51
|
Romero-Masters JC, Lambert PF, Munger K. Molecular Mechanisms of MmuPV1 E6 and E7 and Implications for Human Disease. Viruses 2022; 14:2138. [PMID: 36298698 PMCID: PMC9611894 DOI: 10.3390/v14102138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Human papillomaviruses (HPVs) cause a substantial amount of human disease from benign disease such as warts to malignant cancers including cervical carcinoma, head and neck cancer, and non-melanoma skin cancer. Our ability to model HPV-induced malignant disease has been impeded by species specific barriers and pre-clinical animal models have been challenging to develop. The recent discovery of a murine papillomavirus, MmuPV1, that infects laboratory mice and causes the same range of malignancies caused by HPVs provides the papillomavirus field the opportunity to test mechanistic hypotheses in a genetically manipulatable laboratory animal species in the context of natural infections. The E6 and E7 proteins encoded by high-risk HPVs, which are the HPV genotypes associated with human cancers, are multifunctional proteins that contribute to HPV-induced cancers in multiple ways. In this review, we describe the known activities of the MmuPV1-encoded E6 and E7 proteins and how those activities relate to the activities of HPV E6 and E7 oncoproteins encoded by mucosal and cutaneous high-risk HPV genotypes.
Collapse
Affiliation(s)
- James C. Romero-Masters
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
52
|
Palaoro LA, Blanco AM, Giongrande JC. Configuration of the surfaces of epithelial cells infected by human papillomavirus. REVISTA BRASILEIRA DE CANCEROLOGIA 2022. [DOI: 10.32635/2176-9745.rbc.1999v45n1.2765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human papillomavirus (HPV) types were investigated hy iri situ hybridization (ISH) in biopsiesfroin J8patients with diverse pathologies ofcervix uteri (7 condylomas, 1 CINI +HPV, 3 CIN II, 4 CIN II + HPV and 3 CIN III). Cervical sniears ofthe same patients were processed by Scanning Electron Mycroscopy (SEM) in order to study the configuration of sitrfaces ofcells infected hy different HPV types. Seven condylomas, I CIN I + HPV, 3 CIN II and 3 CIN II + HPV showed alinost identical surface configurations to those of normal cells (short, thin, homogeneous microvi lli o r typicai microridgesj. This group presented low, moderate and high risk HPV types in a episomal form, while I CINII + HPV and3 CINIII with integratedHPV 16/]8 exfoliatedcells covered with gross microvilli, with variahle length and uneven distribution, oran amorphous surface. The presence of HPV 16/18 cannot be sufficient for the development of an anormal configuration, hut the integrated State ofthis viral type coiild he related to the morphological changes in cellular surface morphology. The results of this paper underline the importance of viral integration in the genesis of cervical carcinoma.
Collapse
|
53
|
Yu M, Zhang Q, Zhao X. Associations of MDM2 rs2279744 and TP53 rs1042522 polymorphisms with cervical cancer risk: A meta-analysis and systematic review. Front Oncol 2022; 12:973077. [PMID: 36059664 PMCID: PMC9437333 DOI: 10.3389/fonc.2022.973077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
BackgroundAlthough the association between MDM2 rs2279744 and TP53 rs1042522 polymorphisms and cervical cancer has been reported, the results of its correlation were contradictory. Thus, we conducted a meta-analysis to precisely verify the relationships between MDM2 rs2279744 and TP53 rs1042522 polymorphisms and cervical cancer.MethodsWe thoroughly searched the PubMed, Web of Science, Embase, and Scopus databases for all potential articles from inception to June 2022 and used R Version 4.1.2 and STATA software 12.0 for the meta-analysis. The odds ratios (ORs), 95% confidence intervals (CIs) and 95% prediction intervals (PIs) were calculated to evaluate the associations. Subgroup analyses stratified by ethnicity, source of control, quality score and adjustment were further conducted to assess the relationship between MDM2 rs2279744 and TP53 rs1042522 polymorphisms and cervical cancer.ResultsA total of 30 case-control studies involving 5025 cases and 6680 controls were included. All the included studies were population-based or hospital-based studies. The overall analysis showed that MDM2 rs2279744 polymorphism was closely related to an increased risk of cervical cancer in the recessive model (GG vs GT + TT: OR = 1.602, 95% CI: 1.077-2.383, P = 0.020) and homozygote model (GG vs TT: OR = 1.469, 95% CI: 1.031-2.095, P = 0.033, 95% PI: 0.516-4.184). A significant correlation between TP53 rs1042522 polymorphism and cervical cancer was observed in two models (CC + CG vs GG: OR = 1.759, 95% CI: 1.192-2.596, P = 0.004, 95% PI: 0.474-6.533; GG vs CC: OR = 2.442, 95% CI: 1.433-4.162, P = 0.001, 95% PI: 0.456-13.071).ConclusionsThis meta-analysis revealed that MDM2 SNP309T>G and TP53 rs1042522 C>G polymorphisms were associated with the increased risk of cervical cancer.
Collapse
Affiliation(s)
- Meijia Yu
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, The First Hospital of Affiliated to Army Medical University, Chongqing, China
| | - Qin Zhang
- Gynecological Cancer Center, Chongqing University Cancer Hospital, Chongqing Cancer Research Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xia Zhao,
| |
Collapse
|
54
|
|
55
|
Bharti A, Qayoom S, Jaiswal R, Agarwal P, Singh RK, Agarwal SP, Bhalla S, Makker A, Goel MM. Can dual staining with p16 and Ki67 be biomarkers of epithelial dysplasia in oral lesions? J Cancer Res Ther 2022; 18:1003-1008. [PMID: 36149153 DOI: 10.4103/jcrt.jcrt_40_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
BACKGROUND Oral carcinogenesis is a multistage process with epithelial dysplasia as a premalignant condition. There is a significant inter-observer variation in diagnosing and grading the oral epithelial dysplasia. As human papillomavirus (HPV) is believed to have à strong relationship with oral carcinogenesis, using P16 as a biomarker may help in identifying the cells which may be undergoing the malignant transformation. However, due to the low specificity of P16, dual staining test P16INK4/Ki67 might be a better promising marker for identifying the transformed cells. This study was designed to evaluate the dual expression of P16 and Ki67 as a promising biomarker for dysplasia and their correlation with clinicopathological factors. MATERIALS AND METHODS Immunohistochemical analysis for p16 and ki67 was performed on 30 premalignant oral lesions and 36 oral squamous cell carcinoma (OSCC) by dual staining using the CINtec PLUS kit. RESULTS CINtec positivity was observed only in leukoplakia with dysplasia (46.7%) and squamous cell carcinoma (25%). None of the cases of leukoplakia without dysplasia or oral submucosal fibrosis stained positive for CINtec plus staining. In leukoplakia with dysplasia, there was no significant association with any of the clinicopathological parameters studied. In OSCC cases, alcohol intake showed statistically significant association with CINtec positivity. CONCLUSION P16INK4/Ki67 assessment by dual staining is a promising biomarker for identifying dysplasia in cases with diagnostic dilemmas.
Collapse
Affiliation(s)
- Anju Bharti
- Department of Pathology, Institute of Medical Sciences, BHU, Varanasi, Uttar Pradesh, India
| | - Sumaira Qayoom
- Department of Pathology, KGMU, Lucknow, Uttar Pradesh, India
| | - Riddhi Jaiswal
- Department of Pathology, KGMU, Lucknow, Uttar Pradesh, India
| | - Preeti Agarwal
- Department of Pathology, KGMU, Lucknow, Uttar Pradesh, India
| | - R K Singh
- Department of Maxillofacial Surgery & Otorhinolaryngology, KGMU, Lucknow, Uttar Pradesh, India
| | - S P Agarwal
- Department of Maxillofacial Surgery & Otorhinolaryngology, KGMU, Lucknow, Uttar Pradesh, India
| | - Shalini Bhalla
- Department of Pathology, KGMU, Lucknow, Uttar Pradesh, India
| | - Annu Makker
- Department of Biochemistry, Prasad Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Madhu Mati Goel
- Department of Pathology, KGMU, Lucknow, Uttar Pradesh, India
| |
Collapse
|
56
|
Domostegui A, Nieto-Barrado L, Perez-Lopez C, Mayor-Ruiz C. Chasing molecular glue degraders: screening approaches. Chem Soc Rev 2022; 51:5498-5517. [PMID: 35723413 DOI: 10.1039/d2cs00197g] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein-protein interactions (PPIs) govern all biological processes. Some small molecules modulate PPIs through induced protein proximity. In particular, molecular glue degraders are monovalent compounds that orchestrate interactions between a target protein and an E3 ubiquitin ligase, prompting the proteasomal degradation of the former. This and other pharmacological strategies of targeted protein degradation (e.g. proteolysis-targeting chimeras - PROTACs) overcome some limitations of traditional occupancy-based therapeutics. Here, we provide an overview of the "molecular glue" concept, with a special focus on natural and synthetic inducers of proximity to E3s. We then briefly highlight the serendipitous discoveries of some clinical and preclinical molecular glue degraders, and discuss the first examples of intentional discoveries. Specifically, we outline the different screening strategies reported in this rapidly evolving arena and our thoughts on future perspectives. By mastering the ability to influence PPIs, molecular glue degraders can induce the degradation of unligandable proteins, thus providing an exciting path forward to broaden the targetable proteome.
Collapse
Affiliation(s)
- Ana Domostegui
- IRB Barcelona - Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, 08028 Barcelona, Spain.
| | - Luis Nieto-Barrado
- IRB Barcelona - Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, 08028 Barcelona, Spain.
| | - Carles Perez-Lopez
- IRB Barcelona - Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, 08028 Barcelona, Spain.
| | - Cristina Mayor-Ruiz
- IRB Barcelona - Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, 08028 Barcelona, Spain.
| |
Collapse
|
57
|
Eng C, Ciombor KK, Cho M, Dorth JA, Rajdev LN, Horowitz DP, Gollub MJ, Jácome AA, Lockney NA, Muldoon RL, Washington MK, O'Brian BA, Benny A, Lebeck Lee CM, Benson AB, Goodman KA, Morris VK. Anal Cancer: Emerging Standards in a Rare Rare Disease. J Clin Oncol 2022; 40:2774-2788. [PMID: 35649196 DOI: 10.1200/jco.21.02566] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The social stigma surrounding an anal cancer diagnosis has traditionally prevented open discussions about this disease. However, as recent treatment options and an increasing rate of diagnoses are made worldwide, awareness is growing. In the United States alone, 9,090 individuals were expected to be diagnosed with anal cancer in 2021. The US annual incidence of squamous cell carcinoma of the anus continues to increase by 2.7% yearly, whereas the mortality rate increases by 3.1%. The main risk factor for anal cancer is a human papillomavirus infection; those with chronic immunosuppression are also at risk. Patients with HIV are 19 times more likely to develop anal cancer compared with the general population. In this review, we have provided an overview of the carcinoma of the anal canal, the role of screening, advancements in radiation therapy, and current trials investigating acute and chronic treatment-related toxicities. This article is a comprehensive approach to presenting the existing data in an effort to encourage continuous international interest in anal cancer.
