external stimulation and activation of G protein-coupled receptors on the plasma membrane (PM). IP3-mediated Ca2+ release, and the resulting depletion of the ER store, triggers entry of extracellular Ca2+ by store-operated Ca2+ entry (SOCE). Mutations in IP3R attenuate SOCE. Compromised IP3R function and SOCE during pupal development of Drosophila leads to flight deficits and mimics suppression of neuronal activity during pupal or adult development. To understand the effect of compromised IP3R function on pupal neuronal calcium signaling, we examined the effects of mutations in the IP3R gene (itpr) on Ca2+ signals in cultured neurons derived from Drosophila pupae. We observed increased spontaneous Ca2+ influx across the PM of isolated pupal neurons with mutant IP3R and also a loss of SOCE. Both spontaneous Ca2+ influx and reduced SOCE were reversed by over-expression of dOrai and dSTIM, which encode the SOCE Ca2+ channel and the ER Ca2+-sensor that regulates it, respectively. Expression of voltage-gated Ca2+ channels (cac, Ca-α1D and Ca-αT) was significantly reduced in itpr mutant neurons. However, expression of trp mRNAs and transient receptor potential (TRP) protein were increased, suggesting that TRP channels might contribute to the increased spontaneous Ca2+ influx in neurons with mutant IP3R. Thus, IP3R/SOCE modulates spontaneous Ca2+ influx and expression of PM Ca2+ channels in Drosophila pupal neurons. Spontaneous Ca2+ influx compensates for the loss of SOCE in Drosophilaitpr mutant neurons.
Collapse
Affiliation(s)
- Sumita Chakraborty
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangalore, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental ResearchBangalore, India
| |
Collapse
|
68
|
Makhijani K, To TL, Ruiz-González R, Lafaye C, Royant A, Shu X. Precision Optogenetic Tool for Selective Single- and Multiple-Cell Ablation in a Live Animal Model System. Cell Chem Biol 2017; 24:110-119. [PMID: 28065655 DOI: 10.1016/j.chembiol.2016.12.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/31/2016] [Accepted: 12/15/2016] [Indexed: 12/12/2022]
Abstract
Cell ablation is a strategy to study cell lineage and function during development. Optogenetic methods are an important cell-ablation approach, and we have previously developed a mini singlet oxygen generator (miniSOG) tool that works in the living Caenorhabditis elegans. Here, we use directed evolution to generate miniSOG2, an improved tool for cell ablation via photogenerated reactive oxygen species. We apply miniSOG2 to a far more complex model animal system, Drosophila melanogaster, and demonstrate that it can be used to kill a single neuron in a Drosophila larva. In addition, miniSOG2 is able to photoablate a small group of cells in one of the larval wing imaginal discs, resulting in an adult with one incomplete and one normal wing. We expect miniSOG2 to be a useful optogenetic tool for precision cell ablation at a desired developmental time point in live animals, thus opening a new window into cell origin, fate and function, tissue regeneration, and developmental biology.
Collapse
Affiliation(s)
- Kalpana Makhijani
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California - San Francisco, San Francisco, CA 94158, USA
| | - Tsz-Leung To
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California - San Francisco, San Francisco, CA 94158, USA
| | - Rubén Ruiz-González
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California - San Francisco, San Francisco, CA 94158, USA; Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, Barcelona 08017, Spain
| | - Céline Lafaye
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble 38044, France; European Synchrotron Radiation Facility, Grenoble 38043, France
| | - Antoine Royant
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble 38044, France; European Synchrotron Radiation Facility, Grenoble 38043, France
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA; Cardiovascular Research Institute, University of California - San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
69
|
Brill MS, Kleele T, Ruschkies L, Wang M, Marahori NA, Reuter MS, Hausrat TJ, Weigand E, Fisher M, Ahles A, Engelhardt S, Bishop DL, Kneussel M, Misgeld T. Branch-Specific Microtubule Destabilization Mediates Axon Branch Loss during Neuromuscular Synapse Elimination. Neuron 2016; 92:845-856. [PMID: 27773584 PMCID: PMC5133389 DOI: 10.1016/j.neuron.2016.09.049] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 08/14/2016] [Accepted: 09/21/2016] [Indexed: 01/17/2023]
Abstract
Developmental axon remodeling is characterized by the selective removal of branches from axon arbors. The mechanisms that underlie such branch loss are largely unknown. Additionally, how neuronal resources are specifically assigned to the branches of remodeling arbors is not understood. Here we show that axon branch loss at the developing mouse neuromuscular junction is mediated by branch-specific microtubule severing, which results in local disassembly of the microtubule cytoskeleton and loss of axonal transport in branches that will subsequently dismantle. Accordingly, pharmacological microtubule stabilization delays neuromuscular synapse elimination. This branch-specific disassembly of the cytoskeleton appears to be mediated by the microtubule-severing enzyme spastin, which is dysfunctional in some forms of upper motor neuron disease. Our results demonstrate a physiological role for a neurodegeneration-associated modulator of the cytoskeleton, reveal unexpected cell biology of branch-specific axon plasticity and underscore the mechanistic similarities of axon loss in development and disease. During synapse elimination, retreating axon branches dismantle their microtubules Microtubules are destabilized due to branch-specific severing Microtubule stabilization delays axon branch removal during synapse elimination The disease-associated microtubule severing protein spastin mediates microtubule loss
Collapse
Affiliation(s)
- Monika S Brill
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Straße 29, 80802 Munich, Germany.
| | - Tatjana Kleele
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Straße 29, 80802 Munich, Germany
| | - Laura Ruschkies
- University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology (ZMNH), Institute for Molecular Neurogenetics, Falkenried 94, 20251 Hamburg, Germany
| | - Mengzhe Wang
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Straße 29, 80802 Munich, Germany
| | - Natalia A Marahori
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Straße 29, 80802 Munich, Germany
| | - Miriam S Reuter
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Straße 29, 80802 Munich, Germany
| | - Torben J Hausrat
- University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology (ZMNH), Institute for Molecular Neurogenetics, Falkenried 94, 20251 Hamburg, Germany
| | - Emily Weigand
- Ball State University, Department of Biology, 2000 West University, Muncie, IN 47306, USA
| | - Matthew Fisher
- Ball State University, Department of Biology, 2000 West University, Muncie, IN 47306, USA
| | - Andrea Ahles
- Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Straße 29, 80802 Munich, Germany; German Center for Cardiovascular Research, DZHK, Partner site Munich Heart Alliance, Biedersteiner Straße 29, 80802 Munich, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Straße 29, 80802 Munich, Germany; German Center for Cardiovascular Research, DZHK, Partner site Munich Heart Alliance, Biedersteiner Straße 29, 80802 Munich, Germany
| | - Derron L Bishop
- Indiana University School of Medicine, Department of Cellular and Integrative Physiology, Medical Science Building 385, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15(th) Street, Indianapolis, IN 46202, USA
| | - Matthias Kneussel
- University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology (ZMNH), Institute for Molecular Neurogenetics, Falkenried 94, 20251 Hamburg, Germany
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Straße 29, 80802 Munich, Germany; Center of Integrated Protein Science (CIPSM), Butenandtstraße 5-13, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Straße 17, 81377 Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377 Munich, Germany.
