51
|
Gasser RB, Schwarz EM, Korhonen PK, Young ND. Understanding Haemonchus contortus Better Through Genomics and Transcriptomics. ADVANCES IN PARASITOLOGY 2016; 93:519-67. [PMID: 27238012 DOI: 10.1016/bs.apar.2016.02.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parasitic roundworms (nematodes) cause substantial mortality and morbidity in animals globally. The barber's pole worm, Haemonchus contortus, is one of the most economically significant parasitic nematodes of small ruminants worldwide. Although this and related nematodes can be controlled relatively well using anthelmintics, resistance against most drugs in common use has become a major problem. Until recently, almost nothing was known about the molecular biology of H. contortus on a global scale. This chapter gives a brief background on H. contortus and haemonchosis, immune responses, vaccine research, chemotherapeutics and current problems associated with drug resistance. It also describes progress in transcriptomics before the availability of H. contortus genomes and the challenges associated with such work. It then reviews major progress on the two draft genomes and developmental transcriptomes of H. contortus, and summarizes their implications for the molecular biology of this worm in both the free-living and the parasitic stages of its life cycle. The chapter concludes by considering how genomics and transcriptomics can accelerate research on Haemonchus and related parasites, and can enable the development of new interventions against haemonchosis.
Collapse
Affiliation(s)
- R B Gasser
- The University of Melbourne, Parkville, VIC, Australia
| | - E M Schwarz
- The University of Melbourne, Parkville, VIC, Australia; Cornell University, Ithaca, NY, United States
| | - P K Korhonen
- The University of Melbourne, Parkville, VIC, Australia
| | - N D Young
- The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
52
|
Decurtins W, Wichert M, Franzini RM, Buller F, Stravs MA, Zhang Y, Neri D, Scheuermann J. Automated screening for small organic ligands using DNA-encoded chemical libraries. Nat Protoc 2016; 11:764-80. [PMID: 26985574 DOI: 10.1038/nprot.2016.039] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DNA-encoded chemical libraries (DECLs) are collections of organic compounds that are individually linked to different oligonucleotides, serving as amplifiable identification barcodes. As all compounds in the library can be identified by their DNA tags, they can be mixed and used in affinity-capture experiments on target proteins of interest. In this protocol, we describe the screening process that allows the identification of the few binding molecules within the multiplicity of library members. First, the automated affinity selection process physically isolates binding library members. Second, the DNA codes of the isolated binders are PCR-amplified and subjected to high-throughput DNA sequencing. Third, the obtained sequencing data are evaluated using a C++ program and the results are displayed using MATLAB software. The resulting selection fingerprints facilitate the discrimination of binding from nonbinding library members. The described procedures allow the identification of small organic ligands to biological targets from a DECL within 10 d.
Collapse
Affiliation(s)
- Willy Decurtins
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Moreno Wichert
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Raphael M Franzini
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Fabian Buller
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Michael A Stravs
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Yixin Zhang
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| |
Collapse
|
53
|
Rahul PR, Ganesh Kumar V, Viswanathan R, Ramesh Sundar A, Malathi P, Naveen Prasanth C, Pratima PT. Defense Transcriptome Analysis of Sugarcane and Colletotrichum falcatum Interaction Using Host Suspension Cells and Pathogen Elicitor. SUGAR TECH 2016; 18:16-28. [DOI: 10.1007/s12355-014-0356-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
54
|
Identification of Powdery Mildew Responsive Genes in Hevea brasiliensis through mRNA Differential Display. Int J Mol Sci 2016; 17:ijms17020181. [PMID: 26840302 PMCID: PMC4783915 DOI: 10.3390/ijms17020181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 12/05/2022] Open
Abstract
Powdery mildew is an important disease of rubber trees caused by Oidium heveae B. A. Steinmann. As far as we know, none of the resistance genes related to powdery mildew have been isolated from the rubber tree. There is little information available at the molecular level regarding how a rubber tree develops defense mechanisms against this pathogen. We have studied rubber tree mRNA transcripts from the resistant RRIC52 cultivar by differential display analysis. Leaves inoculated with the spores of O. heveae were collected from 0 to 120 hpi in order to identify pathogen-regulated genes at different infection stages. We identified 78 rubber tree genes that were differentially expressed during the plant–pathogen interaction. BLAST analysis for these 78 ESTs classified them into seven functional groups: cell wall and membrane pathways, transcription factor and regulatory proteins, transporters, signal transduction, phytoalexin biosynthesis, other metabolism functions, and unknown functions. The gene expression for eight of these genes was validated by qRT-PCR in both RRIC52 and the partially susceptible Reyan 7-33-97 cultivars, revealing the similar or differential changes of gene expressions between these two cultivars. This study has improved our overall understanding of the molecular mechanisms of rubber tree resistance to powdery mildew.
Collapse
|
55
|
Parvathi MS, Nataraja KN. Emerging tools, concepts and ideas to track the modulator genes underlying plant drought adaptive traits: An overview. PLANT SIGNALING & BEHAVIOR 2016; 11:e1074370. [PMID: 26618613 PMCID: PMC4871659 DOI: 10.1080/15592324.2015.1074370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 07/15/2015] [Indexed: 06/05/2023]
Abstract
Crop vulnerability to multiple abiotic stresses is increasing at an alarming rate in the current global climate change scenario, especially drought. Crop improvement for adaptive adjustments to accomplish stress tolerance requires a comprehensive understanding of the key contributory processes. This requires the identification and careful analysis of the critical morpho-physiological plant attributes and their genetic control. In this review we try to discuss the crucial traits underlying drought tolerance and the various modes followed to understand their molecular level regulation. Plant stress biology is progressing into new dimensions and a conscious attempt has been made to traverse through the various approaches and checkpoints that would be relevant to tackle drought stress limitations for sustainable crop production.
Collapse
Affiliation(s)
- M S Parvathi
- Department of Crop Physiology; University of Agricultural Sciences; GKVK; Bangalore, India
| | - Karaba N Nataraja
- Department of Crop Physiology; University of Agricultural Sciences; GKVK; Bangalore, India
| |
Collapse
|
56
|
SHAHID MN, JAMAL A, AFTAB B, MOHAMED BB, WATTOO JI, KIANI MS, RASHID B, HUSNAIN T. Identification, characterization, and expression profiling of salt-stress tolerant proton gradient regulator 5 (PGR5) in Gossypium arboreum. Turk J Biol 2016. [DOI: 10.3906/biy-1504-30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
57
|
Qu XC, Jiang JY, Cheng C, Feng L, Liu QG. Cloning and transcriptional expression of a novel gene during sex inversion of the rice field eel (Monopterus albus). SPRINGERPLUS 2015; 4:745. [PMID: 26693104 PMCID: PMC4666882 DOI: 10.1186/s40064-015-1544-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/18/2015] [Indexed: 01/08/2023]
Abstract
We performed annealing control primer (ACP)-based differential-display reverse transcription-polymerase chain reaction (DDRT-PCR) to isolate differentially expressed genes (DEGs) from the stage IV ovary and ovotestis of the rice field eel, Monopterus albus. Using 20
arbitrary ACP primers, 14 DEG expressed-sequence tags were identified and sequenced. The transcriptional expression of one DEG, G2, was significantly greater in the ovotestis than the stage IV ovary. To understand the role of G2 in sex inversion, G2 cDNA was cloned and semi-RT-PCR, real time PCR were performed during gonad development. The full-length G2 cDNA was 650 base pairs (bp) and it comprised a 5′-untranslated region (UTR) of 82 bp, a 3′-UTR of 121 bp and an open reading frame of 444 bp that encoded a 148-amino acid protein. The expression of G2 was weak during early ovarian development
until the stage IV ovary, but expression increased significantly with gonad development. We speculate that G2 may play an important function during sex inversion and testis development in the rice field eel, but the full details of the function of this gene requires further research.
Collapse
Affiliation(s)
- X C Qu
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306 China
| | - J Y Jiang
- College of Life Sciences, Guangxi Normal University, Guilin, 541004 China.,Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, 541004 China
| | - C Cheng
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306 China
| | - L Feng
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306 China
| | - Q G Liu
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306 China
| |
Collapse
|
58
|
Kalidhasan N, Joshi D, Bhatt TK, Gupta AK. Identification of key genes involved in root development of tomato using expressed sequence tag analysis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2015; 21:491-503. [PMID: 26600676 PMCID: PMC4646861 DOI: 10.1007/s12298-015-0304-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/19/2015] [Accepted: 06/09/2015] [Indexed: 05/11/2023]
Abstract
Root system of plants are actually fascinating structures, not only critical for plant development, but also important for storage and conduction. Due to its agronomic importance, identification of genes involved in root development has been a subject of intense study. Tomato is the one of the most consumed vegetables in the world. Tomato has been used as model system for dicot plants because of its small genome, well-established transformation techniques and well-constructed physical map. The present study is targeted to identify of root specific genes expressed temporally and also gene(s) involved in lateral root and profuse root development. A total of 890 ESTs were identified from five EST libraries constructed using SSH approach which included temporal gene regulation (early and late) and genes involved in morphogenetic traits (lateral and profuse rooting). One hundred sixty-one unique ESTs identified from various libraries were categorized based on their putative functions and deposited in NCBI-dbEST database. In addition, 36 ESTs were selected for validation of their expression by RT-PCR. The present findings will help in shedding light to the unexplored developmental process of root growth in tomato and plant in general.