Collapse
Affiliation(s)
- Cathy Eng
- Division of Hematology and Oncology, Department of Internal Medicine, Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Kristen K Ciombor
- Division of Hematology and Oncology, Department of Internal Medicine, Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - May Cho
- Division of Hematology and Oncology, Department of Medicine, University of California- Irvine School of Medicine, Irvine, CA
| | - Jennifer A Dorth
- Department of Radiation Oncology, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Lakshmi N Rajdev
- Division for Hematology and Oncology, Department of Medicine, Northwell Health/Lenox Hill Hospital, New York, NY
| | - David P Horowitz
- Department of Radiation Oncology, New York Presbyterian Hospital/Columbia University Irving Medical Center, New York, NY
| | - Marc J Gollub
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Alexandre A Jácome
- OncoBio Comprehensive Cancer Center, Department of Gastrointestinal Medical Oncology, Nova Lima, Brazil
| | - Natalie A Lockney
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN
| | - Roberta L Muldoon
- Division of Colon and Rectal Surgery, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Mary Kay Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Brittany A O'Brian
- Division of Hematology and Oncology, Department of Internal Medicine, Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Amala Benny
- Division of Hematology and Oncology, Department of Internal Medicine, Vanderbilt University Medical Center/Vanderbilt-Ingram Cancer Center, Nashville, TN
| | - Cody M Lebeck Lee
- VA Tennessee Valley Healthcare System, Department of Internal Medicine, Nashville, TN
| | - Al B Benson
- Division of Hematology-Oncology, Northwestern University, Feinberg School of Medicine and Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| | - Karyn A Goodman
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Van Karlyle Morris
- Division of Cancer Medicine, Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
58
|
Baj J, Forma A, Dudek I, Chilimoniuk Z, Dobosz M, Dobrzyński M, Teresiński G, Buszewicz G, Flieger J, Portincasa P. The Involvement of Human Papilloma Virus in Gastrointestinal Cancers. Cancers (Basel) 2022; 14:2607. [PMID: 35681587 PMCID: PMC9179480 DOI: 10.3390/cancers14112607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 01/27/2023] Open
Abstract
Human Papilloma Virus (HPV) is one of the most common sexually transmitted infections worldwide. HPV infection has a strong relationship with the onset of cervix uteri, vagina, penis, anus, and oropharynx, but also tonsils and tongue cancers. Some epidemiological data indicate that except for gynecologic cancers, HPV infection can be one of the risk factors associated with a greater risk of induction and progression of gastrointestinal cancers. Data, however, remain contradictory and definite conclusions cannot be drawn, so far. The following review aims to organize recent evidence and summarize the current state of knowledge regarding the association between HPV infection and gastrointestinal tumors primarily focusing on esophageal, liver, gastric, colorectal, and anal cancers.
Collapse
Affiliation(s)
- Jacek Baj
- Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (I.D.); (Z.C.); (M.D.); (M.D.); (G.T.); (G.B.)
| | - Iga Dudek
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (I.D.); (Z.C.); (M.D.); (M.D.); (G.T.); (G.B.)
| | - Zuzanna Chilimoniuk
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (I.D.); (Z.C.); (M.D.); (M.D.); (G.T.); (G.B.)
| | - Maciej Dobosz
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (I.D.); (Z.C.); (M.D.); (M.D.); (G.T.); (G.B.)
| | - Michał Dobrzyński
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (I.D.); (Z.C.); (M.D.); (M.D.); (G.T.); (G.B.)
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (I.D.); (Z.C.); (M.D.); (M.D.); (G.T.); (G.B.)
| | - Grzegorz Buszewicz
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (I.D.); (Z.C.); (M.D.); (M.D.); (G.T.); (G.B.)
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| |
Collapse
|
59
|
Kim TH, Lee SW. Therapeutic Application of Genome Editing Technologies in Viral Diseases. Int J Mol Sci 2022; 23:5399. [PMID: 35628210 PMCID: PMC9140762 DOI: 10.3390/ijms23105399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/19/2022] Open
Abstract
Viral infections can be fatal and consequently, they are a serious threat to human health. Therefore, the development of vaccines and appropriate antiviral therapeutic agents is essential. Depending on the virus, it can cause an acute or a chronic infection. The characteristics of viruses can act as inhibiting factors for the development of appropriate treatment methods. Genome editing technology, including the use of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) proteins, zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), is a technology that can directly target and modify genomic sequences in almost all eukaryotic cells. The development of this technology has greatly expanded its applicability in life science research and gene therapy development. Research on the use of this technology to develop therapeutics for viral diseases is being conducted for various purposes, such as eliminating latent infections or providing resistance to new infections. In this review, we will look at the current status of the development of viral therapeutic agents using genome editing technology and discuss how this technology can be used as a new treatment approach for viral diseases.
Collapse
Affiliation(s)
- Tae Hyeong Kim
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea;
| | - Seong-Wook Lee
- Department of Bioconvergence Engineering, Research Institute of Advanced Omics, Dankook University, Yongin 16890, Korea
- R&D Center, Rznomics Inc., Seongnam 13486, Korea
| |
Collapse
|
60
|
Joshi VB, Chadha J, Chahoud J. Penile cancer: Updates in systemic therapy. Asian J Urol 2022; 9:374-388. [DOI: 10.1016/j.ajur.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022] Open
|
61
|
Saito Y, Homma A, Kiyota N, Tahara M, Hanai N, Asakage T, Matsuura K, Ota I, Yokota T, Sano D, Kodaira T, Motegi A, Yasuda K, Takahashi S, Tanaka K, Onoe T, Okano S, Imamura Y, Ariizumi Y, Hayashi R. Human papillomavirus-related oropharyngeal carcinoma. Jpn J Clin Oncol 2022; 52:700-706. [PMID: 35383359 DOI: 10.1093/jjco/hyac049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/19/2022] [Indexed: 11/13/2022] Open
Abstract
It was not until around 2000 that human papillomavirus-related oropharyngeal carcinoma was recognized as carcinoma with clinical presentations different from nonrelated head and neck carcinoma. Twenty years after and with the revision of the tumor-node-metastasis classification in 2017, various clinical trials focused on human papillomavirus-related oropharyngeal carcinoma to improve the prognosis and quality of life of patients with this disease. However, the incidence of human papillomavirus-related cancers is increasing, which is expected to be particularly prominent in Japan, where human papillomavirus vaccination is not widely available. In this review, we describe the current status of clinical trials (mainly focused on initial surgery and radiation dose reduction) for, primary and secondary prevention of, and the present status of human papillomavirus-related oropharyngeal carcinoma in Japan.
Collapse
Affiliation(s)
- Yuki Saito
- Department of Otolaryngology and Head and Neck Surgery, University of Tokyo, Tokyo, Japan
| | - Akihiro Homma
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naomi Kiyota
- Department of Medical Oncology and Hematology, Cancer Center, Kobe University Hospital, Kobe, Japan
| | - Makoto Tahara
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Nobuhiro Hanai
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Takahiro Asakage
- Department of Head and Neck Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuto Matsuura
- Department of Head and Neck Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Ichiro Ota
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Nara, Japan
| | - Tomoya Yokota
- Divisions of Gastrointestinal Oncology, Shizuoka Cancer Center, Kashiwa, Japan
| | - Daisuke Sano
- Department of Otorhinolaryngology, Head and Neck Surgery, Yokohama City University, School of Medicine, Yokohama, Japan
| | - Takeshi Kodaira
- Department of Radiation Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Atsushi Motegi
- Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Koichi Yasuda
- Department of Radiation Oncology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Japan
| | - Shunji Takahashi
- Department of Medical Oncology, Cancer Institute Hospital, Tokyo, Japan
| | - Kaoru Tanaka
- Department of Medical Oncology, Kindai University Faculty of Medicine, Higashi-Osaka, Japan
| | - Takuma Onoe
- Division of Medical Oncology, Hyogo Cancer Center, Hyogo, Japan
| | - Susumu Okano
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yoshinori Imamura
- Department of Medical Oncology and Hematology, Cancer Center, Kobe University Hospital, Kobe, Japan
| | - Yosuke Ariizumi
- Department of Head and Neck Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryuichi Hayashi
- Department of Head and Neck Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
62
|
Kooti A, Abuei H, Farhadi A, Behzad-Behbahani A, Zarrabi M. Activating transcription factor 3 mediates apoptotic functions through a p53-independent pathway in human papillomavirus 18 infected HeLa cells. Virus Genes 2022; 58:88-97. [PMID: 35129760 DOI: 10.1007/s11262-022-01887-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/24/2022] [Indexed: 11/25/2022]
Abstract
Activating transcription factor 3 (ATF3) is the first p53 stability regulator that interferes with the ubiquitination of p53. However, the E6 oncoprotein of high-risk human papillomaviruses (HPVs) binds to and induces proteasome-dependent degradation of the host p53 protein. Herein, we investigate the effects of ATF3 overexpression on cell cycle progression and apoptosis in HPV-18-infected HeLa cells, and further examine whether ATF3 could alter the apoptosis level of HeLa cells through the inhibition of E6-mediated p53 degradation. Cytological function of HeLa cells prior and subsequent to the overexpression of ATF3 was assessed using cell cycle and annexin V/PI flow cytometry analysis. Western blotting assays revealed no significant effect of ATF3 on the levels of p53 and E6 in HeLa cells. However, annexin V staining demonstrated increases in apoptosis. ATF3 acts as a tumor suppressor factor in HPV18-related cervical cancer which mediates apoptotic functions through a p53-independent pathway.
