51
|
Koh MT, Shao Y, Rosenzweig-Lipson S, Gallagher M. Treatment with levetiracetam improves cognition in a ketamine rat model of schizophrenia. Schizophr Res 2018; 193. [PMID: 28634087 PMCID: PMC5733713 DOI: 10.1016/j.schres.2017.06.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Imbalance in neural excitation and inhibition is associated with behavioral dysfunction in individuals with schizophrenia and at risk for this illness. We examined whether targeting increased neural activity with the antiepileptic agent, levetiracetam, would benefit memory performance in a preclinical model of schizophrenia that has been shown to exhibit hyperactivity in the hippocampus. Adult rats exposed to ketamine subchronically during late adolescence showed impaired hippocampal-dependent memory performance. Treatment with levetiracetam dose-dependently improved memory performance of the ketamine-exposed rats. In contrast, the antipsychotic medication risperidone was not effective in this assessment. Levetiracetam remained effective when administered concurrently with risperidone, supporting potential viability of adjunctive therapy with levetiracetam to treat cognitive deficits in schizophrenia patients under concurrent antipsychotic therapy. In addition to its pro-cognitive effect, levetiracetam was also effective in attenuating amphetamine-induced augmentation of locomotor activity, compatible with the need for therapeutic treatment of positive symptoms in schizophrenia.
Collapse
Affiliation(s)
- Ming Teng Koh
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| | - Yi Shao
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA
| | | | - Michela Gallagher
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 USA,AgeneBio, Inc, 1101 E. 33rd Street, Suite C310, Baltimore, MD 21218, USA
| |
Collapse
|
52
|
Tejero R, Lopez-Manzaneda M, Arumugam S, Tabares L. Synaptotagmin-2, and -1, linked to neurotransmission impairment and vulnerability in Spinal Muscular Atrophy. Hum Mol Genet 2018; 25:4703-4716. [PMID: 28173138 DOI: 10.1093/hmg/ddw297] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 01/19/2023] Open
Abstract
Spinal muscular atrophy (SMA) is the most frequent genetic cause of infant mortality. The disease is characterized by progressive muscle weakness and paralysis of axial and proximal limb muscles. It is caused by homozygous loss or mutation of the SMN1 gene, which codes for the Survival Motor Neuron (SMN) protein. In mouse models of the disease, neurotransmitter release is greatly impaired, but the molecular mechanisms of the synaptic dysfunction and the basis of the selective muscle vulnerability are unknown. In the present study, we investigated these open questions by comparing the molecular and functional properties of nerve terminals in severely and mildly affected muscles in the SMNΔ7 mouse model. We discovered that synaptotagmin-1 (Syt1) was developmentally downregulated in nerve terminals of highly affected muscles but not in low vulnerable muscles. Additionally, the expression levels of synaptotagmin-2 (Syt2), and its interacting protein, synaptic vesicle protein 2 (SV2) B, were reduced in proportion to the degree of muscle vulnerability while other synaptic proteins, such as syntaxin-1B (Stx1B) and synaptotagmin-7 (Syt7), were not affected. Consistently with the extremely low levels of both Syt-isoforms, and SV2B, in most affected neuromuscular synapses, the functional analysis of neurotransmission revealed highly reduced evoked release, altered short-term plasticity, low release probability, and inability to modulate normally the number of functional release sites. Together, we propose that the strong reduction of Syt2 and SV2B are key factors of the functional synaptic alteration and that the physiological downregulation of Syt1 plays a determinant role in muscle vulnerability in SMA.
Collapse
Affiliation(s)
- Rocío Tejero
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Avda. Sánchez Pizjuán, 4. 41009 Seville, Spain
| | - Mario Lopez-Manzaneda
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Avda. Sánchez Pizjuán, 4. 41009 Seville, Spain
| | - Saravanan Arumugam
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Avda. Sánchez Pizjuán, 4. 41009 Seville, Spain
| | - Lucía Tabares
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Avda. Sánchez Pizjuán, 4. 41009 Seville, Spain
| |
Collapse
|
53
|
Mercier J, Provins L, Valade A. Discovery and development of SV2A PET tracers: Potential for imaging synaptic density and clinical applications. DRUG DISCOVERY TODAY. TECHNOLOGIES 2017; 25:45-52. [PMID: 29233267 DOI: 10.1016/j.ddtec.2017.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022]
Abstract
Imaging synaptic density in vivo has promise for numerous research and clinical applications in the diagnosis and treatment monitoring of neurodegenerative and psychiatric diseases. Recent developments in the field of PET, such as SV2A human imaging with the novel tracers UCB-A, UCB-H and UCB-J, may help in realizing this potential and bring significant benefit for the patients suffering from these diseases. This review provides an overview of the most recent progress in the field of SV2A PET imaging, its potential for use as a biomarker of synaptic density and the future development areas.
Collapse
|
54
|
Stephen LJ, Brodie MJ. Brivaracetam: a novel antiepileptic drug for focal-onset seizures. Ther Adv Neurol Disord 2017; 11:1756285617742081. [PMID: 29399049 PMCID: PMC5784556 DOI: 10.1177/1756285617742081] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/10/2017] [Indexed: 12/21/2022] Open
Abstract
Brivaracetam (BRV), the n-propyl analogue of levetiracetam (LEV), is the latest antiepileptic drug (AED) to be licensed in Europe and the USA for the adjunctive treatment of focal-onset seizures with or without secondary generalization in patients aged 16 years or older. Like LEV, BRV binds to synaptic vesicle protein 2A (SV2A), but BRV has more selective binding and a 15- to 30-fold higher binding affinity than LEV. BRV is more effective than LEV in slowing synaptic vesicle mobilization and the two AEDs may act at different binding sites or interact with different conformational states of the SV2A protein. In animal models, BRV provides protection against focal and secondary generalized seizures and has significant anticonvulsant effects in genetic models of epilepsy. The drug undergoes first-order pharmacokinetics with an elimination half-life of 7-8 h. Although BRV is metabolized extensively, the main circulating compound is unchanged BRV. Around 95% of metabolites undergo renal elimination. No dose reduction is required in renal impairment, but it is recommended that the daily dose is reduced by one-third in hepatic dysfunction that may prolong half-life. BRV has a low potential for drug interactions. The efficacy and tolerability of adjunctive BRV in adults with focal-onset seizures have been explored in six randomized, placebo-controlled studies. These showed significant efficacy outcomes for doses of 50-200 mg/day. The most common adverse events reported were headache, somnolence, dizziness, fatigue and nausea. Patients who develop psychiatric symptoms with LEV appear to be at risk of similar side effects with BRV, although preliminary data suggest that these issues are likely to be less frequent and perhaps less severe. As with all AEDs, a low starting dose and slow titration schedule help to minimize side effects and optimize seizure control and thereby quality of life.
Collapse
Affiliation(s)
- Linda J. Stephen
- Epilepsy Unit, West Glasgow ACH, Dalnair St, Glasgow, G3 8SJ, Scotland
| | - Martin J. Brodie
- Epilepsy Unit, West Glasgow Ambulatory Care Hospital, Glasgow, Scotland
| |
Collapse
|
55
|
Synaptic vesicle 2C and its synaptic-related function. Clin Chim Acta 2017; 472:112-117. [PMID: 28774501 DOI: 10.1016/j.cca.2017.07.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/27/2017] [Accepted: 07/30/2017] [Indexed: 11/22/2022]
Abstract
Synaptic vesicle 2 C (SV2C) is a novel isoform belonging to the synaptic vesicle 2 (SV2) protein superfamily; a family of proteins known to have roles in vesicle trafficking, exocytosis and neurotransmission. In humans, SV2C is expressed in evolutionarily older brain regions, and is a known receptor for botulinum neurotoxin/A (BoNT/A), controlling glucose-evoked granule recruitment and regulating dopamine release, thus serving as a potential target molecule in the treatment of psychosis. In addition, recent researches have shown that SV2C regulates hypertension and accelerates venous thromboembolism (VTE) and coagulation pathways and may play roles in several non-nervous system diseases. In terms of regulation, SV2C is positively regulated by both alendronate and statins. As SV2C may provide a potential novel therapeutic target for psychosis and other diseases, this article reviews the progress made thus far in understanding the structure, distribution, function and regulation of SV2C.
Collapse
|
56
|
Becker G, Warnier C, Serrano ME, Bahri MA, Mercier J, Lemaire C, Salmon E, Luxen A, Plenevaux A. Pharmacokinetic Characterization of [ 18F]UCB-H PET Radiopharmaceutical in the Rat Brain. Mol Pharm 2017. [PMID: 28651055 DOI: 10.1021/acs.molpharmaceut.7b00235] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synaptic vesicle glycoprotein 2A (SV2A), a protein essential to the proper nervous system function, is found in presynaptic vesicles. Thus, SV2A targeting, using dedicated radiotracers combined with positron emission tomography (PET), allows the assessment of synaptic density in the living brain. The first-in-class fluorinated SV2A specific radioligand, [18F]UCB-H, is now available at high activity through an efficient radiosynthesis compliant with current good manufacturing practices (cGMP). We report here a noninvasive method to quantify [18F]UCB-H binding in rat brain with microPET. Validation study in rats confirmed the need of high enantiomeric purity to target SV2A in vivo. We demonstrated the reliability of a population-based input function to quantify SV2A in preclinical microPET setting. Finally, we investigated the in vivo metabolism of [18F]UCB-H and confirmed the negligible amount of radiometabolites in the rat brain. Hence, the in vivo quantification of SV2A using [18F]UCB-H microPET seems a promising tool for the assessment of the synaptic density in the rat brain, and opens the way for longitudinal follow-up in neurodegenerative disease rodent models.
Collapse
Affiliation(s)
- Guillaume Becker
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liège , 4000 Liège, Belgium
| | - Corentin Warnier
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liège , 4000 Liège, Belgium
| | - Maria Elisa Serrano
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liège , 4000 Liège, Belgium
| | - Mohamed Ali Bahri
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liège , 4000 Liège, Belgium
| | | | - Christian Lemaire
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liège , 4000 Liège, Belgium
| | - Eric Salmon
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liège , 4000 Liège, Belgium
| | - André Luxen
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liège , 4000 Liège, Belgium
| | - Alain Plenevaux
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liège , 4000 Liège, Belgium
| |
Collapse
|
57
|
Bartholome O, Van den Ackerveken P, Sánchez Gil J, de la Brassinne Bonardeaux O, Leprince P, Franzen R, Rogister B. Puzzling Out Synaptic Vesicle 2 Family Members Functions. Front Mol Neurosci 2017; 10:148. [PMID: 28588450 PMCID: PMC5438990 DOI: 10.3389/fnmol.2017.00148] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/02/2017] [Indexed: 01/18/2023] Open
Abstract
Synaptic vesicle proteins 2 (SV2) were discovered in the early 80s, but the clear demonstration that SV2A is the target of efficacious anti-epileptic drugs from the racetam family stimulated efforts to improve understanding of its role in the brain. Many functions have been suggested for SV2 proteins including ions or neurotransmitters transport or priming of SVs. Moreover, several recent studies highlighted the link between SV2 and different neuronal disorders such as epilepsy, Schizophrenia (SCZ), Alzheimer's or Parkinson's disease. In this review article, we will summarize our present knowledge on SV2A function(s) and its potential role(s) in the pathophysiology of various brain disorders.