Collapse
Affiliation(s)
- N. Kalidhasan
- />Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021 India
| | - Deepti Joshi
- />Department of Biotechnology, School of LifeSciences, Central University of Rajasthan, Bandarsindri, 305801 India
| | - Tarun Kumar Bhatt
- />Department of Biotechnology, School of LifeSciences, Central University of Rajasthan, Bandarsindri, 305801 India
| | - Aditya Kumar Gupta
- />Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021 India
- />Department of Biotechnology, School of LifeSciences, Central University of Rajasthan, Bandarsindri, 305801 India
| |
Collapse
|
59
|
Abstract
Insensitivity and technical complexity have impeded the implementation of high-throughput nucleic acid sequencing in differential diagnosis of viral infections in clinical laboratories. Here, we describe the development of a virome capture sequencing platform for vertebrate viruses (VirCapSeq-VERT) that increases the sensitivity of sequence-based virus detection and characterization. The system uses ~2 million probes that cover the genomes of members of the 207 viral taxa known to infect vertebrates, including humans. A biotinylated oligonucleotide library was synthesized on the NimbleGen cleavable array platform and used for solution-based capture of viral nucleic acids present in complex samples containing variable proportions of viral and host nucleic acids. The use of VirCapSeq-VERT resulted in a 100- to 10,000-fold increase in viral reads from blood and tissue homogenates compared to conventional Illumina sequencing using established virus enrichment procedures, including filtration, nuclease treatments, and RiboZero rRNA subtraction. VirCapSeq-VERT had a limit of detection comparable to that of agent-specific real-time PCR in serum, blood, and tissue extracts. Furthermore, the method identified novel viruses whose genomes were approximately 40% different from the known virus genomes used for designing the probe library. The VirCapSeq-VERT platform is ideally suited for analyses of virome composition and dynamics. Importance VirCapSeq-VERT enables detection of viral sequences in complex sample backgrounds, including those found in clinical specimens, such as serum, blood, and tissue. The highly multiplexed nature of the system allows both the simultaneous identification and the comprehensive genetic characterization of all known vertebrate viruses, their genetic variants, and novel viruses. The operational simplicity and efficiency of the VirCapSeq-VERT platform may facilitate transition of high-throughput sequencing to clinical diagnostic as well as research applications. VirCapSeq-VERT enables detection of viral sequences in complex sample backgrounds, including those found in clinical specimens, such as serum, blood, and tissue. The highly multiplexed nature of the system allows both the simultaneous identification and the comprehensive genetic characterization of all known vertebrate viruses, their genetic variants, and novel viruses. The operational simplicity and efficiency of the VirCapSeq-VERT platform may facilitate transition of high-throughput sequencing to clinical diagnostic as well as research applications.
Collapse
|
60
|
Spies D, Ciaudo C. Dynamics in Transcriptomics: Advancements in RNA-seq Time Course and Downstream Analysis. Comput Struct Biotechnol J 2015; 13:469-77. [PMID: 26430493 PMCID: PMC4564389 DOI: 10.1016/j.csbj.2015.08.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 12/17/2022] Open
Abstract
Analysis of gene expression has contributed to a plethora of biological and medical research studies. Microarrays have been intensively used for the profiling of gene expression during diverse developmental processes, treatments and diseases. New massively parallel sequencing methods, often named as RNA-sequencing (RNA-seq) are extensively improving our understanding of gene regulation and signaling networks. Computational methods developed originally for microarrays analysis can now be optimized and applied to genome-wide studies in order to have access to a better comprehension of the whole transcriptome. This review addresses current challenges on RNA-seq analysis and specifically focuses on new bioinformatics tools developed for time series experiments. Furthermore, possible improvements in analysis, data integration as well as future applications of differential expression analysis are discussed.
Collapse
Affiliation(s)
- Daniel Spies
- Swiss Federal Institute of Technology Zurich, Department of Biology, Institute of Molecular Health Sciences, Zurich, Otto-Stern Weg 7, 8093 Zurich, Switzerland
- Life Science Zurich Graduate School, Molecular Life Science Program, University of Zurich, Institute of Molecular Life Sciences, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Constance Ciaudo
- Swiss Federal Institute of Technology Zurich, Department of Biology, Institute of Molecular Health Sciences, Zurich, Otto-Stern Weg 7, 8093 Zurich, Switzerland
| |
Collapse
|
61
|
Abstract
Gene expression is a process of DNA sequence reading into protein synthesis. In cases of problems in DNA repair/apoptosis mechanisms, cells accumulate genomic abnormalities and pass them through generations of cells. The accumulation of mutations causes diseases and even tumors. In addition to cancer, many other neurologic conditions have been associated with genetic mutations. Some trials are testing patients with epigenetic treatments. Epigenetic therapy must be used with caution because epigenetic processes and changes happen constantly in normal cells, giving rise to drug off-target effects. Scientists are making progress in specifically targeting abnormal cells with minimal damage to normal ones.
Collapse
Affiliation(s)
- Marina Lipkin Vasquez
- Molecular Biology Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rua do Resende 156, 2nd Floor, Centro, Rio de Janeiro CEP 20231-092, Brazil.
| | | |
Collapse
|
62
|
Whole transcriptome analysis with sequencing: methods, challenges and potential solutions. Cell Mol Life Sci 2015; 72:3425-39. [PMID: 26018601 DOI: 10.1007/s00018-015-1934-y] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/25/2015] [Accepted: 05/21/2015] [Indexed: 10/23/2022]
Abstract
Whole transcriptome analysis plays an essential role in deciphering genome structure and function, identifying genetic networks underlying cellular, physiological, biochemical and biological systems and establishing molecular biomarkers that respond to diseases, pathogens and environmental challenges. Here, we review transcriptome analysis methods and technologies that have been used to conduct whole transcriptome shotgun sequencing or whole transcriptome tag/target sequencing analyses. We focus on how adaptors/linkers are added to both 5' and 3' ends of mRNA molecules for cloning or PCR amplification before sequencing. Challenges and potential solutions are also discussed. In brief, next generation sequencing platforms have accelerated releases of the large amounts of gene expression data. It is now time for the genome research community to assemble whole transcriptomes of all species and collect signature targets for each gene/transcript, and thus use known genes/transcripts to determine known transcriptomes directly in the near future.
Collapse
|
63
|
Alves-Costa FA, Wasko AP. DDRT-PCR approaches applied for preeminent results in the isolation of DETs from fish brain tissues. BRAZ J BIOL 2015; 75:224-8. [PMID: 25945641 DOI: 10.1590/1519-6984.12213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/20/2013] [Indexed: 11/21/2022] Open
Abstract
Differential Display (DD) is a technique widely used in studies of differential expression. Most of these analyses, especially those involving fish species, are restricted to species from North America and Europe or to commercial species, as salmonids. Studies related to South American fish species are underexplored. Thus, the present work aimed to describe DD technique modifications in order to improve outcomes related to the isolation of DETs (Differentially Expressed Transcripts), using Leporinus macrocephalus, a large commercially exploited South American species, as a fish design. Different DDRT-PCR approaches were applied to brain samples and the products of the reactions were analyzed on 6% polyacrylamide gels stained with 0.17% Silver Nitrate (AgNO3). The use of PCR reactions under high stringency conditions and longer oligonucleotides based on VNTR (Variable Number of Tandem Repeats) core sequences led to better results when compared to low stringency PCR conditions and the use of decamer oligonucleotides. The improved approach led to the isolation of differentially expressed transcripts on adult males and females of L. macrocephalus. This study indicates that some modifications on the DDRT-PCR method can ensure isolation of DETs from different fish tissues and the development of robust data related to this approach.