| |
Collapse
|
70
|
Yaniv SP, Schuldiner O. A fly's view of neuronal remodeling. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:618-35. [PMID: 27351747 PMCID: PMC5086085 DOI: 10.1002/wdev.241] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/10/2016] [Accepted: 04/18/2016] [Indexed: 11/17/2022]
Abstract
Developmental neuronal remodeling is a crucial step in sculpting the final and mature brain connectivity in both vertebrates and invertebrates. Remodeling includes degenerative events, such as neurite pruning, that may be followed by regeneration to form novel connections during normal development. Drosophila provides an excellent model to study both steps of remodeling since its nervous system undergoes massive and stereotypic remodeling during metamorphosis. Although pruning has been widely studied, our knowledge of the molecular and cellular mechanisms is far from complete. Our understanding of the processes underlying regrowth is even more fragmentary. In this review, we discuss recent progress by focusing on three groups of neurons that undergo stereotypic pruning and regrowth during metamorphosis, the mushroom body γ neurons, the dendritic arborization neurons and the crustacean cardioactive peptide peptidergic neurons. By comparing and contrasting the mechanisms involved in remodeling of these three neuronal types, we highlight the common themes and differences as well as raise key questions for future investigation in the field. WIREs Dev Biol 2016, 5:618–635. doi: 10.1002/wdev.241 For further resources related to this article, please visit the WIREs website
Collapse
Affiliation(s)
- Shiri P Yaniv
- Dept of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Oren Schuldiner
- Dept of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
71
|
Caviglia S, Brankatschk M, Fischer EJ, Eaton S, Luschnig S. Staccato/Unc-13-4 controls secretory lysosome-mediated lumen fusion during epithelial tube anastomosis. Nat Cell Biol 2016; 18:727-39. [DOI: 10.1038/ncb3374] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 05/11/2016] [Indexed: 12/12/2022]
|
72
|
Rabinovich D, Yaniv SP, Alyagor I, Schuldiner O. Nitric Oxide as a Switching Mechanism between Axon Degeneration and Regrowth during Developmental Remodeling. Cell 2016; 164:170-182. [PMID: 26771490 DOI: 10.1016/j.cell.2015.11.047] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/02/2015] [Accepted: 11/13/2015] [Indexed: 12/31/2022]
Abstract
During development, neurons switch among growth states, such as initial axon outgrowth, axon pruning, and regrowth. By studying the stereotypic remodeling of the Drosophila mushroom body (MB), we found that the heme-binding nuclear receptor E75 is dispensable for initial axon outgrowth of MB γ neurons but is required for their developmental regrowth. Genetic experiments and pharmacological manipulations on ex-vivo-cultured brains indicate that neuronally generated nitric oxide (NO) promotes pruning but inhibits regrowth. We found that high NO levels inhibit the physical interaction between the E75 and UNF nuclear receptors, likely accounting for its repression of regrowth. Additionally, NO synthase (NOS) activity is downregulated at the onset of regrowth, at least partially, by short inhibitory NOS isoforms encoded within the NOS locus, indicating how NO production could be developmentally regulated. Taken together, these results suggest that NO signaling provides a switching mechanism between the degenerative and regenerative states of neuronal remodeling.
Collapse
Affiliation(s)
- Dana Rabinovich
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot 7610001, Israel
| | - Shiri P Yaniv
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot 7610001, Israel
| | - Idan Alyagor
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot 7610001, Israel
| | - Oren Schuldiner
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot 7610001, Israel.
| |
Collapse
|
73
|
Terada SI, Matsubara D, Onodera K, Matsuzaki M, Uemura T, Usui T. Neuronal processing of noxious thermal stimuli mediated by dendritic Ca(2+) influx in Drosophila somatosensory neurons. eLife 2016; 5. [PMID: 26880554 PMCID: PMC4786431 DOI: 10.7554/elife.12959] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/13/2016] [Indexed: 01/17/2023] Open
Abstract
Adequate responses to noxious stimuli causing tissue damages are essential for organismal survival. Class IV neurons in Drosophila larvae are polymodal nociceptors responsible for thermal, mechanical, and light sensation. Importantly, activation of Class IV provoked distinct avoidance behaviors, depending on the inputs. We found that noxious thermal stimuli, but not blue light stimulation, caused a unique pattern of Class IV, which were composed of pauses after high-frequency spike trains and a large Ca2+ rise in the dendrite (the Ca2+ transient). Both these responses depended on two TRPA channels and the L-type voltage-gated calcium channel (L-VGCC), showing that the thermosensation provokes Ca2+ influx. The precipitous fluctuation of firing rate in Class IV neurons enhanced the robust heat avoidance. We hypothesize that the Ca2+ influx can be a key signal encoding a specific modality. DOI:http://dx.doi.org/10.7554/eLife.12959.001 Animals often need to get away quickly from dangers in their environment, such as temperatures that are hot enough to damage their tissues. As such, an animal’s brain often encodes automatic ‘avoidance responses’ to signs of danger, which help the animal move away from harm. The nervous system of a fruit fly larva, for example, contains a distinct class of neurons (known as class IV neurons) that respond specifically to high temperatures and ultraviolet or blue light. Both of these stimuli are potentially harmful, but the larvae escape from heat by rolling with a corkscrew-like motion, yet they turn their heads away from a source of ultraviolet or blue light. So, how does the same set of neurons orchestrate these two different types of behavior? To answer this question, Terada, Matsubara, Onodera et al. measured the activity in the class IV neurons in two different ways. First, the levels of calcium ions in the neurons, which play a key role in neurons’ activity, were imaged using a calcium-sensitive biosensor. Second, electrodes were used to directly on the class IV neurons to record changes in their electrical activity. The experiments showed that