51
|
Liu Z, Liu B, Yin Y, Medhekar NV. Generic Approach to Intrinsic Magnetic Second-Order Topological Insulators via Inverted p- d Orbitals. NANO LETTERS 2024; 24:11295-11301. [PMID: 39213595 DOI: 10.1021/acs.nanolett.4c03109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The integration of intrinsically magnetic and topologically nontrivial two-dimensional materials holds tantalizing prospects for exotic quantum anomalous Hall insulators and magnetic second-order topological insulators (SOTIs). Compared with their well-studied nonmagnetic counterparts, the pursuit of intrinsic magnetic SOTIs remains limited. In this work, we address this gap by focusing on p-d orbitals inversion, a fundamental but often overlooked phenomena in the construction of topological materials. We begin by developing a theoretical framework to elucidate p-d orbital inversion through a combined density-functional theory calculation and Wannier downfolding. Subsequently we showcase the generality of this concept in realizing ferromagnetism SOTIs by identifying two real materials with distinct lattices: 1T-VS2 monolayer in a hexagonal lattice and CrAs monolayer in a square lattice. We further compare it with other mechanisms requiring spin-orbit coupling and explore the similarities to topological Kondo insulators. Our findings establish a generic pathway toward intrinsic magnetic SOTIs.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Materials Science and Engineering, Monash University, Victoria 3800, Australia
- ARC Centre of Excellent in Future Low-Energy Electronics Technologies, Monash University, Victoria 3800, Australia
| | - Bing Liu
- School of Physics and Electronic Information, Weifang University, Weifang, Shandong 261061, China
| | - Yuefeng Yin
- Department of Materials Science and Engineering, Monash University, Victoria 3800, Australia
- ARC Centre of Excellent in Future Low-Energy Electronics Technologies, Monash University, Victoria 3800, Australia
| | - Nikhil V Medhekar
- Department of Materials Science and Engineering, Monash University, Victoria 3800, Australia
- ARC Centre of Excellent in Future Low-Energy Electronics Technologies, Monash University, Victoria 3800, Australia
| |
Collapse
|
52
|
Ghorashi SAA, Hughes TL, Cano J. Altermagnetic Routes to Majorana Modes in Zero Net Magnetization. PHYSICAL REVIEW LETTERS 2024; 133:106601. [PMID: 39303240 DOI: 10.1103/physrevlett.133.106601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 05/20/2024] [Accepted: 08/09/2024] [Indexed: 09/22/2024]
Abstract
We propose heterostructures that realize first and second order topological superconductivity with vanishing net magnetization by utilizing altermagnetism. Such platforms may offer a significant improvement over conventional platforms with uniform magnetization since the latter suppresses the superconducting gap. We first introduce a 1D semiconductor-superconductor structure in proximity to an altermagnet that realizes end Majorana zero modes (MZMs) with vanishing net magnetization. Additionally, a coexisting Zeeman term provides a tuning knob to distinguish topological and trivial zero modes. We then propose 2D altermagnetic platforms that can realize chiral Majorana fermions or higher order corner MZMs. Our Letter paves the way toward realizing Majorana boundary states with an alternative source of time-reversal breaking and zero net magnetization.
Collapse
|
53
|
Lu Z, Hou S, Lin R, Shi J, Wu Q, Lin L, Shi J, Yang Y, Lambert C, Hong W. Conductance Quantization in 2D Semi-Metallic Transition Metal Dichalcogenides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311491. [PMID: 38682729 DOI: 10.1002/smll.202311491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/09/2024] [Indexed: 05/01/2024]
Abstract
Conductance quantization of 2D materials is significant for understanding the charge transport at the atomic scale, which provides a platform to manipulate the quantum states, showing promising applications for nanoelectronics and memristors. However, the conventional methods for investigating conductance quantization are only applicable to materials consisting of one element, such as metal and graphene. The experimental observation of conductance quantization in transition metal dichalcogenides (TMDCs) with complex compositions and structures remains a challenge. To address this issue, an approach is proposed to characterize the charge transport across a single atom in TMDCs by integrating in situ synthesized 1T'-WTe2 electrodes with scanning tunneling microscope break junction (STM-BJ) technique. The quantized conductance of 1T'-WTe2 is measured for the first time, and the quantum states can be modulated by stretching speed and solvent. Combined with theoretical calculations, the evolution of quantized and corresponding configurations during the break junction process is demonstrated. This work provides a facile and reliable avenue to characterize and modulate conductance quantization of 2D materials, intensively expanding the research scope of quantum effects in diverse materials.
Collapse
Affiliation(s)
- Zhixing Lu
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350117, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Songjun Hou
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK
| | - Rongjian Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Jie Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Qingqing Wu
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK
| | - Luchun Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Colin Lambert
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
54
|
Khaustov VO, Convertino D, Köster J, Zakharov AA, Mohn MJ, Gebeyehu ZM, Martini L, Pace S, Marini G, Calandra M, Kaiser U, Forti S, Coletti C. Heterocontact-Triggered 1H to 1T' Phase Transition in CVD-Grown Monolayer MoTe 2: Implications for Low Contact Resistance Electronic Devices. ACS APPLIED NANO MATERIALS 2024; 7:18094-18105. [PMID: 39206354 PMCID: PMC11348416 DOI: 10.1021/acsanm.3c01314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/16/2023] [Indexed: 09/04/2024]
Abstract
Single-layer molybdenum ditelluride (MoTe2) has attracted attention due to the smaller energy difference between the semiconducting (1H) and semimetallic (1T') phases with respect to other two-dimensional transition metal dichalcogenides (TMDs). Understanding the phenomenon of polymorphism between these structural phases is of great fundamental and practical importance. In this paper, we report a 1H to 1T' phase transition occurring during the chemical vapor deposition (CVD) synthesis of single-layer MoTe2 at 730 °C. The transformation originates at the heterocontact between monoclinic and hexagonal crystals and progresses to either yield a partial or complete 1H to 1T' phase transition. Microscopic and spectroscopic analyses of the MoTe2 crystals reveal the presence of Te vacancies and mirror twin boundaries (MTB) domains in the hexagonal phase. The experimental observations and theoretical simulations indicate that the combination of heterocontact formation and Te vacancies are relevant triggering mechanisms in the observed transformation. By advancing in the understanding and controlling of the direct synthesis of lateral 1T'/1H heterostructures, this work contributes to the development of MoTe2-based electronic and optoelectronic devices with low contact resistance.
Collapse
Affiliation(s)
- Vladislav O. Khaustov
- Center
for Nanotechnology Innovation @NEST, Istituto
Italiano di Tecnologia, Piazza San Silvestro 12, I-56127 Pisa, Italy
- NEST, Scuola Normale Superiore, Piazza San Silvestro 12, I-56127 Pisa, Italy
| | - Domenica Convertino
- Center
for Nanotechnology Innovation @NEST, Istituto
Italiano di Tecnologia, Piazza San Silvestro 12, I-56127 Pisa, Italy
| | - Janis Köster
- Central
Facility for Electron Microscopy, Materials Science Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | | - Michael J. Mohn
- Central
Facility for Electron Microscopy, Materials Science Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Zewdu M. Gebeyehu
- Center
for Nanotechnology Innovation @NEST, Istituto
Italiano di Tecnologia, Piazza San Silvestro 12, I-56127 Pisa, Italy
- Graphene
Laboratories, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Leonardo Martini
- Center
for Nanotechnology Innovation @NEST, Istituto
Italiano di Tecnologia, Piazza San Silvestro 12, I-56127 Pisa, Italy
| | - Simona Pace
- Center
for Nanotechnology Innovation @NEST, Istituto
Italiano di Tecnologia, Piazza San Silvestro 12, I-56127 Pisa, Italy
- Graphene
Laboratories, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Giovanni Marini
- Graphene
Laboratories, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Matteo Calandra
- Graphene
Laboratories, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Department
of Physics, University of Trento, Via Sommarive 14, 38123 Povo, Italy
- Institut
des Nanosciences de Paris, UMR7588, Sorbonne
Université, CNRS, F-75252 Paris, France
| | - Ute Kaiser
- Central
Facility for Electron Microscopy, Materials Science Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Stiven Forti
- Center
for Nanotechnology Innovation @NEST, Istituto
Italiano di Tecnologia, Piazza San Silvestro 12, I-56127 Pisa, Italy
| | - Camilla Coletti
- Center
for Nanotechnology Innovation @NEST, Istituto
Italiano di Tecnologia, Piazza San Silvestro 12, I-56127 Pisa, Italy
- Graphene
Laboratories, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
55
|
Lan YS, Chen CJ, Kuo SH, Lin YH, Huang A, Huang JY, Hsu PJ, Cheng CM, Jeng HT. Dual Dirac Nodal Line in Nearly Freestanding Electronic Structure of β-Sn Monolayer. ACS NANO 2024; 18:20990-20998. [PMID: 39086236 PMCID: PMC11328162 DOI: 10.1021/acsnano.4c01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Two-dimensional topological insulators (2D TIs) have distinct electronic properties that make them attractive for various applications, especially in spintronics. The conductive edge states in 2D TIs are protected from disorder and perturbations and are spin-polarized, which restrict current flow to a single spin orientation. In contrast, topological nodal line semimetals (TNLSM) are distinct from TIs because of the presence of a 1D ring of degeneracy formed from two bands that cross each other along a line in the Brillouin zone. These nodal lines are protected by topology and can be destroyed only by breaking certain symmetry conditions, making them highly resilient to disorder and defects. However, 2D TNLSMs do not possess protected boundary modes, which makes their investigation challenging. There have been several theoretical predictions of 2D TNLSMs, however, experimental realizations are rare. β-Sn, a metallic allotrope of tin with a superconducting temperature of 3.72 K, may be a candidate for a topological superconductor that can host Majorana Fermions for quantum computing. In this work, single layers of α-Sn and β-Sn on a Cu(111) substrate are successfully prepared and studied using scanning tunneling microscopy, angle-resolved photoemission spectroscopy, and density functional theory calculations. The lattice and electronic structure undergo a topological transition from 2D topological insulator α-Sn to 2D TNLSM β-Sn, with two types of nodal lines coexisting in monolayer β-Sn. Such a realization of two types of nodal lines in one 2D material has not been reported to date. Moreover, we also observed an unexpected phenomenon of freestanding-like electronic structures of β-Sn/Cu(111), highlighting the potential of ultrathin β-Sn films as a platform for exploring the electronic properties of 2D TNLSM and topological superconductors, such as few-layer superconducting β-Sn in lateral contact with topological nodal line single-layer β-Sn.
Collapse
Affiliation(s)
- Ye-Shun Lan
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chia-Ju Chen
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shu-Hua Kuo
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yen-Hui Lin
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Angus Huang
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
- Center for Theory and Computation, National Tsing Hua University, Hsinchu 30013, Taiwan
- Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan
| | - Jing-Yue Huang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Pin-Jui Hsu
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
- Center for Quantum Technology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Cheng-Maw Cheng
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Horng-Tay Jeng
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
- Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
56
|
Edwards B, Deaconu DA, Murgatroyd PAE, Buchberger S, Antonelli T, Halliday D, Siemann GR, Zivanovic A, Trzaska L, Rajan A, Abarca Morales E, Mayoh DA, Hall AE, Belosludov RV, Watson MD, Kim TK, Biswas D, Lee TL, Polley CM, Carbone D, Leandersson M, Balakrishnan G, Bahramy MS, King PDC. Chemical Trends of the Bulk and Surface Termination-Dependent Electronic Structure of Metal-Intercalated Transition Metal Dichalcogenides. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:7117-7126. [PMID: 39156710 PMCID: PMC11325556 DOI: 10.1021/acs.chemmater.4c00824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/20/2024]
Abstract
The addition of metal intercalants into the van der Waals gaps of transition metal dichalcogenides has shown great promise as a method for controlling their functional properties. For example, chiral helimagnetic states, current-induced magnetization switching, and a giant valley-Zeeman effect have all been demonstrated, generating significant renewed interest in this materials family. Here, we present a combined photoemission and density-functional theory study of three such compounds: , , and , to investigate chemical trends of the intercalant species on their bulk and surface electronic structure. Our resonant photoemission measurements indicate increased hybridization with the itinerant NbS2-derived conduction states with increasing atomic number of the intercalant, leading to pronounced mixing of the nominally localized intercalant states at the Fermi level. Using spatially and angle-resolved photoemission spectroscopy, we show how this impacts surface-termination-dependent charge transfers and leads to the formation of new dispersive states of mixed intercalant-Nb character at the Fermi level for the intercalant-terminated surfaces. This provides an explanation for the origin of anomalous states previously reported in this family of compounds and paves the way for tuning the nature of the magnetic interactions in these systems via control of the hybridization of the magnetic ions with the itinerant states.
Collapse
Affiliation(s)
- Brendan Edwards
- SUPA,
School of Physics and Astronomy, University
of St Andrews, St Andrews KY16 9SS, U.K.
| | - Darius-A. Deaconu
- Department
of Physics and Astronomy, University of
Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | | | - Sebastian Buchberger
- SUPA,
School of Physics and Astronomy, University
of St Andrews, St Andrews KY16 9SS, U.K.