Collapse
Affiliation(s)
- F A Alves-Costa
- Instituto de Ciências da Saúde, Universidade Paulista, Bauru, SP, Brazil
| | - A P Wasko
- Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil
| |
Collapse
|
64
|
Validation of endogenous reference genes in Buglossoides arvensis for normalizing RT-qPCR-based gene expression data. SPRINGERPLUS 2015; 4:178. [PMID: 25918683 PMCID: PMC4404469 DOI: 10.1186/s40064-015-0952-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 03/27/2015] [Indexed: 01/02/2023]
Abstract
Selection of a stably expressed reference gene (RG) is an important step for generating reliable and reproducible quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) gene expression data. We, in this study, have sought to validate RGs for Buglossoides arvensis, a high nutraceutical value plant whose refined seed oil is entering the market under the commercial trade name Ahiflower™. This weed plant has received attention for its natural ability to significantly accumulate the poly-unsaturated fatty acid (PUFA) stearidonic acid (SDA, C18:4n-3) in its seeds, which is uncommon for most plant species. Ten candidate RGs (β-Act, 18S rRNA, EF-1a, α-Tub, UBQ, α-actin, CAC, PP2a, RUBISCO, GAPDH) were isolated from B. arvensis and TaqMan™ compliant primers/probes were designed for RT-qPCR analysis. Abundance of these gene transcripts was analyzed across different tissues and growth regimes. Two of the most widely used algorithms, geNorm and NormFinder, showed variation in expression levels of these RGs. However, combinatorial analysis of the results clearly identified CAC and α-actin as the most stable and unstable RG candidates, respectively. This study has for the first time identified and validated RGs in the non-model system B. arvensis, a weed plant projected to become an important yet sustainable source of dietary omega-3 PUFA.
Collapse
|
65
|
Choudhary M, Jayanand, Padaria JC. Transcriptional profiling in pearl millet (Pennisetum glaucum L.R. Br.) for identification of differentially expressed drought responsive genes. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2015; 21:187-96. [PMID: 25964713 PMCID: PMC4411378 DOI: 10.1007/s12298-015-0287-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/23/2015] [Accepted: 03/03/2015] [Indexed: 05/04/2023]
Abstract
Pearl millet (Pennisetum glaucum) is an important cereal of traditional farming systems that has the natural ability to withstand various abiotic stresses. The present study aims at the identification and validation of major differentially expressed genes in response to drought stress in P. glaucum by Suppression Subtractive Hybridization (SSH) analysis. Twenty-two days old seedlings of P. glaucum cultivar PPMI741 were subjected to drought stress by treatment of 30 % Polyethylene glycol for different time periods 30 min (T1), 2 h (T2), 4 h (T3), 8 h (T4), 16 h (T5), 24 h (T6) and 48 h (T7) respectively, monitored by examining the RWC of seedlings. Total RNA was isolated to construct drought responsive subtractive cDNA library through SSH, sequenced to identify the differentially expressed genes in response to drought stress and validated by qRT-PCR.745 ESTs were assembled into a collection of 299 unigenes having 52 contigs and 247 singletons. All 745 ESTs were submitted to ENA-EMBL databases (Accession no. HG516611- HG517355). After analysis, 10 differentially expressed genes were validated namely Abscisic stress ripening protein, Ascorbate peroxidase, Inosine-5'-monophosphate dehydrogenase, Putative beta-1, 3-glucanase, Glyoxalase, Rab7, Aspartic proteinase Oryzasin, DnaJ-like protein and Calmodulin-like protein by qRT-PCR. The identified ESTs reveal a major portion of the stress responsive transcriptome that may prove to be a vent to unravel molecular basis underlying tolerance of pearl millet (Pennisetum glaucum) to drought stress. These genes could be utilized for transgenic breeding or transferred to crop plants through marker assisted selection for the development of better drought resistant cultivars having enhanced adaptability to survive harsh environmental conditions.
Collapse
Affiliation(s)
- Minakshi Choudhary
- />Biotechnology and Climate Change Laboratory, National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
| | - Jayanand
- />Shobhit University, NH-58, Modipuram, Meerut, 250110 India
| | - Jasdeep Chatrath Padaria
- />Biotechnology and Climate Change Laboratory, National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
| |
Collapse
|
66
|
Li H, Zhang H, Zhao S, Shi Y, Yao J, Zhang Y, Guo H, Liu X. Overexpression of MACC1 and the association with hepatocyte growth factor/c-Met in epithelial ovarian cancer. Oncol Lett 2015; 9:1989-1996. [PMID: 26137000 DOI: 10.3892/ol.2015.2984] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 08/01/2014] [Indexed: 01/23/2023] Open
Abstract
Metastasis-associated in colon cancer-1 (MACC1) is a gene that has been newly identified by a genome-wide search for differentially expressed genes in human colon cancer tissues, metastases and normal tissues. MACC1 exerts an important role in colon cancer metastasis through upregulation of the c-Met proto-oncogene. The tyrosine kinase receptor encoded by the c-Met oncogene exhibits the unusual property of mediating the invasive growth of epithelial cells upon binding with the hepatocyte growth factor (HGF). MACC1 has been investigated with regard to colon carcinoma and MACC1 expression is associated with metastasis in various types of human cancer. However, the value of MACC1 as a potential biomarker for ovarian cancer remains unknown, although the c-Met/HGF receptor has been shown to be overexpressed in epithelial ovarian cancer tissues. To investigate the role of MACC1 in epithelial ovarian tumors, the expression levels of MACC1 mRNA in ovarian tumor specimens were analyzed together with the prognostic significance. MACC1 protein expression was also detected in the epithelial ovarian tissue specimens, and the effects of MACC1 overexpression on ovarian cancer migration, invasion and prognosis were evaluated. Due to the close association between MACC1 and c-Met expression levels in colon cancer, the expression levels of HGF/c-Met in the ovarian specimens were also examined to determine whether such a correlation is also present in epithelial ovarian cancer. A total of 92 epithelial ovarian tissue samples were used to assess the expression levels of MACC1 mRNA and protein using reverse transcription-polymerase chain reaction and immunohistochemical methods, respectively. The serum levels of MACC1 protein expression in patients with epithelial ovarian cancer were detected by enzyme-linked immunosorbent assay. The results indicated that MACC1 may be important in the malignant progression of epithelial ovarian tumors, in particular for early stage patients. Thus, MACC1 may become a predictor of prognosis and a therapeutic target in the treatment of ovarian tumors. The combined detection of MACC1 and HGF/c-Met is therefore important in assessing the prognosis of patients with malignant epithelial ovarian tumors.
Collapse
Affiliation(s)
- Hongyu Li
- Department of Gynecological Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hui Zhang
- Department of Gynecological Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shujun Zhao
- Department of Gynecological Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yun Shi
- Department of Gynecological Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Junge Yao
- Department of Gynecological Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yanyan Zhang
- Department of Gynecological Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Huanhuan Guo
- Department of Gynecological Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xingsuo Liu
- Department of Gynecological Oncology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
67
|
Fujimura K, Niidome T, Shinozuka Y, Izumi Y, Kihara T, Sugimoto H, Akaike A, Kume T. Integrin-associated protein promotes neuronal differentiation of neural stem/progenitor cells. PLoS One 2015; 10:e0116741. [PMID: 25706387 PMCID: PMC4338140 DOI: 10.1371/journal.pone.0116741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/14/2014] [Indexed: 01/17/2023] Open
Abstract
Neural stem/progenitor cells (NSPCs) proliferate and differentiate depending on their intrinsic properties and local environment. During the development of the mammalian nervous system, NSPCs generate neurons and glia sequentially. However, little is known about the mechanism that determines the timing of switch from neurogenesis to gliogenesis. In this study, we established a culture system in which the neurogenic potential of NSPCs is decreased in a time-dependent manner, so that short-term-cultured NSPCs differentiate into more neurons compared with long-term-cultured NSPCs. We found that short-term-cultured NSPCs express high levels of integrin-associated protein form 2 (IAP2; so-called CD47) mRNA using differential display analysis. Moreover, IAP2 overexpression in NSPCs induced neuronal differentiation of NSPCs. These findings reveal a novel mechanism by which IAP2 induces neuronal differentiation of NSPCs.
Collapse
Affiliation(s)
- Kazuhiko Fujimura
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Tetsuhiro Niidome
- Department of Neuroscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yoriko Shinozuka
- Department of Neuroscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yasuhiko Izumi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Takeshi Kihara
- Department of Neuroscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hachiro Sugimoto
- World-Leading Drug Discovery Research Center, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Akinori Akaike
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Toshiaki Kume
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
- * E-mail: .
| |
Collapse
|
68
|
Large-scale tag/PCR-based gene expression profiling. World J Microbiol Biotechnol 2015; 30:2125-39. [PMID: 24659336 DOI: 10.1007/s11274-014-1641-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/16/2014] [Indexed: 10/25/2022]
Abstract
An intriguing enigma in molecular biology is how genes within a single genome are differentially expressed in different cell types of a multicellular organism, or in response to different developmental or environmental queues in a single cell type. Quantification of transcript levels on a genome-wide scale, often termed transcript profiling, provides a powerful approach to identifying protein-coding and non-coding RNAs functionally relevant to a given biological process. Indeed, transcriptome analysis has been a key area of biological inquiry for decades and successfully produced discoveries in a multitude of processes and disease states, and in an increasingly large number of organisms. The evolution of technologies with increasing levels of informational content, ranging from hybridization-based technologies such as Northern blot analysis and microarrays to tag/polymerase chain reaction (PCR)- and sequence-based technologies including differential display and SAGE, along with the next-generation sequencing, has provided hope for revealing the molecular details of biological systems as they respond to change. This review is an overview of selected high throughput tag/PCR-based methods for genome-wide expression profiling amenable to high-throughput automated operation in any standard laboratory.