class IV neurons responded to heat by producing a characteristic burst of electrical activity followed by a pause, and that this pattern of electrical activity was accompanied by a large rise in the calcium signal. In contrast, the same neurons did not show this ‘burst and pause’ pattern of activity when the fruit fly larvae were exposed to ultraviolet/blue light. Instead, these conditions triggered much smaller changes in electrical activity. Further experiments then confirmed that the characteristic ‘burst and pause’ pattern of electrical activity was linked to the rolling motion observed when the larvae try to escape from heat. These findings show how differing patterns of activity in the same neurons can be used to differentiate between different types of stimuli. Further work is now needed to explain how these two different patterns of activity in one set of neurons is translated by the fruit fly’s brain into different patterns of behavior. DOI:http://dx.doi.org/10.7554/eLife.12959.002
Collapse
Affiliation(s)
| | | | - Koun Onodera
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Masanori Matsuzaki
- Division of Brain Circuits, National Institute for Basic Biology, Okazaki, Japan
| | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tadao Usui
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
74
|
Ji J, Gao S, Cheng J, Tang Z, Todo Y. An approximate logic neuron model with a dendritic structure. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.09.052] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
75
|
Vargas ME, Yamagishi Y, Tessier-Lavigne M, Sagasti A. Live Imaging of Calcium Dynamics during Axon Degeneration Reveals Two Functionally Distinct Phases of Calcium Influx. J Neurosci 2015; 35:15026-38. [PMID: 26558774 PMCID: PMC4642236 DOI: 10.1523/jneurosci.2484-15.2015] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/30/2015] [Accepted: 10/07/2015] [Indexed: 12/29/2022] Open
Abstract
Calcium is a key regulator of axon degeneration caused by trauma and disease, but its specific spatial and temporal dynamics in injured axons remain unclear. To clarify the function of calcium in axon degeneration, we observed calcium dynamics in single injured neurons in live zebrafish larvae and tested the temporal requirement for calcium in zebrafish neurons and cultured mouse DRG neurons. Using laser axotomy to induce Wallerian degeneration (WD) in zebrafish peripheral sensory axons, we monitored calcium dynamics from injury to fragmentation, revealing two stereotyped phases of axonal calcium influx. First, axotomy triggered a transient local calcium wave originating at the injury site. This initial calcium wave only disrupted mitochondria near the injury site and was not altered by expression of the protective WD slow (WldS) protein. Inducing multiple waves with additional axotomies did not change the kinetics of degeneration. In contrast, a second phase of calcium influx occurring minutes before fragmentation spread as a wave throughout the axon, entered mitochondria, and was abolished by WldS expression. In live zebrafish, chelating calcium after the first wave, but before the second wave, delayed the progress of fragmentation. In cultured DRG neurons, chelating calcium early in the process of WD did not alter degeneration, but chelating calcium late in WD delayed fragmentation. We propose that a terminal calcium wave is a key instructive component of the axon degeneration program. SIGNIFICANCE STATEMENT Axon degeneration resulting from trauma or neurodegenerative disease can cause devastating deficits in neural function. Understanding the molecular and cellular events that execute axon degeneration is essential for developing treatments to address these conditions. Calcium is known to contribute to axon degeneration, but its temporal requirements in this process have been unclear. Live calcium imaging in severed zebrafish neurons and temporally controlled pharmacological treatments in both zebrafish and cultured mouse sensory neurons revealed that axonal calcium influx late in the degeneration process regulates axon fragmentation. These findings suggest that temporal considerations will be crucial for developing treatments for diseases associated with axon degeneration.
Collapse
Affiliation(s)
- Mauricio Enrique Vargas
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095, Jules Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, and
| | - Yuya Yamagishi
- Laboratory of Brain Development and Repair, The Rockefeller University, New York, New York 10065
| | - Marc Tessier-Lavigne
- Laboratory of Brain Development and Repair, The Rockefeller University, New York, New York 10065
| | - Alvaro Sagasti
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095,
| |
Collapse
|
76
|
Lin T, Pan PY, Lai YT, Chiang KW, Hsieh HL, Wu YP, Ke JM, Lee MC, Liao SS, Shih HT, Tang CY, Yang SB, Cheng HC, Wu JT, Jan YN, Lee HH. Spindle-F Is the Central Mediator of Ik2 Kinase-Dependent Dendrite Pruning in Drosophila Sensory Neurons. PLoS Genet 2015; 11:e1005642. [PMID: 26540204 PMCID: PMC4634852 DOI: 10.1371/journal.pgen.1005642] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 10/11/2015] [Indexed: 11/18/2022] Open
Abstract
During development, certain Drosophila sensory neurons undergo dendrite pruning that selectively eliminates their dendrites but leaves the axons intact. How these neurons regulate pruning activity in the dendrites remains unknown. Here, we identify a coiled-coil protein Spindle-F (Spn-F) that is required for dendrite pruning in Drosophila sensory neurons. Spn-F acts downstream of IKK-related kinase Ik2 in the same pathway for dendrite pruning. Spn-F exhibits a punctate pattern in larval neurons, whereas these Spn-F puncta become redistributed in pupal neurons, a step that is essential for dendrite pruning. The redistribution of Spn-F from puncta in pupal neurons requires the phosphorylation of Spn-F by Ik2 kinase to decrease Spn-F self-association, and depends on the function of microtubule motor dynein complex. Spn-F is a key component to link Ik2 kinase to dynein motor complex, and the formation of Ik2/Spn-F/dynein complex is critical for Spn-F redistribution and for dendrite pruning. Our findings reveal a novel regulatory mechanism for dendrite pruning achieved by temporal activation of Ik2 kinase and dynein-mediated redistribution of Ik2/Spn-F complex in neurons.