Collapse
Affiliation(s)
- Abolfazl Kooti
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haniyeh Abuei
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Farhadi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Abbas Behzad-Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Zarrabi
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
63
|
Afzal S, Fiaz K, Noor A, Sindhu AS, Hanif A, Bibi A, Asad M, Nawaz S, Zafar S, Ayub S, Hasnain SB, Shahid M. Interrelated Oncogenic Viruses and Breast Cancer. Front Mol Biosci 2022; 9:781111. [PMID: 35419411 PMCID: PMC8995849 DOI: 10.3389/fmolb.2022.781111] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/15/2022] [Indexed: 12/23/2022] Open
Abstract
Breast Cancer is a multifactorial disease and recent evidence that viruses have a greater role in its aetiology and pathophysiology than previously hypothesized, has garnered a lot of attention in the past couple of years. After the role of Mouse Mammary Tumour Virus (MMTV) in the oncogenesis of breast cancer has been proved in mice, search for similar viruses found quite a plausible relation of Human Papilloma Virus (HPV), Epstein–Barr virus (EBV), and Bovine Leukaemia Virus (BLV) with breast cancer. However, despite practical efforts to provide some clarity in this issue, the evidence that viruses cause breast cancer still remains inconclusive. Therefore, this article aims to clarify some ambiguity and elucidate the correlation of breast cancer and those particular viruses which are found to bring about the development of tumorigenesis by a previous infection or by their own oncogenic ability to manipulate the molecular mechanisms and bypass the immune system of the human body. Although many studies have reported, both, the individual and co-existing presence of HPV, EBV, MMTV, and BLV in patient sample tissues, particularly in Western women, and proposed oncogenic mechanisms, majority of the collective survey of literature fails to provide a delineated and strong conclusive evidence that viruses do, in fact, cause breast cancer. Measures to prevent these viral infections may curb breast cancer cases, especially in the West. More studies are needed to provide a definite conclusion.
Collapse
|
64
|
Moudry P, Chroma K, Bursac S, Volarevic S, Bartek J. RNA-interference screen for p53 regulators unveils a role of WDR75 in ribosome biogenesis. Cell Death Differ 2022; 29:687-696. [PMID: 34611297 PMCID: PMC8901908 DOI: 10.1038/s41418-021-00882-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/05/2023] Open
Abstract
Ribosome biogenesis is an essential, energy demanding process whose deregulation has been implicated in cancer, aging, and neurodegeneration. Ribosome biogenesis is therefore under surveillance of pathways including the p53 tumor suppressor. Here, we first performed a high-content siRNA-based screen of 175 human ribosome biogenesis factors, searching for impact on p53. Knock-down of 4 and 35 of these proteins in U2OS cells reduced and increased p53 abundance, respectively, including p53 accumulation after depletion of BYSL, DDX56, and WDR75, the effects of which were validated in several models. Using complementary approaches including subcellular fractionation, we demonstrate that endogenous human WDR75 is a nucleolar protein and immunofluorescence analysis of ectopic GFP-tagged WDR75 shows relocation to nucleolar caps under chemically induced nucleolar stress, along with several canonical nucleolar proteins. Mechanistically, we show that WDR75 is required for pre-rRNA transcription, through supporting the maintenance of physiological levels of RPA194, a key subunit of the RNA polymerase I. Furthermore, WDR75 depletion activated the RPL5/RPL11-dependent p53 stabilization checkpoint, ultimately leading to impaired proliferation and cellular senescence. These findings reveal a crucial positive role of WDR75 in ribosome biogenesis and provide a resource of human ribosomal factors the malfunction of which affects p53.
Collapse
Affiliation(s)
- Pavel Moudry
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
| | - Katarina Chroma
- grid.10979.360000 0001 1245 3953Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Sladana Bursac
- grid.22939.330000 0001 2236 1630Department of Molecular Medicine and Biotechnology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Sinisa Volarevic
- grid.22939.330000 0001 2236 1630Department of Molecular Medicine and Biotechnology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jiri Bartek
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic. .,Genome Integrity, Danish Cancer Society Research Center, Copenhagen, Denmark. .,Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
65
|
Zhang X, Huo C, Liu Y, Su R, Zhao Y, Li Y. Mechanism and Disease Association With a Ubiquitin Conjugating E2 Enzyme: UBE2L3. Front Immunol 2022; 13:793610. [PMID: 35265070 PMCID: PMC8899012 DOI: 10.3389/fimmu.2022.793610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Ubiquitin conjugating enzyme E2 is an important component of the post-translational protein ubiquitination pathway, which mediates the transfer of activated ubiquitin to substrate proteins. UBE2L3, also called UBcH7, is one of many E2 ubiquitin conjugating enzymes that participate in the ubiquitination of many substrate proteins and regulate many signaling pathways, such as the NF-κB, GSK3β/p65, and DSB repair pathways. Studies on UBE2L3 have found that it has an abnormal expression in many diseases, mainly immune diseases, tumors and Parkinson's disease. It can also promote the occurrence and development of these diseases. Resultantly, UBE2L3 may become an important target for some diseases. Herein, we review the structure of UBE2L3, and its mechanism in diseases, as well as diseases related to UBE2L3 and discuss the related challenges.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Chengdong Huo
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yating Liu
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Ruiliang Su
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yang Zhao
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yumin Li
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
66
|
Hatterschide J, Castagnino P, Kim HW, Sperry SM, Montone KT, Basu D, White EA. YAP1 activation by human papillomavirus E7 promotes basal cell identity in squamous epithelia. eLife 2022; 11:75466. [PMID: 35170430 PMCID: PMC8959598 DOI: 10.7554/elife.75466] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/15/2022] [Indexed: 11/27/2022] Open
Abstract
Persistent human papillomavirus (HPV) infection of stratified squamous epithelial cells causes nearly 5% of cancer cases worldwide. HPV-positive oropharyngeal cancers harbor few mutations in the Hippo signaling pathway compared to HPV-negative cancers at the same anatomical site, prompting the hypothesis that an HPV-encoded protein inactivates the Hippo pathway and activates the Hippo effector yes-associated protein (YAP1). The HPV E7 oncoprotein is required for HPV infection and for HPV-mediated oncogenic transformation. We investigated the effects of HPV oncoproteins on YAP1 and found that E7 activates YAP1, promoting YAP1 nuclear localization in basal epithelial cells. YAP1 activation by HPV E7 required that E7 binds and degrades the tumor suppressor protein tyrosine phosphatase non-receptor type 14 (PTPN14). E7 required YAP1 transcriptional activity to extend the lifespan of primary keratinocytes, indicating that YAP1 activation contributes to E7 carcinogenic activity. Maintaining infection in basal cells is critical for HPV persistence, and here we demonstrate that YAP1 activation causes HPV E7 expressing cells to be retained in the basal compartment of stratified epithelia. We propose that YAP1 activation resulting from PTPN14 inactivation is an essential, targetable activity of the HPV E7 oncoprotein relevant to HPV infection and carcinogenesis. The ‘epithelial’ cells that cover our bodies are in a constant state of turnover. Every few weeks, the outermost layers die and are replaced by new cells from the layers below. For scientists, this raises a difficult question. Cells infected by human papillomaviruses, often known as HPV, can become cancerous over years or even decades. How do infected cells survive while the healthy cells around them mature and get replaced? One clue could lie in PTPN14, a human protein which many papillomaviruses eliminate using their viral E7 protein; this mechanism could be essential for the virus to replicate and cause cancer. To find out the impact of losing PTPN14, Hatterschide et al. used human epithelial cells to make three-dimensional models of infected tissues. These experiments showed that, when papillomaviruses destroy PTPN14, a human protein called YAP1 turns on in the lowest, most long-lived layer of the tissue. Cells in which YAP1 is activated survive while those that carry the inactive version mature and die. This suggests that papillomaviruses turn on YAP1 to remain in tissues for long periods. Papillomaviruses cause about five percent of all human cancers. Finding ways to stop them from activating YAP1 has the potential to prevent disease. Overall, the research by Hatterschide et al. also sheds light on other epithelial cancers which are not caused by viruses.
Collapse
Affiliation(s)
- Joshua Hatterschide
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
| | - Paola Castagnino
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
| | - Hee Won Kim
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
| | - Steven M Sperry
- Department of Otolaryngology-Head and Neck Surgery, Aurora St. Luke's Medical Center, Milwaukee, United States
| | - Kathleen T Montone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
| | - Devraj Basu
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
| | - Elizabeth A White
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
67
|
Sun X, Shu Y, Ye G, Wu C, Xu M, Gao R, Huang D, Zhang J. Histone deacetylase inhibitors inhibit cervical cancer growth through Parkin acetylation-mediated mitophagy. Acta Pharm Sin B 2022; 12:838-852. [PMID: 35256949 PMCID: PMC8897022 DOI: 10.1016/j.apsb.2021.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/30/2021] [Accepted: 06/16/2021] [Indexed: 02/08/2023] Open
Abstract
Parkin, an E3 ubiquitin ligase, plays a role in maintaining mitochondrial homeostasis through targeting damaged mitochondria for mitophagy. Accumulating evidence suggests that the acetylation modification of the key mitophagy machinery influences mitophagy level, but the underlying mechanism is poorly understood. Here, our study demonstrated that inhibition of histone deacetylase (HDAC) by treatment of HDACis activates mitophagy through mediating Parkin acetylation, leading to inhibition of cervical cancer cell proliferation. Bioinformatics analysis shows that Parkin expression is inversely correlated with HDAC2 expression in human cervical cancer, indicating the low acetylation level of Parkin. Using mass spectrometry, Parkin is identified to interact with two upstream molecules, acetylase acetyl-CoA acetyltransferase 1 (ACAT1) and deacetylase HDAC2. Under treatment of suberoylanilide hydroxamic acid (SAHA), Parkin is acetylated at lysine residues 129, 220 and 349, located in different domains of Parkin protein. In in vitro experiments, combined mutation of Parkin largely attenuate the interaction of Parkin with PTEN induced putative kinase 1 (PINK1) and the function of Parkin in mitophagy induction and tumor suppression. In tumor xenografts, the expression of mutant Parkin impairs the tumor suppressive effect of Parkin and decreases the anticancer activity of SAHA. Our results reveal an acetylation-dependent regulatory mechanism governing Parkin in mitophagy and cervical carcinogenesis, which offers a new mitophagy modulation strategy for cancer therapy.