Collapse
Affiliation(s)
- Odile Bartholome
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium
| | | | - Judit Sánchez Gil
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium
| | | | - Pierre Leprince
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium
| | - Rachelle Franzen
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium
| | - Bernard Rogister
- Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences, University of LiègeLiège, Belgium.,Department of Neurology, Centre Hospitalier Universitaire de Liège (CHU), University of LiègeLiège, Belgium
| |
Collapse
|
58
|
Bao W, Jia H, Finnema S, Cai Z, Carson RE, Huang YH. PET Imaging for Early Detection of Alzheimer's Disease: From Pathologic to Physiologic Biomarkers. PET Clin 2017; 12:329-350. [PMID: 28576171 DOI: 10.1016/j.cpet.2017.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This article describes the application of various PET imaging agents in the investigation and diagnosis of Alzheimer's disease (AD), including radiotracers for pathologic biomarkers of AD such as β-amyloid deposits and tau protein aggregates, and the neuroinflammation biomarker 18 kDa translocator protein, as well as physiologic biomarkers, such as cholinergic receptors, glucose metabolism, and the synaptic density biomarker synaptic vesicle glycoprotein 2A. Potential of these biomarkers for early AD diagnosis is also assessed.
Collapse
Affiliation(s)
- Weiqi Bao
- PET Center, Huanshan Hospital, Fudan University, No. 518, East Wuzhong Road, Xuhui District, Shanghai 200235, China
| | - Hongmei Jia
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 10075, China
| | - Sjoerd Finnema
- Department of Radiology and Biomedical Imaging, PET Center, Yale University School of Medicine, PO Box 208048, New Haven, CT 06520-8048, USA
| | - Zhengxin Cai
- Department of Radiology and Biomedical Imaging, PET Center, Yale University School of Medicine, PO Box 208048, New Haven, CT 06520-8048, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, PET Center, Yale University School of Medicine, PO Box 208048, New Haven, CT 06520-8048, USA
| | - Yiyun Henry Huang
- Department of Radiology and Biomedical Imaging, PET Center, Yale University School of Medicine, PO Box 208048, New Haven, CT 06520-8048, USA.
| |
Collapse
|
59
|
Li YC, Kavalali ET. Synaptic Vesicle-Recycling Machinery Components as Potential Therapeutic Targets. Pharmacol Rev 2017; 69:141-160. [PMID: 28265000 PMCID: PMC5394918 DOI: 10.1124/pr.116.013342] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Presynaptic nerve terminals are highly specialized vesicle-trafficking machines. Neurotransmitter release from these terminals is sustained by constant local recycling of synaptic vesicles independent from the neuronal cell body. This independence places significant constraints on maintenance of synaptic protein complexes and scaffolds. Key events during the synaptic vesicle cycle-such as exocytosis and endocytosis-require formation and disassembly of protein complexes. This extremely dynamic environment poses unique challenges for proteostasis at synaptic terminals. Therefore, it is not surprising that subtle alterations in synaptic vesicle cycle-associated proteins directly or indirectly contribute to pathophysiology seen in several neurologic and psychiatric diseases. In contrast to the increasing number of examples in which presynaptic dysfunction causes neurologic symptoms or cognitive deficits associated with multiple brain disorders, synaptic vesicle-recycling machinery remains an underexplored drug target. In addition, irrespective of the involvement of presynaptic function in the disease process, presynaptic machinery may also prove to be a viable therapeutic target because subtle alterations in the neurotransmitter release may counter disease mechanisms, correct, or compensate for synaptic communication deficits without the need to interfere with postsynaptic receptor signaling. In this article, we will overview critical properties of presynaptic release machinery to help elucidate novel presynaptic avenues for the development of therapeutic strategies against neurologic and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ying C Li
- Departments of Neuroscience (Y.C.L., E.T.K.) and Physiology (E.T.K.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ege T Kavalali
- Departments of Neuroscience (Y.C.L., E.T.K.) and Physiology (E.T.K.), University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
60
|
Wood MD, Gillard M. Evidence for a differential interaction of brivaracetam and levetiracetam with the synaptic vesicle 2A protein. Epilepsia 2016; 58:255-262. [DOI: 10.1111/epi.13638] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2016] [Indexed: 01/31/2023]
|
61
|
Löscher W, Gillard M, Sands ZA, Kaminski RM, Klitgaard H. Synaptic Vesicle Glycoprotein 2A Ligands in the Treatment of Epilepsy and Beyond. CNS Drugs 2016; 30:1055-1077. [PMID: 27752944 PMCID: PMC5078162 DOI: 10.1007/s40263-016-0384-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The synaptic vesicle glycoprotein SV2A belongs to the major facilitator superfamily (MFS) of transporters and is an integral constituent of synaptic vesicle membranes. SV2A has been demonstrated to be involved in vesicle trafficking and exocytosis, processes crucial for neurotransmission. The anti-seizure drug levetiracetam was the first ligand to target SV2A and displays a broad spectrum of anti-seizure activity in various preclinical models. Several lines of preclinical and clinical evidence, including genetics and protein expression changes, support an important role of SV2A in epilepsy pathophysiology. While the functional consequences of SV2A ligand binding are not fully elucidated, studies suggest that subsequent SV2A conformational changes may contribute to seizure protection. Conversely, the recently discovered negative SV2A modulators, such as UCB0255, counteract the anti-seizure effect of levetiracetam and display procognitive properties in preclinical models. More broadly, dysfunction of SV2A may also be involved in Alzheimer's disease and other types of cognitive impairment, suggesting potential novel therapies for levetiracetam and its congeners. Furthermore, emerging data indicate that there may be important roles for two other SV2 isoforms (SV2B and SV2C) in the pathogenesis of epilepsy, as well as other neurodegenerative diseases. Utilization of recently developed SV2A positron emission tomography ligands will strengthen and reinforce the pharmacological evidence that SV2A is a druggable target, and will provide a better understanding of its role in epilepsy and other neurological diseases, aiding in further defining the full therapeutic potential of SV2A modulation.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| | | | | | | | | |
Collapse
|
62
|
Dvorkin R, Ziv NE. Relative Contributions of Specific Activity Histories and Spontaneous Processes to Size Remodeling of Glutamatergic Synapses. PLoS Biol 2016; 14:e1002572. [PMID: 27776122 PMCID: PMC5077109 DOI: 10.1371/journal.pbio.1002572] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 09/27/2016] [Indexed: 11/18/2022] Open
Abstract
The idea that synaptic properties are defined by specific pre- and postsynaptic activity histories is one of the oldest and most influential tenets of contemporary neuroscience. Recent studies also indicate, however, that synaptic properties often change spontaneously, even in the absence of specific activity patterns or any activity whatsoever. What, then, are the relative contributions of activity history-dependent and activity history-independent processes to changes synapses undergo? To compare the relative contributions of these processes, we imaged, in spontaneously active networks of cortical neurons, glutamatergic synapses formed between the same axons and neurons or dendrites under the assumption that their similar activity histories should result in similar size changes over timescales of days. The size covariance of such commonly innervated (CI) synapses was then compared to that of synapses formed by different axons (non-CI synapses) that differed in their activity histories. We found that the size covariance of CI synapses was greater than that of non-CI synapses; yet overall size covariance of CI synapses was rather modest. Moreover, momentary and time-averaged sizes of CI synapses correlated rather poorly, in perfect agreement with published electron microscopy-based measurements of mouse cortex synapses. A conservative estimate suggested that ~40% of the observed size remodeling was attributable to specific activity histories, whereas ~10% and ~50% were attributable to cell-wide and spontaneous, synapse-autonomous processes, respectively. These findings demonstrate that histories of naturally occurring activity patterns can direct glutamatergic synapse remodeling but also suggest that the contributions of spontaneous, possibly stochastic, processes are at least as great.