Collapse
Affiliation(s)
- Tzu Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Yuan Pan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Ting Lai
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kai-Wen Chiang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Lun Hsieh
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ping Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jian-Ming Ke
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Myong-Chol Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Sian Liao
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsueh-Tzu Shih
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chiou-Yang Tang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shi-Bing Yang
- Howard Hughes Medical Institute, Department of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - Hsu-Chen Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - June-Tai Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yuh-Nung Jan
- Howard Hughes Medical Institute, Department of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - Hsiu-Hsiang Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
77
|
Neuronal Atrophy Early in Degenerative Ataxia Is a Compensatory Mechanism to Regulate Membrane Excitability. J Neurosci 2015; 35:11292-307. [PMID: 26269637 DOI: 10.1523/jneurosci.1357-15.2015] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Neuronal atrophy in neurodegenerative diseases is commonly viewed as an early event in a continuum that ultimately results in neuronal loss. In a mouse model of the polyglutamine disorder spinocerebellar ataxia type 1 (SCA1), we tested the hypothesis that cerebellar Purkinje neuron atrophy serves an adaptive role rather than being simply a nonspecific response to injury. In acute cerebellar slices from SCA1 mice, we find that Purkinje neuron pacemaker firing is initially normal but, with the onset of motor dysfunction, becomes disrupted, accompanied by abnormal depolarization. Remarkably, subsequent Purkinje cell atrophy is associated with a restoration of pacemaker firing. The early inability of Purkinje neurons to support repetitive spiking is due to unopposed calcium currents resulting from a reduction in large-conductance calcium-activated potassium (BK) and subthreshold-activated potassium channels. The subsequent restoration of SCA1 Purkinje neuron firing correlates with the recovery of the density of these potassium channels that accompanies cell atrophy. Supporting a critical role for BK channels, viral-mediated increases in BK channel expression in SCA1 Purkinje neurons improves motor dysfunction and partially restores Purkinje neuron morphology. Cerebellar perfusion of flufenamic acid, an agent that restores the depolarized membrane potential of SCA1 Purkinje neurons by activating potassium channels, prevents Purkinje neuron dendritic atrophy. These results suggest that Purkinje neuron dendritic remodeling in ataxia is an adaptive response to increases in intrinsic membrane excitability. Similar adaptive remodeling could apply to other vulnerable neuronal populations in neurodegenerative disease. SIGNIFICANCE STATEMENT In neurodegenerative disease, neuronal atrophy has long been assumed to be an early nonspecific event preceding neuronal loss. However, in a mouse model of spinocerebellar ataxia type 1 (SCA1), we identify a previously unappreciated compensatory role for neuronal shrinkage. Purkinje neuron firing in these mice is initially normal, but is followed by abnormal membrane depolarization resulting from a reduction in potassium channels. Subsequently, these electrophysiological effects are counteracted by cell atrophy, which by restoring normal potassium channel membrane density, re-establishes pacemaker firing. Reversing the initial membrane depolarization improved motor function and Purkinje neuron morphology in the SCA1 mice. These results suggest that Purkinje neuron remodeling in ataxia is an active compensatory response that serves to normalize intrinsic membrane excitability.
Collapse
|
78
|
Yasunaga KI, Tezuka A, Ishikawa N, Dairyo Y, Togashi K, Koizumi H, Emoto K. Adult Drosophila sensory neurons specify dendritic territories independently of dendritic contacts through the Wnt5-Drl signaling pathway. Genes Dev 2015; 29:1763-75. [PMID: 26302791 PMCID: PMC4561484 DOI: 10.1101/gad.262592.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Here, Yasunaga et al. use Drosophila class IV dendrite arborization (C4da) sensory neurons as a system to investigate how neurons specify dendritic territories during neuronal development. They show that, unlike the larval dendrites, adult C4da dendrites define the dendritic boundary independently of dendritic contacts and that Wnt5 derived from sternites is required for specification of the ventral boundaries of C4da dendrites. These findings provide novel insights into how dendritic territories of neurons develop and the role of the Wnt5–Drl signaling pathway in the contact-independent dendritic boundary specification. Sensory neurons with common functions are often nonrandomly arranged and form dendritic territories in stereotypic spatial patterns throughout the nervous system, yet molecular mechanisms of how neurons specify dendritic territories remain largely unknown. In Drosophila larvae, dendrites of class IV sensory (C4da) neurons completely but nonredundantly cover the whole epidermis, and the boundaries of these tiled dendritic fields are specified through repulsive interactions between homotypic dendrites. Here we report that, unlike the larval C4da neurons, adult C4da neurons rely on both dendritic repulsive interactions and external positional cues to delimit the boundaries of their dendritic fields. We identify Wnt5 derived from sternites, the ventral-most part of the adult abdominal epidermis, as the critical determinant for the ventral boundaries. Further genetic data indicate that Wnt5 promotes dendrite termination on the periphery of sternites through the Ryk receptor family kinase Derailed (Drl) and the Rho GTPase guanine nucleotide exchange factor Trio in C4da neurons. Our findings thus uncover the dendritic contact-independent mechanism that is required for dendritic boundary specification and suggest that combinatory actions of the dendritic contact-dependent and -independent mechanisms may ensure appropriate dendritic territories of a given neuron.
Collapse
Affiliation(s)
- Kei-ichiro Yasunaga
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Akane Tezuka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Natsuko Ishikawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Yusuke Dairyo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Kazuya Togashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Hiroyuki Koizumi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 Japan
| | - Kazuo Emoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 Japan
| |
Collapse
|
79
|
Peng Y, Lee J, Rowland K, Wen Y, Hua H, Carlson N, Lavania S, Parrish JZ, Kim MD. Regulation of dendrite growth and maintenance by exocytosis. J Cell Sci 2015; 128:4279-92. [PMID: 26483382 DOI: 10.1242/jcs.174771] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/08/2015] [Indexed: 01/07/2023] Open
Abstract
Dendrites lengthen by several orders of magnitude during neuronal development, but how membrane is allocated in dendrites to facilitate this growth remains unclear. Here, we report that Ras opposite (Rop), the Drosophila ortholog of the key exocytosis regulator Munc18-1 (also known as STXBP1), is an essential factor mediating dendrite growth. Neurons with depleted Rop function exhibit reduced terminal dendrite outgrowth followed by primary dendrite degeneration, suggestive of differential requirements for exocytosis in the growth and maintenance of different dendritic compartments. Rop promotes dendrite growth together with the exocyst, an octameric protein complex involved in tethering vesicles to the plasma membrane, with Rop-exocyst complexes and exocytosis predominating in primary dendrites over terminal dendrites. By contrast, membrane-associated proteins readily diffuse from primary dendrites into terminals, but not in the reverse direction, suggesting that diffusion, rather than targeted exocytosis, supplies membranous material for terminal dendritic growth, revealing key differences in the distribution of materials to these expanding dendritic compartments.
Collapse
Affiliation(s)
- Yun Peng
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Jiae Lee
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Kimberly Rowland
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Yuhui Wen
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Hope Hua
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Nicole Carlson
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Shweta Lavania
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Jay Z Parrish
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Michael D Kim
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
80
|
Abstract
The assembly of functional neural circuits requires the combined action of progressive and regressive events. Regressive events encompass a variety of inhibitory developmental processes, including axon and dendrite pruning, which facilitate the removal of exuberant neuronal connections. Most axon pruning involves the removal of axons that had already made synaptic connections; thus, axon pruning is tightly associated with synapse elimination. In many instances, these developmental processes are regulated by the interplay between neurons and glial cells that act instructively during neural remodeling. Owing to the importance of axon and dendritic pruning, these remodeling events require precise spatial and temporal control, and this is achieved by a range of distinct molecular mechanisms. Disruption of these mechanisms results in abnormal pruning, which has been linked to brain dysfunction. Therefore, understanding the mechanisms of axon and dendritic pruning will be instrumental in advancing our knowledge of neural disease and mental disorders.