Collapse
Key Words
- ACAT1
- ACAT1, acetyl-CoA acetyltransferase 1
- Acetylation
- CCK-8, cell counting kit-8
- COXⅣ, cytochrome c oxidase Ⅳ
- Cervical cancer
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- HDAC, histone deacetylase
- HDAC2
- HIF-1α, hypoxia inducible factor-1α
- HSP60, heat shock protein 60 kDa
- LC3, microtubule-associated proteins 1A/1B light chain 3
- MFN2, mitofusion 2
- MS, mass spectrometry
- Mitophagy
- PARK2, Parkin
- PINK1, PTEN induced putative kinase 1
- Parkin
- ROS, reactive oxygen species
- SAHA, suberoylanilide hydroxamic acid
- TIM23, translocase of the inner membrane 23
- TOMM20, translocase of outer mitochondrial membrane 20
- TSA, trichostatin A
- Tumor suppression
- ULK1, unc-51 like autophagy activating kinase 1
- Ubiquitination
- VDAC1, voltage-dependent anion-selective channel protein 1
Collapse
Affiliation(s)
- Xin Sun
- Department of Oncology, Cancer Center of Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Yuhan Shu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310028, China
| | - Guiqin Ye
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou Medical College, Hangzhou 310014, China
| | - Caixia Wu
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Mengting Xu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310028, China
| | - Ruilan Gao
- Department of Hematology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Dongsheng Huang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou Medical College, Hangzhou 310014, China
- Corresponding authors.
| | - Jianbin Zhang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Corresponding authors.
| |
Collapse
|
68
|
Zhu X, Li S, Luo J, Ying X, Li Z, Wang Y, Zhang M, Zhang T, Jiang P, Wang X. Subtyping of Human Papillomavirus-Positive Cervical Cancers Based on the Expression Profiles of 50 Genes. Front Immunol 2022; 13:801639. [PMID: 35126391 PMCID: PMC8814347 DOI: 10.3389/fimmu.2022.801639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/05/2022] [Indexed: 12/29/2022] Open
Abstract
Background Human papillomavirus-positive (HPV+) cervical cancers are highly heterogeneous in molecular and clinical features. However, the molecular classification of HPV+ cervical cancers remains insufficiently unexplored. Methods Based on the expression profiles of 50 genes having the largest expression variations across the HPV+ cervical cancers in the TCGA-CESC dataset, we hierarchically clustered HPV+ cervical cancers to identify new subtypes. We further characterized molecular, phenotypic, and clinical features of these subtypes. Results We identified two subtypes of HPV+ cervical cancers, namely HPV+G1 and HPV+G2. We demonstrated that this classification method was reproducible in two validation sets. Compared to HPV+G2, HPV+G1 displayed significantly higher immune infiltration level and stromal content, lower tumor purity, lower stemness scores and intratumor heterogeneity (ITH) scores, higher level of genomic instability, lower DNA methylation level, as well as better disease-free survival prognosis. The multivariate survival analysis suggests that the disease-free survival difference between both subtypes is independent of confounding variables, such as immune signature, stemness, and ITH. Pathway and gene ontology analysis confirmed the more active tumor immune microenvironment in HPV+G1 versus HPV+G2. Conclusions HPV+ cervical cancers can be classified into two subtypes based on the expression profiles of the 50 genes with the largest expression variations across the HPV+ cervical cancers. Both subtypes have significantly different molecular, phenotypic, and clinical features. This new subtyping method captures the comprehensive heterogeneity in molecular and clinical characteristics of HPV+ cervical cancers and provides potential clinical implications for the diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Xiaojun Zhu
- Department of Obstetrics, Women’s Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Shengwei Li
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Jiangti Luo
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Xia Ying
- Department of Obstetrics, Women’s Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Zhi Li
- Department of Obstetrics, Women’s Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Yuanhe Wang
- Department of Obstetrics, Women’s Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Mengmeng Zhang
- Department of Obstetrics, Women’s Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Tianfang Zhang
- Department of Rehabilitation Medicine, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Peiyue Jiang
- Department of Obstetrics, Women’s Hospital, Medical School of Zhejiang University, Hangzhou, China
- *Correspondence: Peiyue Jiang, ; Xiaosheng Wang,
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
- *Correspondence: Peiyue Jiang, ; Xiaosheng Wang,
| |
Collapse
|
69
|
López-Gómez M, García de Santiago B, Delgado-López PD, Malmierca E, González-Olmedo J, Gómez-Raposo C, Sandoval C, Ruiz-Seco P, Escribano N, Gómez-Cerezo JF, Casado E. Gastrointestinal tumors and infectious agents: A wide field to explore. World J Meta-Anal 2021; 9:505-521. [DOI: 10.13105/wjma.v9.i6.505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/26/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Infection is currently one of the main contributors to carcinogenesis. In fact, the International Agency for Research on Cancer has categorized eleven biological agents as group I carcinogens. It is estimated that around 16% of the 12.7 million new cancers diagnosed in 2008 were attributable to infectious agents. Although underdeveloped regions carry the highest incidence rates, about 7.4% of infection-related cancer cases occur in developed areas. Physicians are increasingly aware of the potential carcinogenic role of common virus like the Human Papilloma virus in cervical cancer, or the hepatitis B and C viruses in hepatocarcinoma. However, the carcinogenic role of several other infectious agents is less recognized. Given that gastrointestinal malignancies carry an overall poor prognosis, a better understanding of the carcinogenic mechanisms triggered by infectious agents is key to decrease the rate of cancer related deaths. Preventive measures directed to such infections would ideally impact survival. In this paper we review the main pathogenic mechanisms related to the development of gastrointestinal malignancies induced by infectious microorganisms and other pathogens which are currently under investigation.
Collapse
Affiliation(s)
- Miriam López-Gómez
- Medical Oncology Department. Precision Oncology Laboratory, Infanta Sofía University Hospital, San Sebastián de los Reyes 28231, Madrid, Spain
| | - Belén García de Santiago
- Pharmacy Department, Infanta Sofia University Hospital, San Sebastián de los Reyes 28703, Madrid, Spain
| | | | - Eduardo Malmierca
- Internal Medicine Department, Infanta Sofía University Hospital, San Sebastián de los Reyes 28703, Madrid, Spain
| | - Jesús González-Olmedo
- Medical Oncology Department, Infanta Sofia University Hospital, San Sebastián de los Reyes 28703, Madrid, Spain
| | - César Gómez-Raposo
- Medical Oncology Department, Infanta Sofia University Hospital, San Sebastián de los Reyes 28703, Madrid, Spain
| | - Carmen Sandoval
- Medical Oncology Department, Infanta Sofia University Hospital, San Sebastián de los Reyes 28703, Madrid, Spain
| | - Pilar Ruiz-Seco
- Internal Medicine Department, Infanta Sofía University Hospital, San Sebastián de los Reyes 28703, Madrid, Spain
| | - Nora Escribano
- Intensive Care Unit, Jiménez Díaz Foundation, Madrid 28040, Madrid, Spain
| | - Jorge Francisco Gómez-Cerezo
- Internal Medicine Department, Infanta Sofía University Hospital, San Sebastián de los Reyes 28703, Madrid, Spain
| | - Enrique Casado
- Medical Oncology Department, Infanta Sofia University Hospital, San Sebastián de los Reyes 28703, Madrid, Spain
| |
Collapse
|
70
|
DNAzymes, Novel Therapeutic Agents in Cancer Therapy: A Review of Concepts to Applications. J Nucleic Acids 2021; 2021:9365081. [PMID: 34760318 PMCID: PMC8575636 DOI: 10.1155/2021/9365081] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
The past few decades have witnessed a rapid evolution in cancer drug research which is aimed at developing active biological interventions to regulate cancer-specific molecular targets. Nucleic acid-based therapeutics, including ribozymes, antisense oligonucleotides, small interference RNA (siRNA), aptamer, and DNAzymes, have emerged as promising candidates regulating cancer-specific genes at either the transcriptional or posttranscriptional level. Gene-specific catalytic DNA molecules, or DNAzymes, have shown promise as a therapeutic intervention against cancer in various in vitro and in vivo models, expediting towards clinical applications. DNAzymes are single-stranded catalytic DNA that has not been observed in nature, and they are synthesized through in vitro selection processes from a large pool of random DNA libraries. The intrinsic properties of DNAzymes like small molecular weight, higher stability, excellent programmability, diversity, and low cost have brought them to the forefront of the nucleic acid-based therapeutic arsenal available for cancers. In recent years, considerable efforts have been undertaken to assess a variety of DNAzymes against different cancers. However, their therapeutic application is constrained by the low delivery efficiency, cellular uptake, and target detection within the tumour microenvironment. Thus, there is a pursuit to identify efficient delivery methods in vivo before the full potential of DNAzymes in cancer therapy is realized. In this light, a review of the recent advances in the use of DNAzymes against cancers in preclinical and clinical settings is valuable to understand its potential as effective cancer therapy. We have thus sought to firstly provide a brief overview of construction and recent improvements in the design of DNAzymes. Secondly, this review stipulates the efficacy, safety, and tolerability of DNAzymes developed against major hallmarks of cancers tested in preclinical and clinical settings. Lastly, the recent advances in DNAzyme delivery systems along with the challenges and prospects for the clinical application of DNAzymes as cancer therapy are also discussed.
Collapse
|
71
|
Ramachandran D, Dörk T. Genomic Risk Factors for Cervical Cancer. Cancers (Basel) 2021; 13:5137. [PMID: 34680286 PMCID: PMC8533931 DOI: 10.3390/cancers13205137] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022] Open
Abstract
Cervical cancer is the fourth common cancer amongst women worldwide. Infection by high-risk human papilloma virus is necessary in most cases, but not sufficient to develop invasive cervical cancer. Despite a predicted genetic heritability in the range of other gynaecological cancers, only few genomic susceptibility loci have been identified thus far. Various case-control association studies have found corroborative evidence for several independent risk variants at the 6p21.3 locus (HLA), while many reports of associations with variants outside the HLA region remain to be validated in other cohorts. Here, we review cervical cancer susceptibility variants arising from recent genome-wide association studies and meta-analysis in large cohorts and propose 2q14 (PAX8), 17q12 (GSDMB), and 5p15.33 (CLPTM1L) as consistently replicated non-HLA cervical cancer susceptibility loci. We further discuss the available evidence for these loci, knowledge gaps, future perspectives, and the potential impact of these findings on precision medicine strategies to combat cervical cancer.