Collapse
Affiliation(s)
- Roman Dvorkin
- Technion Faculty of Medicine, Network Biology Research Laboratories, Lorry Lokey Center for Life Sciences and Engineering, Technion, Haifa, Israel
| | - Noam E Ziv
- Technion Faculty of Medicine, Network Biology Research Laboratories, Lorry Lokey Center for Life Sciences and Engineering, Technion, Haifa, Israel.,Rappaport Family Institute for Research in the Medical Sciences, Haifa, Israel
| |
Collapse
|
63
|
Nabulsi NB, Mercier J, Holden D, Carré S, Najafzadeh S, Vandergeten MC, Lin SF, Deo A, Price N, Wood M, Lara-Jaime T, Montel F, Laruelle M, Carson RE, Hannestad J, Huang Y. Synthesis and Preclinical Evaluation of 11C-UCB-J as a PET Tracer for Imaging the Synaptic Vesicle Glycoprotein 2A in the Brain. J Nucl Med 2016; 57:777-84. [PMID: 26848175 DOI: 10.2967/jnumed.115.168179] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/25/2015] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED The synaptic vesicle glycoprotein 2A (SV2A) is found in secretory vesicles in neurons and endocrine cells. PET with a selective SV2A radiotracer will allow characterization of drugs that modulate SV2A (e.g., antiepileptic drugs) and potentially could be a biomarker of synaptic density (e.g., in neurodegenerative disorders). Here we describe the synthesis and characterization of the SV2A PET radiotracer (11)C-UCB-J ((R)-1-((3-((11)C-methyl-(11)C)pyridin-4-yl)methyl)-4-(3,4,5-trifluorophenyl)pyrrolidin-2-one) in nonhuman primates, including whole-body biodistribution. METHODS (11)C-UCB-J was prepared by C-(11)C-methylation of the 3-pyridyl trifluoroborate precursor with (11)C-methyl iodide via the Suzuki-Miyaura cross-coupling method. Rhesus macaques underwent multiple scans including coinjection with unlabeled UCB-J (17, 50, and 150 μg/kg) or preblocking with the antiepileptic drug levetiracetam at 10 and 30 mg/kg. Scans were acquired for 2 h with arterial sampling and metabolite analysis to measure the input function. Regional volume of distribution (VT) was estimated using the 1-tissue-compartment model. Target occupancy was assessed using the occupancy plot; the dissociation constant (Kd) was determined by fitting self-blocking occupancies to a 1-site model, and the maximum number of receptor binding sites (Bmax) values were derived from baseline VT and from the estimated Kd and the nondisplaceable distribution volume (VND). RESULTS (11)C-UCB-J was synthesized with greater than 98% purity. (11)C-UCB-J exhibited high free fraction (0.46 ± 0.02) and metabolized at a moderate rate (39% ± 5% and 24% ± 3% parent remaining at 30 and 90 min) in plasma. In the monkey brain, (11)C-UCB-J displayed high uptake and fast kinetics. VT was high (∼25-55 mL/cm(3)) in all gray matter regions, consistent with the ubiquitous expression of SV2A. Preblocking with 10 and 30 mg/kg of levetiracetam resulted in approximately 60% and 90% occupancy, respectively. Analysis of the self-blocking scans yielded a Kd estimate of 3.4 nM and Bmax of 125-350 nM, in good agreement with the in vitro inhibition constant (Ki) of 6.3 nM and regional Bmax in humans. Whole-body biodistribution revealed that the liver and the brain are the dose-limiting organs for males and females, respectively. CONCLUSION (11)C-UCB-J exhibited excellent characteristics as an SV2A PET radiotracer in nonhuman primates. The radiotracer is currently undergoing first-in-human evaluation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anand Deo
- UCB Biopharma, Braine-l'Alleud, Belgium; and
| | | | - Martyn Wood
- UCB Biopharma, Braine-l'Alleud, Belgium; and
| | | | | | | | | | | | | |
Collapse
|
64
|
Rummel A. Two Feet on the Membrane: Uptake of Clostridial Neurotoxins. Curr Top Microbiol Immunol 2016; 406:1-37. [PMID: 27921176 DOI: 10.1007/82_2016_48] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The extraordinary potency of botulinum neurotoxins (BoNT) and tetanus neurotoxin (TeNT) is mediated by their high neurospecificity, targeting peripheral cholinergic motoneurons leading to flaccid and spastic paralysis, respectively, and successive respiratory failure. Complex polysialo gangliosides accumulate BoNT and TeNT on the plasma membrane. The ganglioside binding in BoNT/A, B, E, F, G, and TeNT occurs via a conserved ganglioside-binding pocket within the most carboxyl-terminal 25 kDa domain HCC, whereas BoNT/C, DC, and D display here two different ganglioside binding sites. This enrichment step facilitates subsequent binding of BoNT/A, B, DC, D, E, F, and G to the intraluminal domains of the synaptic vesicle glycoprotein 2 (SV2) isoforms A-C and synaptotagmin-I/-II, respectively. Whereas an induced α-helical 20-mer Syt peptide binds via side chain interactions to the tip of the HCC domain of BoNT/B, DC and G, the preexisting, quadrilateral β-sheet helix of SV2C-LD4 binds the clinically most relevant serotype BoNT/A mainly through backbone-backbone interactions at the interface of HCC and HCN. In addition, the conserved, complex N559-glycan branch of SV2C establishes extensive interactions with BoNT/A resulting in delayed dissociation providing BoNT/A more time for endocytosis into synaptic vesicles. An analogous interaction occurs between SV2A/B and BoNT/E. Altogether, the nature of BoNT-SV2 recognition clearly differs from BoNT-Syt. Subsequently, the synaptic vesicle is recycled and the bound neurotoxin is endocytosed. Acidification of the vesicle lumen triggers membrane insertion of the translocation domain, pore formation, and finally translocation of the enzymatically active light chain into the neuronal cytosol to halt release of neurotransmitters.
Collapse
Affiliation(s)
- Andreas Rummel
- Institut Für Toxikologie, Medizinische Hochschule Hannover, 30623, Hannover, Germany.
| |
Collapse
|
65
|
Benoit RM, Frey D, Wieser MM, Thieltges KM, Jaussi R, Capitani G, Kammerer RA. Structure of the BoNT/A1--receptor complex. Toxicon 2015; 107:25-31. [PMID: 26260692 DOI: 10.1016/j.toxicon.2015.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/04/2015] [Indexed: 11/16/2022]
Abstract
Botulinum neurotoxin A causes botulism but is also used for medical and cosmetic applications. A detailed molecular understanding of BoNT/A--host receptor interactions is therefore fundamental for improving current clinical applications and for developing new medical strategies targeting human disorders. Towards this end, we recently solved an X-ray crystal structure of BoNT/A1 in complex with its neuronal protein receptor SV2C. Based on our findings, we discuss the potential implications for BoNT/A function.
Collapse
Affiliation(s)
- Roger M Benoit
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Daniel Frey
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Mara M Wieser
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Katherine M Thieltges
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Rolf Jaussi
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Guido Capitani
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland.
| |
Collapse
|
66
|
Homozygous Mutation in Synaptic Vesicle Glycoprotein 2A Gene Results in Intractable Epilepsy, Involuntary Movements, Microcephaly, and Developmental and Growth Retardation. Pediatr Neurol 2015; 52:642-6.e1. [PMID: 26002053 DOI: 10.1016/j.pediatrneurol.2015.02.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND Synaptic vesicle protein 2A (SV2a) is the binding site of the antiepileptic drug levetiracetam and the only known synaptic vesicle target of an epilepsy medication. To date, no pathogenic mutation in SV2A, which is the gene encoding synaptic vesicle glycoprotein 2A, has been identified in humans. We report a homozygous mutation in the SV2A gene in a patient with intractable epilepsy. METHODS We investigated a patient with intractable epilepsy, involuntary movements, microcephaly, and developmental and growth retardation. Both parents were multiply consanguineous and an earlier-born brother of the proband had a similar course and died at 7 months of age. Detailed clinical history, imaging, electroencephalograph and metabolic testing were obtained. Full exome sequencing was performed using genomic DNA isolated from the patient and both parents. RESULTS Exome sequencing identified a homozygous arginine to glutamine mutation in amino acid position 383 (R383Q) in exon 5 of the SV2A gene. Both parents were carriers for the R383Q variant, suggesting that R383Q is a recessive mutation. There were no other candidate alterations in the exome that could explain the phenotype in the proband. The amino acid arginine at position 383 of SV2a gene is evolutionally conserved throughout vertebrates. R383Q change is not observed in known healthy cohorts, exome databases, or the Database of Single Nucleotide Polymorphisms. The R383Q mutation is located in the second adenine binding domain in SV2a protein and may alter adenine nucleotides binding to SV2a. CONCLUSION Our report provides the elusive evidence that an SV2A mutation can be a cause of epilepsy in humans. Levetiracetam, which binds to SV2A, was not effective as an antiepileptic medication. The location of the mutation in our patient supports an important role of adenine nucleotides binding in SV2A function.
Collapse
|
67
|
Overlapping functions of stonin 2 and SV2 in sorting of the calcium sensor synaptotagmin 1 to synaptic vesicles. Proc Natl Acad Sci U S A 2015; 112:7297-302. [PMID: 26015569 PMCID: PMC4466747 DOI: 10.1073/pnas.1501627112] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Brain function depends on neurotransmission, and alterations in this process are linked to neurological disorders. Neurotransmitter release requires the rapid recycling of synaptic vesicles (SVs) by endocytosis. How synapses maintain the molecular composition of SVs during recycling is poorly understood. We demonstrate that overlapping functions of two completely distinct proteins, the vesicle protein SV2A/B and the adaptor stonin 2, mediate endocytic sorting of the vesicular calcium sensor synaptotagmin 1. As SV2A is the target of the commonly used antiepileptic drug levetiracetam and is linked to late onset Alzheimer’s disease, our findings bear implications for the treatment of neurological and neurodegenerative disorders. Neurotransmission involves the calcium-regulated exocytic fusion of synaptic vesicles (SVs) and the subsequent retrieval of SV membranes followed by reformation of properly sized and shaped SVs. An unresolved question is whether each SV protein is sorted by its own dedicated adaptor or whether sorting is facilitated by association between different SV proteins. We demonstrate that endocytic sorting of the calcium sensor synaptotagmin 1 (Syt1) is mediated by the overlapping activities of the Syt1-associated SV glycoprotein SV2A/B and the endocytic Syt1-adaptor stonin 2 (Stn2). Deletion or knockdown of either SV2A/B or Stn2 results in partial Syt1 loss and missorting of Syt1 to the neuronal surface, whereas deletion of both SV2A/B and Stn2 dramatically exacerbates this phenotype. Selective missorting and degradation of Syt1 in the absence of SV2A/B and Stn2 impairs the efficacy of neurotransmission at hippocampal synapses. These results indicate that endocytic sorting of Syt1 to SVs is mediated by the overlapping activities of SV2A/B and Stn2 and favor a model according to which SV protein sorting is guarded by both cargo-specific mechanisms as well as association between SV proteins.
Collapse
|
68
|
Correa-Basurto J, Cuevas-Hernández RI, Phillips-Farfán BV, Martínez-Archundia M, Romo-Mancillas A, Ramírez-Salinas GL, Pérez-González ÓA, Trujillo-Ferrara J, Mendoza-Torreblanca JG. Identification of the antiepileptic racetam binding site in the synaptic vesicle protein 2A by molecular dynamics and docking simulations. Front Cell Neurosci 2015; 9:125. [PMID: 25914622 PMCID: PMC4392693 DOI: 10.3389/fncel.2015.00125] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/17/2015] [Indexed: 01/21/2023] Open
Abstract
Synaptic vesicle protein 2A (SV2A) is an integral membrane protein necessary for the proper function of the central nervous system and is associated to the physiopathology of epilepsy. SV2A is the molecular target of the anti-epileptic drug levetiracetam and its racetam analogs. The racetam binding site in SV2A and the non-covalent interactions between racetams and SV2A are currently unknown; therefore, an in silico study was performed to explore these issues. Since SV2A has not been structurally characterized with X-ray crystallography or nuclear magnetic resonance, a three-dimensional (3D) model was built. The model was refined by performing a molecular dynamics simulation (MDS) and the interactions of SV2A with the racetams were determined by docking studies. A reliable 3D model of SV2A was obtained; it reached structural equilibrium during the last 15 ns of the MDS (50 ns) with remaining structural motions in the N-terminus and long cytoplasmic loop. The docking studies revealed that hydrophobic interactions and hydrogen bonds participate importantly in ligand recognition within the binding site. Residues T456, S665, W666, D670 and L689 were important for racetam binding within the trans-membrane hydrophilic core of SV2A. Identifying the racetam binding site within SV2A should facilitate the synthesis of suitable radio-ligands to study treatment response and possibly epilepsy progression.