Collapse
Affiliation(s)
- Martin M Riccomagno
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521;
| | - Alex L Kolodkin
- Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|
81
|
Abstract
The nervous system is populated by numerous types of neurons, each bearing a dendritic arbor with a characteristic morphology. These type-specific features influence many aspects of a neuron's function, including the number and identity of presynaptic inputs and how inputs are integrated to determine firing properties. Here, we review the mechanisms that regulate the construction of cell type-specific dendrite patterns during development. We focus on four aspects of dendrite patterning that are particularly important in determining the function of the mature neuron: (a) dendrite shape, including branching pattern and geometry of the arbor; (b) dendritic arbor size;
Collapse
Affiliation(s)
| | - Joshua R Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138;
| | - Jeremy N Kay
- Departments of Neurobiology and Ophthalmology, Duke University School of Medicine, Durham, North Carolina 27710;
| |
Collapse
|
82
|
Heyes S, Pratt WS, Rees E, Dahimene S, Ferron L, Owen MJ, Dolphin AC. Genetic disruption of voltage-gated calcium channels in psychiatric and neurological disorders. Prog Neurobiol 2015; 134:36-54. [PMID: 26386135 PMCID: PMC4658333 DOI: 10.1016/j.pneurobio.2015.09.002] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/08/2015] [Accepted: 09/08/2015] [Indexed: 12/15/2022]
Abstract
Voltage-gated calcium channel classification—genes and proteins. Genetic analysis of neuropsychiatric syndromes. Calcium channel genes identified from GWA studies of psychiatric disorders. Rare mutations in calcium channel genes in psychiatric disorders. Pathophysiological sequelae of CACNA1C mutations and polymorphisms. Monogenic disorders resulting from harmful mutations in other voltage-gated calcium channel genes. Changes in calcium channel gene expression in disease. Involvement of voltage-gated calcium channels in early brain development.
This review summarises genetic studies in which calcium channel genes have been connected to the spectrum of neuropsychiatric syndromes, from bipolar disorder and schizophrenia to autism spectrum disorders and intellectual impairment. Among many other genes, striking numbers of the calcium channel gene superfamily have been implicated in the aetiology of these diseases by various DNA analysis techniques. We will discuss how these relate to the known monogenic disorders associated with point mutations in calcium channels. We will then examine the functional evidence for a causative link between these mutations or single nucleotide polymorphisms and the disease processes. A major challenge for the future will be to translate the expanding psychiatric genetic findings into altered physiological function, involvement in the wider pathology of the diseases, and what potential that provides for personalised and stratified treatment options for patients.
Collapse
Affiliation(s)
- Samuel Heyes
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Wendy S Pratt
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Elliott Rees
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Shehrazade Dahimene
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Laurent Ferron
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Michael J Owen
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
83
|
Rabinovich D, Mayseless O, Schuldiner O. Long term ex vivo culturing of Drosophila brain as a method to live image pupal brains: insights into the cellular mechanisms of neuronal remodeling. Front Cell Neurosci 2015; 9:327. [PMID: 26379498 PMCID: PMC4547045 DOI: 10.3389/fncel.2015.00327] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/07/2015] [Indexed: 01/01/2023] Open
Abstract
Holometabolous insects, including Drosophila melanogaster, undergo complete metamorphosis that includes a pupal stage. During metamorphosis, the Drosophila nervous system undergoes massive remodeling and growth, that include cell death and large-scale axon and synapse elimination as well as neurogenesis, developmental axon regrowth, and formation of new connections. Neuronal remodeling is an essential step in the development of vertebrate and invertebrate nervous systems. Research on the stereotypic remodeling of Drosophila mushroom body (MB) γ neurons has contributed to our knowledge of the molecular mechanisms of remodeling but our knowledge of the cellular mechanisms remain poorly understood. A major hurdle in understanding various dynamic processes that occur during metamorphosis is the lack of time-lapse resolution. The pupal case and opaque fat bodies that enwrap the central nervous system (CNS) make live-imaging of the central brain in-vivo impossible. We have established an ex vivo long-term brain culture system that supports the development and neuronal remodeling of pupal brains. By optimizing culture conditions and dissection protocols, we have observed development in culture at kinetics similar to what occurs in vivo. Using this new method, we have obtained the first time-lapse sequence of MB γ neurons undergoing remodeling in up to a single cell resolution. We found that axon pruning is initiated by blebbing, followed by one-two nicks that seem to initiate a more widely spread axon fragmentation. As such, we have set up some of the tools and methodologies needed for further exploration of the cellular mechanisms of neuronal remodeling, not limited to the MB. The long-term ex vivo brain culture system that we report here could be used to study dynamic aspects of neurodevelopment of any Drosophila neuron.