Collapse
|
69
|
Cantacessi C, Hofmann A, Campbell BE, Gasser RB. Impact of next-generation technologies on exploring socioeconomically important parasites and developing new interventions. Methods Mol Biol 2015; 1247:437-474. [PMID: 25399114 DOI: 10.1007/978-1-4939-2004-4_31] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
High-throughput molecular and computer technologies have become instrumental for systems biological explorations of pathogens, including parasites. For instance, investigations of the transcriptomes of different developmental stages of parasitic nematodes give insights into gene expression, regulation and function in a parasite, which is a significant step to understanding their biology, as well as interactions with their host(s) and disease. This chapter (1) gives a background on some key parasitic nematodes of socioeconomic importance, (2) describes sequencing and bioinformatic technologies for large-scale studies of the transcriptomes and genomes of these parasites, (3) provides some recent examples of applications and (4) emphasizes the prospects of fundamental biological explorations of parasites using these technologies for the development of new interventions to combat parasitic diseases.
Collapse
Affiliation(s)
- Cinzia Cantacessi
- Department of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | | | | |
Collapse
|
70
|
Zhang J, Yang S, Huang Y, Zhou S. The Tolerance and Accumulation of Miscanthus Sacchariflorus (maxim.) Benth., an Energy Plant Species, to Cadmium. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2015; 17:538-545. [PMID: 25747240 DOI: 10.1080/15226514.2014.922925] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Miscanthus sacchariflorus (Maxim.) Benth. is a metallophyte suitable for the phytoremediation of mine wastes. The tolerance and accumulation of M. sacchariflorus to cadmium was studied by pot experiments. The results showed that O2·- generation rate, plasma membrane permeability and MDA content of M. sacchariflorus leaves increased with increasing Cd concentrations in soil, but significant effect was only observed when Cd concentrations were ≥50 mg·kg(-1). SOD and POD activities increased initially but decreased later on, whereas CAT activity only increased significantly at higher Cd concentrations, 50-100 mg·kg(-1). The content of photosynthetic pigment and growth of M. sacchariflorus were both not significantly affected when Cd concentration was ≤25 mg·kg(-1). In contrast, both parameters were significantly affected when Cd concentration was ≥50 mg·kg(-1). M. sacchariflorus could accumulate much Cd, but most of the Cd assimilated was retained in the belowground part, suggesting that M. sacchariflorus has poor ability to translocate Cd to the aboveground part. Our results suggested that although M. sacchariflorus was not a hyper-accumulator, it has a strong capacity to tolerate and stabilize the Cd. Therefore, M. sacchariflorus has a certain potential in the phytostabilization of Cd-contaminated soils.
Collapse
Affiliation(s)
- Jie Zhang
- a School of Life Sciences , Anhui Normal University , Wuhu , China
| | | | | | | |
Collapse
|
71
|
Zhao K, Xiao Y, Wang C, Liu D, Zhang Y, Wang X, Li X, Jin T. Screening of taxol biosynthesis-related genes in taxol produced from Nodulisporium sylviforme HDF-68 by mRNA differential display. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0807-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
72
|
Zhou H, Choi SI, Zou F, Oh S, Kim JE, Hwang DY, Lee J. Cytotoxicity and gene expression in sarcoma 180 cells in response to spiky magnetoplasmonic supraparticles. ACS APPLIED MATERIALS & INTERFACES 2014; 6:19680-19689. [PMID: 25369231 DOI: 10.1021/am504632g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Multifunctional nanoparticles (NPs) have been designed for a variety of cell imaging and therapeutic applications, and the study of their cellular interactions is crucial to the development of more efficient biomedical applications. Among current nanomaterials, concave core-shell NPs with complex angled geometries are attractive owing to their unique shape-dependent optical and physical properties as well as different tendency for cell interaction. In this study, we investigated the morphology effect of spiky gold-coated iron oxide supraparticles (Fe3O4@Au SPs) on cytotoxicity and global gene expression in sarcoma 180 cells. Cells treated for 7 days with spiky supraparticles (SPs) at concentrations up to 50 μg/mL showed >90% viability, indicating that these NPs were nontoxic. To shed light on the differences in cytotoxicity, we monitored the expression of 33,315 genes using microarray analysis of SP-treated cells. The 171 up-regulated genes and 181 down-regulated genes in spiky SP-treated cells included Il1b, Spp1, Il18, Rbp4, and Il11ra1, where these genes are mainly involved in cell proliferation, differentiation, and apoptosis. These results suggested that the spiky Fe3O4@Au SPs can induce noncytotoxicity and gene expression in tumor cells, which may be a promising cornerstone on which to base related research such as cyto-/genotoxicology of nanomaterials or the design of nanoscale drug carriers.
Collapse
Affiliation(s)
- Hongjian Zhou
- Department of Nano Fusion, and Cogno-Mechatronics Engineering, Pusan National University , Busan 609-735, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
73
|
Identification of Salt-Stress-Induced Genes from the RNA-Seq Data of Reaumuria trigyna Using Differential-Display Reverse Transcription PCR. Int J Genomics 2014; 2014:381501. [PMID: 25692129 PMCID: PMC4322826 DOI: 10.1155/2014/381501] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/27/2014] [Accepted: 11/10/2014] [Indexed: 11/17/2022] Open
Abstract
Next generation sequencing (NGS) technologies have been used to generate huge amounts of sequencing data from many organisms. However, the correct choice of candidate genes and prevention of false-positive results computed from digital gene expression (DGE) of RNA-seq data are vital when using these genetic resources. We indirectly identified 18 salt-stress-induced Reaumuria trigyna transcripts from the transcriptome sequencing data using differential-display reverse transcription PCR (DDRT-PCR) combined with local BLAST searches. Highly consistent with the DGE results, the quantitative real-time PCR expression patterns of these transcripts showed strong upregulation by salt stress, suggesting that these genes may play important roles in R. trigyna's survival under high-salt environments. The method presented here successfully identified responsive genes from the massive amount of RNA-seq data. Thus, we suggest that DDRT-PCR could be employed to mine NGS data in a wide range of applications in transcriptomic studies. In addition, the genes identified in the present study are promising candidates for further elucidation of the salt tolerance mechanisms in R. trigyna.
Collapse
|
74
|
Jyothi-Prakash PA, Mohanty B, Wijaya E, Lim TM, Lin Q, Loh CS, Kumar PP. Identification of salt gland-associated genes and characterization of a dehydrin from the salt secretor mangrove Avicennia officinalis. BMC PLANT BIOLOGY 2014; 14:291. [PMID: 25404140 PMCID: PMC4247641 DOI: 10.1186/s12870-014-0291-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/15/2014] [Indexed: 05/06/2023]
Abstract
BACKGROUND Salt stress is a major challenge for growth and development of plants. The mangrove tree Avicennia officinalis has evolved salt tolerance mechanisms such as salt secretion through specialized glands on its leaves. Although a number of structural studies on salt glands have been done, the molecular mechanism of salt secretion is not clearly understood. Also, studies to identify salt gland-specific genes in mangroves have been scarce. RESULTS By subtractive hybridization (SH) of cDNA from salt gland-rich cell layers (tester) with mesophyll tissues as the driver, several Expressed Sequence Tags (ESTs) were identified. The major classes of ESTs identified include those known to be involved in regulating metabolic processes (37%), stress response (17%), transcription (17%), signal transduction (17%) and transport functions (12%). A visual interactive map generated based on predicted functional gene interactions of the identified ESTs suggested altered activities of hydrolase, transmembrane transport and kinases. Quantitative Real-Time PCR (qRT-PCR) was carried out to validate the expression specificity of the ESTs identified by SH. A Dehydrin gene was chosen for further experimental analysis, because it is significantly highly expressed in salt gland cells, and dehydrins are known to be involved in stress remediation in other plants. Full-length Avicennia officinalis Dehydrin1 (AoDHN1) cDNA was obtained by Rapid Amplification of cDNA Ends. Phylogenetic analysis and further characterization of this gene suggested that AoDHN1 belongs to group II Late Embryogenesis Abundant proteins. qRT-PCR analysis of Avicennia showed up-regulation of AoDHN1 in response to salt and drought treatments. Furthermore, some functional insights were obtained by growing E. coli cells expressing AoDHN1. Growth of E. coli cells expressing AoDHN1 was significantly higher than that of the control cells without AoDHN1 under salinity and drought stresses, suggesting that the mangrove dehydrin protein helps to mitigate the abiotic stresses. CONCLUSIONS Thirty-four ESTs were identified to be enriched in salt gland-rich tissues of A. officinalis leaves. qRT-PCR analysis showed that 10 of these were specifically enriched in the salt gland-rich tissues. Our data suggest that one of the selected genes, namely, AoDHN1 plays an important role to mitigate salt and drought stress responses.