Collapse
Affiliation(s)
- José Correa-Basurto
- Laboratorio de Modelado Molecular y Diseño de fármacos, Departamento de Bioquímica de la Escuela Superior de Medicina del Instituto Politécnico Nacional, México City Mexico
| | - Roberto I Cuevas-Hernández
- Laboratorio de Modelado Molecular y Diseño de fármacos, Departamento de Bioquímica de la Escuela Superior de Medicina del Instituto Politécnico Nacional, México City Mexico
| | - Bryan V Phillips-Farfán
- Laboratorio de Nutrición Experimental, Laboratorio de Oncología Experimental and Laboratorio de Neuroquímica, Instituto Nacional de Pediatría, México City Mexico
| | - Marlet Martínez-Archundia
- Laboratorio de Modelado Molecular y Diseño de fármacos, Departamento de Bioquímica de la Escuela Superior de Medicina del Instituto Politécnico Nacional, México City Mexico
| | - Antonio Romo-Mancillas
- División de Estudios de Posgrado, Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro Mexico
| | - Gema L Ramírez-Salinas
- Laboratorio de Modelado Molecular y Diseño de fármacos, Departamento de Bioquímica de la Escuela Superior de Medicina del Instituto Politécnico Nacional, México City Mexico
| | - Óscar A Pérez-González
- Laboratorio de Nutrición Experimental, Laboratorio de Oncología Experimental and Laboratorio de Neuroquímica, Instituto Nacional de Pediatría, México City Mexico
| | - José Trujillo-Ferrara
- Laboratorio de Modelado Molecular y Diseño de fármacos, Departamento de Bioquímica de la Escuela Superior de Medicina del Instituto Politécnico Nacional, México City Mexico
| | - Julieta G Mendoza-Torreblanca
- Laboratorio de Nutrición Experimental, Laboratorio de Oncología Experimental and Laboratorio de Neuroquímica, Instituto Nacional de Pediatría, México City Mexico
| |
Collapse
|
69
|
Hu G, Wei B, Wang L, Wang L, Kong D, Jin Y, Sun Z. Analysis of gene expression profiles associated with glioma progression. Mol Med Rep 2015; 12:1884-90. [PMID: 25845910 PMCID: PMC4464167 DOI: 10.3892/mmr.2015.3583] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 03/12/2015] [Indexed: 11/13/2022] Open
Abstract
The present study aimed to investigate changes at the transcript level that are associated with spontaneous astrocytoma progression, and further, to discover novel targets for glioma diagnosis and therapy. GSE4290 microarray data downloaded from Gene Expression Omnibus were used to identify the differentially expressed genes (DGEs) by significant analysis of microarray (SAM). The Short Time Series Expression Miner (STEM) method was then applied to class these DEGs based on their degrees of differentiation in the process of tumor progression. Finally, EnrichNet was used to perform the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis based on a protein-protein interaction (PPI) network. A total of 4,506 DEGs were detected, and the number of DEGs was the highest in grade IV cells (2,580 DEGs). These DEGs were classified into nine clusters by the STEM method. In total, 11 KEGG pathways with XD-scores larger than the threshold (0.96) were obtained. The DEGs enriched in pathways 1 (extracellular matrix-receptor interaction), 3 (phagosome) and 6 (type I diabetes mellitus) mainly belonged to cluster 5. Pathway 2 (long-term potentiation), 4 (Vibrio cholerae infection) and 5 (epithelial cell signaling in Helicobacter pylori infection) was involved with DEGs that belonged to different clusters. Significant changes in gene expression occurred during glioma progression. Pathways 1, 3 and 6 may be important for the deterioration of glioma into glioblastoma, and pathways 2, 4 and 5 may have a role at each stage during glioma progression. The associated DEGs, including SV2, NMDAR and mGluRs, may be suitable as biomarkers or therapeutic targets for gliomas.
Collapse
Affiliation(s)
- Guozhang Hu
- Department of Emergency Medicine, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Bo Wei
- Department of Neurosurgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Lina Wang
- Department of Ophthalmology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Le Wang
- Department of Opthalmology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Daliang Kong
- Department of Emergency Medicine, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ying Jin
- Department of Neurology, Jilin Oilfield General Hospital, Songyuan 131200, P.R. China
| | - Zhigang Sun
- Department of Neurosurgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
70
|
Daniels V, Wood M, Leclercq K, Kaminski RM, Gillard M. Modulation of the conformational state of the SV2A protein by an allosteric mechanism as evidenced by ligand binding assays. Br J Pharmacol 2015; 169:1091-101. [PMID: 23530581 DOI: 10.1111/bph.12192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/05/2013] [Accepted: 03/15/2013] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Synaptic vesicle protein 2A (SV2A) is the specific binding site of the anti-epileptic drug levetiracetam (LEV) and its higher affinity analogue UCB30889. Moreover, the protein has been well validated as a target for anticonvulsant therapy. Here, we report the identification of UCB1244283 acting as a SV2A positive allosteric modulator of UCB30889. EXPERIMENTAL APPROACH UCB1244283 was characterized in vitro using radioligand binding assays with [(3)H]UCB30889 on recombinant SV2A expressed in HEK cells and on rat cortex. In vivo, the compound was tested in sound-sensitive mice. KEY RESULTS Saturation binding experiments in the presence of UCB1244283 demonstrated a fivefold increase in the affinity of [(3)H]UCB30889 for human recombinant SV2A, combined with a twofold increase of the total number of binding sites. Similar results were obtained on rat cortex. In competition binding experiments, UCB1244283 potentiated the affinity of UCB30889 while the affinity of LEV remained unchanged. UCB1244283 significantly slowed down both the association and dissociation kinetics of [(3)H]UCB30889. Following i.c.v. administration in sound-sensitive mice, UCB1244283 showed a clear protective effect against both tonic and clonic convulsions. CONCLUSIONS AND IMPLICATIONS These results indicate that UCB1244283 can modulate the conformation of SV2A, thereby inducing a higher affinity state for UCB30889. Our results also suggest that the conformation of SV2A per se might be an important determinant of its functioning, especially during epileptic seizures. Therefore, agents that act on the conformation of SV2A might hold great potential in the search for new SV2A-based anticonvulsant therapies.
Collapse
Affiliation(s)
- V Daniels
- NewMedicines, CNS Discovery Research, UCB Pharma, Braine-l'Alleud, Belgium
| | | | | | | | | |
Collapse
|
71
|
Dupuis N, Matagne A, Staelens L, Dournaud P, Desnous B, Gressens P, Auvin S. Anti-ictogenic and antiepileptogenic properties of brivaracetam in mature and immature rats. Epilepsia 2015; 56:800-5. [PMID: 25818358 DOI: 10.1111/epi.12973] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2015] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Brivaracetam (BRV) is a new antiepileptic drug candidate rationally designed for high affinity and selectivity for the synaptic vesicle protein 2A. This study explored anti-ictogenic and antiepileptogenic effects of BRV in rats at different stages of development. METHODS Using a rapid kindling model in P14, P21, P28, and P60 rats, we studied two doses of BRV: 10 and 100 mg/kg injected intraperitoneally 30 min before afterdischarge assessment. We also assessed blood and brain concentrations of BRV 30 min after the injection. RESULTS BRV 100 mg/kg significantly increased the afterdischarge threshold (ADT) at all ages, whereas BRV at 10 mg/kg increased ADT in P60, P28, and P21 rats. BRV also shortens the afterdischarge duration (ADD), achieving statistical significance with 10 and 100 mg/kg at P60 and with 100 mg/kg at P21. At P60, BRV increases the number of stimulations required to achieve a stage 4-5 seizure in a dose-dependent manner. At P28 and P21, BRV increased the number of stimulations required to develop a stage 4-5 seizure in a dose-dependent manner with almost complete elimination of stage 4-5 seizures. In contrast, at P14, BRV had no effect on the number of stage 4-5 seizures. An age-related decrease in blood and brain concentrations of BRV was observed 30 min after injection of BRV 10 mg/kg, whereas with 100 mg/kg there were no significant age-correlated differences in brain and serum BRV concentrations. SIGNIFICANCE BRV exerted dose-dependent anti-ictogenic effects from P60 to P14 independent of brain maturation. BRV also exhibited antiepileptogenic effects at P60, whereas this effect need to be further evaluated at P28 and P21. We did not observe any effect on epileptogenesis at P14 at either dose.
Collapse
Affiliation(s)
- Nina Dupuis
- Inserm, U1141, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, INSERM UMR1141, Paris, France
| | - Alain Matagne
- Non-Clinical Development, UCB Pharma, Braine-l'Alleud, Belgium
| | | | - Pascal Dournaud
- Inserm, U1141, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, INSERM UMR1141, Paris, France
| | - Béatrice Desnous
- Inserm, U1141, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, INSERM UMR1141, Paris, France.,Pediatric Neurology Department, APHP, Robert-Debré University Hospital, Paris, France
| | - Pierre Gressens
- Inserm, U1141, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, INSERM UMR1141, Paris, France.,Pediatric Neurology Department, APHP, Robert-Debré University Hospital, Paris, France
| | - Stéphane Auvin
- Inserm, U1141, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, INSERM UMR1141, Paris, France.,Pediatric Neurology Department, APHP, Robert-Debré University Hospital, Paris, France
| |
Collapse
|
72
|
Lam KH, Yao G, Jin R. Diverse binding modes, same goal: The receptor recognition mechanism of botulinum neurotoxin. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 117:225-231. [PMID: 25701633 DOI: 10.1016/j.pbiomolbio.2015.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/29/2015] [Accepted: 02/10/2015] [Indexed: 12/30/2022]
Abstract
Botulinum neurotoxins (BoNTs) are among the most deadly toxins known. They act rapidly in a highly specific manner to block neurotransmitter release by cleaving the soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) complex at neuromuscular junctions. The extreme toxicity of BoNTs relies predominantly on their neurotropism that is accomplished by recognition of two host receptors, a polysialo-ganglioside and in the majority of cases a synaptic vesicle protein, through their receptor-binding domains. Two proteins, synaptotagmin and synaptic vesicle glycoprotein 2, have been identified as the receptors for various serotypes of BoNTs. Here, we review recent breakthroughs in the structural studies of BoNT-protein receptor recognitions that highlight a range of diverse mechanisms by which BoNTs manipulate host neuronal proteins for highly specific uptake at neuromuscular junctions.