Collapse
Affiliation(s)
| | - Thilo Dörk
- Gynaecology Research Unit, Department of Gynaecology and Obstetrics, Comprehensive Cancer Center, Hannover Medical School, D-30625 Hannover, Germany;
| |
Collapse
|
72
|
Inturi R, Jemth P. CRISPR/Cas9-based inactivation of human papillomavirus oncogenes E6 or E7 induces senescence in cervical cancer cells. Virology 2021; 562:92-102. [PMID: 34280810 DOI: 10.1016/j.virol.2021.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 01/10/2023]
Abstract
Human papillomaviruses (HPVs) such as HPV16 and HPV18 can cause cancers of the cervix, anogenital and oropharyngeal sites. Continuous expression of the HPV oncoproteins E6 and E7 are essential for transformation and maintenance of cancer cells. Therefore, therapeutic targeting of E6 or E7 genes can potentially treat HPV-related cancers. Here we report that CRISPR/Cas9-based knockout of E6 or E7 can trigger cellular senescence in HPV18 immortalized HeLa cells. Specifically, E6 or E7-inactivated HeLa cells exhibited characteristic senescence markers like enlarged cell surface area, increased β-galactosidase expression and loss of lamin B1. Since E6 and E7 are bicistronic transcripts, inactivation of HPV18 E6 resulted in knockout of both E6 and E7 and increasing levels of p53/p21 and pRb/p21, respectively. Knockout of HPV18 E7 resulted in decreased E6 expression with activation of pRb/p21 pathway. Taken together, our study demonstrates cellular senescence as an alternative outcome of HPV oncogene inactivation by CRISPR/Cas9.
Collapse
Affiliation(s)
- Raviteja Inturi
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-75123, Uppsala, Sweden.
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-75123, Uppsala, Sweden.
| |
Collapse
|
73
|
Basukala O, Banks L. The Not-So-Good, the Bad and the Ugly: HPV E5, E6 and E7 Oncoproteins in the Orchestration of Carcinogenesis. Viruses 2021; 13:1892. [PMID: 34696321 PMCID: PMC8541208 DOI: 10.3390/v13101892] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Infection with HPV starts with the access of the viral particles to basal cells in the epidermis, potentially via microtraumas to the skin. The basal cells are able to keep away these pathogens in normal circumstances through a robust immune response from the host, as HPV infections are, in general, cleared within 2 to 3 weeks. However, the rare instances of persistent infection and/or in cases where the host immune system is compromised are major risk factors for the development of lesions potentially leading to malignancy. Evolutionarily, obligatory pathogens such as HPVs would not be expected to risk exposing the host to lethal cancer, as this would entail challenging their own life cycle, but infection with these viruses is highly correlated with cancer and malignancy-as in cancer of the cervix, which is almost always associated with these viruses. Despite this key associative cause and the availability of very effective vaccines against these viruses, therapeutic interventions against HPV-induced cancers are still a challenge, indicating the need for focused translational research. In this review, we will consider the key roles that the viral proteins play in driving the host cells to carcinogenesis, mainly focusing on events orchestrated by early proteins E5, E6 and E7-the not-so-good, the bad and the ugly-and discuss and summarize the major events that lead to these viruses mechanistically corrupting cellular homeostasis, giving rise to cancer and malignancy.
Collapse
Affiliation(s)
| | - Lawrence Banks
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy;
| |
Collapse
|
74
|
Transcription Factor Homeobox D9 Drives the Malignant Phenotype of HPV18-Positive Cervical Cancer Cells via Binding to the Viral Early Promoter. Cancers (Basel) 2021; 13:cancers13184613. [PMID: 34572841 PMCID: PMC8470817 DOI: 10.3390/cancers13184613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Transcription factor homeobox D9 (HOXD9) was previously reported to bind to the P97 promoter of HPV16 to induce viral E6/E7 oncogenes. In this article, we investigated whether HOXD9 regulated the P105 promoter of HPV18 and examined the role of HOXD9 in intracellular signaling of cervical cancer (CC). HOXD9 was directly bound to the P105 promoter and regulated the expression of E6/E7 genes of HPV18. The HOXD9 knockdown suppressed the E6/E7 gene expression in HPV18-positive cervical cancer cells. It decreased the expression of E6, activated the p53 pathway, and induced apoptosis. In addition, downregulation of the E7 gene expression activated the Rb pathway, causing G1 arrest in the cell cycle and markedly suppressing cell proliferation. Our results indicate that HOXD9 has pivotal roles in the proliferation and immortalization of HPV18-positive cervical cancer cells through activating the P105 promoter. Abstract Persistent infections with two types of human papillomaviruses (HPV), HPV16 and HPV18, are the most common cause of cervical cancer (CC). Two viral early genes, E6 and E7, are associated with tumor development, and expressions of E6 and E7 are primarily regulated by a single viral promoter: P97 in HPV16 and P105 in HPV18. We previously demonstrated that the homeobox D9 (HOXD9) transcription factor is responsible for the malignancy of HPV16-positive CC cell lines via binding to the P97 promoter. Here, we investigated whether HOXD9 is also involved in the regulation of the P105 promoter using two HPV18-positive CC cell lines, SKG-I and HeLa. Following the HOXD9 knockdown, cell viability was significantly reduced, and E6 expression was suppressed and was accompanied by increased protein levels of P53, while mRNA levels of TP53 did not change. E7 expression was also downregulated and, while mRNA levels of RB1 and E2F were unchanged, mRNA levels of E2F-target genes, MCM2 and PCNA, were decreased, which indicates that the HOXD9 knockdown downregulates E7 expression, thus leading to an inactivation of E2F and the cell-cycle arrest. Chromatin immunoprecipitation and promoter reporter assays confirmed that HOXD9 is directly associated with the P105 promoter. Collectively, our results reveal that HOXD9 drives the HPV18 early promoter activity to promote proliferation and immortalization of the CC cells.
Collapse
|
75
|
Marongiu L, Allgayer H. Viruses in colorectal cancer. Mol Oncol 2021; 16:1423-1450. [PMID: 34514694 PMCID: PMC8978519 DOI: 10.1002/1878-0261.13100] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/15/2021] [Accepted: 09/10/2021] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence suggests that microorganisms might represent at least highly interesting cofactors in colorectal cancer (CRC) oncogenesis and progression. Still, associated mechanisms, specifically in colonocytes and their microenvironmental interactions, are still poorly understood. Although, currently, at least seven viruses are being recognized as human carcinogens, only three of these – Epstein–Barr virus (EBV), human papillomavirus (HPV) and John Cunningham virus (JCV) – have been described, with varying levels of evidence, in CRC. In addition, cytomegalovirus (CMV) has been associated with CRC in some publications, albeit not being a fully acknowledged oncovirus. Moreover, recent microbiome studies set increasing grounds for new hypotheses on bacteriophages as interesting additional modulators in CRC carcinogenesis and progression. The present Review summarizes how particular groups of viruses, including bacteriophages, affect cells and the cellular and microbial microenvironment, thereby putatively contributing to foster CRC. This could be achieved, for example, by promoting several processes – such as DNA damage, chromosomal instability, or molecular aspects of cell proliferation, CRC progression and metastasis – not necessarily by direct infection of epithelial cells only, but also by interaction with the microenvironment of infected cells. In this context, there are striking common features of EBV, CMV, HPV and JCV that are able to promote oncogenesis, in terms of establishing latent infections and affecting p53‐/pRb‐driven, epithelial–mesenchymal transition (EMT)‐/EGFR‐associated and especially Wnt/β‐catenin‐driven pathways. We speculate that, at least in part, such viral impacts on particular pathways might be reflected in lasting (e.g. mutational or further genomic) fingerprints of viruses in cells. Also, the complex interplay between several species within the intestinal microbiome, involving a direct or indirect impact on colorectal and microenvironmental cells but also between, for example, phages and bacterial and viral pathogens, and further novel species certainly might, in part, explain ongoing difficulties to establish unequivocal monocausal links between specific viral infections and CRC.
Collapse
Affiliation(s)
- Luigi Marongiu
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, Ruprecht-Karls-University of Heidelberg, Mannheim, Germany
| | - Heike Allgayer
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, Ruprecht-Karls-University of Heidelberg, Mannheim, Germany
| |
Collapse
|
76
|
Daniels DE, Ferguson DCJ, Griffiths RE, Trakarnsanga K, Cogan N, MacInnes KA, Mordue KE, Andrienko T, Ferrer-Vicens I, Ramos Jiménez D, Lewis PA, Wilson MC, Canham MA, Kurita R, Nakamura Y, Anstee DJ, Frayne J. Reproducible immortalization of erythroblasts from multiple stem cell sources provides approach for sustainable RBC therapeutics. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:26-39. [PMID: 34485592 PMCID: PMC8390520 DOI: 10.1016/j.omtm.2021.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 06/01/2021] [Indexed: 12/01/2022]
Abstract
Developing robust methodology for the sustainable production of red blood cells in vitro is essential for providing an alternative source of clinical-quality blood, particularly for individuals with rare blood group phenotypes. Immortalized erythroid progenitor cell lines are the most promising emergent technology for achieving this goal. We previously created the erythroid cell line BEL-A from bone marrow CD34+ cells that had improved differentiation and enucleation potential compared to other lines reported. In this study we show that our immortalization approach is reproducible for erythroid cells differentiated from bone marrow and also from far more accessible peripheral and cord blood CD34+ cells, consistently generating lines with similar improved erythroid performance. Extensive characterization of the lines shows them to accurately recapitulate their primary cell equivalents and provides a molecular signature for immortalization. In addition, we show that only cells at a specific stage of erythropoiesis, predominantly proerythroblasts, are amenable to immortalization. Our methodology provides a step forward in the drive for a sustainable supply of red cells for clinical use and for the generation of model cellular systems for the study of erythropoiesis in health and disease, with the added benefit of an indefinite expansion window for manipulation of molecular targets.