Collapse
Affiliation(s)
- Pavithra A Jyothi-Prakash
- />Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Republic of Singapore
- />NUS Environmental Research Institute (NERI), National University of Singapore, #02-01, T-Lab Building, 5A Engineering Drive 1, Singapore, Republic of Singapore
| | - Bijayalaxmi Mohanty
- />Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Republic of Singapore
| | - Edward Wijaya
- />IFReC, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871 Japan
| | - Tit-Meng Lim
- />Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Republic of Singapore
| | - Qingsong Lin
- />Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Republic of Singapore
| | - Chiang-Shiong Loh
- />Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Republic of Singapore
- />NUS Environmental Research Institute (NERI), National University of Singapore, #02-01, T-Lab Building, 5A Engineering Drive 1, Singapore, Republic of Singapore
| | - Prakash P Kumar
- />Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Republic of Singapore
- />Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, Republic of Singapore
| |
Collapse
|
75
|
Liu WW, Chen SY, Cheng CH, Cheng HJ, Huang PH. Blm-s , a BH3-Only Protein Enriched in Postmitotic Immature Neurons, Is Transcriptionally Upregulated by p53 during DNA Damage. Cell Rep 2014; 9:166-179. [DOI: 10.1016/j.celrep.2014.08.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/05/2014] [Accepted: 08/20/2014] [Indexed: 12/25/2022] Open
|
76
|
Manipulation of host pathways by human cytomegalovirus: insights from genome-wide studies. Semin Immunopathol 2014; 36:651-8. [PMID: 25260940 DOI: 10.1007/s00281-014-0443-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/03/2014] [Indexed: 10/24/2022]
Abstract
The herpesvirus human cytomegalovirus (HCMV) infects the majority of the world's population, leading to severe diseases in millions of newborns and immunocompromised adults annually. During infection, HCMV extensively manipulates cellular gene expression to maintain conditions favorable for efficient viral propagation. Identifying the pathways that the virus relies on or subverts is of great interest as they have the potential to provide new therapeutic targets and to reveal novel principles in cell biology. Over the past years, high-throughput analyses have profoundly broadened our understanding of the processes that occur during HCMV infection. In this review, we will discuss these new findings and how they impact our understanding of the biology of HCMV.
Collapse
|
77
|
Rubin TG, Gray JD, McEwen BS. Experience and the ever-changing brain: what the transcriptome can reveal. Bioessays 2014; 36:1072-81. [PMID: 25213333 DOI: 10.1002/bies.201400095] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The brain is an ever-changing organ that encodes memories and directs behavior. Neuroanatomical studies have revealed structural plasticity of neural architecture, and advances in gene expression technology and epigenetics have demonstrated new mechanisms underlying the brain's dynamic nature. Stressful experiences challenge the plasticity of the brain, and prolonged exposure to environmental stress redefines the normative transcriptional profile of both neurons and glia, and can lead to the onset of mental illness. A more thorough understanding of normal and abnormal gene expression is needed to define the diseased brain and improve current treatments for psychiatric disorders. The efforts to describe gene expression networks have been bolstered by microarray and RNA-sequencing technologies. The heterogeneity of neural cell populations and their unique microenvironments, coupled with broad ranging interconnectivity, makes resolving this complexity exceedingly challenging and requires the combined efforts of single cell and systems level expression profiling to identify targets for therapeutic intervention.
Collapse
Affiliation(s)
- Todd G Rubin
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | | | | |
Collapse
|
78
|
Rêgo MJBM, Santos PB, Carvalho-Junior LB, Stirling J, Beltrão EIC. Evaluation of Parkia pendula lectin mRNA differentially expressed in seedlings. BRAZ J BIOL 2014; 74:489-92. [PMID: 25166336 DOI: 10.1590/1519-6984.18512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 02/01/2013] [Indexed: 11/21/2022] Open
Abstract
Parkia pendula (Willd.) Walp. (Fabaceae) is a neotropical species of the genus Parkia more abundantly distributed in Central to South America. From the seeds of P. pendula a glucose/mannose specific lectin (PpeL) was isolated that has been characterised and used as a biotechnological tool but until now this is the first manuscript to analyse P. pendula mRNA expression in seedlings. For this porpoise a Differential display reverse transcription polimerase chain reaction (DDRT-PCR) was used to evaluate the expression of P. pendula lectin mRNAs in non-rooted seedlings. No bands were observed in the agarose gel, indicating the absence of mRNA of PpeL seedlings. our findings confirm that lectins mRNAs are differently regulated among species even if they are grouped in the same class.
Collapse
Affiliation(s)
- M J B M Rêgo
- Laboratory of Immunopathology Keizo Asami, Department of Pathology, Federal University of Pernambuco ? UFPE, Recife, PE, Brazil
| | - P B Santos
- Laboratory of Immunopathology Keizo Asami, Department of Pathology, Federal University of Pernambuco ? UFPE, Recife, PE, Brazil
| | - L B Carvalho-Junior
- Laboratory of Immunopathology Keizo Asami, Department of Pathology, Federal University of Pernambuco ? UFPE, Recife, PE, Brazil
| | - J Stirling
- Laboratory of Molecular Genetics, Division of Life Sciences, King's College London, London, United Kingdom
| | - E I C Beltrão
- Laboratory of Immunopathology Keizo Asami, Department of Pathology, Federal University of Pernambuco ? UFPE, Recife, PE, Brazil
| |
Collapse
|
79
|
Jabeen R, Mustafa G, Ul Abdin Z, Iqbal MJ, Jamil A. Expression profiling of bioactive genes from Moringa oleifera. Appl Biochem Biotechnol 2014; 174:657-66. [PMID: 25086925 DOI: 10.1007/s12010-014-1122-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 07/23/2014] [Indexed: 01/10/2023]
Abstract
Plants are under constant assault by biotic and abiotic agents. When an elicitor is prologued, an immense reprogramming of plant gene expression and defense responses are initiated, which could be a natural source for potential drug development and insertional mutagenesis. In this regard, differential expression analysis of a medicinal plant Moringa oleifera was performed for bioactive genes at seedling stage, using differential display-RT-PCR technique. Infected seedlings with a fungus Fusarium solani collected at different time intervals, showed a massive change in their gene expression profile. The data analysis revealed that at least 150 pathogen-induced and about 60 suppressed genes were differentially expressed at 8-h postinoculation of the biotic stress. Fifty-five selective genes were disunited and reamplified. Sequence analysis of these potential genes illustrated that these genes had properties of some induced peroxidase mRNA, cell proliferation, others were mitogen activated protein kinases, ribosomal protein genes, defense regulating genes, and a few also had structural properties. Further studies about the utility of these genes in plant metabolism could assist to develop improved transgenic breeds with enhanced value of infection tolerance not only of M. oleifera but of other cultivars also.
Collapse
Affiliation(s)
- Raheela Jabeen
- Molecular Biochemistry Lab, Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | | | | | | | | |
Collapse
|
80
|
Wang BH, Sun XX, Dong FY, Zhang F, Niu JX. Cloning and expression analysis of an MYB gene associated with calyx persistence in Korla fragrant pear. PLANT CELL REPORTS 2014; 33:1333-1341. [PMID: 24756881 DOI: 10.1007/s00299-014-1619-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 03/27/2014] [Accepted: 04/07/2014] [Indexed: 06/03/2023]
Abstract
We isolated an MYB-like gene from Korla fragrant pear using differential display RT-PCR. Expression of this gene in flowers appears to be correlated with calyx persistence. Korla fragrant pear (Pyrus brestschneideri Rehd) is an economically important pear cultivar in China. A persistent calyx results in the deformation of the fruit. We used differential display RT-PCR to obtain 42 cDNA fragments from Korla fragrant pear flowers. Alignments of nucleotide and amino acid sequences suggested that two fragments (kfp1and kfp4) were related to calyx persistence. The fragments were 78% homologous with Malus × domestica SPL transcription factor (SPL3) and 83% homologous with Malus × domestica MYB transcription factor (MYB12). The complete cDNA sequence of kfpMYB was determined to clarify the role of MYB in calyx persistence. kfpMYB contained a 116 bp 5'-UTR, a 1122 bp open reading frame encoding 374 amino acids, and a 319 bp 3'-UTR. The nucleotide and amino acid sequences of the cDNA in Korla fragrant pear were highly homologous with those of MYB transcription factors in other plant species, suggesting that the sequence is a MYB transcription factor gene. The abundance of kfpMYB mRNA varied significantly between the second and fourth flowers on the branch. Furthermore, kfpMYB expression changed significantly during anthesis and was significantly higher in Jinfeng pear (persistent calyx) and Korla fragrant pear than in Yali pear (deciduous calyx). Expression of kfpMYB was significantly reduced by naphthalene (NAA), abscisic acid (ABA), PBO, and paclobutrazol (PP333). Uniconazole, ethylene (ETH), and gibberellic acid (GA3) had no signicant effect on kfpMYB expression. In conclusion, the expression of kfpMYB appears to be correlated with calyx persistence in Korla fragrant pear.