- Max
Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, Dresden 01187, Germany
| | - Tommaso Antonelli
- SUPA,
School of Physics and Astronomy, University
of St Andrews, St Andrews KY16 9SS, U.K.
| | - Daniel Halliday
- SUPA,
School of Physics and Astronomy, University
of St Andrews, St Andrews KY16 9SS, U.K.
- Diamond
Light Source Ltd, Harwell
Science and Innovation Campus, Didcot OX11 0DE, U.K.
| | - Gesa-R. Siemann
- SUPA,
School of Physics and Astronomy, University
of St Andrews, St Andrews KY16 9SS, U.K.
| | - Andela Zivanovic
- SUPA,
School of Physics and Astronomy, University
of St Andrews, St Andrews KY16 9SS, U.K.
- Max
Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, Dresden 01187, Germany
| | - Liam Trzaska
- SUPA,
School of Physics and Astronomy, University
of St Andrews, St Andrews KY16 9SS, U.K.
| | - Akhil Rajan
- SUPA,
School of Physics and Astronomy, University
of St Andrews, St Andrews KY16 9SS, U.K.
| | - Edgar Abarca Morales
- SUPA,
School of Physics and Astronomy, University
of St Andrews, St Andrews KY16 9SS, U.K.
- Max
Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, Dresden 01187, Germany
| | - Daniel A. Mayoh
- Department
of Physics, University of Warwick, Coventry CV4 7AL, U.K.
| | - Amelia E. Hall
- Department
of Physics, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Matthew D. Watson
- Diamond
Light Source Ltd, Harwell
Science and Innovation Campus, Didcot OX11 0DE, U.K.
| | - Timur K. Kim
- Diamond
Light Source Ltd, Harwell
Science and Innovation Campus, Didcot OX11 0DE, U.K.
| | - Deepnarayan Biswas
- Diamond
Light Source Ltd, Harwell
Science and Innovation Campus, Didcot OX11 0DE, U.K.
| | - Tien-Lin Lee
- Diamond
Light Source Ltd, Harwell
Science and Innovation Campus, Didcot OX11 0DE, U.K.
| | - Craig M. Polley
- MAX
IV Laboratory, Lund University, P.O. Box 118, Lund 221 00, Sweden
| | - Dina Carbone
- MAX
IV Laboratory, Lund University, P.O. Box 118, Lund 221 00, Sweden
| | - Mats Leandersson
- MAX
IV Laboratory, Lund University, P.O. Box 118, Lund 221 00, Sweden
| | | | - Mohammad Saeed Bahramy
- Department
of Physics and Astronomy, University of
Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Phil D. C. King
- SUPA,
School of Physics and Astronomy, University
of St Andrews, St Andrews KY16 9SS, U.K.
| |
Collapse
|
57
|
Huang K, Fu H, Watanabe K, Taniguchi T, Zhu J. High-temperature quantum valley Hall effect with quantized resistance and a topological switch. Science 2024; 385:657-661. [PMID: 39024378 DOI: 10.1126/science.adj3742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
Edge states of a topological insulator can be used to explore fundamental science emerging at the interface of low dimensionality and topology. Achieving a robust conductance quantization, however, has proven challenging for helical edge states. In this work, we show wide resistance plateaus in kink states-a manifestation of the quantum valley Hall effect in Bernal bilayer graphene-quantized to the predicted value at zero magnetic field. The plateau resistance has a very weak temperature dependence up to 50 kelvin and is flat within a dc bias window of tens of millivolts. We demonstrate the electrical operation of a topology-controlled switch with an on/off ratio of 200. These results demonstrate the robustness and tunability of the kink states and its promise in constructing electron quantum optics devices.
Collapse
Affiliation(s)
- Ke Huang
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hailong Fu
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Jun Zhu
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
58
|
Zhang RW, Cui C, Li R, Duan J, Li L, Yu ZM, Yao Y. Predictable Gate-Field Control of Spin in Altermagnets with Spin-Layer Coupling. PHYSICAL REVIEW LETTERS 2024; 133:056401. [PMID: 39159119 DOI: 10.1103/physrevlett.133.056401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/22/2024] [Accepted: 06/06/2024] [Indexed: 08/21/2024]
Abstract
Spintronics, a technology harnessing electron spin for information transmission, offers a promising avenue to surpass the limitations of conventional electronic devices. While the spin directly interacts with the magnetic field, its control through the electric field is generally more practical, and has become a focal point in the field. Here, we propose a mechanism to realize static and almost uniform effective magnetic field by gate-electric field. Our method employs two-dimensional altermagnets with valley-mediated spin-layer coupling (SLC), in which electronic states display valley-contrasted spin and layer polarization. For the low-energy valley electrons, a uniform gate field is approximately identical to a uniform magnetic field, leading to predictable control of spin. Through symmetry analysis and ab initio calculations, we predict altermagnetic monolayer Ca(CoN)_{2} and its family materials as potential candidates hosting SLC. We show that an almost uniform magnetic field (B_{z}) indeed is generated by gate field (E_{z}) in Ca(CoN)_{2} with B_{z}∝E_{z} in a wide range, and B_{z} reaches as high as about 10^{3} T when E_{z}=0.2 eV/Å. Furthermore, owing to the clean band structure and SLC, one can achieve perfect and switchable spin and valley currents and significant tunneling magnetoresistance in Ca(CoN)_{2} solely using the gate field. Our work provides new opportunities to generate predictable control of spin and design spintronic devices that can be controlled by purely electric means.
Collapse
Affiliation(s)
| | - Chaoxi Cui
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Runze Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Jingyi Duan
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Lei Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | | | | |
Collapse
|
59
|
Nadeem M, Wang X. Spin Gapless Quantum Materials and Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402503. [PMID: 38962884 DOI: 10.1002/adma.202402503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/04/2024] [Indexed: 07/05/2024]
Abstract
Quantum materials, with nontrivial quantum phenomena and mechanisms, promise efficient quantum technologies with enhanced functionalities. Quantum technology is held back because a gap between fundamental science and its implementation is not fully understood yet. In order to capitalize the quantum advantage, a new perspective is required to figure out and close this gap. In this review, spin gapless quantum materials, featured by fully spin-polarized bands and the electron/hole transport, are discussed from the perspective of fundamental understanding and device applications. Spin gapless quantum materials can be simulated by minimal two-band models and could help to understand band structure engineering in various topological quantum materials discovered so far. It is explicitly highlighted that various types of spin gapless band dispersion are fundamental ingredients to understand quantum anomalous Hall effect. Based on conventional transport in the bulk and topological transport on the boundaries, various spintronic device aspects of spin gapless quantum materials as well as their advantages in different models for topological field effect transistors are reviewed.
Collapse
Affiliation(s)
- Muhammad Nadeem
- Institute for Superconducting and Electronic Materials (ISEM), Faculty of Engineering and Information Sciences (EIS), University of Wollongong, Wollongong, New South Wales, 2525, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), University of Wollongong, Wollongong, New South Wales, 2525, Australia
| | - Xiaolin Wang
- Institute for Superconducting and Electronic Materials (ISEM), Faculty of Engineering and Information Sciences (EIS), University of Wollongong, Wollongong, New South Wales, 2525, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), University of Wollongong, Wollongong, New South Wales, 2525, Australia
| |
Collapse
|
60
|
Rafailov PM, Dimitrov D, Kovacheva D, Marinova V. Polarized Raman Study of First-Order Phonons in Self-Flux Grown Single-Crystalline WTe 2. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1256. [PMID: 39120361 PMCID: PMC11314394 DOI: 10.3390/nano14151256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 08/10/2024]
Abstract
Bulk single crystals of WTe2 were grown by the self-flux method and characterized by X-ray diffraction, polarized micro-Raman spectroscopy, and optical microscopy. All methods revealed a high crystalline quality, thus demonstrating the advantages of the growth method used as a starting base for the synthesis of high-quality 2D materials. In each main scattering configuration, we recorded a series of Raman spectra in different sample orientations achieved by rotating the sample around the incident laser beam. In addition to the well-established case of excitation along the c crystal axis, we also applied laser excitation along the a and b axes. Thus, scattering configurations were also realized in the XZ and YZ polarization planes, for which no comparative literature data have yet been established. In these experiments, two new Raman-active phonons with B2 symmetry and frequencies of 89 cm-1 and 122 cm-1 were identified. The obtained experimental data enabled us to derive the magnitude ratios of all three tensor elements of the A1 modes and to find their phase differences.
Collapse
Affiliation(s)
- Peter M. Rafailov
- “G. Nadjakov” Institute of Solid State Physics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria; (P.M.R.); (D.D.)
| | - Dimitre Dimitrov
- “G. Nadjakov” Institute of Solid State Physics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria; (P.M.R.); (D.D.)
- Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Daniela Kovacheva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Vera Marinova
- Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
61
|
Hsu CH. Interaction- and phonon-induced topological phase transitions in double helical liquids. NANOSCALE HORIZONS 2024. [PMID: 39049706 DOI: 10.1039/d4nh00254g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Helical liquids, formed by time-reversal pairs of interacting electrons in topological edge channels, provide a platform for stabilizing topological superconductivity upon introducing local and nonlocal pairings through the proximity effect. Here, we investigate the effects of electron-electron interactions and phonons on the topological superconductivity in two parallel channels of such helical liquids. Interactions between electrons in different channels tend to reduce nonlocal pairing, suppressing the topological regime. Additionally, electron-phonon coupling breaks the self duality in the electronic subsystem and renormalizes the pairing strengths. Notably, while earlier perturbative calculations suggested that longitudinal phonons have no effect on helical liquids themselves to the leading order, our nonperturbative analysis shows that phonons can induce transitions between topological and trivial superconductivity, thereby weakening the stability of topological zero modes. Our findings highlight practical limitations in realizing topological zero modes in various systems hosting helical channels, including quantum spin Hall insulators, higher-order topological insulators, and their fractional counterparts recently observed in twisted bilayer systems.
Collapse
Affiliation(s)
- Chen-Hsuan Hsu
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
62
|
Meng R, Pereira LMC, Van de Vondel J, Seo JW, Locquet JP, Houssa M. Large-Gap Quantum Spin Hall Insulators in Two-Dimensional Hafnium Halides: Unraveling the Impact of Strain and Substrate. ACS OMEGA 2024; 9:31890-31898. [PMID: 39072052 PMCID: PMC11270569 DOI: 10.1021/acsomega.4c03502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024]
Abstract
Two-dimensional (2D) topological insulators (TIs) or quantum spin Hall (QSH) insulators, characterized by insulating 2D electronic band structures and metallic helical edge states protected by time-reversal symmetry, offer a platform for realizing the quantum spin Hall effect, making them promising candidates for future spintronic devices and quantum computing. However, observing a high-temperature quantum spin Hall effect requires large-gap 2D TIs, and only a few 2D systems have been experimentally confirmed to possess this property. In this study, we employ first-principles calculations, combined with a structural search based on an evolutionary algorithm, to predict a class of 2D QSH insulators in hafnium halides, namely, HfF, HfCl, and HfBr with sizable band gaps of 0.12, 0.19, and 0.38 eV. Their topological nontrivial nature is confirmed by a Z2 invariant which equals to 1 and the presence of gapless edge states. Furthermore, the QSH effect in these materials remains robust under biaxial tensile strain of up to 10%, and the use of h-BN as a substrate effectively preserves the QSH states in these materials. Our findings pave the way for future theoretical and experimental investigations of 2D hafnium halides and their potential for realizing the QSH effect.
Collapse
Affiliation(s)
- Ruishen Meng
- KU
Leuven, Department of Physics
and Astronomy, Semiconductor Physics Laboratory, Leuven B-3001, Belgium
| | - Lino M. C. Pereira
- KU
Leuven, Department of Physics and Astronomy,
Quantum Solid-State Physics, Leuven B-3001, Belgium
| | - Joris Van de Vondel
- KU
Leuven, Department of Physics and Astronomy,
Quantum Solid-State Physics, Leuven B-3001, Belgium
| | - Jin Won Seo
- KU
Leuven, Department of Materials Engineering, Leuven B-3001, Belgium
| | - Jean-Pierre Locquet
- KU
Leuven, Department of Physics
and Astronomy, Semiconductor Physics Laboratory, Leuven B-3001, Belgium
| | - Michel Houssa
- KU
Leuven, Department of Physics
and Astronomy, Semiconductor Physics Laboratory, Leuven B-3001, Belgium
- imec, Leuven B-3001, Belgium
| |
Collapse
|
63
|
Liu J, Jiang Q, Huang B, Han X, Lu X, Ma N, Chen J, Mei H, Di Z, Liu Z, Li A, Ye M. Realization of Honeycomb Tellurene with Topological Edge States. NANO LETTERS 2024. [PMID: 39037306 DOI: 10.1021/acs.nanolett.4c02171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The two-dimensional (2D) honeycomb lattice has attracted intensive research interest due to the appearance of Dirac-type band structures as the consequence of two sublattices in the honeycomb structure. Introducing strong spin-orbit coupling (SOC) leads to a gap opening at the Dirac point, transforming the honeycomb lattice into a 2D topological insulator as a platform for the quantum spin Hall effect (QSHE). In this work, we realize a 2D honeycomb-structured film with tellurium, the heaviest nonradioactive element in Group VI, namely, tellurene, via molecular beam epitaxy. We revealed the gap opening of 160 meV at the Dirac point due to the strong SOC in the honeycomb-structured tellurene by angle-resolved photoemission spectroscopy. The topological edge states of tellurene are detected via scanning tunneling microscopy/spectroscopy. These results demonstrate that tellurene is a novel 2D honeycomb lattice with strong SOC, and they unambiguously prove that tellurene is a promising candidate for a room-temperature QSHE system.