Collapse
Affiliation(s)
- Deborah E Daniels
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.,NIHR Blood and Transplant Research Unit, University of Bristol, Bristol BS8 1TD, UK
| | | | | | - Kongtana Trakarnsanga
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nicola Cogan
- NIHR Blood and Transplant Research Unit, University of Bristol, Bristol BS8 1TD, UK.,Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Bristol BS34 7QH, UK
| | - Katherine A MacInnes
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.,NIHR Blood and Transplant Research Unit, University of Bristol, Bristol BS8 1TD, UK
| | - Kathryn E Mordue
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | - Phillip A Lewis
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | | | - Maurice A Canham
- Tissues, Cells & Advanced Therapeutics, Scottish National Blood Transfusion Service, The Jack Copland Centre, 52 Research Avenue North, Edinburgh, EH14 4BE, UK
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - David J Anstee
- NIHR Blood and Transplant Research Unit, University of Bristol, Bristol BS8 1TD, UK.,Bristol Institute for Transfusion Sciences, National Health Service Blood and Transplant (NHSBT), Bristol BS34 7QH, UK
| | - Jan Frayne
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.,NIHR Blood and Transplant Research Unit, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
77
|
Chera BS. Introduction: HPV Related Malignancies. Semin Radiat Oncol 2021; 31:263-264. [PMID: 34455981 DOI: 10.1016/j.semradonc.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Bhishamjit S Chera
- Department of Radiation Oncology, University of North Carolina Hospitals, Chapel Hill, NC.
| |
Collapse
|
78
|
Zhang Y, Li M. Genome Editing Technologies as Cellular Defense Against Viral Pathogens. Front Cell Dev Biol 2021; 9:716344. [PMID: 34336867 PMCID: PMC8320169 DOI: 10.3389/fcell.2021.716344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022] Open
Abstract
Viral infectious diseases are significant threats to the welfare of world populations. Besides the widespread acute viral infections (e.g., dengue fever) and chronic infections [e.g., those by the human immunodeficiency virus (HIV) and hepatitis B virus (HBV)], emerging viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), pose great challenges to the world. Genome editing technologies, including clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) proteins, zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), have played essential roles in the study of new treatment for viral infectious diseases in cell lines, animal models, and clinical trials. Genome editing tools have been used to eliminate latent infections and provide resistance to new infections. Increasing evidence has shown that genome editing-based antiviral strategy is simple to design and can be quickly adapted to combat infections by a wide spectrum of viral pathogens, including the emerging coronaviruses. Here we review the development and applications of genome editing technologies for preventing or eliminating infections caused by HIV, HBV, HPV, HSV, and SARS-CoV-2, and discuss how the latest advances could enlighten further development of genome editing into a novel therapy for viral infectious diseases.
Collapse
|
79
|
Hatano Y, Ideta T, Hirata A, Hatano K, Tomita H, Okada H, Shimizu M, Tanaka T, Hara A. Virus-Driven Carcinogenesis. Cancers (Basel) 2021; 13:2625. [PMID: 34071792 PMCID: PMC8198641 DOI: 10.3390/cancers13112625] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer arises from the accumulation of genetic and epigenetic alterations. Even in the era of precision oncology, carcinogens contributing to neoplastic process are still an important focus of research. Comprehensive genomic analyses have revealed various combinations of base substitutions, referred to as the mutational signatures, in cancer. Each mutational signature is believed to arise from specific DNA damage and repair processes, including carcinogens. However, as a type of carcinogen, tumor viruses increase the cancer risk by alternative mechanisms, including insertional mutagenesis, viral oncogenes, and immunosuppression. In this review, we summarize virus-driven carcinogenesis to provide a framework for the control of malignant cell proliferation. We first provide a brief overview of oncogenic viruses and describe their implication in virus-related tumors. Next, we describe tumor viruses (HPV, Human papilloma virus; HBV, Hepatitis B virus; HCV, Hepatitis C virus; EBV, Epstein-Barr virus; Kaposi sarcoma herpesvirus; MCV, Merkel cell polyoma virus; HTLV-1, Human T-cell lymphotropic virus, type-1) and tumor virus-related cancers. Lastly, we introduce emerging tumor virus candidates, human cytomegalovirus (CMV), human herpesvirus-6 (HHV-6) and adeno-associated virus-2 (AAV-2). We expect this review to be a hub in a complex network of data for virus-associated carcinogenesis.
Collapse
Affiliation(s)
- Yuichiro Hatano
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (H.T.); (A.H.)
| | - Takayasu Ideta
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (T.I.); (M.S.)
- Department of Laboratory Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Akihiro Hirata
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1194, Japan;
| | - Kayoko Hatano
- Department of Obstetrics and Gynecology, Gifu University Hospital, Gifu 501-1194, Japan;
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (H.T.); (A.H.)
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan;
| | - Masahito Shimizu
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (T.I.); (M.S.)
| | - Takuji Tanaka
- Department of Diagnostic Pathology (DDP) and Research Center of Diagnostic Pathology (RC-DiP), Gifu Municipal Hospital, Gifu 500-8513, Japan;
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (H.T.); (A.H.)
| |
Collapse
|
80
|
Mattos BRS, Camandaroba MPG, Ruiz-Garcia E, Diaz-Romero C, Luca R, Mendez G, Lustosa IKF, Silva SF, Mello CA, Silva VS, O'Connor JM, Riechelmann RP. Outcomes of Patients With Metastatic Anal Cancer According to HIV Infection: A Multicenter Study by the Latin American Gastrointestinal Oncology Group (SLAGO). Clin Colorectal Cancer 2021; 20:299-304. [PMID: 34158252 DOI: 10.1016/j.clcc.2021.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND HIV-positive patients are underrepresented in clinical trials of metastatic squamous cell carcinoma of the anal canal (mSCCA). We aimed to compare the clinical outcomes of mSCCA patients according to HIV infection. METHODS This was a retrospective multicenter cohort study of consecutive patients with mSCCA. All HIV-positive patients received antiretroviral therapy. The primary endpoint was overall survival (OS), and secondary endpoints were progression-free survival (PFS) and response rate (RR). RESULTS From January 2005 to December 2019, 113 patients were included: 20 (17.6%) had HIV infection. HIV-positive patients were younger at diagnosis and more frequently male, and 20% (n = 8) received exclusively best supportive care in comparison with 8.6% of HIV-negative patients (P = .13). Both groups were similar in terms of Eastern Cooperative Oncology Group (ECOG) performance status, pattern of metastatic disease, and type of first-line chemotherapy. Five (25%) HIV-positive and 36 (38.7%) HIV-negative patients received second-line therapies (P = .24). RR and median PFS in first-line were similar between the groups: 35% and 30.1% (P = .78) and 4.9 and 5.3 months (P = .85) for patients with and without HIV infection, respectively. At a median follow-up of 26 months, median OS was 11.3 months (95% confidence interval [CI] 10.1 to 26.4) for HIV-infected patients versus 14.6 months (95% CI 11.1 to 18.1) for HIV-negative patients (P = .92). In the univariate analysis for OS, only ECOG performance status was significant. CONCLUSION HIV-positive mSCCA patients under antiretroviral therapy have oncological outcomes similar to those of HIV-negative patients. These patients should be included in trials of mSCCA.
Collapse
Affiliation(s)
- Bruna R S Mattos
- A.C. Camargo Cancer Center, Fundação Antonio Prudente, Sao Paulo, Brazil
| | | | | | | | - Romina Luca
- Institute Alexander Fleming, Buenos Aires, Argentina
| | - Guillermo Mendez
- Favaloro Foundation University Hospital, Buenos Aires, Argentina
| | - Iara K F Lustosa
- A.C. Camargo Cancer Center, Fundação Antonio Prudente, Sao Paulo, Brazil
| | - Sinara F Silva
- A.C. Camargo Cancer Center, Fundação Antonio Prudente, Sao Paulo, Brazil
| | - Celso A Mello
- A.C. Camargo Cancer Center, Fundação Antonio Prudente, Sao Paulo, Brazil
| | - Virgilio S Silva
- A.C. Camargo Cancer Center, Fundação Antonio Prudente, Sao Paulo, Brazil
| | | | | |
Collapse
|
81
|
Crowley FJ, O'Cearbhaill RE, Collins DC. Exploiting somatic alterations as therapeutic targets in advanced and metastatic cervical cancer. Cancer Treat Rev 2021; 98:102225. [PMID: 34082256 DOI: 10.1016/j.ctrv.2021.102225] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 01/05/2023]
Abstract
It is estimated that 604,127 patients were diagnosed with cervical cancer worldwide in 2020. While a small percentage of patients will have metastatic disease at diagnosis, a large percentage (15-61%) later develop advanced disease. For this cohort, treatment with systemic chemotherapy remains the standard of care, with a static 5-year survival rate over the last thirty years. Data on targetable molecular alterations in cervical cancer have lagged behind other more common tumor types thus stunting the development of targeted agents. In recent years, tumor genomic testing has been increasingly incorporated into our clinical practice, opening the door for a potential new era of personalized treatment for advanced cervical cancer. The interim results from the NCI-MATCH study reported an actionability rate of 28.4% for the cervical cancer cohort, suggesting a subset of patients may harbor mutations which that are targetable. This review sets out to summarize the key targeted agents currently under exploration either alone or in combination with existing treatments for cervical cancer.