Collapse
Affiliation(s)
- Kwok-Ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Guorui Yao
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
73
|
Lee J, Daniels V, Sands ZA, Lebon F, Shi J, Biggin PC. Exploring the interaction of SV2A with racetams using homology modelling, molecular dynamics and site-directed mutagenesis. PLoS One 2015; 10:e0116589. [PMID: 25692762 PMCID: PMC4333566 DOI: 10.1371/journal.pone.0116589] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/11/2014] [Indexed: 11/18/2022] Open
Abstract
The putative Major Facilitator Superfamily (MFS) transporter, SV2A, is the target for levetiracetam (LEV), which is a successful anti-epileptic drug. Furthermore, SV2A knock out mice display a severe seizure phenotype and die after a few weeks. Despite this, the mode of action of LEV is not known at the molecular level. It would be extremely desirable to understand this more fully in order to aid the design of improved anti-epileptic compounds. Since there is no structure for SV2A, homology modelling can provide insight into the ligand-binding site. However, it is not a trivial process to build such models, since SV2A has low sequence identity to those MFS transporters whose structures are known. A further level of complexity is added by the fact that it is not known which conformational state of the receptor LEV binds to, as multiple conformational states have been inferred by tomography and ligand binding assays or indeed, if binding is exclusive to a single state. Here, we explore models of both the inward and outward facing conformational states of SV2A (according to the alternating access mechanism for MFS transporters). We use a sequence conservation analysis to help guide the homology modelling process and generate the models, which we assess further with Molecular Dynamics (MD). By comparing the MD results in conjunction with docking and simulation of a LEV-analogue used in radioligand binding assays, we were able to suggest further residues that line the binding pocket. These were confirmed experimentally. In particular, mutation of D670 leads to a complete loss of binding. The results shed light on the way LEV analogues may interact with SV2A and may help with the on-going design of improved anti-epileptic compounds.
Collapse
Affiliation(s)
- Joanna Lee
- Structural Bioinformatics and Computational Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | | | - Zara A. Sands
- UCB Pharma S.A., Chemin du Foriest, B-1420 Braine-l’Alleud, Belgium
| | - Florence Lebon
- UCB Pharma S.A., Chemin du Foriest, B-1420 Braine-l’Alleud, Belgium
| | - Jiye Shi
- UCB Pharma S.A., Chemin du Foriest, B-1420 Braine-l’Alleud, Belgium
| | - Philip C. Biggin
- Structural Bioinformatics and Computational Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
- * E-mail:
| |
Collapse
|
74
|
Vogl C, Tanifuji S, Danis B, Daniels V, Foerch P, Wolff C, Whalley BJ, Mochida S, Stephens GJ. Synaptic vesicle glycoprotein 2A modulates vesicular release and calcium channel function at peripheral sympathetic synapses. Eur J Neurosci 2014; 41:398-409. [PMID: 25484265 DOI: 10.1111/ejn.12799] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 11/03/2014] [Accepted: 11/05/2014] [Indexed: 12/01/2022]
Abstract
Synaptic vesicle glycoprotein (SV)2A is a transmembrane protein found in secretory vesicles and is critical for Ca(2+) -dependent exocytosis in central neurons, although its mechanism of action remains uncertain. Previous studies have proposed, variously, a role of SV2 in the maintenance and formation of the readily releasable pool (RRP) or in the regulation of Ca(2+) responsiveness of primed vesicles. Such previous studies have typically used genetic approaches to ablate SV2 levels; here, we used a strategy involving small interference RNA (siRNA) injection to knockdown solely presynaptic SV2A levels in rat superior cervical ganglion (SCG) neuron synapses. Moreover, we investigated the effects of SV2A knockdown on voltage-dependent Ca(2+) channel (VDCC) function in SCG neurons. Thus, we extended the studies of SV2A mechanisms by investigating the effects on vesicular transmitter release and VDCC function in peripheral sympathetic neurons. We first demonstrated an siRNA-mediated SV2A knockdown. We showed that this SV2A knockdown markedly affected presynaptic function, causing an attenuated RRP size, increased paired-pulse depression and delayed RRP recovery after stimulus-dependent depletion. We further demonstrated that the SV2A-siRNA-mediated effects on vesicular release were accompanied by a reduction in VDCC current density in isolated SCG neurons. Together, our data showed that SV2A is required for correct transmitter release at sympathetic neurons. Mechanistically, we demonstrated that presynaptic SV2A: (i) acted to direct normal synaptic transmission by maintaining RRP size, (ii) had a facilitatory role in recovery from synaptic depression, and that (iii) SV2A deficits were associated with aberrant Ca(2+) current density, which may contribute to the secretory phenotype in sympathetic peripheral neurons.
Collapse
|
75
|
Madeo M, Kovács AD, Pearce DA. The human synaptic vesicle protein, SV2A, functions as a galactose transporter in Saccharomyces cerevisiae. J Biol Chem 2014; 289:33066-71. [PMID: 25326386 DOI: 10.1074/jbc.c114.584516] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
SV2A is a synaptic vesicle membrane protein expressed in neurons and endocrine cells and involved in the regulation of neurotransmitter release. Although the exact function of SV2A still remains elusive, it was identified as the specific binding site for levetiracetam, a second generation antiepileptic drug. Our sequence analysis demonstrates that SV2A has significant homology with several yeast transport proteins belonging to the major facilitator superfamily (MFS). Many of these transporters are involved in sugar transport into yeast cells. Here we present evidence showing, for the first time, that SV2A is a galactose transporter. We expressed human SV2A in hexose transport-deficient EBY.VW4000 yeast cells and demonstrated that these cells are able to grow on galactose-containing medium but not on other fermentable carbon sources. Furthermore, the addition of the SV2A-binding antiepileptic drug levetiracetam to the medium inhibited the galactose-dependent growth of hexose transport-deficient EBY.VW4000 yeast cells expressing human SV2A. Most importantly, direct measurement of galactose uptake in the same strain verified that SV2A is able to transport extracellular galactose inside the cells. The newly identified galactose transport capability of SV2A may have an important role in regulating/modulating synaptic function.
Collapse
Affiliation(s)
- Marianna Madeo
- From the Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota 57104 and
| | - Attila D Kovács
- From the Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota 57104 and
| | - David A Pearce
- From the Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota 57104 and the Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, 57104
| |
Collapse
|
76
|
Lack of synaptic vesicle protein SV2B protects against amyloid-β25–35-induced oxidative stress, cholinergic deficit and cognitive impairment in mice. Behav Brain Res 2014; 271:277-85. [DOI: 10.1016/j.bbr.2014.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/06/2014] [Accepted: 06/08/2014] [Indexed: 11/22/2022]
|
77
|
Meriney SD, Umbach JA, Gundersen CB. Fast, Ca2+-dependent exocytosis at nerve terminals: shortcomings of SNARE-based models. Prog Neurobiol 2014; 121:55-90. [PMID: 25042638 DOI: 10.1016/j.pneurobio.2014.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/14/2014] [Accepted: 07/03/2014] [Indexed: 11/30/2022]
Abstract
Investigations over the last two decades have made major inroads in clarifying the cellular and molecular events that underlie the fast, synchronous release of neurotransmitter at nerve endings. Thus, appreciable progress has been made in establishing the structural features and biophysical properties of the calcium (Ca2+) channels that mediate the entry into nerve endings of the Ca2+ ions that trigger neurotransmitter release. It is now clear that presynaptic Ca2+ channels are regulated at many levels and the interplay of these regulatory mechanisms is just beginning to be understood. At the same time, many lines of research have converged on the conclusion that members of the synaptotagmin family serve as the primary Ca2+ sensors for the action potential-dependent release of neurotransmitter. This identification of synaptotagmins as the proteins which bind Ca2+ and initiate the exocytotic fusion of synaptic vesicles with the plasma membrane has spurred widespread efforts to reveal molecular details of synaptotagmin's action. Currently, most models propose that synaptotagmin interfaces directly or indirectly with SNARE (soluble, N-ethylmaleimide sensitive factor attachment receptors) proteins to trigger membrane fusion. However, in spite of intensive efforts, the field has not achieved consensus on the mechanism by which synaptotagmins act. Concurrently, the precise sequence of steps underlying SNARE-dependent membrane fusion remains controversial. This review considers the pros and cons of the different models of SNARE-mediated membrane fusion and concludes by discussing a novel proposal in which synaptotagmins might directly elicit membrane fusion without the intervention of SNARE proteins in this final fusion step.
Collapse
Affiliation(s)
- Stephen D Meriney
- Department of Neuroscience, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joy A Umbach
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Cameron B Gundersen
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA.
| |
Collapse
|
78
|
Mendoza-Torreblanca JG, Vanoye-Carlo A, Phillips-Farfán BV, Carmona-Aparicio L, Gómez-Lira G. Synaptic vesicle protein 2A: basic facts and role in synaptic function. Eur J Neurosci 2013; 38:3529-39. [DOI: 10.1111/ejn.12360] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/09/2013] [Accepted: 08/17/2013] [Indexed: 10/26/2022]
Affiliation(s)
| | | | | | | | - Gisela Gómez-Lira
- Department of Pharmacobiology; Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional; Calzada de los Tenorios 235 Col. Granjas Coapa C.P. 14330 D. F., Mexico
| |
Collapse
|
79
|
Crèvecœur J, Foerch P, Doupagne M, Thielen C, Vandenplas C, Moonen G, Deprez M, Rogister B. Expression of SV2 isoforms during rodent brain development. BMC Neurosci 2013; 14:87. [PMID: 23937191 PMCID: PMC3765414 DOI: 10.1186/1471-2202-14-87] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/05/2013] [Indexed: 12/20/2022] Open
Abstract
Background SV2A, SV2B and SV2C are synaptic vesicle proteins that are structurally related to members of the major facilitator superfamily (MFS). The function and transported substrate of the SV2 proteins is not clearly defined although they are linked to neurotransmitters release in a presynaptic calcium concentration-dependent manner. SV2A and SV2B exhibit broad expression in the central nervous system while SV2C appears to be more restricted in defined areas such as striatum. SV2A knockout mice start to display generalized seizures at a late developmental stage, around post-natal day 7 (P7), and die around P15. More recently, SV2A was demonstrated to be the molecular target of levetiracetam, an approved anti-epileptic drug (AED). The purpose of this work was to precisely analyze and quantify the SV2A, SV2B and SV2C expression during brain development to understand the contribution of these proteins in brain development and their impact on epileptic seizures. Results First, we systematically analyzed by immunohistofluorescence, the SV2A, SV2B and SV2C expression during mouse brain development, from embryonic day 12 (E12) to P30. This semi-quantitative approach suggests a modulation of SV2A and SV2B expression in hippocampus around P7. This is the reason why we used various quantitative approaches (laser microdissection of whole hippocampus followed by qRT-PCR and western blot analysis) indicating that SV2A and SV2B expression increased between P5 and P7 and remained stable between P7 and P10. Moreover, the increase of SV2A expression in the hippocampus at P7 was mainly observed in the CA1 region while SV2B expression in this region remains stable. Conclusions The observed alterations of SV2A expression in hippocampus are consistent with the appearance of seizures in SV2A−/− animals at early postnatal age and the hypothesis that SV2A absence favors epileptic seizures around P7.