Collapse
Affiliation(s)
- Jianzhong Liu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qi Jiang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
- Center for Transformative Science, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Benrui Huang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiaowen Han
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiangle Lu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ni Ma
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jingyi Chen
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Hongping Mei
- University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zengfeng Di
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhongkai Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Ang Li
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Mao Ye
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
64
|
Driouech M, Mitra A, Cocchi C, Ramzan MS. Strain-free MoS 2/ZrGe 2N 4 van der Waals Heterostructure: Tunable Electronic Properties with Type-II Band Alignment. ACS OMEGA 2024; 9:30717-30724. [PMID: 39035918 PMCID: PMC11256293 DOI: 10.1021/acsomega.4c03193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Vertically stacked van der Waals heterostructures (vdW-HS) amplify the scope of 2D materials for emerging technological applications, such as nanodevices and solar cells. Here, we present a first-principles study on the formation energy and electronic properties of the heterobilayer (HBL) MoS2/ZrGe2N4, which forms a strain-free vdW-HS thanks to the identical lattice parameters of its constituents. This system has an indirect band gap with type-II band alignment, with the highest occupied and lowest unoccupied states localized on MoS2 and ZrGe2N4, respectively. Biaxial strain, which generally reduces the band gap regardless of compression or expansion, is applied to tune the electronic properties of the HBL. A small amount of tensile strain (>1%) leads to an indirect-to-direct transition, thereby shifting the band edges at the center of the Brillouin zone and leading to optical absorption in the visible region. These results suggest the potential application of HBL MoS2/ZrGe2N4 in optoelectronic devices.
Collapse
Affiliation(s)
- Mustapha Driouech
- Institut
für Physik, Carl von Ossietzky Universität, 26129 Oldenburg, Germany
| | - Amrita Mitra
- Institut
für Physik, Carl von Ossietzky Universität, 26129 Oldenburg, Germany
| | - Caterina Cocchi
- Institut
für Physik, Carl von Ossietzky Universität, 26129 Oldenburg, Germany
- Center
for Nanoscale Dynamics (CeNaD), Carl von
Ossietzky Universität, 26129 Oldenburg, Germany
| | | |
Collapse
|
65
|
Xie X, Ding J, Wu B, Li S, Chen J, He J, Liu Z, Wang JT, Liu Y. Anomalous Phonon Behavior and Tunable Exciton Emissions: Insights into Pressure-Driven Dynamics in Silicon Phosphide. NANO LETTERS 2024; 24:8189-8197. [PMID: 38904278 DOI: 10.1021/acs.nanolett.4c02250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
IV-V two-dimensional materials have emerged as key contenders for polarization-sensitive and angle-resolved devices, given their inherent anisotropic physical properties. While these materials exhibit intriguing high-pressure quasi-particle behavior and phase transition, the evolution of quasi-particles and their interactions under external pressure remain elusive. Here, employing a diamond anvil cell and spectroscopic measurements coupled with first-principles calculations, we unveil rarely observed pressure-induced phonon-phonon coupling in layered SiP flakes. This coupling manifests as an anomalous phonon hardening behavior for the A1 mode within a broad wavenumber phonon softening region. Furthermore, we demonstrate the effective tuning of exciton emissions in SiP flakes under pressure, revealing a remarkable 63% enhancement in the degree of polarization (DOP) within the pressure range of 0-3.5 GPa. These findings contribute to our understanding of high-pressure phonon evolution in SiP materials and offer a strategic approach to manipulate the anisotropic performance of in-plane anisotropic 2D materials.
Collapse
Affiliation(s)
- Xing Xie
- Institute of Quantum Physics, School of Physics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Junnan Ding
- Institute of Quantum Physics, School of Physics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Biao Wu
- Institute of Quantum Physics, School of Physics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Shaofei Li
- Institute of Quantum Physics, School of Physics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Junying Chen
- Institute of Quantum Physics, School of Physics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Jun He
- Institute of Quantum Physics, School of Physics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Zongwen Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jian-Tao Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Yanping Liu
- Institute of Quantum Physics, School of Physics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- Shenzhen Research Institute of Central South University, Shenzhen 518000, People's Republic of China
| |
Collapse
|
66
|
Guo Z, Han M, Zeng S, Yin Z, Tan J, Niu K, Zhao E, Zhao Y, Liu B, Zou X, Lin J. Intrinsic Grain Boundary Structure and Enhanced Defect States in Air-Sensitive Polycrystalline 1T'-WTe 2 Monolayer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402219. [PMID: 38843883 DOI: 10.1002/adma.202402219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/03/2024] [Indexed: 06/15/2024]
Abstract
Monolayer WTe2 has attracted significant attention for its unconventional superconductivity and topological edge states. However, its air sensitivity poses challenges for studying intrinsic defect structures. This study addresses this issue using a custom-built inert gas interconnected system, and investigate the intrinsic grain boundary (GB) structures of monolayer polycrystalline 1T' WTe2 grown by nucleation-controlled chemical vapor deposition (CVD) method. These findings reveal that GBs in this system are predominantly governed by W-Te rhombi with saturated coordination, resulting in three specific GB prototypes without dislocation cores. The GBs exhibit anisotropic orientations influenced by kinks formed from these fundamental units, which in turn affect the distribution of grains in various shapes within polycrystalline flakes. Scanning tunneling microscopy/spectroscopy (STM/S) analysis further reveals metallic states along the intrinsic 120° twin grain boundary (TGB), consistent with computed band structures. This systematic exploration of GBs in air-sensitive 1T' WTe2 monolayers provides valuable insights into emerging GB-related phenomena.
Collapse
Affiliation(s)
- Zenglong Guo
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Mengjiao Han
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Shengfeng Zeng
- Shenzhen Geim Graphene Center, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zhouyi Yin
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Junyang Tan
- Shenzhen Geim Graphene Center, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Kangdi Niu
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Erding Zhao
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yue Zhao
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xiaolong Zou
- Shenzhen Geim Graphene Center, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Junhao Lin
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen, 518045, China
| |
Collapse
|
67
|
Emelianov AV, Pettersson M, Bobrinetskiy II. Ultrafast Laser Processing of 2D Materials: Novel Routes to Advanced Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402907. [PMID: 38757602 DOI: 10.1002/adma.202402907] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Indexed: 05/18/2024]
Abstract
Ultrafast laser processing has emerged as a versatile technique for modifying materials and introducing novel functionalities. Over the past decade, this method has demonstrated remarkable advantages in the manipulation of 2D layered materials, including synthesis, structuring, functionalization, and local patterning. Unlike continuous-wave and long-pulsed optical methods, ultrafast lasers offer a solution for thermal heating issues. Nonlinear interactions between ultrafast laser pulses and the atomic lattice of 2D materials substantially influence their chemical and physical properties. This paper highlights the transformative role of ultrafast laser pulses in maskless green technology, enabling subtractive, and additive processes that unveil ways for advanced devices. Utilizing the synergetic effect between the energy states within the atomic layers and ultrafast laser irradiation, it is feasible to achieve unprecedented resolutions down to several nanometers. Recent advancements are discussed in functionalization, doping, atomic reconstruction, phase transformation, and 2D and 3D micro- and nanopatterning. A forward-looking perspective on a wide array of applications of 2D materials, along with device fabrication featuring novel physical and chemical properties through direct ultrafast laser writing, is also provided.
Collapse
Affiliation(s)
- Aleksei V Emelianov
- Nanoscience Center, Department of Chemistry, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Mika Pettersson
- Nanoscience Center, Department of Chemistry, University of Jyväskylä, Jyväskylä, FI-40014, Finland
| | - Ivan I Bobrinetskiy
- BioSense Institute - Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, Novi Sad, 21000, Serbia
| |
Collapse
|
68
|
Yang L, Li J, Zhang D, Liu Y, Hu Q. Deviatoric stress-induced metallization, layer reconstruction and collapse of van der Waals bonded zirconium disulfide. Commun Chem 2024; 7:141. [PMID: 38909153 PMCID: PMC11193816 DOI: 10.1038/s42004-024-01223-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/12/2024] [Indexed: 06/24/2024] Open
Abstract
In contrast to two-dimensional (2D) monolayer materials, van der Waals layered transition metal dichalcogenides exhibit rich polymorphism, making them promising candidates for novel superconductor, topological insulators and electrochemical catalysts. Here, we highlight the role of hydrostatic pressure on the evolution of electronic and crystal structures of layered ZrS2. Under deviatoric stress, our electrical experiments demonstrate a semiconductor-to-metal transition above 30.2 GPa, while quasi-hydrostatic compression postponed the metallization to 38.9 GPa. Both X-ray diffraction and Raman results reveal structural phase transitions different from those under hydrostatic pressure. Under deviatoric stress, ZrS2 rearranges the original ZrS6 octahedra into ZrS8 cuboids at 5.5 GPa, in which the unique cuboids coordination of Zr atoms is thermodynamically metastable. The structure collapses to a partially disordered phase at 17.4 GPa. These complex phase transitions present the importance of deviatoric stress on the highly tunable electronic properties of ZrS2 with possible implications for optoelectronic devices.
Collapse
Affiliation(s)
- Linfei Yang
- Center for High Pressure Science and Technology Advanced Research, 100193, Beijing, China
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, Jiangxi, China
| | - Junwei Li
- Center for High Pressure Science and Technology Advanced Research, 100193, Beijing, China
| | - Dongzhou Zhang
- Hawai'i Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Yuegao Liu
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Qingyang Hu
- Center for High Pressure Science and Technology Advanced Research, 100193, Beijing, China.
- Shanghai Advanced Research in Physical Sciences (SHARPS), Shanghai, 201203, China.
| |
Collapse
|
69
|
Guo S, Ma M, Wang Y, Wang J, Jiang Y, Duan R, Lei Z, Wang S, He Y, Liu Z. Spatially Confined Microcells: A Path toward TMD Catalyst Design. Chem Rev 2024; 124:6952-7006. [PMID: 38748433 DOI: 10.1021/acs.chemrev.3c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
With the ability to maximize the exposure of nearly all active sites to reactions, two-dimensional transition metal dichalcogenide (TMD) has become a fascinating new class of materials for electrocatalysis. Recently, electrochemical microcells have been developed, and their unique spatial-confined capability enables understanding of catalytic behaviors at a single material level, significantly promoting this field. This Review provides an overview of the recent progress in microcell-based TMD electrocatalyst studies. We first introduced the structural characteristics of TMD materials and discussed their site engineering strategies for electrocatalysis. Later, we comprehensively described two distinct types of microcells: the window-confined on-chip electrochemical microcell (OCEM) and the droplet-confined scanning electrochemical cell microscopy (SECCM). Their setups, working principles, and instrumentation were elucidated in detail, respectively. Furthermore, we summarized recent advances of OCEM and SECCM obtained in TMD catalysts, such as active site identification and imaging, site monitoring, modulation of charge injection and transport, and electrostatic field gating. Finally, we discussed the current challenges and provided personal perspectives on electrochemical microcell research.
Collapse
Affiliation(s)
- Shasha Guo
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Mingyu Ma
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637616, Singapore
| | - Yuqing Wang
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Jinbo Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yubin Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ruihuan Duan
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 639798, Singapore
| | - Zhendong Lei
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yongmin He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 639798, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore
| |
Collapse
|
70
|
Xu YJ, Cao G, Li QY, Xue CL, Zhao WM, Wang QW, Dou LG, Du X, Meng YX, Wang YK, Gao YH, Jia ZY, Li W, Ji L, Li FS, Zhang Z, Cui P, Xing D, Li SC. Realization of monolayer ZrTe 5 topological insulators with wide band gaps. Nat Commun 2024; 15:4784. [PMID: 38839772 PMCID: PMC11153644 DOI: 10.1038/s41467-024-49197-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
Two-dimensional topological insulators hosting the quantum spin Hall effect have application potential in dissipationless electronics. To observe the quantum spin Hall effect at elevated temperatures, a wide band gap is indispensable to efficiently suppress bulk conduction. Yet, most candidate materials exhibit narrow or even negative band gaps. Here, via elegant control of van der Waals epitaxy, we have successfully grown monolayer ZrTe5 on a bilayer graphene/SiC substrate. The epitaxial ZrTe5 monolayer crystalizes in two allotrope isomers with different intralayer alignments of ZrTe3 prisms. Our scanning tunneling microscopy/spectroscopy characterization unveils an intrinsic full band gap as large as 254 meV and one-dimensional edge states localized along the periphery of the ZrTe5 monolayer. First-principles calculations further confirm that the large band gap originates from strong spin-orbit coupling, and the edge states are topologically nontrivial. These findings thus provide a highly desirable material platform for the exploration of the high-temperature quantum spin Hall effect.