Collapse
Affiliation(s)
- F J Crowley
- Department of Internal Medicine, Mount Sinai Morningside and Mount Sinai West, NY, USA.
| | - R E O'Cearbhaill
- Department of Medicine, Memorial Sloan Kettering Cancer Centre and Weill Cornell Medical College, NY, USA.
| | - D C Collins
- Department of Medical Oncology, Cork University Hospital, Cork, Ireland; Cancer Research @UCC, College of Medicine and Health, University College Cork, Cork, Ireland.
| |
Collapse
|
82
|
Prusinkiewicz MA, Mymryk JS. Metabolic Control by DNA Tumor Virus-Encoded Proteins. Pathogens 2021; 10:560. [PMID: 34066504 PMCID: PMC8148605 DOI: 10.3390/pathogens10050560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Viruses co-opt a multitude of host cell metabolic processes in order to meet the energy and substrate requirements for successful viral replication. However, due to their limited coding capacity, viruses must enact most, if not all, of these metabolic changes by influencing the function of available host cell regulatory proteins. Typically, certain viral proteins, some of which can function as viral oncoproteins, interact with these cellular regulatory proteins directly in order to effect changes in downstream metabolic pathways. This review highlights recent research into how four different DNA tumor viruses, namely human adenovirus, human papillomavirus, Epstein-Barr virus and Kaposi's associated-sarcoma herpesvirus, can influence host cell metabolism through their interactions with either MYC, p53 or the pRb/E2F complex. Interestingly, some of these host cell regulators can be activated or inhibited by the same virus, depending on which viral oncoprotein is interacting with the regulatory protein. This review highlights how MYC, p53 and pRb/E2F regulate host cell metabolism, followed by an outline of how each of these DNA tumor viruses control their activities. Understanding how DNA tumor viruses regulate metabolism through viral oncoproteins could assist in the discovery or repurposing of metabolic inhibitors for antiviral therapy or treatment of virus-dependent cancers.
Collapse
Affiliation(s)
| | - Joe S. Mymryk
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada;
- Department of Otolaryngology, Head & Neck Surgery, Western University, London, ON N6A 3K7, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6C 2R5, Canada
| |
Collapse
|
83
|
Ogawa T, Ishitsuka Y, Fujimoto M, Nomura T. Altered nucleocytoplasmic staining patterns of p62/SQSTM1 in cutaneous squamous cell carcinoma precursors. JOURNAL OF CUTANEOUS IMMUNOLOGY AND ALLERGY 2021. [DOI: 10.1002/cia2.12171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Tatsuya Ogawa
- Department of Dermatology Faculty of Medicine University of Tsukuba Tsukuba Japan
| | - Yosuke Ishitsuka
- Department of Dermatology Faculty of Medicine University of Tsukuba Tsukuba Japan
- Department of Dermatology Graduate School of Medicine Osaka University Suita Japan
| | - Manabu Fujimoto
- Department of Dermatology Graduate School of Medicine Osaka University Suita Japan
| | - Toshifumi Nomura
- Department of Dermatology Faculty of Medicine University of Tsukuba Tsukuba Japan
| |
Collapse
|
84
|
Beilner D, Kuhn C, Kost BP, Vilsmaier T, Vattai A, Kaltofen T, Mahner S, Schmoeckel E, Dannecker C, Jückstock J, Mayr D, Jeschke U, Heidegger HH. Nuclear receptor corepressor (NCoR) is a positive prognosticator for cervical cancer. Arch Gynecol Obstet 2021; 304:1307-1314. [PMID: 33861372 PMCID: PMC8490237 DOI: 10.1007/s00404-021-06053-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/27/2021] [Indexed: 12/19/2022]
Abstract
Purpose Enzymes with epigenetic functions play an essential part in development of cancer. However, the significance of epigenetic changes in cervical carcinoma as a prognostic factor has not been fully investigated. Nuclear receptor corepressor (NCoR) presents itself as a potentially important element for epigenetic modification and as a potential prognostic aspect in cervical cancer. Methods By immunohistochemical staining of 250 tumor samples, the expression strength of NCoR was measured and evaluated by immunoreactive score (IRS) in the nucleus and cytoplasm. Results A low expression of NCoR in our patients was a disadvantage in overall survival. Expression of NCoR was negatively correlated with viral oncoprotein E6, acetylated histone H3 acetyl K9 and FIGO status, and positively correlated to p53. Conclusions Our study has identified epigenetic modification of tumor cells thus seems to be of relevance in cervical cancer as well for diagnosis, as a marker or as a potential therapeutic target in patients with advanced cervical carcinoma.
Collapse
Affiliation(s)
- Daniel Beilner
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Maistrasse 11, 80337, Munich, Germany
| | - Christina Kuhn
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Maistrasse 11, 80337, Munich, Germany
| | - Bernd P Kost
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Maistrasse 11, 80337, Munich, Germany
| | - Theresa Vilsmaier
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Maistrasse 11, 80337, Munich, Germany
| | - Aurelia Vattai
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Maistrasse 11, 80337, Munich, Germany
| | - Till Kaltofen
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Maistrasse 11, 80337, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Maistrasse 11, 80337, Munich, Germany
| | - Elisa Schmoeckel
- Department of Pathology, LMU Munich, Thalkirchner Street 56, 80337, Munich, Germany
| | - Christian Dannecker
- Department of Obstetrics and Gynaecology, University Hospital Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Julia Jückstock
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Maistrasse 11, 80337, Munich, Germany
| | - Doris Mayr
- Department of Pathology, LMU Munich, Thalkirchner Street 56, 80337, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Maistrasse 11, 80337, Munich, Germany. .,Department of Obstetrics and Gynaecology, University Hospital Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany.
| | - Helene Hildegard Heidegger
- Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University of Munich, Maistrasse 11, 80337, Munich, Germany
| |
Collapse
|
85
|
Panic A, Reis H, Wittka A, Darr C, Hadaschik B, Jendrossek V, Klein D. The Biomarker Potential of Caveolin-1 in Penile Cancer. Front Oncol 2021; 11:606122. [PMID: 33868995 PMCID: PMC8045968 DOI: 10.3389/fonc.2021.606122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/12/2021] [Indexed: 01/11/2023] Open
Abstract
Various types of human cancers were characterized by an altered expression of epithelial or stromal caveolin-1 (CAV1). However, the clinical significance of CAV1 expression in penile cancer remains largely unknown. Here the expression patterns of CAV1 were analyzed in a retrospective cohort (n=43) of penile squamous cell carcinomas (SCC). Upon penile cancer progression, significantly increased CAV1-levels were determined within the malignant epithelium, whereas within the tumor stroma, namely the fibroblastic tumor compartment harboring activated and/or cancer associated fibroblasts, CAV1 levels significantly decline. Concerning the clinicopathological significance of CAV1 expression in penile cancer as well as respective epithelial-stromal CAV1 distributions, high expression within the tumor cells as well as low expression of CAV1 within the stromal compartment were correlated with decreased overall survival of penile cancer patients. Herein, CAV1 expressions and distributions at advanced penile cancer stages were independent of the immunohistochemically proven tumor protein p53 status. In contrast, less differentiated p16-positive tumor epithelia (indicative for human papilloma virus infection) were characterized by significantly decreased CAV1 levels. Conclusively, we provide further and new evidence that the characteristic shift in stromal‐epithelial CAV1 being functionally relevant to tumor progression even occurs in penile SCC.
Collapse
Affiliation(s)
- Andrej Panic
- Department of Urology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Henning Reis
- Institute of Pathology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Alina Wittka
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Christopher Darr
- Department of Urology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Boris Hadaschik
- Department of Urology, West German Cancer Center, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Diana Klein
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| |
Collapse
|
86
|
Gustinucci D, Ciccocioppo L, Coppola L, Negri G, Zannoni G, Passamonti B, Cesarini E, Ianzano C, Andreano T, Pireddu A, Giorgi-Rossi P. Multicentre Evaluation of Hepika Test Clinical Accuracy in Diagnosing HPV-Induced Cancer and Precancerous Lesions of the Uterine Cervix. Diagnostics (Basel) 2021; 11:619. [PMID: 33808260 PMCID: PMC8066214 DOI: 10.3390/diagnostics11040619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To evaluate the clinical accuracy of Hepika test to identify cancer/precancerous lesions of the uterine cervix. MATERIALS AND METHODS A multicentre retrospective study was carried out in 2018 and included 330 liquid-based cytology samples from three Italian centres of women aged 25-64 who had been tested for the human papillomavirus (HPV) and whose histology or follow-up outcome was known. Hepika is an enzyme-linked immunosorbent assay (ELISA) targeting the protein complexes E6#p53 and E7#pRb. After excluding samples without sufficient residual material, the clinical accuracy of Hepika test was evaluated in 274 samples: adenocarcinoma (ADC) (4), squamous cell carcinoma (SCC) (7), adenocarcinoma in situ (AIS) (1), cervical intraepithelial neoplasia (CIN) grade 3 (60), CIN2 (51), CIN1 (34), and negative histology (117). Association, sensitivity, and specificity for carcinoma, CIN3+ and CIN2+ are reported. RESULTS Positive Hepika test was associated with a high probability of carcinoma (odds ratio (DOR) = 33.68, 95% confidence interval (CI) 7.0-163.1); sensitivity was 81.8%, specificity, 88.2%. A positive Hepika test showed a weaker association with CIN3+ lesions (DOR = 3.5; 95% CI 1.75-6.99) and lower sensitivity (27.8%). CONCLUSION The Hepika test was found to be an accurate biomarker for HPV-induced cervical carcinoma. Population-based prospective studies are needed to confirm the clinical usefulness of the Hepika test in the differential diagnosis of HPV-induced invasive lesions.