Collapse
Affiliation(s)
- Dana Rabinovich
- Department of Molecular Cell Biology, Weizmann Institute of Sciences Rehovot, Israel
| | - Oded Mayseless
- Department of Molecular Cell Biology, Weizmann Institute of Sciences Rehovot, Israel
| | - Oren Schuldiner
- Department of Molecular Cell Biology, Weizmann Institute of Sciences Rehovot, Israel
| |
Collapse
|
84
|
Valnegri P, Puram SV, Bonni A. Regulation of dendrite morphogenesis by extrinsic cues. Trends Neurosci 2015; 38:439-47. [PMID: 26100142 DOI: 10.1016/j.tins.2015.05.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 01/19/2023]
Abstract
Dendrites play a central role in the integration and flow of information in the nervous system. The morphogenesis and maturation of dendrites is hence an essential step in the establishment of neuronal connectivity. Recent studies have uncovered crucial functions for extrinsic cues in the development of dendrites. We review the contribution of secreted polypeptide growth factors, contact-mediated proteins, and neuronal activity in distinct phases of dendrite development. We also highlight how extrinsic cues influence local and global intracellular mechanisms of dendrite morphogenesis. Finally, we discuss how these studies have advanced our understanding of neuronal connectivity and have shed light on the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Pamela Valnegri
- Department of Anatomy and Neurobiology, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sidharth V Puram
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Azad Bonni
- Department of Anatomy and Neurobiology, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
85
|
Kanamori T, Yoshino J, Yasunaga KI, Dairyo Y, Emoto K. Local endocytosis triggers dendritic thinning and pruning in Drosophila sensory neurons. Nat Commun 2015; 6:6515. [DOI: 10.1038/ncomms7515] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 02/04/2015] [Indexed: 12/15/2022] Open
|
86
|
Brady ML, Jacob TC. Synaptic localization of α5 GABA (A) receptors via gephyrin interaction regulates dendritic outgrowth and spine maturation. Dev Neurobiol 2015; 75:1241-51. [PMID: 25663431 DOI: 10.1002/dneu.22280] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/04/2015] [Accepted: 02/04/2015] [Indexed: 11/08/2022]
Abstract
GABAA receptor subunit composition is a critical determinant of receptor localization and physiology, with synaptic receptors generating phasic inhibition and extrasynaptic receptors producing tonic inhibition. Extrasynaptically localized α5 GABAA receptors are largely responsible for tonic inhibition in hippocampal neurons. However, we show here that inhibitory synapses also contain a constant level of α5 GABAA receptors throughout neuronal development, as measured by its colocalization with gephyrin, the inhibitory postsynaptic scaffolding protein. Immunoprecipitation of the α5 subunit from both cultured neurons and adult rat brain coimmunoprecipitated gephyrin, confirming this interaction in vivo. Furthermore, the α5 subunit can interact with gephyrin independent of other synaptically localized alpha subunits, as shown by immunoprecipitation experiments in HEK cells. By replacing the α5 predicted gephyrin binding domain (Residues 370-385) with either the high affinity gephyrin binding domain of the α2 subunit or homologous residues from the extrasynaptic α4 subunit that does not interact with gephyrin, α5 GABAA receptor localization shifted into or out of the synapse, respectively. These shifts in the ratio of synaptic/extrasynaptic α5 localization disrupted dendritic outgrowth and spine maturation. In contrast to the predominant view of α5 GABAA receptors being extrasynaptic and modulating tonic inhibition, we identify an intimate association of the α5 subunit with gephyrin, resulting in constant synaptic levels of α5 GABAA R throughout circuit formation that regulates neuronal development.
Collapse
Affiliation(s)
- Megan L Brady
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15261
| |
Collapse
|
87
|
Kanamori T, Togashi K, Koizumi H, Emoto K. Dendritic Remodeling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 318:1-25. [DOI: 10.1016/bs.ircmb.2015.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
88
|
Schuldiner O, Yaron A. Mechanisms of developmental neurite pruning. Cell Mol Life Sci 2014; 72:101-19. [PMID: 25213356 DOI: 10.1007/s00018-014-1729-6] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 12/19/2022]
Abstract
The precise wiring of the nervous system is a combined outcome of progressive and regressive events during development. Axon guidance and synapse formation intertwined with cell death and neurite pruning sculpt the mature circuitry. It is now well recognized that pruning of dendrites and axons as means to refine neuronal networks, is a wide spread phenomena required for the normal development of vertebrate and invertebrate nervous systems. Here we will review the arising principles of cellular and molecular mechanisms of neurite pruning. We will discuss these principles in light of studies in multiple neuronal systems, and speculate on potential explanations for the emergence of neurite pruning as a mechanism to sculpt the nervous system.
Collapse
Affiliation(s)
- Oren Schuldiner
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, 7610001, Rehovot, Israel,
| | | |
Collapse
|
89
|
Neukomm LJ, Freeman MR. Diverse cellular and molecular modes of axon degeneration. Trends Cell Biol 2014; 24:515-23. [PMID: 24780172 PMCID: PMC4149811 DOI: 10.1016/j.tcb.2014.04.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/30/2014] [Accepted: 04/01/2014] [Indexed: 01/11/2023]
Abstract
The elimination of large portions of axons is a widespread event in the developing and diseased nervous system. Subsets of axons are selectively destroyed to help fine-tune neural circuit connectivity during development. Axonal degeneration is also an early feature of nearly all neurodegenerative diseases, occurs after most neural injuries, and is a primary driver of functional impairment in patients. In this review we discuss the diversity of cellular mechanisms by which axons degenerate. Initial molecular characterization highlights some similarities in their execution but also argues that unique genetic programs modulate each mode of degeneration. Defining these pathways rigorously will provide new targets for therapeutic intervention after neural injury or in neurodegenerative disease.
Collapse
Affiliation(s)
- Lukas J Neukomm
- Department of Neurobiology, Howard Hughes Medical Institute, University of Massachusetts Medical School, 704 LRB, 364 Plantation Street, Worcester, MA 01609, USA
| | - Marc R Freeman
- Department of Neurobiology, Howard Hughes Medical Institute, University of Massachusetts Medical School, 704 LRB, 364 Plantation Street, Worcester, MA 01609, USA.
| |
Collapse
|
90
|
Reese BE, Keeley PW. Design principles and developmental mechanisms underlying retinal mosaics. Biol Rev Camb Philos Soc 2014; 90:854-76. [PMID: 25109780 DOI: 10.1111/brv.12139] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/24/2014] [Accepted: 07/15/2014] [Indexed: 01/26/2023]
Abstract
Most structures within the central nervous system (CNS) are composed of different types of neuron that vary in both number and morphology, but relatively little is known about the interplay between these two features, i.e. about the population dynamics of a given cell type. How such arrays of neurons are distributed within a structure, and how they differentiate their dendrites relative to each other, are issues that have recently drawn attention in the invertebrate nervous system, where the genetic and molecular underpinnings of these organizing principles are being revealed in exquisite detail. The retina is one of the few locations where these principles have been extensively studied in the vertebrate CNS, indeed, where the design principles of 'mosaic regularity' and 'uniformity of coverage' were first explicitly defined, quantified, and related to each other. Recent studies have revealed a number of genes that influence the formation of these histotypical features in the retina, including homologues of those invertebrate genes, although close inspection reveals that they do not always mediate comparable developmental processes nor elucidate fundamental design principles. The present review considers just how pervasive these features of 'mosaic regularity' and 'uniform dendritic coverage' are within the mammalian retina, discussing the means by which such features can be assessed in the mature and developing nervous system and examining the limitations associated with those assessments. We then address the extent to which these two design principles co-exist within different populations of neurons, and how they are achieved during development. Finally, we consider the neural phenotypes obtained in mutant nervous systems, to address whether a prospective gene of interest underlies those very design principles.