Collapse
Affiliation(s)
- Julie Crèvecœur
- Laboratory of Developmental Neurobiology, GIGA-Neurosciences, University of Liege, Sart Tilman Liege B-4000, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Yao J, de la Iglesia HO, Bajjalieh SM. Loss of the SV2-like protein SVOP produces no apparent deficits in laboratory mice. PLoS One 2013; 8:e68215. [PMID: 23894296 PMCID: PMC3722232 DOI: 10.1371/journal.pone.0068215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/28/2013] [Indexed: 11/18/2022] Open
Abstract
Neurons express two families of transporter-like proteins − Synaptic Vesicle protein 2 (SV2A, B, and C) and SV2-related proteins (SVOP and SVOPL). Both families share structural similarity with the Major Facilitator (MF) family of transporters. SV2 is present in all neurons and endocrine cells, consistent with it playing a key role in regulated exocytosis. Like SV2, SVOP is expressed in all brain regions, with highest levels in cerebellum, hindbrain and pineal gland. Furthermore, SVOP is expressed earlier in development than SV2 and is one of the neuronal proteins whose expression declines most during aging. Although SV2 is essential for survival, it is not required for development. Because significant levels of neurotransmission remain in the absence of SV2 it has been proposed that SVOP performs a function similar to that of SV2 that mitigates the phenotype of SV2 knockout mice. To test this, we generated SVOP knockout mice and SVOP/SV2A/SV2B triple knockout mice. Mice lacking SVOP are viable, fertile and phenotypically normal. Measures of neurotransmission and behaviors dependent on the cerebellum and pineal gland revealed no measurable phenotype. SVOP/SV2A/SV2B triple knockout mice did not display a phenotype more severe than mice harboring the SV2A/SV2B gene deletions. These findings support the interpretation that SVOP performs a unique, though subtle, function that is not necessary for survival under normal conditions.
Collapse
Affiliation(s)
- Jia Yao
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | | | - Sandra M. Bajjalieh
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
81
|
Klitgaard H, Verdru P. Levetiracetam: the first SV2A ligand for the treatment of epilepsy. Expert Opin Drug Discov 2013; 2:1537-45. [PMID: 23484603 DOI: 10.1517/17460441.2.11.1537] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Levetiracetam is a multiple action drug that primarily acts through an interaction with the synaptic vesicle protein 2A. Levetiracetam is the first drug of its kind to be approved for the treatment of epilepsy and is now the most prescribed among the newer antiepileptic drugs. The discovery process identifying levetiracetam's antiepileptic potential was unique because it challenged several dogmas of antiepileptic drug discovery, and thereby encountered skepticism from the epilepsy community. This was contrasted by a very successful development programme leading to rapid regulatory approval by the FDA. The history of levetiracetam proves that a small core group of committed scientists and physicians, who dare to challenge the conventional scientific doctrine, can be successful in bringing to market a truly novel therapy for epilepsy patients.
Collapse
Affiliation(s)
- Henrik Klitgaard
- UCB Pharma SA, Chemin du Foriest, B-1420 Braine-l'Alleud, Belgium +32 (0)2 386 2660 ; +32 (0)2 386 3141 ;
| | | |
Collapse
|
82
|
Novozhilova E, Olivius P, Siratirakun P, Lundberg C, Englund-Johansson U. Neuronal differentiation and extensive migration of human neural precursor cells following co-culture with rat auditory brainstem slices. PLoS One 2013; 8:e57301. [PMID: 23505423 PMCID: PMC3591396 DOI: 10.1371/journal.pone.0057301] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 01/21/2013] [Indexed: 11/18/2022] Open
Abstract
Congenital or acquired hearing loss is often associated with a progressive degeneration of the auditory nerve (AN) in the inner ear. The AN is composed of processes and axons of the bipolar spiral ganglion neurons (SGN), forming the connection between the hair cells in the inner ear cochlea and the cochlear nuclei (CN) in the brainstem (BS). Therefore, replacement of SGNs for restoring the AN to improve hearing function in patients who receive a cochlear implantation or have severe AN malfunctions is an attractive idea. A human neural precursor cell (HNPC) is an appropriate donor cell to investigate, as it can be isolated and expanded in vitro with maintained potential to form neurons and glia. We recently developed a post-natal rodent in vitro auditory BS slice culture model including the CN and the central part of the AN for initial studies of candidate cells. Here we characterized the survival, distribution, phenotypic differentiation, and integration capacity of HNPCs into the auditory circuitry in vitro. HNPC aggregates (spheres) were deposited adjacent to or on top of the BS slices or as a monoculture (control). The results demonstrate that co-cultured HNPCs compared to monocultures (1) survive better, (2) distribute over a larger area, (3) to a larger extent and in a shorter time-frame form mature neuronal and glial phenotypes. HNPC showed the ability to extend neurites into host tissue. Our findings suggest that the HNPC-BS slice co-culture is appropriate for further investigations on the integration capacity of HNPCs into the auditory circuitry.
Collapse
Affiliation(s)
- Ekaterina Novozhilova
- Division of Oto-Rhino-Laryngology and Head and Neck Surgery, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
- Center for Hearing and Communication Research, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Section of Otorhinolaryngology, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Petri Olivius
- Department of ENT—Head and Neck Surgery, UHL, County Council of Östergötland, Linköping, Sweden
- Division of Oto-Rhino-Laryngology and Head and Neck Surgery, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
- Center for Hearing and Communication Research, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Section of Otorhinolaryngology, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
- * E-mail:
| | - Piyaporn Siratirakun
- Center for Hearing and Communication Research, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Section of Otorhinolaryngology, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Cecilia Lundberg
- CNS Gene Therapy Unit, Dept. of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ulrica Englund-Johansson
- Department of Ophthalmology, Institution of Clinical Sciences in Lund, Lund University, Lund, Sweden
| |
Collapse
|
83
|
Vogl C, Mochida S, Wolff C, Whalley BJ, Stephens GJ. The synaptic vesicle glycoprotein 2A ligand levetiracetam inhibits presynaptic Ca2+ channels through an intracellular pathway. Mol Pharmacol 2012; 82:199-208. [PMID: 22554805 DOI: 10.1124/mol.111.076687] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Levetiracetam (LEV) is a prominent antiepileptic drug that binds to neuronal synaptic vesicle glycoprotein 2A protein and has reported effects on ion channels, but with a poorly defined mechanism of action. We investigated inhibition of voltage-dependent Ca(2+) (Ca(V)) channels as a potential mechanism through which LEV exerts effects on neuronal activity. We used electrophysiological methods to investigate the effects of LEV on cholinergic synaptic transmission and Ca(V) channel activity in superior cervical ganglion neurons (SCGNs). In parallel, we investigated the effects of the inactive LEV R-enantiomer, (R)-α-ethyl-2-oxo-1-pyrrolidine acetamide (UCB L060). LEV but not UCB L060 (each at 100 μM) inhibited synaptic transmission between SCGNs in long-term culture in a time-dependent manner, significantly reducing excitatory postsynaptic potentials after a ≥30-min application. In isolated SCGNs, LEV pretreatment (≥1 h) but not short-term application (5 min) significantly inhibited whole-cell Ba(2+) current (I(Ba)) amplitude. In current-clamp recordings, LEV reduced the amplitude of the afterhyperpolarizing potential in a Ca(2+)-dependent manner but also increased the action potential latency in a Ca(2+)-independent manner, which suggests additional mechanisms associated with reduced excitability. Intracellular LEV application (4-5 min) caused rapid inhibition of I(Ba) amplitude, to an extent comparable to that seen with extracellular LEV pretreatment (≥1 h). Neither pretreatment nor intracellular application of UCB L060 produced any inhibitory effects on I(Ba) amplitude. These results identify a stereospecific intracellular pathway through which LEV inhibits presynaptic Ca(V) channels; resultant reductions in neuronal excitability are proposed to contribute to the anticonvulsant effects of LEV.
Collapse
Affiliation(s)
- Christian Vogl
- School of Pharmacy, University of Reading, Whiteknights, Reading, UK
| | | | | | | | | |
Collapse
|
84
|
Venkatesan K, Alix P, Marquet A, Doupagne M, Niespodziany I, Rogister B, Seutin V. Altered balance between excitatory and inhibitory inputs onto CA1 pyramidal neurons from SV2A-deficient but not SV2B-deficient mice. J Neurosci Res 2012; 90:2317-27. [DOI: 10.1002/jnr.23111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 11/07/2022]
|
85
|
Abstract
INTRODUCTION Cholinesterase inhibitors participate in the maintenance of the levels of the neurotransmitter acetylcholine by inhibiting the enzymes implicated in its degradation, namely, butyrylcholinesterase and acetylcholinesterase. This pharmacological action has an important role in several diseases, including neurodegenerative diseases such as Alzheimer's. AREAS COVERED This article reviews recent advances in the development of cholinesterase enzyme inhibitors, covering the development of new chemical entities, new pharmaceutical formulations with known inhibitors or treatments in combination with other drug families. EXPERT OPINION The development of cholinesterase inhibitors has to face several issues, including the fact that the principal indication for these drugs, Alzheimer's disease, is not currently believed to derivate from a cholinergic deficiency, although most of the drugs clinically used for these disease are cholinesterase inhibitors. Moreover, the adverse effects found when administering cholinesterase inhibitors limit their use in other diseases, such as gastrointestinal diseases, glaucoma, or analgesia.
Collapse
Affiliation(s)
- Cristóbal de los Ríos
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, C/Diego de León, 62, 28006 Madrid, Spain.
| |
Collapse
|
86
|
Combining modelling and mutagenesis studies of synaptic vesicle protein 2A to identify a series of residues involved in racetam binding. Biochem Soc Trans 2012; 39:1341-7. [PMID: 21936812 DOI: 10.1042/bst0391341] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
LEV (levetiracetam), an antiepileptic drug which possesses a unique profile in animal models of seizure and epilepsy, has as its unique binding site in brain, SV2A (synaptic vesicle protein 2A). Previous studies have used a chimaeric and site-specific mutagenesis approach to identify three residues in the putative tenth transmembrane helix of SV2A that, when mutated, alter binding of LEV and related racetam derivatives to SV2A. In the present paper, we report a combined modelling and mutagenesis study that successfully identifies another 11 residues in SV2A that appear to be involved in ligand binding. Sequence analysis and modelling of SV2A suggested residues equivalent to critical functional residues of other MFS (major facilitator superfamily) transporters. Alanine scanning of these and other SV2A residues resulted in the identification of residues affecting racetam binding, including Ile273 which differentiated between racetam analogues, when mutated to alanine. Integrating mutagenesis results with docking analysis led to the construction of a mutant in which six SV2A residues were replaced with corresponding SV2B residues. This mutant showed racetam ligand-binding affinity intermediate to the affinities observed for SV2A and SV2B.