Collapse
Affiliation(s)
- Bo-Hui Wang
- Department of Horticulture, College of Agriculture, Shihezi University, 832003, Shihezi, People's Republic of China
| | | | | | | | | |
Collapse
|
81
|
Qiao HP, Gao WS, Huo JX, Yang ZS. Long non-coding RNA GAS5 functions as a tumor suppressor in renal cell carcinoma. Asian Pac J Cancer Prev 2014; 14:1077-82. [PMID: 23621190 DOI: 10.7314/apjcp.2013.14.2.1077] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is a malignancy with a poor prognosis. We aimed to explore whether the expression of Long Non-Coding RNA (LncRNA) growth arrest-specific transcript 5 (GAS5) is associated with RCC genesis. METHODS We selected twelve clinical samples diagnosed for renal clear cell carcinoma and found that the LncRNA GAS5 transcript levels were significantly reduced relative to those in adjacent unaffected normal renal tissues. RESULTS In addition, expression of GAS5 was lower in the RCC cell line A498 than that in normal renal cell line HK-2. Furthermore, using functional expression cloning, we found that overexpression of GAS5 in A498 cells inhibited cell proliferation, induced cell apoptosis and arrested cell cycling. At the same time, the migration and invasion potential of A498 cells were inhibited compared to control groups. CONCLUSION Our study provided the first evidence that a decrease in GAS5 expression is associated with RCC genesis and progression and overexpression of GAS5 can act as a tumor suppressor for RCC, providing a potential attractive therapeutic approach for this malignancy.
Collapse
Affiliation(s)
- Hui-Ping Qiao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu, China
| | | | | | | |
Collapse
|
82
|
Multiple correlations of mRNA expression and protein abundance in human cytokine profile. Mol Biol Rep 2014; 41:6985-93. [PMID: 25037271 DOI: 10.1007/s11033-014-3585-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/05/2014] [Indexed: 10/25/2022]
Abstract
With the development of genomic study, researchers found that it is insufficient to predict protein expression from quantitative mRNA data in large scale, which is contrary to the traditional opinion that mRNA expression correlates with protein abundance at the single gene level. To try to solve the apparent conflicting views, here we set up a series of research models and chose soluble cytokines as targets. First, human peripheral blood mononuclear cell (PBMC) from one health donor was treated with 16 continuously changing conditions, the protein and mRNA profile were analyzed by multiplex Luminex and genomic microarray, respectively. Among the tested genes, around half mRNA correlated well with their corresponding proteins (ρ > 0.8), however if we put all the genes together, the correlation coefficient for the 16 conditions varied from 0.29 to 0.71. Second, PBMC from 14 healthy donors were stimulated with the same condition and it was found that the correlation coefficient went down (ρ < 0.6). Third, 28 rheumatoid arthritis (RA) patients were tested for their response to the same external stimuli and it turned out different individual displayed different protein expression pattern as expect. Lastly, autoimmune disease cohorts (8 diseases including RA, 103 patients in total) were assayed on the whole view. It was observed that there was still some similarity in the protein profile among patients from the single disease type although completely different patterns were displayed across different disease categories. This study built a good bridge between single gene analysis and the whole genome study and may give a reasonable explanation for the two conflicting views in current biological science.
Collapse
|
83
|
Luo C, He XH, Hu Y, Yu HX, Ou SJ, Fang ZB. Oligo-dT anchored cDNA-SCoT: a novel differential display method for analyzing differential gene expression in response to several stress treatments in mango (Mangifera indica L.). Gene 2014; 548:182-9. [PMID: 25017057 DOI: 10.1016/j.gene.2014.07.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/03/2014] [Accepted: 07/09/2014] [Indexed: 10/25/2022]
Abstract
Differential display is a powerful technique for analyzing differences in gene expression. Oligo-dT cDNAstart codon targeted marker (cDNA-SCoT) technique is a novel, simple, cheap, rapid, and efficient method for differential gene expression research. In the present study, the oligo-dT anchored cDNA-SCoT technique was exploited to identify differentially expressed genes during several stress treatments in mango. A total of 37 primers combined with oligo-dT anchor primers 3side amplified approximately 150 fragments of 150 bp to 1500 bp in length. Up to 100 fragments were differentially expressed among the stress treatments and control samples, among which 92 were obtained and sequenced. Out of the 92 transcript derived fragments (TDFs), 70% were highly homologous to known genes, and 30% encoded unclassified proteins with unknown functions. The expression pattern of nine genes with known functions involved in several abiotic stresses in other species was confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) under cold (4 °C), salinity (NaCl), polyethylene glycol (PEG, MW 6000), and heavy metal treatments in leaves and stems at different time points (0, 24, 48, and 72 h). The expression patterns of the genes (TDF4, TDF7, TDF23, TDF45, TDF49, TDF50, TDF57, TDF91 and TDF92) that had direct or indirect relationships with cold, salinity, drought and heavy metal stress response were analyzed through qRT-PCR. The possible roles of these genes are discussed. This study suggests that the oligo-dT anchored cDNA-SCoT differential display method is a useful tool to serve as an initial step for characterizing transcriptional changes induced by abiotic stresses and provide gene information for further study and application in genetic improvement and breeding in mango.
Collapse
Affiliation(s)
- Cong Luo
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Xin-Hua He
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, Guangxi 530007, China.
| | - Ying Hu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Hai-xia Yu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Shi-Jin Ou
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhong-Bin Fang
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
84
|
Shannonhouse JL, Urbanski HF, Woo SL, Fong LA, Goddard SD, Lucas WF, Jones ER, Wu C, Morgan C. Aquaporin-11 control of testicular fertility markers in Syrian hamsters. Mol Cell Endocrinol 2014; 391:1-9. [PMID: 24791736 PMCID: PMC4368057 DOI: 10.1016/j.mce.2014.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 02/14/2014] [Accepted: 04/17/2014] [Indexed: 10/25/2022]
Abstract
The present study sought novel changes to the hamster testicular transcriptome during modulation of fertility by well-characterized photoperiodic stimuli. Transition from long days (LD, 14 h light/day) to short days (SD, 10h light/day) triggered testicular regression (61% reduction of testis weight, relative to LD) in SD-sensitive (SD-S) hamsters within 16 weeks. After 22 weeks of SD exposure, a third cohort of hamsters became SD-refractory (SD-R), and exhibited testicular recrudescence (137% testis weight gain, relative to SD-S). Partial interrogation of the testicular transcriptome by annealing-control-primer-modified differential display PCR provided several candidates for regulation of testicular functions. Multiple linear regression modeling indicated the best correlation for aquaporin 11 (Aqp11) with changes in testis weight. Correlations were also strongest for Aqp11 with expression levels of reference cDNAs that control spermatogenesis (Hspa2 and Tnp2), steroidogenesis (Cox2, 3βHsd, and Srebp2), sperm motility (Catsper1, Pgk2, and Tnp2), inflammation (Cox2), and apoptosis (Bax and Bcl2). Moreover, siRNA-mediated knockdown of testicular Aqp11 mRNA and protein reduced Hspa2 and Tnp2 mRNA levels, and it increased 3βHsd mRNA levels. It also reduced mRNA levels for Sept12, which is a testis-specific inducer of spermatogenesis. These results suggest a central role for testicular Aqp11 signaling in the coordinate regulation of crucial components of fertility.
Collapse
Affiliation(s)
- John L Shannonhouse
- Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| | - Henryk F Urbanski
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Shih-Lung Woo
- Department of Nutrition & Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Li An Fong
- Department of Nutrition & Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Scott D Goddard
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | - William F Lucas
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | - Edward R Jones
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | - Chaodong Wu
- Department of Nutrition & Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Caurnel Morgan
- Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA; Department of Nutrition & Food Science, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
85
|
Ding CH, Du XW, Xu Y, Xu XM, Mou JC, Yu D, Wu JK, Meng FJ, Liu Y, Wang WL, Wang LJ. Screening for differentially expressed genes in endophytic fungus strain 39 during co-culture with herbal extract of its host Dioscorea nipponica Makino. Curr Microbiol 2014; 69:517-24. [PMID: 24894904 DOI: 10.1007/s00284-014-0615-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 03/30/2014] [Indexed: 01/04/2023]
Abstract
Strain 39 is an endophytic fungus which was isolated from Dioscorea nipponica Makino (DNM). After Strain 39 co-cultured with ethanol extract of DNM rhizomes for several days, the content of saponins in this culture mixture would be obviously increased. To analyze the mechanism of this microbial transformation, we used the differential display reverse transcription polymerase chain reaction (DDRT-PCR) method to compare the transcriptomes between Strain 39 cultured in normal PD medium and in PD medium which added ethanol extract of DNM rhizomes. We amplified 29 DDRT-PCR bands using 12 primer combinations of three anchored primers and five random primers, and six bands were re-amplified. Analysis of real-time PCR and sequence alignment showed that three clones were up-regulated in sample group: squalene epoxidase, squalene synthase, and catalase, one clone was expressed only in sample group. The possible roles and origins of the above genes were discussed, and the molecular mechanism of Strain 39 biotransformation was speculated. This study is the first report of the molecular biotransformation mechanism of saponins production by endophytic fungus of DNM.