Collapse
Affiliation(s)
- Benjamin E Reese
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106-5060, U.S.A.,Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106-9660, U.S.A
| | - Patrick W Keeley
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106-5060, U.S.A.,Department of Molecular, Cellular & Developmental Biology, University of California, Santa Barbara, CA 93106-9625, U.S.A
| |
Collapse
|
91
|
Zhang H, Wang Y, Wong J, Lim KL, Liou YC, Wang H, Yu F. Endocytic Pathways Downregulate the L1-type Cell Adhesion Molecule Neuroglian to Promote Dendrite Pruning in Drosophila. Dev Cell 2014; 30:463-78. [DOI: 10.1016/j.devcel.2014.06.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 04/23/2014] [Accepted: 06/17/2014] [Indexed: 11/27/2022]
|
92
|
Grein S, Stepniewski M, Reiter S, Knodel MM, Queisser G. 1D-3D hybrid modeling-from multi-compartment models to full resolution models in space and time. Front Neuroinform 2014; 8:68. [PMID: 25120463 PMCID: PMC4114301 DOI: 10.3389/fninf.2014.00068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 06/28/2014] [Indexed: 12/03/2022] Open
Abstract
Investigation of cellular and network dynamics in the brain by means of modeling and simulation has evolved into a highly interdisciplinary field, that uses sophisticated modeling and simulation approaches to understand distinct areas of brain function. Depending on the underlying complexity, these models vary in their level of detail, in order to cope with the attached computational cost. Hence for large network simulations, single neurons are typically reduced to time-dependent signal processors, dismissing the spatial aspect of each cell. For single cell or networks with relatively small numbers of neurons, general purpose simulators allow for space and time-dependent simulations of electrical signal processing, based on the cable equation theory. An emerging field in Computational Neuroscience encompasses a new level of detail by incorporating the full three-dimensional morphology of cells and organelles into three-dimensional, space and time-dependent, simulations. While every approach has its advantages and limitations, such as computational cost, integrated and methods-spanning simulation approaches, depending on the network size could establish new ways to investigate the brain. In this paper we present a hybrid simulation approach, that makes use of reduced 1D-models using e.g., the NEURON simulator—which couples to fully resolved models for simulating cellular and sub-cellular dynamics, including the detailed three-dimensional morphology of neurons and organelles. In order to couple 1D- and 3D-simulations, we present a geometry-, membrane potential- and intracellular concentration mapping framework, with which graph- based morphologies, e.g., in the swc- or hoc-format, are mapped to full surface and volume representations of the neuron and computational data from 1D-simulations can be used as boundary conditions for full 3D simulations and vice versa. Thus, established models and data, based on general purpose 1D-simulators, can be directly coupled to the emerging field of fully resolved, highly detailed 3D-modeling approaches. We present the developed general framework for 1D/3D hybrid modeling and apply it to investigate electrically active neurons and their intracellular spatio-temporal calcium dynamics.
Collapse
Affiliation(s)
- Stephan Grein
- Computational Neuroscience, Goethe Center for Scientific Computing, Computer Science and Mathematics, Goethe University Frankfurt am Main, Germany
| | - Martin Stepniewski
- Computational Neuroscience, Goethe Center for Scientific Computing, Computer Science and Mathematics, Goethe University Frankfurt am Main, Germany
| | - Sebastian Reiter
- Simulation and Modelling, Goethe Center for Scientific Computing, Computer Science and Mathematics, Goethe University Frankfurt am Main, Germany
| | - Markus M Knodel
- Simulation and Modelling, Goethe Center for Scientific Computing, Computer Science and Mathematics, Goethe University Frankfurt am Main, Germany
| | - Gillian Queisser
- Computational Neuroscience, Goethe Center for Scientific Computing, Computer Science and Mathematics, Goethe University Frankfurt am Main, Germany
| |
Collapse
|
93
|
McCormick K, Baillie GS. Compartmentalisation of second messenger signalling pathways. Curr Opin Genet Dev 2014; 27:20-5. [PMID: 24791689 DOI: 10.1016/j.gde.2014.02.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/21/2014] [Accepted: 02/22/2014] [Indexed: 01/21/2023]
Abstract
The ability of a cell to transform an extracellular stimulus into a downstream event that directs specific physiological outcomes, requires the orchestrated, spatial and temporal response of many signalling proteins. The notion of compartmentalised signalling pathways was popularised in the 1980s by Brunton and colleagues, with their discovery that spatially segregated cAMP directs a variety of signalling responses in cardiomyocytes. It is now understood that compartmentalisation is a common mechanism used by all cells to ensure the interaction of signalling 'second messenger' molecules with localised 'pools' of appropriate effector proteins. In this way, the cell can elicit differential cellular responses by using a single, freely diffusible, molecular species. Recently, the compartmentalisation schemes employed by signalling systems involving cyclic nucleotides, calcium and nitric oxide have been elucidated and as a result, the varied range of functional consequences underpinned by such strategies can be better appreciated.
Collapse
Affiliation(s)
- Kristie McCormick
- Institute of Cardiovascular and Medical Sciences, CMVLS, Wolfson-Link Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - George S Baillie
- Institute of Cardiovascular and Medical Sciences, CMVLS, Wolfson-Link Building, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
94
|
Drosophila Valosin-Containing Protein is required for dendrite pruning through a regulatory role in mRNA metabolism. Proc Natl Acad Sci U S A 2014; 111:7331-6. [PMID: 24799714 DOI: 10.1073/pnas.1406898111] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dendritic arbors of the larval Drosophila peripheral class IV dendritic arborization neurons degenerate during metamorphosis in an ecdysone-dependent manner. This process-also known as dendrite pruning-depends on the ubiquitin-proteasome system (UPS), but the specific processes regulated by the UPS during pruning have been largely elusive. Here, we show that mutation or inhibition of Valosin-Containing Protein (VCP), a ubiquitin-dependent ATPase whose human homolog is linked to neurodegenerative disease, leads to specific defects in mRNA metabolism and that this role of VCP is linked to dendrite pruning. Specifically, we find that VCP inhibition causes an altered splicing pattern of the large pruning gene molecule interacting with CasL and mislocalization of the Drosophila homolog of the human RNA-binding protein TAR-DNA-binding protein of 43 kilo-Dalton (TDP-43). Our data suggest that VCP inactivation might lead to specific gain-of-function of TDP-43 and other RNA-binding proteins. A similar combination of defects is also seen in a mutant in the ubiquitin-conjugating enzyme ubcD1 and a mutant in the 19S regulatory particle of the proteasome, but not in a 20S proteasome mutant. Thus, our results highlight a proteolysis-independent function of the UPS during class IV dendritic arborization neuron dendrite pruning and link the UPS to the control of mRNA metabolism.