Collapse
Affiliation(s)
- Yong-Jie Xu
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, China
| | - Guohua Cao
- International Center for Quantum Design of Functional Materials (ICQD), University of Science and Technology of China, Hefei, China
| | - Qi-Yuan Li
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, China
| | - Cheng-Long Xue
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, China
| | - Wei-Min Zhao
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, China
| | - Qi-Wei Wang
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, China
| | - Li-Guo Dou
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, China
| | - Xuan Du
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, China
| | - Yu-Xin Meng
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, China
| | - Yuan-Kun Wang
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, China
| | - Yu-Hang Gao
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, China
| | - Zhen-Yu Jia
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, China
| | - Wei Li
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Lianlian Ji
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Fang-Sen Li
- Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Zhenyu Zhang
- International Center for Quantum Design of Functional Materials (ICQD), University of Science and Technology of China, Hefei, China
- Hefei National Laboratory, Hefei, China
| | - Ping Cui
- International Center for Quantum Design of Functional Materials (ICQD), University of Science and Technology of China, Hefei, China.
- Hefei National Laboratory, Hefei, China.
| | - Dingyu Xing
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Shao-Chun Li
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, China.
- Hefei National Laboratory, Hefei, China.
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
- Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing, China.
| |
Collapse
|
71
|
Zhou BT, Pathak V, Franz M. Quantum-Geometric Origin of Out-of-Plane Stacking Ferroelectricity. PHYSICAL REVIEW LETTERS 2024; 132:196801. [PMID: 38804928 DOI: 10.1103/physrevlett.132.196801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/16/2023] [Accepted: 04/10/2024] [Indexed: 05/29/2024]
Abstract
Stacking ferroelectricity (SFE) has been discovered in a wide range of van der Waals materials and holds promise for applications, including photovoltaics and high-density memory devices. We show that the microscopic origin of out-of-plane stacking ferroelectric polarization can be generally understood as a consequence of a nontrivial Berry phase borne out of an effective Su-Schrieffer-Heeger model description with broken sublattice symmetry, thus elucidating the quantum-geometric origin of polarization in the extremely nonperiodic bilayer limit. Our theory applies to known stacking ferroelectrics such as bilayer transition-metal dichalcogenides in 3R and T_{d} phases, as well as general AB-stacked honeycomb bilayers with staggered sublattice potential. Our explanatory and self-consistent framework based on the quantum-geometric perspective establishes quantitative understanding of out-of-plane SFE materials beyond symmetry principles.
Collapse
Affiliation(s)
- Benjamin T Zhou
- Department of Physics and Astronomy & Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Vedangi Pathak
- Department of Physics and Astronomy & Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Marcel Franz
- Department of Physics and Astronomy & Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
72
|
Obata R, Kosugi M, Kikkawa T, Kuroyama K, Yokouchi T, Shiomi Y, Maruyama S, Hirakawa K, Saitoh E, Haruyama J. Coexistence of Quantum-Spin-Hall and Quantum-Hall-Topological-Insulating States in Graphene/hBN on SrTiO 3 Substrate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311339. [PMID: 38324142 DOI: 10.1002/adma.202311339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/30/2024] [Indexed: 02/08/2024]
Abstract
SrTiO3 (STO) substrate, a perovskite oxide material known for its high dielectric constant (ɛ), facilitates the observation of various (high-temperature) quantum phenomena. A quantum Hall topological insulating (QHTI) state, comprising two copies of QH states with antiparallel two ferromagnetic edge-spin overlap protected by the U(1) axial rotation symmetry of spin polarization, has recently been achieved in low magnetic field (B) even as high as ≈100 K in a monolayer graphene/thin hexagonal boron nitride (hBN) spacer placed on an STO substrate, thanks to the high ɛ of STO. Despite the use of the heavy STO substrate, however, proximity-induced quantum spin Hall (QSH) states in 2D TI phases, featuring a topologically protected helical edge spin phase within time-reversal-symmetry, is not confirmed. Here, with the use of a monolayer hBN spacer, it is revealed the coexistence of QSH (at B = 0T) and QHTI (at B ≠ 0) states in the same single graphene sample placed on an STO, with a crossover regime between the two at low B. It is also classified that the different symmetries of the two nontrivial helical edge spin phases in the two states lead to different interaction with electron-puddle quantum dots, caused by a local surface pocket of the STO, in the crossover regime, resulting in a spin dephasing only for the QHTI state. The results obtained using STO substrates open the doors to investigations of novel QH spin states with different symmetries and their correlations with quantum phenomena. This exploration holds value for potential applications in spintronic devices.
Collapse
Affiliation(s)
- Reiji Obata
- Faculty of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa, 252-5258, Japan
| | - Mioko Kosugi
- Faculty of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa, 252-5258, Japan
| | - Takashi Kikkawa
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazuyuki Kuroyama
- Institute for Industrial Sciences, The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo, 153-8505, Japan
| | - Tomoyuki Yokouchi
- Department of Basic Science, The University of Tokyo, 3-6-1 Komaba Meguro-ku, Tokyo, 153-8902, Japan
| | - Yuki Shiomi
- Department of Basic Science, The University of Tokyo, 3-6-1 Komaba Meguro-ku, Tokyo, 153-8902, Japan
| | - Shigeo Maruyama
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazuhiko Hirakawa
- Institute for Industrial Sciences, The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo, 153-8505, Japan
| | - Eiji Saitoh
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Institute for AI and Beyond, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- WPI Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
- Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki, 319-1195, Japan
| | - Junji Haruyama
- Faculty of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa, 252-5258, Japan
- Institute for Industrial Sciences, The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo, 153-8505, Japan
| |
Collapse
|
73
|
Zhang X, Dai J, Jin Z, Tao X, Zhong Y, Zheng Z, Hu X, Zhou L. Ion adsorption promotes Frank-van der Merwe growth of 2D transition metal tellurides. iScience 2024; 27:109378. [PMID: 38523797 PMCID: PMC10959663 DOI: 10.1016/j.isci.2024.109378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/30/2024] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Reliable synthesis methods for high-quality, large-sized, and uniform two-dimensional (2D) transition-metal dichalcogenides (TMDs) are crucial for their device applications. However, versatile approaches to growing high-quality, large-sized, and uniform 2D transition-metal tellurides are rare. Here, we demonstrate an ion adsorption strategy that facilitates the Frank-van der Merwe growth of 2D transition-metal tellurides. By employing this method, we grow MoTe2 and WTe2 with enhanced lateral size, reduced thickness, and improved uniformity. Comprehensive characterizations confirm the high quality of as-grown MoTe2. Moreover, various characterizations verify the adsorption of K+ and Cl- ions on the top surface of MoTe2. X-ray photoelectron spectroscopy (XPS) analysis reveals that the MoTe2 is stoichiometric without K+ and Cl- ions and exhibits no discernable oxidation after washing. This top surface control strategy provides a new controlling knob to optimize the growth of 2D transition-metal tellurides and holds the potential for generalized to other 2D materials.
Collapse
Affiliation(s)
- Xingxing Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiuxiang Dai
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhitong Jin
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinwei Tao
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yunlei Zhong
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zemin Zheng
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianyu Hu
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
74
|
Tang X, Zhou J, Wong NLM, Chai J, Liu Y, Wang S, Song X. Strain-Induced Ferromagnetism in Monolayer T″-Phase VTe 2: Unveiling Magnetic States and Anisotropy for Spintronics Advancement. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:704. [PMID: 38668198 PMCID: PMC11054831 DOI: 10.3390/nano14080704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Two-dimensional (2D) ferromagnets have attracted significant interest for their potential in spintronic device miniaturization, especially since the discovery of ferromagnetic ordering in monolayer materials such as CrI3 and Fe3GeTe2 in 2017. This study presents a detailed investigation into the effects of the Hubbard U parameter, biaxial strain, and structural distortions on the magnetic characteristics of T″-phase VTe2. We demonstrate that setting the Hubbard U to 0 eV provides an accurate representation of the observed structural, magnetic, and electronic features for both bulk and monolayer T″-phase VTe2. The application of strain reveals two distinct ferromagnetic states in the monolayer T″-phase VTe2, each characterized by minor structural differences, but notably different magnetic moments. The T″-1 state, with reduced magnetic moments, emerges under compressive strain, while the T″-2 state, featuring increased magnetic moments, develops under tensile strain. Our analysis also compares the magnetic anisotropy between the T and T″ phases of VTe2, highlighting that the periodic lattice distortion in the T″-phase induces an in-plane anisotropy, which makes it a material with an easy-axis of magnetization. Monte Carlo simulations corroborate our findings, indicating a high Curie temperature of approximately 191 K for the T″-phase VTe2. Our research not only sheds light on the critical aspects of the VTe2 system but also suggests new pathways for enhancing low-dimensional magnetism, contributing to the advancement of spintronics and straintronics.
Collapse
Affiliation(s)
- Xiaoting Tang
- Department of Physics, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China;
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Jun Zhou
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore; (J.Z.); (N.L.M.W.); (J.C.)
| | - Nancy Lai Mun Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore; (J.Z.); (N.L.M.W.); (J.C.)
| | - Jianwei Chai
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore; (J.Z.); (N.L.M.W.); (J.C.)
| | - Yi Liu
- Department of Physics, College of Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China;
- Materials Genome Institute (MGI), Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Shijie Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore; (J.Z.); (N.L.M.W.); (J.C.)
| | | |
Collapse
|
75
|
Kim H, Kim C, Jung Y, Kim N, Son J, Lee GH. In-plane anisotropic two-dimensional materials for twistronics. NANOTECHNOLOGY 2024; 35:262501. [PMID: 38387091 DOI: 10.1088/1361-6528/ad2c53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
In-plane anisotropic two-dimensional (2D) materials exhibit in-plane orientation-dependent properties. The anisotropic unit cell causes these materials to show lower symmetry but more diverse physical properties than in-plane isotropic 2D materials. In addition, the artificial stacking of in-plane anisotropic 2D materials can generate new phenomena that cannot be achieved in in-plane isotropic 2D materials. In this perspective we provide an overview of representative in-plane anisotropic 2D materials and their properties, such as black phosphorus, group IV monochalcogenides, group VI transition metal dichalcogenides with 1T' and Tdphases, and rhenium dichalcogenides. In addition, we discuss recent theoretical and experimental investigations of twistronics using in-plane anisotropic 2D materials. Both in-plane anisotropic 2D materials and their twistronics hold considerable potential for advancing the field of 2D materials, particularly in the context of orientation-dependent optoelectronic devices.
Collapse
Affiliation(s)
- Hangyel Kim
- Department of Material Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Changheon Kim
- Department of Material Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Functional Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Jeonbuk 55324, Republic of Korea
| | - Yeonwoong Jung
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, United States of America
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, United States of America
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, United States of America
| | - Namwon Kim
- Research Institute for Advanced Materials (RIAM), Seoul National University, Seoul 08826, Republic of Korea
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, United States of America
- Materials Science, Engineering, and Commercialization, Texas State University, San Marcos, TX 78666, United States of America
| | - Jangyup Son
- Functional Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Jeonbuk 55324, Republic of Korea
- Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, Jeonbuk 54895, Republic of Korea
- Division of Nano and Information Technology, KIST School University of Science and Technology(UST), Jeonbuk 55324, Republic of Korea
| | - Gwan-Hyoung Lee
- Department of Material Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Advanced Materials (RIAM), Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
76
|
Llopez A, Leroy F, Tagne-Kaegom C, Croes B, Michon A, Mastropasqua C, Al Khalfioui M, Curiotto S, Müller P, Saùl A, Kierren B, Kremer G, Fèvre PL, Bertran F, Fagot-Revurat Y, Cheynis F. Van der Waals Epitaxy of Weyl-Semimetal T d-WTe 2. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38597601 DOI: 10.1021/acsami.4c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Epitaxial growth of WTe2 offers significant advantages, including the production of high-quality films, possible long-range in-plane ordering, and precise control over layer thicknesses. However, the mean island size of WTe2 grown by molecular beam epitaxy (MBE) in the literature is only a few tens of nanometers, which is not suitable for the implementation of devices at large lateral scales. Here we report the growth of Td -WTe2 ultrathin films by MBE on monolayer (ML) graphene, reaching a mean flake size of ≃110 nm, which is, on overage, more than three times larger than previous results. WTe2 films thicker than 5 nm have been successfully synthesized and exhibit the expected Td phase atomic structure. We rationalize the epitaxial growth of Td-WTe2 and propose a simple model to estimate the mean flake size as a function of growth parameters that can be applied to other transition metal dichalcogenides (TMDCs). Based on nucleation theory and the Kolmogorov-Johnson-Meh-Avrami (KJMA) equation, our analytical model supports experimental data showing a critical coverage of 0.13 ML above which WTe2 nucleation becomes negligible. The quality of monolayer WTe2 films is demonstrated by electronic band structure analysis using angle-resolved photoemission spectroscopy (ARPES), which is in agreement with first-principles calculations performed on free-standing WTe2 and previous reports. We found electron pockets at the Fermi level, indicating a n-type doping of WTe2 with an electron density of n = 2.0 ± 0.5 × 1012 cm-2 for each electron pocket.