Collapse
Affiliation(s)
- Chang-Hong Ding
- Pharmacy College, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin, 150040, China,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Liu D, Pan L, Cai Y, Li Z, Miao J. Response of detoxification gene mRNA expression and selection of molecular biomarkers in the clam Ruditapes philippinarum exposed to benzo[a]pyrene. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 189:1-8. [PMID: 24602878 DOI: 10.1016/j.envpol.2014.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 02/07/2014] [Accepted: 02/09/2014] [Indexed: 06/03/2023]
Abstract
Benzo[a]pyrene (B[a]P) has a high carcinogenic potential. B[a]P concentrations and molecular biomarkers (mRNA expressions of Pgp, AhR, CYP4, CYP414A1, GST-pi, GST-S2, Cu/Zn-SOD and Mn-SOD) were assayed in gills and digestive glands of the clam Ruditapes philippinarum exposed to 0.03, 0.3 and 3 μg/L B[a]P for 21 days and then exposed to natural seawater for 15 days. Results showed that B[a]P was rapidly accumulated in and then eliminated from tissues of the clams. All gene mRNA expressions in the treated groups were induced significantly with the exception of CYP414A1 and Cu/Zn-SOD in the 0.03 μg/L B[a]P group. According to correlation analysis, mRNA expressions of AhR, GST-pi and Mn-SOD in gills and GST-pi in digestive glands had good correlations with B[a]P concentrations and could be used as molecular biomarkers of B[a]P exposure. This study investigated the molecular response of the genes mentioned above and selected useful molecular biomarkers for B[a]P pollution monitoring.
Collapse
Affiliation(s)
- Dong Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Yuefeng Cai
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Zhen Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
87
|
Rallapalli G, Kemen EM, Robert-Seilaniantz A, Segonzac C, Etherington GJ, Sohn KH, MacLean D, Jones JDG. EXPRSS: an Illumina based high-throughput expression-profiling method to reveal transcriptional dynamics. BMC Genomics 2014; 15:341. [PMID: 24884414 PMCID: PMC4035070 DOI: 10.1186/1471-2164-15-341] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/31/2014] [Indexed: 01/19/2023] Open
Abstract
Background Next Generation Sequencing technologies have facilitated differential gene expression analysis through RNA-seq and Tag-seq methods. RNA-seq has biases associated with transcript lengths, lacks uniform coverage of regions in mRNA and requires 10–20 times more reads than a typical Tag-seq. Most existing Tag-seq methods either have biases or not high throughput due to use of restriction enzymes or enzymatic manipulation of 5’ ends of mRNA or use of RNA ligations. Results We have developed EXpression Profiling through Randomly Sheared cDNA tag Sequencing (EXPRSS) that employs acoustic waves to randomly shear cDNA and generate sequence tags at a relatively defined position (~150-200 bp) from the 3′ end of each mRNA. Implementation of the method was verified through comparative analysis of expression data generated from EXPRSS, NlaIII-DGE and Affymetrix microarray and through qPCR quantification of selected genes. EXPRSS is a strand specific and restriction enzyme independent tag sequencing method that does not require cDNA length-based data transformations. EXPRSS is highly reproducible, is high-throughput and it also reveals alternative polyadenylation and polyadenylated antisense transcripts. It is cost-effective using barcoded multiplexing, avoids the biases of existing SAGE and derivative methods and can reveal polyadenylation position from paired-end sequencing. Conclusions EXPRSS Tag-seq provides sensitive and reliable gene expression data and enables high-throughput expression profiling with relatively simple downstream analysis. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-341) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jonathan D G Jones
- The Sainsbury Laboratory, Norwich Research Park, Colney, Norwich, UK NR4 7UH.
| |
Collapse
|
88
|
Haas MJ, Shah GN, Onstead-Haas LM, Mooradian AD. Identification of ATP8B1 as a blood-brain barrier-enriched protein. Cell Mol Neurobiol 2014; 34:473-8. [PMID: 24643366 PMCID: PMC11488939 DOI: 10.1007/s10571-014-0045-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
Abstract
In order to define the molecular anatomy of the blood-brain barrier (BBB) that may be relevant to either barrier or transport function, proteins that are overexpressed in the cerebral microvessels should be identified. We used differential display to identify novel proteins that are overexpressed or unique to the BBB. DNA sequence analysis is one of the differentially expressed transcripts showed that it is highly homologous with the ATPase class I, type 8B, and member 1 (ATP8B1) protein and contains an ATPase domain and a phospholipid-binding domain. ATP8B1 is expressed in the BBB microvessels but not brain tissue lacking microvessels. Likewise, ATP8B1 was enriched in BBB microvessels similar to glucose transporter 1. Immunohistochemistry using an ATP8B1-specific antibody demonstrated preferential staining of the microvessels within the cerebral tissue. These results suggest that ATP8B1, a P-type aminophospholipid translocase, is enriched in cerebral microvessels and may have a role in plasma membrane lipid transport.
Collapse
Affiliation(s)
- Michael J Haas
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Jacksonville College of Medicine, University of Florida, 653-1 West Eighth Street, L14, Jacksonville, FL, 32209, USA,
| | | | | | | |
Collapse
|
89
|
Meng F, Liu X, Wang Q. Identification of Wood Decay Related Genes fromPiptoporus Betulinus(Bull. Fr.) Karsten Using Differential Display Reverse Transcription PCR (DDRT-PCR). BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2012.0032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
90
|
Ramakrishnan SK, Varshney A, Sharma A, Das BC, Yadava PK. Expression of targeted ribozyme against telomerase RNA causes altered expression of several other genes in tumor cells. Tumour Biol 2014; 35:5539-50. [PMID: 24664581 DOI: 10.1007/s13277-014-1729-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/04/2014] [Indexed: 01/11/2023] Open
Abstract
Telomeres are tandem repeat sequences present at chromosome end that are synthesized by RNA-protein enzyme called telomerase. The RNA component (TR) serves as template for telomerase reverse transcriptase (TERT) for generating telomere repeats. TERT is overexpressed in actively dividing cells including cancerous cells, absent in differentiated somatic cells whereas human telomerase RNA (hTR) is present in normal as well as in cancer cells. Telomerase overexpression in cancer cells ensures telomere length maintenance that actually provides proliferative advantage to cells. Stable expression of ribozyme against hTR in HeLa cells results in reduction of hTR levels, telomerase activity, and telomere length which is accompanied by altered cell morphology and expression of several specific cellular genes. The altered genes deduced from differentially display PCR and 2D gel electrophoresis upon hTR knockdown have function in ribosome biogenesis, chromatin modulation, cell cycle control, and p63-dependant pathways. Our observations shows hTR participates in diverse cellular functions other than telomere maintenance, validates as a possible drug targets in p53- and pRB-negative status, and indicated possible cross-talks between telomerase and other cellular pathways.
Collapse
Affiliation(s)
- Suresh Kumar Ramakrishnan
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | | | | | | | | |
Collapse
|
91
|
Strategies for measurement of biotransformation enzyme gene expression. Methods Mol Biol 2014. [PMID: 24623221 DOI: 10.1007/978-1-62703-739-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The analysis of gene expression is an integral part of any gene function research. A wide variety of techniques have been developed for this purpose, each with its own advantages and limitations. The following chapter seeks to provide an overview of some of the most recent as well as conventional methods to study gene expression. These approaches include Northern blot analysis, ribonuclease protection assay, reverse transcription polymerase chain reaction, expressed tag sequencing, differential display, cDNA arrays, serial analysis of gene expression, and transcriptome sequencing. The current applications of the information derived from gene expression studies require most of the assays to be adaptable for the quantitative analysis of a large number of samples and endpoints within a short period of time coupled with cost-effectiveness. A comparison of some of these features of each analytical approach as well as their advantages and disadvantages has also been provided.