Collapse
|
95
|
Yu F, Schuldiner O. Axon and dendrite pruning in Drosophila. Curr Opin Neurobiol 2014; 27:192-8. [PMID: 24793180 DOI: 10.1016/j.conb.2014.04.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 01/05/2023]
Abstract
Pruning, a process by which neurons selectively remove exuberant or unnecessary processes without causing cell death, is crucial for the establishment of mature neural circuits during animal development. Yet relatively little is known about molecular and cellular mechanisms that govern neuronal pruning. Holometabolous insects, such as Drosophila, undergo complete metamorphosis and their larval nervous systems are replaced with adult-specific ones, thus providing attractive models for studying neuronal pruning. Drosophila mushroom body and dendritic arborization neurons have been utilized as two appealing systems to elucidate the underlying mechanisms of axon and dendrite pruning, respectively. In this review we highlight recent developments and discuss some similarities and differences in the mechanisms that regulate these two distinct modes of neuronal pruning in Drosophila.
Collapse
Affiliation(s)
- Fengwei Yu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, 1 Research Link, National University of Singapore, Singapore 117604, Singapore.
| | - Oren Schuldiner
- Department of Molecular Cell Biology, Weizmann Institute of Sciences, Rehovot 7610001, Israel.
| |
Collapse
|
96
|
Lyons GR, Andersen RO, Abdi K, Song WS, Kuo CT. Cysteine proteinase-1 and cut protein isoform control dendritic innervation of two distinct sensory fields by a single neuron. Cell Rep 2014; 6:783-791. [PMID: 24582961 PMCID: PMC4237277 DOI: 10.1016/j.celrep.2014.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/21/2014] [Accepted: 02/03/2014] [Indexed: 11/29/2022] Open
Abstract
Dendrites often exhibit structural changes in response to local inputs. Although mechanisms that pattern and maintain dendritic arbors are becoming clearer, processes regulating regrowth, during context-dependent plasticity or after injury, remain poorly understood. We found that a class of Drosophila sensory neurons, through complete pruning and regeneration, can elaborate two distinct dendritic trees, innervating independent sensory fields. An expression screen identified Cysteome proteinase-1 (Cp1) as a critical regulator of this process. Unlike known ecdysone effectors, Cp1-mutant ddaC neurons pruned larval dendrites normally but failed to regrow adult dendrites. Cp1 expression was upregulated/concentrated in the nucleus during metamorphosis, controlling production of a truncated Cut homeodomain transcription factor. This truncated Cut, but not the full-length protein, allowed Cp1-mutant ddaC neurons to regenerate higher-order adult dendrites. These results identify a molecular pathway needed for dendrite regrowth after pruning, which allows the same neuron to innervate distinct sensory fields.
Collapse
Affiliation(s)
- Gray R Lyons
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.,Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ryan O Andersen
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Khadar Abdi
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Won-Seok Song
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chay T Kuo
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.,Brumley Neonatal-Perinatal Research Institute, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA.,Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.,Preston Robert Tisch Brain Tumor Center, Duke University School of Medicine, Durham, NC 27710, USA.,Duke Institute for Brain Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
97
|
Baker MW, Macagno ER. Control of neuronal morphology and connectivity: Emerging developmental roles for gap junctional proteins. FEBS Lett 2014; 588:1470-9. [DOI: 10.1016/j.febslet.2014.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 11/25/2022]
|
98
|
Agrawal T, Sadaf S, Hasan G. A genetic RNAi screen for IP₃/Ca²⁺ coupled GPCRs in Drosophila identifies the PdfR as a regulator of insect flight. PLoS Genet 2013; 9:e1003849. [PMID: 24098151 PMCID: PMC3789835 DOI: 10.1371/journal.pgen.1003849] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/18/2013] [Indexed: 01/12/2023] Open
Abstract
Insect flight is regulated by various sensory inputs and neuromodulatory circuits which function in synchrony to control and fine-tune the final behavioral outcome. The cellular and molecular bases of flight neuromodulatory circuits are not well defined. In Drosophila melanogaster, it is known that neuronal IP3 receptor mediated Ca2+ signaling and store-operated Ca2+ entry (SOCE) are required for air-puff stimulated adult flight. However, G-protein coupled receptors (GPCRs) that activate intracellular Ca2+ signaling in the context of flight are unknown in Drosophila. We performed a genetic RNAi screen to identify GPCRs that regulate flight by activating the IP3 receptor. Among the 108 GPCRs screened, we discovered 5 IP3/Ca2+ linked GPCRs that are necessary for maintenance of air-puff stimulated flight. Analysis of their temporal requirement established that while some GPCRs are required only during flight circuit development, others are required both in pupal development as well as during adult flight. Interestingly, our study identified the Pigment Dispersing Factor Receptor (PdfR) as a regulator of flight circuit development and as a modulator of acute flight. From the analysis of PdfR expressing neurons relevant for flight and its well-defined roles in other behavioral paradigms, we propose that PdfR signaling functions systemically to integrate multiple sensory inputs and modulate downstream motor behavior. A majority of behavioral patterns in flying insects depend upon their ability to modulate flight. In Drosophila melanogaster, mutations in the IP3 receptor gene lead to loss of voluntary flight in response to a natural stimulus like a gentle air-puff. From previous genetic and cellular studies it is known that the IP3R in Drosophila is activated by G-protein coupled receptors (GPCRs). However, GPCRs that act upstream of the IP3R in the context of flight are not known. Therefore, we performed a genetic RNAi screen to identify GPCRs which regulate flight. This screen was followed by a secondary suppressor screen that assessed the role of each identified GPCR in activating IP3/Ca2+ signaling. We found 5 such GPCRs. Our results demonstrate that these GPCRs are required during flight circuit development and during adult flight. One flight-regulating receptor identified was the Pigment Dispersing Factor Receptor (PdfR). This receptor is known to regulate behaviors such as circadian rhythms, geotaxis and reproduction. A spatio-temporal analysis of PdfR flight function indicates that it regulates both flight circuit development and acute flight through multiple neurons. We postulate that PdfR signaling could modulate and integrate multiple behavioral inputs in Drosophila and other flying insects.
Collapse
Affiliation(s)
- Tarjani Agrawal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Sufia Sadaf
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- * E-mail:
| |
Collapse
|
99
|
Neural development: Compartmentalized calcium triggers pruning. Nat Rev Neurosci 2013; 14:459. [PMID: 23783195 DOI: 10.1038/nrn3540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|