Collapse
Affiliation(s)
- Alexandre Llopez
- Aix Marseille Univ, CINAM, AMUtech, CNRS, Marseille 13288 France
| | - Frédéric Leroy
- Aix Marseille Univ, CINAM, AMUtech, CNRS, Marseille 13288 France
| | - Calvin Tagne-Kaegom
- Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, Campus ARTEM, 2 allée André Guinier, BP 50840, Nancy 54011, France
| | - Boris Croes
- Aix Marseille Univ, CINAM, AMUtech, CNRS, Marseille 13288 France
- Université de Strasbourg, IPCMS, UMR 7504 CNRS, 23 Rue du Loess Bâtiment 69, Strasbourg 67000, France
| | - Adrien Michon
- CRHEA, Université Côte d'Azur CNRS, Rue Bernard Grégory, Valbonne 06560, France
| | - Chiara Mastropasqua
- CRHEA, Université Côte d'Azur CNRS, Rue Bernard Grégory, Valbonne 06560, France
| | | | - Stefano Curiotto
- Aix Marseille Univ, CINAM, AMUtech, CNRS, Marseille 13288 France
| | - Pierre Müller
- Aix Marseille Univ, CINAM, AMUtech, CNRS, Marseille 13288 France
| | - Andrés Saùl
- Aix Marseille Univ, CINAM, AMUtech, CNRS, Marseille 13288 France
| | - Bertrand Kierren
- Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, Campus ARTEM, 2 allée André Guinier, BP 50840, Nancy 54011, France
| | - Geoffroy Kremer
- Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, Campus ARTEM, 2 allée André Guinier, BP 50840, Nancy 54011, France
| | - Patrick Le Fèvre
- Université Paris-Saclay, Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, Saint-Aubin 91190, France
- Univ Rennes, IPR - UMR 6251, CNRS, Rennes F-35000, France
| | - François Bertran
- Université Paris-Saclay, Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, Saint-Aubin 91190, France
| | - Yannick Fagot-Revurat
- Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, Campus ARTEM, 2 allée André Guinier, BP 50840, Nancy 54011, France
| | - Fabien Cheynis
- Aix Marseille Univ, CINAM, AMUtech, CNRS, Marseille 13288 France
| |
Collapse
|
77
|
Tang J, Ding TS, Chen H, Gao A, Qian T, Huang Z, Sun Z, Han X, Strasser A, Li J, Geiwitz M, Shehabeldin M, Belosevich V, Wang Z, Wang Y, Watanabe K, Taniguchi T, Bell DC, Wang Z, Fu L, Zhang Y, Qian X, Burch KS, Shi Y, Ni N, Chang G, Xu SY, Ma Q. Dual quantum spin Hall insulator by density-tuned correlations in TaIrTe 4. Nature 2024; 628:515-521. [PMID: 38509374 DOI: 10.1038/s41586-024-07211-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
The convergence of topology and correlations represents a highly coveted realm in the pursuit of new quantum states of matter1. Introducing electron correlations to a quantum spin Hall (QSH) insulator can lead to the emergence of a fractional topological insulator and other exotic time-reversal-symmetric topological order2-8, not possible in quantum Hall and Chern insulator systems. Here we report a new dual QSH insulator within the intrinsic monolayer crystal of TaIrTe4, arising from the interplay of its single-particle topology and density-tuned electron correlations. At charge neutrality, monolayer TaIrTe4 demonstrates the QSH insulator, manifesting enhanced nonlocal transport and quantized helical edge conductance. After introducing electrons from charge neutrality, TaIrTe4 shows metallic behaviour in only a small range of charge densities but quickly goes into a new insulating state, entirely unexpected on the basis of the single-particle band structure of TaIrTe4. This insulating state could arise from a strong electronic instability near the van Hove singularities, probably leading to a charge density wave (CDW). Remarkably, within this correlated insulating gap, we observe a resurgence of the QSH state. The observation of helical edge conduction in a CDW gap could bridge spin physics and charge orders. The discovery of a dual QSH insulator introduces a new method for creating topological flat minibands through CDW superlattices, which offer a promising platform for exploring time-reversal-symmetric fractional phases and electromagnetism2-4,9,10.
Collapse
Affiliation(s)
- Jian Tang
- Department of Physics, Boston College, Chestnut Hill, MA, USA
| | | | - Hongyu Chen
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Anyuan Gao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Tiema Qian
- Department of Physics and Astronomy and California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Zumeng Huang
- Department of Physics, Boston College, Chestnut Hill, MA, USA
| | - Zhe Sun
- Department of Physics, Boston College, Chestnut Hill, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Xin Han
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Alex Strasser
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA
| | - Jiangxu Li
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, USA
- Min H. Kao Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
| | - Michael Geiwitz
- Department of Physics, Boston College, Chestnut Hill, MA, USA
| | | | | | - Zihan Wang
- Department of Physics, Boston College, Chestnut Hill, MA, USA
| | - Yiping Wang
- Department of Physics, Boston College, Chestnut Hill, MA, USA
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - David C Bell
- Harvard John A. Paulson School of Engineering and Applied Sciences and The Center for Nanoscale Systems, Harvard University, Cambridge, MA, USA
| | - Ziqiang Wang
- Department of Physics, Boston College, Chestnut Hill, MA, USA
| | - Liang Fu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yang Zhang
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, USA
- Min H. Kao Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
| | - Xiaofeng Qian
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA
| | - Kenneth S Burch
- Department of Physics, Boston College, Chestnut Hill, MA, USA
| | - Youguo Shi
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Ni Ni
- Department of Physics and Astronomy and California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Guoqing Chang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Su-Yang Xu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Qiong Ma
- Department of Physics, Boston College, Chestnut Hill, MA, USA.
- CIFAR Azrieli Global Scholars program, CIFAR, Toronto, Ontario, Canada.
| |
Collapse
|
78
|
Zhou H, Liang K, Bi L, Shi Y, Wang Z, Li S. Spotlight: Visualization of Moiré Quantum Phenomena in Transition Metal Dichalcogenide with Scanning Tunneling Microscopy. ACS APPLIED ELECTRONIC MATERIALS 2024; 6:1530-1541. [PMID: 38558951 PMCID: PMC10976882 DOI: 10.1021/acsaelm.3c01328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 04/04/2024]
Abstract
Transition metal dichalcogenide (TMD) moiré superlattices have emerged as a significant area of study in condensed matter physics. Thanks to their superior optical properties, tunable electronic band structure, strong Coulomb interactions, and quenched electron kinetic energy, they offer exciting avenues to explore correlated quantum phenomena, topological properties, and light-matter interactions. In recent years, scanning tunneling microscopy (STM) has made significant impacts on the study of these fields by enabling intrinsic surface visualization and spectroscopic measurements with unprecedented atomic scale detail. Here, we spotlight the key findings and innovative developments in imaging and characterization of TMD heterostructures via STM, from its initial implementation on the in situ grown sample to the latest photocurrent tunneling microscopy. The evolution in sample design, progressing from a conductive to an insulating substrate, has not only expanded our control over TMD moiré superlattices but also promoted an understanding of their structures and strongly correlated properties, such as the structural reconstruction and formation of generalized two-dimensional Wigner crystal states. In addition to highlighting recent advancements, we outline upcoming challenges, suggest the direction of future research, and advocate for the versatile use of STM to further comprehend and manipulate the quantum dynamics in TMD moiré superlattices.
Collapse
Affiliation(s)
- Hao Zhou
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, La Jolla, California 92093-0418, United States
| | - Kangkai Liang
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, La Jolla, California 92093-0418, United States
| | - Liya Bi
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, La Jolla, California 92093-0418, United States
| | - Yueqing Shi
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
| | - Zihao Wang
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- School
of Physics, Nankai University, Tianjin 300071, China
| | - Shaowei Li
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, La Jolla, California 92093-0418, United States
| |
Collapse
|
79
|
Chen L, Chen L, Chen H, Jiang K, Zhu L, Shang L, Li Y, Gong S, Hu Z. Phase transition in WSe 2-xTe x monolayers driven by charge injection and pressure: a first-principles study. NANOSCALE 2024. [PMID: 38477210 DOI: 10.1039/d3nr06164g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Alloying strategies permit new probes for governing structural stability and semiconductor-semimetal phase transition of transition metal dichalcogenides (TMDs). However, the possible structure and phase transition mechanism of the alloy TMDs, and the effect of an external field, have been still unclear. Here, the enrichment of the Te content in WSe2-xTex monolayers allows for coherent structural transition from the H phase to the T' phase. The crystal orbital Hamiltonian population (COHP) uncovers that the bonding state of the H phase approaches the high-energy domain near the Fermi level as the Te concentration increases, posing a source of structural instability followed by a weakened energy barrier for the phase transition. In addition, the structural phase transition driven by charge injection opens up new possibilities for the development of phase-change devices based on atomic thin films. For WSe2-xTex monolayers with the H phase as the stable phase, the critical value of electron concentration triggering the phase transition decreases with an increase in the x value. Furthermore, the energy barrier from the H phase to the T' phase can be effectively reduced by applying tensile strain, which could favor the phase switching in electronic devices. This work provides a critical reference for controllable modulation of phase-sensitive devices from alloy materials with rich phase characteristics.
Collapse
Affiliation(s)
- Liyuan Chen
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Li Chen
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Hongli Chen
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Kai Jiang
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Liangqing Zhu
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Liyan Shang
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Yawei Li
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Shijing Gong
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Zhigao Hu
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
80
|
Mortensen JJ, Larsen AH, Kuisma M, Ivanov AV, Taghizadeh A, Peterson A, Haldar A, Dohn AO, Schäfer C, Jónsson EÖ, Hermes ED, Nilsson FA, Kastlunger G, Levi G, Jónsson H, Häkkinen H, Fojt J, Kangsabanik J, Sødequist J, Lehtomäki J, Heske J, Enkovaara J, Winther KT, Dulak M, Melander MM, Ovesen M, Louhivuori M, Walter M, Gjerding M, Lopez-Acevedo O, Erhart P, Warmbier R, Würdemann R, Kaappa S, Latini S, Boland TM, Bligaard T, Skovhus T, Susi T, Maxson T, Rossi T, Chen X, Schmerwitz YLA, Schiøtz J, Olsen T, Jacobsen KW, Thygesen KS. GPAW: An open Python package for electronic structure calculations. J Chem Phys 2024; 160:092503. [PMID: 38450733 DOI: 10.1063/5.0182685] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/15/2024] [Indexed: 03/08/2024] Open
Abstract
We review the GPAW open-source Python package for electronic structure calculations. GPAW is based on the projector-augmented wave method and can solve the self-consistent density functional theory (DFT) equations using three different wave-function representations, namely real-space grids, plane waves, and numerical atomic orbitals. The three representations are complementary and mutually independent and can be connected by transformations via the real-space grid. This multi-basis feature renders GPAW highly versatile and unique among similar codes. By virtue of its modular structure, the GPAW code constitutes an ideal platform for the implementation of new features and methodologies. Moreover, it is well integrated with the Atomic Simulation Environment (ASE), providing a flexible and dynamic user interface. In addition to ground-state DFT calculations, GPAW supports many-body GW band structures, optical excitations from the Bethe-Salpeter Equation, variational calculations of excited states in molecules and solids via direct optimization, and real-time propagation of the Kohn-Sham equations within time-dependent DFT. A range of more advanced methods to describe magnetic excitations and non-collinear magnetism in solids are also now available. In addition, GPAW can calculate non-linear optical tensors of solids, charged crystal point defects, and much more. Recently, support for graphics processing unit (GPU) acceleration has been achieved with minor modifications to the GPAW code thanks to the CuPy library. We end the review with an outlook, describing some future plans for GPAW.