Collapse
|
87
|
Abstract
Recent studies indicate that synaptic vesicles (SVs) are continuously interchanged among nearby synapses at very significant rates. These dynamics and the lack of obvious barriers confining synaptic vesicles to specific synapses would seem to challenge the ability of synapses to maintain a constant amount of synaptic vesicles over prolonged time scales. Moreover, the extensive mobilization of synaptic vesicles associated with presynaptic activity might be expected to intensify this challenge. Here we examined the ability of individual presynaptic boutons of rat hippocampal neurons to maintain their synaptic vesicle content, and the degree to which this ability is affected by continuous activity. We found that the synaptic vesicle content of individual boutons belonging to the same axons gradually changed over several hours, and that these changes occurred independently of activity. Intermittent stimulation for 1 h accelerated rates of vesicle pool size change. Interestingly, however, following stimulation cessation, vesicle pool size change rates gradually converged with basal change rates. Over similar time scales, active zones (AZs) exhibited substantial remodeling; yet, unlike synaptic vesicles, AZ remodeling was not affected by the stimulation paradigms used here. These findings indicate that enhanced activity levels can increase synaptic vesicle redistribution among nearby synapses, but also highlight the presence of forces that act to restore particular set points in terms of SV contents, and support a role for active zones in preserving such set points. These findings also indicate, however, that neither AZ size nor SV content set points are particularly stable, questioning the long-term tenacity of presynaptic specializations.
Collapse
|
88
|
Synaptic Vesicle Proteins: Targets and Routes for Botulinum Neurotoxins. Curr Top Microbiol Immunol 2012. [DOI: 10.1007/978-3-662-45790-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
89
|
Nowack A, Malarkey EB, Yao J, Bleckert A, Hill J, Bajjalieh SM. Levetiracetam reverses synaptic deficits produced by overexpression of SV2A. PLoS One 2011; 6:e29560. [PMID: 22220214 PMCID: PMC3248421 DOI: 10.1371/journal.pone.0029560] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/30/2011] [Indexed: 11/18/2022] Open
Abstract
Levetiracetam is an FDA-approved drug used to treat epilepsy and other disorders of the nervous system. Although it is known that levetiracetam binds the synaptic vesicle protein SV2A, how drug binding affects synaptic functioning remains unknown. Here we report that levetiracetam reverses the effects of excess SV2A in autaptic hippocampal neurons. Expression of an SV2A-EGFP fusion protein produced a ∼1.5-fold increase in synaptic levels of SV2, and resulted in reduced synaptic release probability. The overexpression phenotype parallels that seen in neurons from SV2 knockout mice, which experience severe seizures. Overexpression of SV2A also increased synaptic levels of the calcium-sensor protein synaptotagmin, an SV2-binding protein whose stability and trafficking are regulated by SV2. Treatment with levetiracetam rescued normal neurotransmission and restored normal levels of SV2 and synaptotagmin at the synapse. These results indicate that changes in SV2 expression in either direction impact neurotransmission, and suggest that levetiracetam may modulate SV2 protein interactions.
Collapse
Affiliation(s)
- Amy Nowack
- Department of Pharmacology, University of Washington, Seattle, Washington, United States of America
| | | | | | | | | | | |
Collapse
|
90
|
Yiangou Y, Anand U, Otto WR, Sinisi M, Fox M, Birch R, Foster KA, Mukerji G, Akbar A, Agarwal SK, Anand P. Increased levels of SV2A botulinum neurotoxin receptor in clinical sensory disorders and functional effects of botulinum toxins A and E in cultured human sensory neurons. J Pain Res 2011; 4:347-55. [PMID: 22090803 PMCID: PMC3215514 DOI: 10.2147/jpr.s25189] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background There is increasing evidence that botulinum neurotoxin A may affect sensory nociceptor fibers, but the expression of its receptors in clinical pain states, and its effects in human sensory neurons, are largely unknown. Methods We studied synaptic vesicle protein subtype SV2A, a receptor for botulinum neurotoxin A, by immunostaining in a range of clinical tissues, including human dorsal root ganglion sensory neurons, peripheral nerves, the urinary bladder, and the colon. We also determined the effects of botulinum neurotoxins A and E on localization of the capsaicin receptor, TRPV1, and functional sensitivity to capsaicin stimuli in cultured human dorsal root ganglion neurons. Results Image analysis showed that SV2A immunoreactive nerve fibers were increased in injured nerves proximal to the injury (P = 0.002), and in painful neuromas (P = 0.0027); the ratio of percentage area SV2A to neurofilaments (a structural marker) was increased proximal to injury (P = 0.0022) and in neuromas (P = 0.0001), indicating increased SV2A levels in injured nerve fibers. In the urinary bladder, SV2A nerve fibers were found in detrusor muscle and associated with blood vessels, with a significant increase in idiopathic detrusor over-activity (P = 0.002) and painful bladder syndrome (P = 0.0087). Colon biopsies showed numerous SV2A-positive nerve fibers, which were increased in quiescent inflammatory bowel disease with abdominal pain (P = 0.023), but not in inflammatory bowel disease without abdominal pain (P = 0.77) or in irritable bowel syndrome (P = 0.13). In vitro studies of botulinum neurotoxin A-treated and botulinum neurotoxin E-treated cultured human sensory neurons showed accumulation of cytoplasmic vesicles, neurite loss, and reduced immunofluorescence for the heat and capsaicin receptor, TRPV1. Functional effects included dose-related inhibition of capsaicin responses on calcium imaging after acute treatment with botulinum neurotoxins A and E. Conclusion Differential levels of SV2A protein expression in clinical disorders may identify potential new targets for botulinum neurotoxin therapy. In vitro studies indicate that treatment with botulinum neurotoxins A and E may affect receptor expression and nociceptor function in sensory neurons.
Collapse
Affiliation(s)
- Yiangos Yiangou
- Department of Clinical Neuroscience, Imperial College London, Hammersmith Hospital, London
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Gillard M, Fuks B, Leclercq K, Matagne A. Binding characteristics of brivaracetam, a selective, high affinity SV2A ligand in rat, mouse and human brain: Relationship to anti-convulsant properties. Eur J Pharmacol 2011; 664:36-44. [DOI: 10.1016/j.ejphar.2011.04.064] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 11/26/2022]
|
92
|
Kaiser A, Alexandrova O, Grothe B. Urocortin-expressing olivocochlear neurons exhibit tonotopic and developmental changes in the auditory brainstem and in the innervation of the cochlea. J Comp Neurol 2011; 519:2758-78. [DOI: 10.1002/cne.22650] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
93
|
Peng L, Tepp WH, Johnson EA, Dong M. Botulinum neurotoxin D uses synaptic vesicle protein SV2 and gangliosides as receptors. PLoS Pathog 2011; 7:e1002008. [PMID: 21483489 PMCID: PMC3068998 DOI: 10.1371/journal.ppat.1002008] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 01/10/2011] [Indexed: 02/03/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) include seven bacterial toxins (BoNT/A-G) that target presynaptic terminals and act as proteases cleaving proteins required for synaptic vesicle exocytosis. Here we identified synaptic vesicle protein SV2 as the protein receptor for BoNT/D. BoNT/D enters cultured hippocampal neurons via synaptic vesicle recycling and can bind SV2 in brain detergent extracts. BoNT/D failed to bind and enter neurons lacking SV2, which can be rescued by expressing one of the three SV2 isoforms (SV2A/B/C). Localization of SV2 on plasma membranes mediated BoNT/D binding in both neurons and HEK293 cells. Furthermore, chimeric receptors containing the binding sites for BoNT/A and E, two other BoNTs that use SV2 as receptors, failed to mediate the entry of BoNT/D suggesting that BoNT/D binds SV2 via a mechanism distinct from BoNT/A and E. Finally, we demonstrated that gangliosides are essential for the binding and entry of BoNT/D into neurons and for its toxicity in vivo, supporting a double-receptor model for this toxin. BoNTs are a family of seven bacterial toxins (BoNT/A-G). Among the seven BoNTs, whether BoNT/D uses the same entry pathways and similar receptor-binding strategies as other BoNTs is not known. Previous studies have suggested that BoNT/D does not need a protein receptor nor ganglioside co-receptor, in contrast to all other BoNTs. Here we demonstrate that BoNT/D uses synaptic vesicle protein SV2 as its protein receptor and gangliosides as co-receptor, thus supporting the “double-receptor” model as a central theme for this class of toxins. Furthermore, we found that BoNT/D utilizes a SV2 binding mechanism distinct from BoNT/A and BoNT/E, two other BoNTs that use SV2 as receptors. This indicates that different BoNTs can develop their distinct mechanisms to target a common receptor protein.
Collapse
Affiliation(s)
- Lisheng Peng
- Department of Microbiology and Molecular Genetics, Harvard Medical School and Division of Neuroscience, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - William H. Tepp
- Department of Food Microbiology and Toxicology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Eric A. Johnson
- Department of Food Microbiology and Toxicology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Min Dong
- Department of Microbiology and Molecular Genetics, Harvard Medical School and Division of Neuroscience, New England Primate Research Center, Southborough, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
94
|
Yeh FL, Dong M, Yao J, Tepp WH, Lin G, Johnson EA, Chapman ER. SV2 mediates entry of tetanus neurotoxin into central neurons. PLoS Pathog 2010; 6:e1001207. [PMID: 21124874 PMCID: PMC2991259 DOI: 10.1371/journal.ppat.1001207] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 10/22/2010] [Indexed: 01/18/2023] Open
Abstract
Tetanus neurotoxin causes the disease tetanus, which is characterized by rigid paralysis. The toxin acts by inhibiting the release of neurotransmitters from inhibitory neurons in the spinal cord that innervate motor neurons and is unique among the clostridial neurotoxins due to its ability to shuttle from the periphery to the central nervous system. Tetanus neurotoxin is thought to interact with a high affinity receptor complex that is composed of lipid and protein components; however, the identity of the protein receptor remains elusive. In the current study, we demonstrate that toxin binding, to dissociated hippocampal and spinal cord neurons, is greatly enhanced by driving synaptic vesicle exocytosis. Moreover, tetanus neurotoxin entry and subsequent cleavage of synaptobrevin II, the substrate for this toxin, was also dependent on synaptic vesicle recycling. Next, we identified the potential synaptic vesicle binding protein for the toxin and found that it corresponded to SV2; tetanus neurotoxin was unable to cleave synaptobrevin II in SV2 knockout neurons. Toxin entry into knockout neurons was rescued by infecting with viruses that express SV2A or SV2B. Tetanus toxin elicited the hyper excitability in dissociated spinal cord neurons - due to preferential loss of inhibitory transmission - that is characteristic of the disease. Surprisingly, in dissociated cortical cultures, low concentrations of the toxin preferentially acted on excitatory neurons. Further examination of the distribution of SV2A and SV2B in both spinal cord and cortical neurons revealed that SV2B is to a large extent localized to excitatory terminals, while SV2A is localized to inhibitory terminals. Therefore, the distinct effects of tetanus toxin on cortical and spinal cord neurons are not due to differential expression of SV2 isoforms. In summary, the findings reported here indicate that SV2A and SV2B mediate binding and entry of tetanus neurotoxin into central neurons. Tetanus neurotoxin is one of the most deadly bacterial toxins known and is the causative agent for the disease tetanus, also known as lockjaw. Tetanus neurotoxin utilizes motor neurons as a means of transport in order to enter the spinal cord. Once in the spinal cord, the toxin leaves motor neurons and enters inhibitory neurons through a “Trojan-horse” strategy, thereby preventing the release of inhibitory neurotransmitters onto motor neurons. This causes hyper-excitability of the motor neuron and excessive release of acetylcholine at the neuromuscular junction, resulting in rigid paralysis. There is a major gap in our understanding of the mechanism by which tetanus neurotoxin enters neurons. In the current study we discovered that the “Trojan-horse”, utilized by tetanus neurotoxin to enter central neurons, corresponds to recycling synaptic vesicles. Furthermore, we discovered that SV2 is critical for the binding and entry of tetanus neurotoxin into these neurons. These findings will enable further development of drugs that antagonize the action of the toxin and will also aid in the development of drug delivery systems that target spinal cord neurons.