Collapse
|
92
|
Kirilova I, Denev ID, Bineva R, Gevezova M, Alexandrova M, Kostov K, Batchvarova R. Identification of activation-tag Arabidopsis mutants with altered production of germination stimulants for Phelipanche ramosa (L.). BIOTECHNOL BIOTEC EQ 2014; 28:199-207. [PMID: 26740753 PMCID: PMC4684048 DOI: 10.1080/13102818.2014.911432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Germination of seeds of root parasites like broomrapes (Orobanchaceae) is tightly regulated by chemical products exuded from the roots of the host plant, known as germination stimulants (GSs). Changes in the levels of synthesis and emission of GS can allow the development of practical measures for control of the crops-harming parasitic species. However, the genes encoding enzymes responsible for GS biosynthesis are still unknown. We performed a large-scale screening of 62,000 Arabidopsis activation-tag mutants for alteration in susceptibility to Phelipanche ramosa and to identify lines with altered GS production among them. After five successive screenings we identified 36 lines with altered susceptibility to P. ramosa. Seven of them displayed altered levels of GS production. By using a combination of Southern blot and thermal asymmetric interlaced polymerase chain reaction (TAIL-PCR), we pinpointed the location of activation-tag constructs in these lines. A combination of differential display and quantitative real-time PCR (qRT-PCR) allowed us to identify several affected genes. Two of them are directly involved in isoprenoid biosynthetic pathway in chloroplasts, and we believe that their activation led to increased levels of GS production. We believe that these genes are responsible for increased GS production in five of the Arabidopsis lines resistant to P. ramosa.
Collapse
Affiliation(s)
- Ina Kirilova
- Department of Plant Physiology and Molecular Biology, Plovdiv University , Plovdiv , Bulgaria
| | - Iliya D Denev
- Department of Plant Physiology and Molecular Biology, Plovdiv University , Plovdiv , Bulgaria
| | - Rumyana Bineva
- Department of Plant Physiology and Molecular Biology, Plovdiv University , Plovdiv , Bulgaria
| | - Maria Gevezova
- Department of Plant Physiology and Molecular Biology, Plovdiv University , Plovdiv , Bulgaria
| | | | - Kaloyan Kostov
- Agricultural Academy, AgroBioInstitute , Sofia , Bulgaria
| | | |
Collapse
|
93
|
Yamada T. Genetic dissection of marbling trait through integration of mapping and expression profiling. Anim Sci J 2014; 85:349-55. [DOI: 10.1111/asj.12179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 11/19/2013] [Indexed: 01/28/2023]
Affiliation(s)
- Takahisa Yamada
- Department of Agrobiology, Faculty of Agriculture; Niigata University; Niigata Japan
| |
Collapse
|
94
|
Fernandes HC, Costa AF, Freitas MAR, Martins AS, Pesquero JL, Rabelo ÉM, Gomes MA. Entamoeba histolytica: gene expression analysis of cells invading tissues. ScientificWorldJournal 2014; 2014:364264. [PMID: 24605052 PMCID: PMC3925561 DOI: 10.1155/2014/364264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 12/05/2013] [Indexed: 11/17/2022] Open
Abstract
Entamoeba histolytica is a protozoan parasite that presents a risk to the health of millions of people worldwide. Due to the existence of different clinical forms caused by the parasite and also different virulence levels presented by one strain, one would expect differences in the profile of gene transcripts between virulent and nonvirulent cultures. In this study we used the differential display to select gene segments related to invasiveness of amoeba. One Brazilian strain of E. histolytica in two conditions, able or not to cause lesions in experimental animals, was used. RNA from this strain, was used to study the differential expression of genes. 29 specific gene fragments differentially expressed in the virulent strain were selected. By real-time PCR, six of these genes had confirmed their differential expression in the virulent culture. These genes may have important roles in triggering invasive amoebiasis and may be related to adaptation of trophozoites to difficulties encountered during colonization of the intestinal epithelium and liver tissue. Future studies with these genes may elucidate its actual role in tissue invasion by E. histolytica generating new pathways for diagnosis and treatment of amoebiasis.
Collapse
Affiliation(s)
- Helen C. Fernandes
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Ana F. Costa
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Michelle A. R. Freitas
- Laboratory of Parasitology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil
| | - Almir S. Martins
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Jorge L. Pesquero
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Élida M. Rabelo
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Maria A. Gomes
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
95
|
Gene Expressing Difference in Sclerotial Formation of Morchella conica. Indian J Microbiol 2014; 54:274-83. [PMID: 24891734 DOI: 10.1007/s12088-014-0445-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 01/03/2014] [Indexed: 10/25/2022] Open
Abstract
The difference of gene expression between sclerotia-producing and non-sclerotia-producing single spore isolates from Morchella conica were preliminary analyzed by mRNA differential display reverse transcription-polymerase chain reaction (RT-PCR) technique and 67 differential gene fragments were obtained. Fifty-eight of their second PCR products were cloned and sequenced. Thirteen special differential gene fragments related to sclerotial formation were validated by semi-quantitative RT-PCR. Some gene fragments had certain homologies with lipoprotein, cyclin-dependent kinase C-3, glycerophosphoryl diester phosphodiesterase, Rho GDP-dissociation inhibitor, gamma-aminobutyrate permease, OmpA family protein, Transcript antisense to ribosomal RNA protein, sodium-calcium exchange protein and keratin-associated proteins 5, 6. In addition, the putative protein of some DNA fragments had higher similarity with hypothetical protein-coding gene in NCBI database, as well as some were only putative gene fragments. All these fragments were speculated to be the functional gene associated with sclerotial formation in morel.
Collapse
|
96
|
REN WEIHUA, YANG CHENYI, YANG XIANMEI, YU LONG. siRNA-mediated knockdown of hTDE2 retards cell cycle progression through transcriptional activation of p21. Oncol Rep 2014; 31:1314-22. [DOI: 10.3892/or.2014.2980] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 11/25/2013] [Indexed: 11/06/2022] Open
|
97
|
Hashimoto A, Matsui T, Tanaka S, Ishikawa A, Endo H, Hirohata S, Kondo H, Neumann E, Tarner IH, Müller-Ladner U. Laser-mediated microdissection for analysis of gene expression in synovial tissue. Mod Rheumatol 2014. [DOI: 10.3109/s10165-007-0564-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
98
|
Woo S, Lee A, Denis V, Chen CA, Yum S. Transcript response of soft coral (Scleronephthya gracillimum) on exposure to polycyclic aromatic hydrocarbons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:901-910. [PMID: 23832774 DOI: 10.1007/s11356-013-1958-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 06/24/2013] [Indexed: 06/02/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are the most persistent organic pollutants in worldwide aquatic environments. The extensive isolation of genes responsive to PAH pollution in soft coral (Scleronephthya gracillimum) is described herein. Soft coral colonies were exposed to 100 μg/L of a standard mixture of PAHs. Gene candidates with transcript levels that changed in response to PAH exposure were identified by differential display polymerase chain reaction (DD-PCR). There were 37 types of candidate genes identified, of which 20 were upregulated in expression and 17 were downregulated. The functions of the genes identified included oxidative stress response, ribosomal structure maintenance, molecular chaperone activity, protein kinase activation and tumorigenesis, defense mechanisms, transcription, and other biological responses. mRNA quantification was carried out using real-time quantitative PCR in eight selected genes: cytosolic malate dehydrogenase, protein disulfide isomerase, ribosomal protein L6, ral guanine nucleotide dissociation stimulator-like 1, poly(ADP-ribose) polymerase 4, peptidylglycine α-hydroxylating monooxygenase, a disintegrin and metalloproteinase (ADAM) metallopeptidase protein, and eukaryotic initiation factor 4 gamma 3. Changes in transcript levels were consistent with DD-PCR results. The gene candidates isolated in this study were differentially expressed and therefore have potential as molecular biomarkers for understanding coral responses to environmental stressors.
Collapse
Affiliation(s)
- Seonock Woo
- South Sea Environment Research Division, Korea Institute of Ocean Science and Technology, Geoje, 656-830, Republic of Korea
| | | | | | | | | |
Collapse
|
99
|
Ali A, Ali Z, Quraishi UM, Kazi AG, Malik RN, Sher H, Mujeeb-Kazi A. Integrating Physiological and Genetic Approaches for Improving Drought Tolerance in Crops. EMERGING TECHNOLOGIES AND MANAGEMENT OF CROP STRESS TOLERANCE 2014. [PMID: 0 DOI: 10.1016/b978-0-12-800875-1.00014-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
|
100
|
Zhang T, Jin C, Wang L, Yin Q. One-step synthesis of hollow polymeric nanospheres: self-assembly of amphiphilic azo polymers via hydrogen bond formation. RSC Adv 2014. [DOI: 10.1039/c4ra06415a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We introduce a facile and novel way that describes the random amphiphilic azo copolymer to construct hollow nanospheres via hydrogen bond formation.
Collapse
Affiliation(s)
- Taoran Zhang
- Key Laboratory of Green Chemistry and Technology and College of Chemistry
- Sichuan University
- Chengdu, China
| | - Cheng Jin
- Key Laboratory of Green Chemistry and Technology and College of Chemistry
- Sichuan University
- Chengdu, China
| | - Lingyu Wang
- Key Laboratory of Green Chemistry and Technology and College of Chemistry
- Sichuan University
- Chengdu, China
| | - Qinjian Yin
- Key Laboratory of Green Chemistry and Technology and College of Chemistry
- Sichuan University
- Chengdu, China
| |
Collapse
|