Collapse
Affiliation(s)
- Jens Jørgen Mortensen
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Ask Hjorth Larsen
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mikael Kuisma
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Aleksei V Ivanov
- Riverlane Ltd., St Andrews House, 59 St Andrews Street, Cambridge CB2 3BZ, United Kingdom
| | - Alireza Taghizadeh
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Andrew Peterson
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Anubhab Haldar
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Asmus Ougaard Dohn
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark and Science Institute and Faculty of Physical Sciences, VR-III, University of Iceland, Reykjavík 107, Iceland
| | - Christian Schäfer
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Elvar Örn Jónsson
- Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107 Reykjavík, Iceland
| | - Eric D Hermes
- Quantum-Si, 29 Business Park Drive, Branford, Connecticut 06405, USA
| | | | - Georg Kastlunger
- CatTheory, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Gianluca Levi
- Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107 Reykjavík, Iceland
| | - Hannes Jónsson
- Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107 Reykjavík, Iceland
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Jakub Fojt
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Jiban Kangsabanik
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Joachim Sødequist
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jouko Lehtomäki
- Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto, Finland
| | - Julian Heske
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jussi Enkovaara
- CSC-IT Center for Science Ltd., P.O. Box 405, FI-02101 Espoo, Finland
| | - Kirsten Trøstrup Winther
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Marcin Dulak
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Marko M Melander
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Martin Ovesen
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Martti Louhivuori
- CSC-IT Center for Science Ltd., P.O. Box 405, FI-02101 Espoo, Finland
| | - Michael Walter
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Morten Gjerding
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Olga Lopez-Acevedo
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, 050010 Medellin, Colombia
| | - Paul Erhart
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Robert Warmbier
- School of Physics and Mandelstam Institute for Theoretical Physics, University of the Witwatersrand, 1 Jan Smuts Avenue, 2001 Johannesburg, South Africa
| | - Rolf Würdemann
- Freiburger Materialforschungszentrum, Universität Freiburg, Stefan-Meier-Straße 21, D-79104 Freiburg, Germany
| | - Sami Kaappa
- Computational Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Simone Latini
- Nanomade, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Tara Maria Boland
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Thomas Bligaard
- Department of Energy Conversion and Storage, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Thorbjørn Skovhus
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Toma Susi
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Tristan Maxson
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - Tuomas Rossi
- CSC-IT Center for Science Ltd., P.O. Box 405, FI-02101 Espoo, Finland
| | - Xi Chen
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, China
| | | | - Jakob Schiøtz
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Thomas Olsen
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | | |
Collapse
|
81
|
Wang J, Cheng F, Sun Y, Xu H, Cao L. Stacking engineering in layered homostructures: transitioning from 2D to 3D architectures. Phys Chem Chem Phys 2024; 26:7988-8012. [PMID: 38380525 DOI: 10.1039/d3cp04656g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Artificial materials, characterized by their distinctive properties and customized functionalities, occupy a central role in a wide range of applications including electronics, spintronics, optoelectronics, catalysis, and energy storage. The emergence of atomically thin two-dimensional (2D) materials has driven the creation of artificial heterostructures, harnessing the potential of combining various 2D building blocks with complementary properties through the art of stacking engineering. The promising outcomes achieved for heterostructures have spurred an inquisitive exploration of homostructures, where identical 2D layers are precisely stacked. This perspective primarily focuses on the field of stacking engineering within layered homostructures, where precise control over translational or rotational degrees of freedom between vertically stacked planes or layers is paramount. In particular, we provide an overview of recent advancements in the stacking engineering applied to 2D homostructures. Additionally, we will shed light on research endeavors venturing into three-dimensional (3D) structures, which allow us to proactively address the limitations associated with artificial 2D homostructures. We anticipate that the breakthroughs in stacking engineering in 3D materials will provide valuable insights into the mechanisms governing stacking effects. Such advancements have the potential to unlock the full capability of artificial layered homostructures, propelling the future development of materials, physics, and device applications.
Collapse
Affiliation(s)
- Jiamin Wang
- Changchun Institute of Optics, Fine Mechanics & Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, P. R. China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fang Cheng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| | - Yan Sun
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China.
| | - Hai Xu
- Changchun Institute of Optics, Fine Mechanics & Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, P. R. China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Liang Cao
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| |
Collapse
|
82
|
Liu M, Gou J, Liu Z, Chen Z, Ye Y, Xu J, Xu X, Zhong D, Eda G, Wee ATS. Phase-selective in-plane heteroepitaxial growth of H-phase CrSe 2. Nat Commun 2024; 15:1765. [PMID: 38409207 PMCID: PMC10897461 DOI: 10.1038/s41467-024-46087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Phase engineering of two-dimensional transition metal dichalcogenides (2D-TMDs) offers opportunities for exploring unique phase-specific properties and achieving new desired functionalities. Here, we report a phase-selective in-plane heteroepitaxial method to grow semiconducting H-phase CrSe2. The lattice-matched MoSe2 nanoribbons are utilized as the in-plane heteroepitaxial template to seed the growth of H-phase CrSe2 with the formation of MoSe2-CrSe2 heterostructures. Scanning tunneling microscopy and non-contact atomic force microscopy studies reveal the atomically sharp heterostructure interfaces and the characteristic defects of mirror twin boundaries emerging in the H-phase CrSe2 monolayers. The type-I straddling band alignments with band bending at the heterostructure interfaces are directly visualized with atomic precision. The mirror twin boundaries in the H-phase CrSe2 exhibit the Tomonaga-Luttinger liquid behavior in the confined one-dimensional electronic system. Our work provides a promising strategy for phase engineering of 2D TMDs, thereby promoting the property research and device applications of specific phases.
Collapse
Affiliation(s)
- Meizhuang Liu
- School of Physics, Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou, 510006, China.
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore, Singapore.
| | - Jian Gou
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore, Singapore
- School of Physics, Zhejiang University, Hangzhou, 310027, China
| | - Zizhao Liu
- School of Physics and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zuxin Chen
- School of Semiconductor Science and Technology, South China Normal University, Guangzhou, 510631, China
| | - Yuliang Ye
- School of Semiconductor Science and Technology, South China Normal University, Guangzhou, 510631, China
| | - Jing Xu
- School of Semiconductor Science and Technology, South China Normal University, Guangzhou, 510631, China
| | - Xiaozhi Xu
- School of Physics, Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou, 510006, China
| | - Dingyong Zhong
- School of Physics and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, China
| | - Goki Eda
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore, Singapore
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore, Singapore.
| |
Collapse
|
83
|
Schmitt C, Erhardt J, Eck P, Schmitt M, Lee K, Keßler P, Wagner T, Spring M, Liu B, Enzner S, Kamp M, Jovic V, Jozwiak C, Bostwick A, Rotenberg E, Kim T, Cacho C, Lee TL, Sangiovanni G, Moser S, Claessen R. Achieving environmental stability in an atomically thin quantum spin Hall insulator via graphene intercalation. Nat Commun 2024; 15:1486. [PMID: 38374074 PMCID: PMC10876696 DOI: 10.1038/s41467-024-45816-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
Atomic monolayers on semiconductor surfaces represent an emerging class of functional quantum materials in the two-dimensional limit - ranging from superconductors and Mott insulators to ferroelectrics and quantum spin Hall insulators. Indenene, a triangular monolayer of indium with a gap of ~ 120 meV is a quantum spin Hall insulator whose micron-scale epitaxial growth on SiC(0001) makes it technologically relevant. However, its suitability for room-temperature spintronics is challenged by the instability of its topological character in air. It is imperative to develop a strategy to protect the topological nature of indenene during ex situ processing and device fabrication. Here we show that intercalation of indenene into epitaxial graphene provides effective protection from the oxidising environment, while preserving an intact topological character. Our approach opens a rich realm of ex situ experimental opportunities, priming monolayer quantum spin Hall insulators for realistic device fabrication and access to topologically protected edge channels.
Collapse
Affiliation(s)
- Cedric Schmitt
- Physikalisches Institut, Universität Würzburg, D-97074, Würzburg, Germany
- Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, D-97074, Würzburg, Germany
| | - Jonas Erhardt
- Physikalisches Institut, Universität Würzburg, D-97074, Würzburg, Germany
- Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, D-97074, Würzburg, Germany
| | - Philipp Eck
- Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, D-97074, Würzburg, Germany
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, D-97074, Würzburg, Germany
| | - Matthias Schmitt
- Physikalisches Institut, Universität Würzburg, D-97074, Würzburg, Germany
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Kyungchan Lee
- Physikalisches Institut, Universität Würzburg, D-97074, Würzburg, Germany
- Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, D-97074, Würzburg, Germany
| | - Philipp Keßler
- Physikalisches Institut, Universität Würzburg, D-97074, Würzburg, Germany
- Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, D-97074, Würzburg, Germany
| | - Tim Wagner
- Physikalisches Institut, Universität Würzburg, D-97074, Würzburg, Germany
- Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, D-97074, Würzburg, Germany
| | - Merit Spring
- Physikalisches Institut, Universität Würzburg, D-97074, Würzburg, Germany
- Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, D-97074, Würzburg, Germany
| | - Bing Liu
- Physikalisches Institut, Universität Würzburg, D-97074, Würzburg, Germany
- Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, D-97074, Würzburg, Germany
| | - Stefan Enzner
- Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, D-97074, Würzburg, Germany
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, D-97074, Würzburg, Germany
| | - Martin Kamp
- Physikalisches Institut, Universität Würzburg, D-97074, Würzburg, Germany
- Physikalisches Institut and Röntgen Center for Complex Material Systems, D-97074, Würzburg, Germany
| | - Vedran Jovic
- Earth Resources and Materials, Institute of Geological and Nuclear Science, Lower Hutt, 5010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6012, New Zealand
| | - Chris Jozwiak
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Aaron Bostwick
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Eli Rotenberg
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Timur Kim
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Cephise Cacho
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Tien-Lin Lee
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Giorgio Sangiovanni
- Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, D-97074, Würzburg, Germany
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, D-97074, Würzburg, Germany
| | - Simon Moser
- Physikalisches Institut, Universität Würzburg, D-97074, Würzburg, Germany
- Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, D-97074, Würzburg, Germany
| | - Ralph Claessen
- Physikalisches Institut, Universität Würzburg, D-97074, Würzburg, Germany.
- Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, D-97074, Würzburg, Germany.
| |
Collapse
|
84
|
Zhou J, Zhang G, Wang W, Chen Q, Zhao W, Liu H, Zhao B, Ni Z, Lu J. Phase-engineered synthesis of atomically thin te single crystals with high on-state currents. Nat Commun 2024; 15:1435. [PMID: 38365915 PMCID: PMC10873424 DOI: 10.1038/s41467-024-45940-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
Multiple structural phases of tellurium (Te) have opened up various opportunities for the development of two-dimensional (2D) electronics and optoelectronics. However, the phase-engineered synthesis of 2D Te at the atomic level remains a substantial challenge. Herein, we design an atomic cluster density and interface-guided multiple control strategy for phase- and thickness-controlled synthesis of α-Te nanosheets and β-Te nanoribbons (from monolayer to tens of μm) on WS2 substrates. As the thickness decreases, the α-Te nanosheets exhibit a transition from metallic to n-type semiconducting properties. On the other hand, the β-Te nanoribbons remain p-type semiconductors with an ON-state current density (ION) up to ~ 1527 μA μm-1 and a mobility as high as ~ 690.7 cm2 V-1 s-1 at room temperature. Both Te phases exhibit good air stability after several months. Furthermore, short-channel (down to 46 nm) β-Te nanoribbon transistors exhibit remarkable electrical properties (ION = ~ 1270 μA μm-1 and ON-state resistance down to 0.63 kΩ μm) at Vds = 1 V.
Collapse
Affiliation(s)
- Jun Zhou
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Guitao Zhang
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Wenhui Wang
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Qian Chen
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Weiwei Zhao
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Hongwei Liu
- Jiangsu Key Lab on Opto-Electronic Technology, School of Physics and Technology, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Bei Zhao
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China.
| | - Zhenhua Ni
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China.
- School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China.
| | - Junpeng Lu
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China.
- School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
85
|
Gu M, Rao AM, Zhou J, Lu B. Molecular modulation strategies for two-dimensional transition metal dichalcogenide-based high-performance electrodes for metal-ion batteries. Chem Sci 2024; 15:2323-2350. [PMID: 38362439 PMCID: PMC10866370 DOI: 10.1039/d3sc05768b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024] Open
Abstract
In the past few decades, great efforts have been made to develop advanced transition metal dichalcogenide (TMD) materials as metal-ion battery electrodes. However, due to existing conversion reactions, they still suffer from structural aggregation and restacking, unsatisfactory cycling reversibility, and limited ion storage dynamics during electrochemical cycling. To address these issues, extensive research has focused on molecular modulation strategies to optimize the physical and chemical properties of TMDs, including phase engineering, defect engineering, interlayer spacing expansion, heteroatom doping, alloy engineering, and bond modulation. A timely summary of these strategies can help deepen the understanding of their basic mechanisms and serve as a reference for future research. This review provides a comprehensive summary of recent advances in molecular modulation strategies for TMDs. A series of challenges and opportunities in the research field are also outlined. The basic mechanisms of different modulation strategies and their specific influences on the electrochemical performance of TMDs are highlighted.