Collapse
Affiliation(s)
- Felix L. Yeh
- Department of Physiology, Howard Hughes Medical Institute, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Min Dong
- New England Primate Research Center, Department of Microbiology and Molecular Genetics, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Jun Yao
- Department of Physiology, Howard Hughes Medical Institute, University of Wisconsin, Madison, Wisconsin, United States of America
| | - William H. Tepp
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Guangyun Lin
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Eric A. Johnson
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Edwin R. Chapman
- Department of Physiology, Howard Hughes Medical Institute, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
95
|
Dardou D, Dassesse D, Cuvelier L, Deprez T, De Ryck M, Schiffmann SN. Distribution of SV2C mRNA and protein expression in the mouse brain with a particular emphasis on the basal ganglia system. Brain Res 2010; 1367:130-45. [PMID: 20869353 DOI: 10.1016/j.brainres.2010.09.063] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 09/15/2010] [Accepted: 09/15/2010] [Indexed: 10/19/2022]
Abstract
Synaptic vesicle 2 proteins (SV2), SV2A, SV2B and SV2C, are integral proteins localized on the surface of synaptic vesicles in all neurons. SV2 proteins appear to play an important, but not yet fully understood role in synaptic vesicle exocytosis and neurotransmitter release. Moreover, SV2 seems to be the receptor of the botulinum neurotoxin A. In the present study, using single and double-labeling fluorescent immunohistochemistry and in situ hybridization we have identified the brain pattern of SV2C mRNA and protein expression in mice. Our results indicated that SV2C protein was expressed in a small subset of brain regions including the olfactory bulb, olfactory tubercle, nucleus accumbens, caudate-putamen, ventral pallidum, globus pallidus, substantia nigra and the ventral tegmental area. These results were confirmed by means of in situ hybridization, except for the globus pallidus and the substantia nigra pars reticulata, in which no labeling was found, suggesting that SV2C-positive fibers in these areas are terminals of striatal projecting neurons. In the striatum, we found that, in addition to its presence in the projection neurons, SV2C was densely expressed in a fraction (around 45%) of cholinergic interneurons. In addition, our data also showed that SV2C was densely expressed in most dopaminergic neurons in the substantia nigra pars compacta and the ventral tegmental area (more than 70% of the dopaminergic neurons analyzed were SV2C-positive). Altogether, our results suggest that SV2C may contribute to the regulation of neurotransmitter release and synaptic transmission in the basal ganglia including cholinergic striatal interneurons and nigro-striatal/mesolimbic dopamine neurons.
Collapse
Affiliation(s)
- D Dardou
- Laboratory of Neurophysiology, Université Libre de Bruxelles (ULB), 808 Route de Lennik, 1070 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
96
|
Chakkalakal JV, Nishimune H, Ruas JL, Spiegelman BM, Sanes JR. Retrograde influence of muscle fibers on their innervation revealed by a novel marker for slow motoneurons. Development 2010; 137:3489-99. [PMID: 20843861 DOI: 10.1242/dev.053348] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mammalian limb and trunk skeletal muscles are composed of muscle fibers that differ in contractile and molecular properties. They are commonly divided into four categories according to the myosin heavy chain that they express: I, IIA, IIX and IIB, ranging from slowest to fastest. Individual motor axons innervate tens of muscle fibers, nearly all of which are of the same type. The mechanisms accounting for this striking specificity, termed motor unit homogeneity, remain incompletely understood, in part because there have been no markers for motoneuron types. Here we show in mice that the synaptic vesicle protein SV2A is selectively localized in motor nerve terminals on slow (type I and small type IIA) muscle fibers; its close relatives, SV2B and SV2C, are present in all motor nerve terminals. SV2A is broadly expressed at birth; fast motoneurons downregulate its expression during the first postnatal week. An inducible transgene incorporating regulatory elements from the Sv2a gene permits selective labeling of slow motor units and reveals their composition. Overexpression of the transcriptional co-regulator PGC1α in muscle fibers, which converts them to a slow phenotype, leads to an increased frequency of SV2A-positive motor nerve terminals, indicating a fiber type-specific retrograde influence of muscle fibers on their innervation. This retrograde influence must be integrated with known anterograde influences in order to understand how motor units become homogeneous.
Collapse
Affiliation(s)
- Joe V Chakkalakal
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
97
|
Nowack A, Yao J, Custer KL, Bajjalieh SM. SV2 regulates neurotransmitter release via multiple mechanisms. Am J Physiol Cell Physiol 2010; 299:C960-7. [PMID: 20702688 DOI: 10.1152/ajpcell.00259.2010] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Among the proteins that mediate calcium-stimulated transmitter release, the synaptic vesicle protein 2 (SV2) stands out as a unique modulator specific to the neurons and endocrine cells of vertebrates. In synapses, SV2 regulates the expression and trafficking of the calcium sensor protein synaptotagmin, an action consistent with the reduced calcium-mediated exocytosis observed in neurons lacking SV2. Yet SV2 contains amino acid motifs consistent with it performing other actions that could regulate presynaptic functioning and that might underlie the mechanism of drug action. To test the role of these functional motifs, we performed a mutagenic analysis of SV2A and assessed the ability of mutant SV2A proteins to restore normal synaptic transmission in neurons from SV2A/B knockout mice. We report that SV2A-R231Q, harboring a mutation in a canonical transporter motif, restored normal synaptic depression (a measure of release probability and signature deficit of neurons lacking SV2). In contrast, normal synaptic depression was not restored by SV2A-W300A and SV2A-W666A, harboring mutations of conserved tryptophans in the 5th and 10th transmembrane domains. Although they did not rescue normal neurotransmission, SV2A-W300A and SV2A-W666A did restore normal levels of synaptotagmin expression and internalization. This indicates that tryptophans 300 and 666 support an essential action of SV2 that is unrelated to its role in synaptotagmin expression or trafficking. These results indicate that SV2 performs at least two actions at the synapse that contribute to neurotransmitter release.
Collapse
Affiliation(s)
- Amy Nowack
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
98
|
Abstract
Synaptic vesicle 2 (SV2) proteins, critical for proper nervous system function, are implicated in human epilepsy, yet little is known about their function. We demonstrate, using direct approaches, that loss of the major SV2 isoform in a central nervous system nerve terminal is associated with an elevation in both resting and evoked presynaptic Ca(2+) signals. This increase is essential for the expression of the SV2B(-/-) secretory phenotype, characterized by changes in synaptic vesicle dynamics, synaptic plasticity, and synaptic strength. Short-term reproduction of the Ca(2+) phenotype in wild-type nerve terminals reproduces almost all aspects of the SV2B(-/-) secretory phenotype, while rescue of the Ca(2+) phenotype in SV2B(-/-) neurons relieves every facet of the SV2B(-/-) secretory phenotype. Thus, SV2 controls key aspects of synaptic functionality via its ability to regulate presynaptic Ca(2+), suggesting a potential new target for therapeutic intervention in the treatment of epilepsy.
Collapse
|
99
|
Acsadi G, Li X, Murphy KJ, Swoboda KJ, Parker GC. Alpha-synuclein loss in spinal muscular atrophy. J Mol Neurosci 2010; 43:275-83. [PMID: 20640532 DOI: 10.1007/s12031-010-9422-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 06/28/2010] [Indexed: 11/30/2022]
Abstract
Spinal muscular atrophy, the most prevalent hereditary motor neuron disease, is caused by mutations in the survival motor neuron (SMN) 1 gene. A significant reduction in the encoded SMN protein leads to the degeneration of motor neurons. However, the molecular events leading to this process are not well understood. The present study uses a previously developed neuronal cell culture model of spinal muscular atrophy for a multiplex transcriptome analysis. Furthermore, gene expression analysis was performed on in vitro cell cultures, as well as tissue samples of spinal muscular atrophy patients and transgenic mice. RNA and subsequent Western blot protein analyses suggest that low SMN levels are associated with significantly lower alpha-synuclein expression. Examination of two genes related to vesicular transport showed a similar though less dramatic decrease in expression. The 140-amino acid protein alpha-synuclein, dominant mutations of which have previously been associated with an autosomal dominant form of Parkinson's disease, is strongly expressed in select neurons of the brain. Although not well understood, the physiologic functions of alpha-synuclein have been linked to synaptic vesicular neurotransmitter release and neuroprotection, suggesting a possible contribution to Smn-deficient motor neuron pathology. Furthermore, alpha-synuclein may be a genetic modifier or biomarker of spinal muscular atrophy.
Collapse
Affiliation(s)
- Gyula Acsadi
- Carman and Ann Adams Department of Pediatrics, Wayne State University, Detroit, MI, USA
| | | | | | | | | |
Collapse
|
100
|
Glavaski-Joksimovic A, Thonabulsombat C, Wendt M, Eriksson M, Ma H, Olivius P. Morphological differentiation of tau–green fluorescent protein embryonic stem cells into neurons after co-culture with auditory brain stem slices. Neuroscience 2009; 162:472-81. [DOI: 10.1016/j.neuroscience.2009.04.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 04/12/2009] [Accepted: 04/28/2009] [Indexed: 01/29/2023]
|