Collapse
Affiliation(s)
- Mingyuan Gu
- School of Physics and Electronics, Hunan University Changsha P. R. China
| | - Apparao M Rao
- Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University Clemson SC 29634 USA
| | - Jiang Zhou
- School of Materials Science and Engineering, Central South University Changsha 410083 P. R. China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University Changsha P. R. China
| |
Collapse
|
86
|
Kim JK, Jeon KR, Sivakumar PK, Jeon J, Koerner C, Woltersdorf G, Parkin SSP. Intrinsic supercurrent non-reciprocity coupled to the crystal structure of a van der Waals Josephson barrier. Nat Commun 2024; 15:1120. [PMID: 38321041 PMCID: PMC10847146 DOI: 10.1038/s41467-024-45298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 01/17/2024] [Indexed: 02/08/2024] Open
Abstract
Non-reciprocal electronic transport in a spatially homogeneous system arises from the simultaneous breaking of inversion and time-reversal symmetries. Superconducting and Josephson diodes, a key ingredient for future non-dissipative quantum devices, have recently been realized. Only a few examples of a vertical superconducting diode effect have been reported and its mechanism, especially whether intrinsic or extrinsic, remains elusive. Here we demonstrate a substantial supercurrent non-reciprocity in a van der Waals vertical Josephson junction formed with a Td-WTe2 barrier and NbSe2 electrodes that clearly reflects the intrinsic crystal structure of Td-WTe2. The Josephson diode efficiency increases with the Td-WTe2 thickness up to critical thickness, and all junctions, irrespective of the barrier thickness, reveal magneto-chiral characteristics with respect to a mirror plane of Td-WTe2. Our results, together with the twist-angle-tuned magneto-chirality of a Td-WTe2 double-barrier junction, show that two-dimensional materials promise vertical Josephson diodes with high efficiency and tunability.
Collapse
Affiliation(s)
- Jae-Keun Kim
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle (Saale), Germany.
| | - Kun-Rok Jeon
- Department of Physics, Chung-Ang University (CAU), Seoul, 06974, Republic of Korea
| | - Pranava K Sivakumar
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle (Saale), Germany
| | - Jaechun Jeon
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle (Saale), Germany
| | - Chris Koerner
- Department of Physics, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120, Halle, Germany
| | - Georg Woltersdorf
- Department of Physics, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120, Halle, Germany
| | - Stuart S P Parkin
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle (Saale), Germany.
| |
Collapse
|
87
|
Harrison K, Jeff DA, DeStefano JM, Peek O, Kushima A, Chu JH, Gutiérrez HR, Khondaker SI. In-Plane Anisotropy in the Layered Topological Insulator Ta 2Ni 3Te 5 Investigated via TEM and Polarized Raman Spectroscopy. ACS NANO 2024. [PMID: 38306703 DOI: 10.1021/acsnano.3c09527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Layered Ta2M3Te5 (M = Pd, Ni) has emerged as a platform to study 2D topological insulators, which have exotic properties such as spin-momentum locking and the presence of Dirac fermions for use in conventional and quantum-based electronics. In particular, Ta2Ni3Te5 has been shown to have superconductivity under pressure and is predicted to have second-order topology. Despite being an interesting material with fascinating physics, the detailed crystalline and phononic properties of this material are still unknown. In this study, we use transmission electron microscopy (TEM) and polarized Raman spectroscopy (PRS) to reveal the anisotropic properties of exfoliated few-layer Ta2Ni3Te5. An electron diffraction and TEM study reveals structural anisotropy in the material, with a preferential crystal orientation along the [010] direction. Through Raman spectroscopy, we discovered 15 vibrational modes, 3 of which are ultralow-frequency modes, which show anisotropic response with sample orientation varying with the polarization of the incident beam. Using angle-resolved PRS, we assigned the vibrational symmetries of 11 modes to Ag and two modes to B3g. We also found that linear dichroism plays a role in understanding the Raman signature of this material, which requires the use of complex elements in the Raman tensors. The anisotropy of the Raman scattering also depends on the excitation energies. Our observations reveal the anisotropic nature of Ta2Ni3Te5, establish a quick and nondestructive Raman fingerprint for determining sample orientation, and represent a significant advance in the fundamental understanding of the two-dimensional topological insulator (2DTI) Ta2Ni3Te5 material.
Collapse
Affiliation(s)
- Kamal Harrison
- NanoScience Technology Center and Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Dylan A Jeff
- NanoScience Technology Center and Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Jonathan M DeStefano
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Olivia Peek
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Akihiro Kushima
- Department of Materials Science and Engineering, and Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, Florida 32816, United States
| | - Jiun-Haw Chu
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Humberto R Gutiérrez
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Saiful I Khondaker
- NanoScience Technology Center and Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
- School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida 32826, United States
| |
Collapse
|
88
|
Huang X, Xiong R, Hao C, Li W, Sa B, Wiebe J, Wiesendanger R. Experimental Realization of Monolayer α-Tellurene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309023. [PMID: 38010233 DOI: 10.1002/adma.202309023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/23/2023] [Indexed: 11/29/2023]
Abstract
2D materials emerge as a versatile platform for developing next-generation devices. The experimental realization of novel artificial 2D atomic crystals, which does not have bulk counterparts in nature, is still challenging and always requires new physical or chemical processes. Monolayer α-tellurene is predicted to be a stable 2D allotrope of tellurium (Te), which has great potential for applications in high-performance field-effect transistors. However, the synthesis of monolayer α-tellurene remains elusive because of its complex lattice configuration, in which the Te atoms are stacked in tri-layers in an octahedral fashion. Here, a self-assemble approach, using three atom-long Te chains derived from the dynamic non-equilibrium growth of an a-Si:Te alloy as building blocks, is reported for the epitaxial growth of monolayer α-tellurene on a Sb2 Te3 substrate. By combining scanning tunneling microscopy/spectroscopy with density functional theory calculations, the surface morphology and electronic structure of monolayer α-tellurene are revealed and the underlying growth mechanism is determined. The successful synthesis of monolayer α-tellurene opens up the possibility for the application of this new single-element 2D material in advanced electronic devices.
Collapse
Affiliation(s)
- Xiaochun Huang
- Department of Physics, University of Hamburg, D-20355, Hamburg, Germany
| | - Rui Xiong
- Multiscale Computational Materials Facility & Materials Genome Institute, School of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Chunxue Hao
- Department of Physics, University of Hamburg, D-20355, Hamburg, Germany
- Institute of Nanostructures and Solid State Physics, Centre for Hybrid Nanostructures (CHyN), University of Hamburg, 22761, Hamburg, Germany
| | - Wenbin Li
- Department of Physics, University of Hamburg, D-20355, Hamburg, Germany
| | - Baisheng Sa
- Multiscale Computational Materials Facility & Materials Genome Institute, School of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Jens Wiebe
- Department of Physics, University of Hamburg, D-20355, Hamburg, Germany
| | | |
Collapse
|
89
|
Que Y, Chan YH, Jia J, Das A, Tong Z, Chang YT, Cui Z, Kumar A, Singh G, Mukherjee S, Lin H, Weber B. A Gate-Tunable Ambipolar Quantum Phase Transition in a Topological Excitonic Insulator. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309356. [PMID: 38010877 DOI: 10.1002/adma.202309356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/26/2023] [Indexed: 11/29/2023]
Abstract
Coulomb interactions among electrons and holes in 2D semimetals with overlapping valence and conduction bands can give rise to a correlated insulating ground state via exciton formation and condensation. One candidate material in which such excitonic state uniquely combines with non-trivial band topology are atomic monolayers of tungsten ditelluride (WTe2 ), in which a 2D topological excitonic insulator (2D TEI) forms. However, the detailed mechanism of the 2D bulk gap formation in WTe2 , in particular with regard to the role of Coulomb interactions, has remained a subject of ongoing debate. Here, it shows that WTe2 is susceptible to a gate-tunable quantum phase transition, evident from an abrupt collapse of its 2D bulk energy gap upon ambipolar field-effect doping. Such gate tunability of a 2D TEI, into either n- and p-type semimetals, promises novel handles of control over non-trivial 2D superconductivity with excitonic pairing.
Collapse
Affiliation(s)
- Yande Que
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yang-Hao Chan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106319, Taiwan
- Physics Division, National Center of Theoretical Physics, Taipei, 10617, Taiwan
| | - Junxiang Jia
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Anirban Das
- Department of Physics, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
- Center for Atomistic Modelling and Materials Design, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Zhengjue Tong
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yu-Tzu Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106319, Taiwan
| | - Zhenhao Cui
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Amit Kumar
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Gagandeep Singh
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Shantanu Mukherjee
- Department of Physics, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
- Center for Atomistic Modelling and Materials Design, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
- Quantum Centre for Diamond and Emergent Materials, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Hsin Lin
- Institute of Physics, Academia Sinica, Taipei, 115201, Taiwan
| | - Bent Weber
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
90
|
Liu H, Wu Y, Wu Z, Liu S, Zhang VL, Yu T. Coexisting Phases in Transition Metal Dichalcogenides: Overview, Synthesis, Applications, and Prospects. ACS NANO 2024; 18:2708-2729. [PMID: 38252696 DOI: 10.1021/acsnano.3c10665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Over the past decade, significant advancements have been made in phase engineering of two-dimensional transition metal dichalcogenides (TMDCs), thereby allowing controlled synthesis of various phases of TMDCs and facile conversion between them. Recently, there has been emerging interest in TMDC coexisting phases, which contain multiple phases within one nanostructured TMDC. By taking advantage of the merits from the component phases, the coexisting phases offer enhanced performance in many aspects compared with single-phase TMDCs. Herein, this review article thoroughly expounds the latest progress and ongoing efforts on the syntheses, properties, and applications of TMDC coexisting phases. The introduction section overviews the main phases of TMDCs (2H, 3R, 1T, 1T', 1Td), along with the advantages of phase coexistence. The subsequent section focuses on the synthesis methods for coexisting phases of TMDCs, with particular attention to local patterning and random formations. Furthermore, on the basis of the versatile properties of TMDC coexisting phases, their applications in magnetism, valleytronics, field-effect transistors, memristors, and catalysis are discussed. Lastly, a perspective is presented on the future development, challenges, and potential opportunities of TMDC coexisting phases. This review aims to provide insights into the phase engineering of 2D materials for both scientific and engineering communities and contribute to further advancements in this emerging field.
Collapse
Affiliation(s)
- Haiyang Liu
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yaping Wu
- School of Physics and Technology, Xiamen University, Xiamen 361005, China
| | - Zhiming Wu
- School of Physics and Technology, Xiamen University, Xiamen 361005, China
| | - Sheng Liu
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| | - Vanessa Li Zhang
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ting Yu
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
91
|
Deng B, Liu J, Zhou X. Gate tunable linear dichroism in monolayer 1T'-MoS 2. OPTICS EXPRESS 2024; 32:4158-4166. [PMID: 38297622 DOI: 10.1364/oe.513966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
The linear dichroism demonstrates promising applications in the fields of polarization-resolved photodetectors and polarization optical imaging. Herein, we study the optical properties of monolayer 1T'-MoS2 based on a four-band effective k · p Hamiltonian within the framework of linear response theory. Owing to the anisotropic band structure, the k-resolved optical transition matrix elements associated with armchair(x) and zigzag(y) direction polarized light exhibit a staggered pattern. The anisotropy of the optical absorption spectrum is shown to sensitively depend on the photon energy, the light polarization and the gate voltage. A gate voltage can continuously modulate the anisotropy of the optical absorption spectra, rendering it isotropic or even reversing the initial anisotropy. This modulation leads to linear dichroism conversions across multiple wavelengths. Our findings are useful to design polarized photodetectors and sensors based on monolayer 1T'-MoS2. Our results are also applicable to other monolayer transition metal dichalcogenides with 1T' structure.
Collapse
|
92
|
van Mourik MW, Zapusek E, Hrmo P, Gerster L, Blatt R, Monz T, Schindler P, Reiter F. Experimental Realization of Nonunitary Multiqubit Operations. PHYSICAL REVIEW LETTERS 2024; 132:040602. [PMID: 38335353 DOI: 10.1103/physrevlett.132.040602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 11/13/2023] [Indexed: 02/12/2024]
Abstract
We demonstrate a novel experimental tool set that enables irreversible multiqubit operations on a quantum platform. To exemplify our approach, we realize two elementary nonunitary operations: the or and nor gates. The electronic states of two trapped ^{40}Ca^{+} ions encode the logical information, and a cotrapped ^{88}Sr^{+} ion provides the irreversibility of the gate by a dissipation channel through sideband cooling. We measure 87% and 81% success rates for the or and nor gates, respectively. The presented methods are a stepping stone toward other nonunitary operations such as in quantum error correction and quantum machine learning.
Collapse
Affiliation(s)
- M W van Mourik
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25/4, 6020 Innsbruck, Austria
| | - E Zapusek
- Institute for Quantum Electronics, ETH Zürich, Otto-Stern-Weg 1, 8093 Zürich, Switzerland
| | - P Hrmo
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25/4, 6020 Innsbruck, Austria
| | - L Gerster
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25/4, 6020 Innsbruck, Austria
| | - R Blatt
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25/4, 6020 Innsbruck, Austria
| | - T Monz
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25/4, 6020 Innsbruck, Austria
- AQT, Technikerstraße 17, 6020 Innsbruck, Austria
| | - P Schindler
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25/4, 6020 Innsbruck, Austria
| | - F Reiter
- Institute for Quantum Electronics, ETH Zürich, Otto-Stern-Weg 1, 8093 Zürich, Switzerland
| |
Collapse
|
93
|
Dai B, Su Y, Guo Y, Wu C, Xie Y. Recent Strategies for the Synthesis of Phase-Pure Ultrathin 1T/1T' Transition Metal Dichalcogenide Nanosheets. Chem Rev 2024; 124:420-454. [PMID: 38146851 DOI: 10.1021/acs.chemrev.3c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The past few decades have witnessed a notable increase in transition metal dichalcogenide (TMD) related research not only because of the large family of TMD candidates but also because of the various polytypes that arise from the monolayer configuration and layer stacking order. The peculiar physicochemical properties of TMD nanosheets enable an enormous range of applications from fundamental science to industrial technologies based on the preparation of high-quality TMDs. For polymorphic TMDs, the 1T/1T' phase is particularly intriguing because of the enriched density of states, and thus facilitates fruitful chemistry. Herein, we comprehensively discuss the most recent strategies for direct synthesis of phase-pure 1T/1T' TMD nanosheets such as mechanical exfoliation, chemical vapor deposition, wet chemical synthesis, atomic layer deposition, and more. We also review frequently adopted methods for phase engineering in TMD nanosheets ranging from chemical doping and alloying, to charge injection, and irradiation with optical or charged particle beams. Prior to the synthesis methods, we discuss the configuration of TMDs as well as the characterization tools mostly used in experiments. Finally, we discuss the current challenges and opportunities as well as emphasize the promising fields for the future development.
Collapse
Affiliation(s)
- Baohu Dai
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yueqi Su
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yuqiao Guo
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Changzheng Wu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yi Xie
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
94
|
Liu Z, Tee SY, Guan G, Han MY. Atomically Substitutional Engineering of Transition Metal Dichalcogenide Layers for Enhancing Tailored Properties and Superior Applications. NANO-MICRO LETTERS 2024; 16:95. [PMID: 38261169 PMCID: PMC10805767 DOI: 10.1007/s40820-023-01315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024]
Abstract
Transition metal dichalcogenides (TMDs) are a promising class of layered materials in the post-graphene era, with extensive research attention due to their diverse alternative elements and fascinating semiconductor behavior. Binary MX2 layers with different metal and/or chalcogen elements have similar structural parameters but varied optoelectronic properties, providing opportunities for atomically substitutional engineering via partial alteration of metal or/and chalcogenide atoms to produce ternary or quaternary TMDs. The resulting multinary TMD layers still maintain structural integrity and homogeneity while achieving tunable (opto)electronic properties across a full range of composition with arbitrary ratios of introduced metal or chalcogen to original counterparts (0-100%). Atomic substitution in TMD layers offers new adjustable degrees of freedom for tailoring crystal phase, band alignment/structure, carrier density, and surface reactive activity, enabling novel and promising applications. This review comprehensively elaborates on atomically substitutional engineering in TMD layers, including theoretical foundations, synthetic strategies, tailored properties, and superior applications. The emerging type of ternary TMDs, Janus TMDs, is presented specifically to highlight their typical compounds, fabrication methods, and potential applications. Finally, opportunities and challenges for further development of multinary TMDs are envisioned to expedite the evolution of this pivotal field.
Collapse
Affiliation(s)
- Zhaosu Liu
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Si Yin Tee
- Institute of Materials Research and Engineering, A*STAR, Singapore, 138634, Singapore
| | - Guijian Guan
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Ming-Yong Han
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
95
|
Liu Q, Cui S, Bian R, Pan E, Cao G, Li W, Liu F. The Integration of Two-Dimensional Materials and Ferroelectrics for Device Applications. ACS NANO 2024; 18:1778-1819. [PMID: 38179983 DOI: 10.1021/acsnano.3c05711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
In recent years, there has been growing interest in functional devices based on two-dimensional (2D) materials, which possess exotic physical properties. With an ultrathin thickness, the optoelectrical and electrical properties of 2D materials can be effectively tuned by an external field, which has stimulated considerable scientific activities. Ferroelectric fields with a nonvolatile and electrically switchable feature have exhibited enormous potential in controlling the electronic and optoelectronic properties of 2D materials, leading to an extremely fertile area of research. Here, we review the 2D materials and relevant devices integrated with ferroelectricity. This review starts to introduce the background about the concerned themes, namely 2D materials and ferroelectrics, and then presents the fundamental mechanisms, tuning strategies, as well as recent progress of the ferroelectric effect on the optical and electrical properties of 2D materials. Subsequently, the latest developments of 2D material-based electronic and optoelectronic devices integrated with ferroelectricity are summarized. Finally, the future outlook and challenges of this exciting field are suggested.
Collapse
Affiliation(s)
- Qing Liu
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313099, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Silin Cui
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313099, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Renji Bian
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313099, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Er Pan
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313099, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Guiming Cao
- School of Information Science and Technology, Xi Chang University, 615013 Xi'an, China
| | - Wenwu Li
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Fucai Liu
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313099, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
96
|
Karkee R, Strubbe DA. Panoply of Ni-Doping-Induced Reconstructions, Electronic Phases, and Ferroelectricity in 1T-MoS 2. J Phys Chem Lett 2024; 15:565-574. [PMID: 38198283 DOI: 10.1021/acs.jpclett.3c03175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The distorted phases of monolayer 1T-MoS2 have distinct electronic properties, with potential applications in optoelectronics, catalysis, and batteries. We theoretically investigate the use of Ni-doping to generate distorted 1T phases and find not only the ones usually reported but also two further phases (3 × 3 and 4 × 4), depending on the concentration and the substitutional or adatom doping site. Corresponding pristine phases are stable after removal of dopants, which might offer a potential route to experimental synthesis. We find large ferroelectric polarizations, most notably in 3 × 3 which─compared to the recently measured 1T″─has 100 times greater ferroelectric polarization, a lower energy, and a larger band gap. Doped phases include exotic multiferroic semimetals, ferromagnetic polar metals, and improper ferroelectrics with only in-plane polarization switchable. The pristine phases have unusual multiple gaps in the conduction bands with possible applications for intermediate band solar cells, transparent conductors, and nonlinear optics.
Collapse
Affiliation(s)
- Rijan Karkee
- Department of Physics, University of California, Merced, California 95343, United States
| | - David A Strubbe
- Department of Physics, University of California, Merced, California 95343, United States
| |
Collapse
|
97
|
Chen P, Wang J, Wang G, Ye B, Zhou L, Wang L, Wang J, Zhang W, Chen W, Mei J, He H. Asymmetric edge supercurrents in MoTe 2 Josephson junctions. NANOSCALE ADVANCES 2024; 6:690-696. [PMID: 38235086 PMCID: PMC10791112 DOI: 10.1039/d3na00884c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/13/2023] [Indexed: 01/19/2024]
Abstract
To investigate the higher order topology in MoTe2, the supercurrent interference phenomena in Nb/MoTe2/Nb planar Josephson junctions have been systematically studied. By analyzing the obtained interference pattern of the critical supercurrents and performing a comparative study of the edge-touched and untouched junctions, it's found that the supercurrent is dominated by the edges, rather than the bulk or surfaces of MoTe2. An asymmetric Josephson effect with a field-tunable sign is also observed, indicating the nontrivial origin of the edge states. These results not only provide initial evidence for the hinge states in the higher order topological insulator MoTe2, but also demonstrate the potential applications of MoTe2-based Josephson junctions in rectifying the supercurrent.
Collapse
Affiliation(s)
- Pingbo Chen
- Department of Physics, Harbin Institute of Technology Harbin 150001 China
- Department of Physics, Southern University of Science and Technology Shenzhen 518055 China
| | - Jinhua Wang
- Department of Physics, Southern University of Science and Technology Shenzhen 518055 China
| | - Gongqi Wang
- Department of Physics, Southern University of Science and Technology Shenzhen 518055 China
| | - Bicong Ye
- Department of Physics, Southern University of Science and Technology Shenzhen 518055 China
- Department of Physics, The Hong Kong University of Science and Technology Clear Water Bay Hong Kong 999077 China
| | - Liang Zhou
- Department of Physics, Southern University of Science and Technology Shenzhen 518055 China
| | - Le Wang
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology Shenzhen 518055 China
| | - Jiannong Wang
- Department of Physics, The Hong Kong University of Science and Technology Clear Water Bay Hong Kong 999077 China
| | - Wenqing Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology Shenzhen 518055 China
- Shenzhen Key Laboratory for Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology Shenzhen 518055 China
| | - Weiqiang Chen
- Department of Physics, Southern University of Science and Technology Shenzhen 518055 China
- Shenzhen Key Laboratory for Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology Shenzhen 518055 China
| | - Jiawei Mei
- Department of Physics, Southern University of Science and Technology Shenzhen 518055 China
- Shenzhen Key Laboratory for Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology Shenzhen 518055 China
| | - Hongtao He
- Department of Physics, Southern University of Science and Technology Shenzhen 518055 China
- Shenzhen Key Laboratory for Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
98
|
Han Y, Wang L, Cao K, Zhou J, Zhu Y, Hou Y, Lu Y. In Situ TEM Characterization and Modulation for Phase Engineering of Nanomaterials. Chem Rev 2023; 123:14119-14184. [PMID: 38055201 DOI: 10.1021/acs.chemrev.3c00510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Solid-state phase transformation is an intriguing phenomenon in crystalline or noncrystalline solids due to the distinct physical and chemical properties that can be obtained and modified by phase engineering. Compared to bulk solids, nanomaterials exhibit enhanced capability for phase engineering due to their small sizes and high surface-to-volume ratios, facilitating various emerging applications. To establish a comprehensive atomistic understanding of phase engineering, in situ transmission electron microscopy (TEM) techniques have emerged as powerful tools, providing unprecedented atomic-resolution imaging, multiple characterization and stimulation mechanisms, and real-time integrations with various external fields. In this Review, we present a comprehensive overview of recent advances in in situ TEM studies to characterize and modulate nanomaterials for phase transformations under different stimuli, including mechanical, thermal, electrical, environmental, optical, and magnetic factors. We briefly introduce crystalline structures and polymorphism and then summarize phase stability and phase transformation models. The advanced experimental setups of in situ techniques are outlined and the advantages of in situ TEM phase engineering are highlighted, as demonstrated via several representative examples. Besides, the distinctive properties that can be obtained from in situ phase engineering are presented. Finally, current challenges and future research opportunities, along with their potential applications, are suggested.
Collapse
Affiliation(s)
- Ying Han
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Liqiang Wang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Ke Cao
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Jingzhuo Zhou
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yingxin Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yuan Hou
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yang Lu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| |
Collapse
|
99
|
Shinde PA, Ariga K. Two-Dimensional Nanoarchitectonics for Two-Dimensional Materials: Interfacial Engineering of Transition-Metal Dichalcogenides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18175-18186. [PMID: 38047629 DOI: 10.1021/acs.langmuir.3c02929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Transition-metal dichalcogenides (TMDs) have attracted increasing attention in fundamental studies and technological applications owing to their atomically thin thickness, expanded interlayer distance, motif band gap, and phase-transition ability. Even though TMDs have a wide variety of material assets from semiconductor to semimetallic to metallic, the materials with fixed features may not show excellence for precise application. As a result of exclusive crystalline polymorphs, physical and chemical assets of TMDs can be efficiently modified via various approaches of interface nanoarchitectonics, including heteroatom doping, heterostructure, phase engineering, reducing size, alloying, and hybridization. With modified properties, TMDs become interesting materials in diverse fields, including catalysis, energy, electronics, transistors, and optoelectronics.
Collapse
Affiliation(s)
- Pragati A Shinde
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
100
|
Zhang SH, Shao DF, Wang ZA, Yang J, Yang W, Tsymbal EY. Tunneling Valley Hall Effect Driven by Tilted Dirac Fermions. PHYSICAL REVIEW LETTERS 2023; 131:246301. [PMID: 38181146 DOI: 10.1103/physrevlett.131.246301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024]
Abstract
Valleytronics is a research field utilizing a valley degree of freedom of electrons for information processing and storage. A strong valley polarization is critical for realistic valleytronic applications. Here, we predict a tunneling valley Hall effect (TVHE) driven by tilted Dirac fermions in all-in-one tunnel junctions based on a two-dimensional (2D) valley material. Different doping of the electrode and spacer regions in these tunnel junctions results in momentum filtering of the tunneling Dirac fermions, generating a strong transverse valley Hall current dependent on the Dirac-cone tilting. Using the parameters of an existing 2D valley material, we demonstrate that such a strong TVHE can host a giant valley Hall angle even in the absence of the Berry curvature. Finally, we predict that resonant tunneling can occur in a tunnel junction with properly engineered device parameters such as the spacer width and transport direction, providing significant enhancement of the valley Hall angle. Our work opens a new approach to generate valley polarization in realistic valleytronic systems.
Collapse
Affiliation(s)
- Shu-Hui Zhang
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ding-Fu Shao
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Zi-An Wang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Jin Yang
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Wen Yang
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Evgeny Y Tsymbal
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0299, USA
| |
Collapse
|