Collapse
Affiliation(s)
- Daniela Gustinucci
- Laboratorio Unico di Screening USL Umbria 1, 06124 Perugia, Italy; (B.P.); (E.C.)
| | - Lucia Ciccocioppo
- Cytopathology Unit, Renzetti Hospital, 66034 Lanciano, Italy; (L.C.); (C.I.)
| | - Luigi Coppola
- Pathology Unit, San Filippo Neri Hospital, 00135 Rome, Italy;
| | - Giovanni Negri
- Pathology Unit, Central Hospital Bolzano, 39100 Bolzano, Italy;
| | - Gianfranco Zannoni
- Department of Woman, Child and Public Health Sciences, Gynecopathology and Breast Pathology Unit, Catholic University of Sacred Hearth, 00168 Rome, Italy;
| | - Basilio Passamonti
- Laboratorio Unico di Screening USL Umbria 1, 06124 Perugia, Italy; (B.P.); (E.C.)
| | - Elena Cesarini
- Laboratorio Unico di Screening USL Umbria 1, 06124 Perugia, Italy; (B.P.); (E.C.)
| | - Ciro Ianzano
- Cytopathology Unit, Renzetti Hospital, 66034 Lanciano, Italy; (L.C.); (C.I.)
| | | | - Anjuta Pireddu
- Pathology Unit, USL Umbria 1, 06012 Città di Castello, Italy;
| | - Paolo Giorgi-Rossi
- Epidemiology Unit, Azienda Unità Sanitaria Locale—Istituto di Ricovero e Cura a Carattere Scientifico di Reggio Emilia, 42123 Reggio Emilia, Italy;
| |
Collapse
|
87
|
Employing siRNA tool and its delivery platforms in suppressing cisplatin resistance: Approaching to a new era of cancer chemotherapy. Life Sci 2021; 277:119430. [PMID: 33789144 DOI: 10.1016/j.lfs.2021.119430] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022]
Abstract
Although chemotherapy is a first option in treatment of cancer patients, drug resistance has led to its failure, requiring strategies to overcome it. Cancer cells are capable of switching among molecular pathways to ensure their proliferation and metastasis, leading to their resistance to chemotherapy. The molecular pathways and mechanisms that are responsible for cancer progression and growth, can be negatively affected for providing chemosensitivity. Small interfering RNA (siRNA) is a powerful tool extensively applied in cancer therapy in both pre-clinical (in vitro and in vivo) and clinical studies because of its potential in suppressing tumor-promoting factors. As such oncogene pathways account for cisplatin (CP) resistance, their targeting by siRNA plays an important role in reversing chemoresistance. In the present review, application of siRNA for suppressing CP resistance is discussed. The first priority of using siRNA is sensitizing cancer cells to CP-mediated apoptosis via down-regulating survivin, ATG7, Bcl-2, Bcl-xl, and XIAP. The cancer stem cell properties and related molecular pathways including ID1, Oct-4 and nanog are inhibited by siRNA in CP sensitivity. Cell cycle arrest and enhanced accumulation of CP in cancer cells can be obtained using siRNA. In overcoming siRNA challenges such as off-targeting feature and degradation, carriers including nanoparticles and biological carriers have been applied. These carriers are important in enhancing cellular accumulation of siRNA, elevating gene silencing efficacy and reversing CP resistance.
Collapse
|
88
|
Scarth JA, Patterson MR, Morgan EL, Macdonald A. The human papillomavirus oncoproteins: a review of the host pathways targeted on the road to transformation. J Gen Virol 2021; 102:001540. [PMID: 33427604 PMCID: PMC8148304 DOI: 10.1099/jgv.0.001540] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
Persistent infection with high-risk human papillomaviruses (HR-HPVs) is the causal factor in over 99 % of cervical cancer cases, and a significant proportion of oropharyngeal and anogenital cancers. The key drivers of HPV-mediated transformation are the oncoproteins E5, E6 and E7. Together, they act to prolong cell-cycle progression, delay differentiation and inhibit apoptosis in the host keratinocyte cell in order to generate an environment permissive for viral replication. The oncoproteins also have key roles in mediating evasion of the host immune response, enabling infection to persist. Moreover, prolonged infection within the cellular environment established by the HR-HPV oncoproteins can lead to the acquisition of host genetic mutations, eventually culminating in transformation to malignancy. In this review, we outline the many ways in which the HR-HPV oncoproteins manipulate the host cellular environment, focusing on how these activities can contribute to carcinogenesis.
Collapse
Affiliation(s)
- James A. Scarth
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Molly R. Patterson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| | - Ethan L. Morgan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Present address: Tumour Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institute of Health, Bethesda, MD 20892, USA
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, West Yorkshire, LS2 9JT, UK
| |
Collapse
|
89
|
Development and validation of a multiplex qPCR assay for detection and relative quantification of HPV16 and HPV18 E6 and E7 oncogenes. Sci Rep 2021; 11:4039. [PMID: 33597592 PMCID: PMC7889863 DOI: 10.1038/s41598-021-83489-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Human papillomaviruses (HPV) play a key role in promoting human anogenital cancers. Current high-risk HPV screening or diagnosis tests involve cytological or molecular techniques mostly based on qualitative HPV DNA detection. Here, we describe the development of a rapid quantitative polymerase chain reaction (qPCR) detection test of HPV16 and HPV18 oncogenes (E6 and E7) normalized on human gene encoding GAPDH. Optimized qPCR parameters were defined, and analytical specificities were validated. The limit of detection was 101 for all genes tested. Assay performances were evaluated on clinical samples (n = 96). Concordance between the Xpert HPV assay and the triplex assay developed here was 93.44% for HPV16 and 73.58% for HPV18. HPV co-infections were detected in 15 samples. The systems developed in the present study can be used in complement to traditional HPV tests for specifically validating the presence of HPV16 and/or HPV18. It can also be used for the follow-up of patients with confirmed infection and at risk of developing lesions, through the quantification of E6 and E7 oncogene expression (mRNA) normalized on the GAPDH expression levels.
Collapse
|
90
|
Lee HS, Kim MW, Jin KS, Shin HC, Kim WK, Lee SC, Kim SJ, Lee EW, Ku B. Molecular Analysis of the Interaction between Human PTPN21 and the Oncoprotein E7 from Human Papillomavirus Genotype 18. Mol Cells 2021; 44:26-37. [PMID: 33431714 PMCID: PMC7854179 DOI: 10.14348/molcells.2020.0169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/10/2020] [Accepted: 12/08/2020] [Indexed: 01/04/2023] Open
Abstract
Human papillomaviruses (HPVs) cause cellular hyperproliferation-associated abnormalities including cervical cancer. The HPV genome encodes two major viral oncoproteins, E6 and E7, which recruit various host proteins by direct interaction for proteasomal degradation. Recently, we reported the structure of HPV18 E7 conserved region 3 (CR3) bound to the protein tyrosine phosphatase (PTP) domain of PTPN14, a well-defined tumor suppressor, and found that this intermolecular interaction plays a key role in E7-driven transformation and tumorigenesis. In this study, we carried out a molecular analysis of the interaction between CR3 of HPV18 E7 and the PTP domain of PTPN21, a PTP protein that shares high sequence homology with PTPN14 but is putatively oncogenic rather than tumor-suppressive. Through the combined use of biochemical tools, we verified that HPV18 E7 and PTPN21 form a 2:2 complex, with a dissociation constant of 5 nM and a nearly identical binding manner with the HPV18 E7 and PTPN14 complex. Nevertheless, despite the structural similarities, the biological consequences of the E7 interaction were found to differ between the two PTP proteins. Unlike PTPN14, PTPN21 did not appear to be subjected to proteasomal degradation in HPV18-positive HeLa cervical cancer cells. Moreover, knockdown of PTPN21 led to retardation of the migration/invasion of HeLa cells and HPV18 E7-expressing HaCaT keratinocytes, which reflects its protumor activity. In conclusion, the associations of the viral oncoprotein E7 with PTPN14 and PTPN21 are similar at the molecular level but play different physiological roles.
Collapse
Affiliation(s)
- Hye Seon Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Min Wook Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Ho-Chul Shin
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| |
Collapse
|
91
|
Hepatitis C virus core protein activates proteasomal activator 28 gamma to downregulate p16 levels via ubiquitin-independent proteasomal degradation. Heliyon 2021; 7:e06134. [PMID: 33553768 PMCID: PMC7851347 DOI: 10.1016/j.heliyon.2021.e06134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/22/2020] [Accepted: 01/25/2021] [Indexed: 12/29/2022] Open
Abstract
Proteasomal activator 28 gamma (PA28γ), an essential constituent of the 20S proteasome, is frequently overexpressed in hepatocellular carcinoma. Hepatitis C virus (HCV) core protein is recently known to activate PA28γ expression in human hepatocytes via upregulation of p53 levels; however, its role in HCV tumorigenesis remains unknown. Here, we found that HCV core-activated PA28γ downregulates p16 levels via ubiquitin-independent proteasomal degradation. As a result, HCV core protein activated the Rb-E2F pathway to stimulate cell cycle progression from G1 to S phase, resulting in an increase in cell proliferation. The potential of HCV core protein to induce these effects was almost completely abolished by either PA28γ knockdown or p16 overexpression, confirming the role of the PA28γ-mediated p16 degradation in HCV tumorigenesis.
Collapse
|
92
|
Padash Barmchi M, Thomas M, Thatte JV, Vats A, Zhang B, Cagan RL, Banks L. Inhibition of kinase IKKβ suppresses cellular abnormalities induced by the human papillomavirus oncoprotein HPV 18E6. Sci Rep 2021; 11:1111. [PMID: 33441820 PMCID: PMC7807017 DOI: 10.1038/s41598-020-80193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 12/15/2020] [Indexed: 11/14/2022] Open
Abstract
Human papillomavirus (HPV) is the leading cause of cervical cancer and has been implicated in several other cancer types including vaginal, vulvar, penile, and oropharyngeal cancers. Despite the recent availability of a vaccine, there are still over 310,000 deaths each year worldwide. Current treatments for HPV-mediated cancers show limited efficacy, and would benefit from improved understanding of disease mechanisms. Recently, we developed a Drosophila 'HPV 18 E6' model that displayed loss of cellular morphology and polarity, junctional disorganization, and degradation of the major E6 target Magi; we further provided evidence that mechanisms underlying HPV E6-induced cellular abnormalities are conserved between humans and flies. Here, we report a functional genetic screen of the Drosophila kinome that identified IKK[Formula: see text]-a regulator of NF-κB-as an enhancer of E6-induced cellular defects. We demonstrate that inhibition of IKK[Formula: see text] reduces Magi degradation and that this effect correlates with hyperphosphorylation of E6. Further, the reduction in IKK[Formula: see text] suppressed the cellular transformation caused by the cooperative action of HPVE6 and the oncogenic Ras. Finally, we demonstrate that the interaction between IKK[Formula: see text] and E6 is conserved in human cells: inhibition of IKK[Formula: see text] blocked the growth of cervical cancer cells, suggesting that IKK[Formula: see text] may serve as a novel therapeutic target for HPV-mediated cancers.
Collapse
Affiliation(s)
| | - Miranda Thomas
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Jayashree V Thatte
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Arushi Vats
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Bing Zhang
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Ross L Cagan
- Institute of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Glasgow, Scotland, UK
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
93
|
Duan Y, Bai H, Li X, Wang D, Wang Y, Cao M, Zhang N, Chen H, Wang Y. Oncolytic Adenovirus H101 Synergizes with Radiation in Cervical Cancer Cells. Curr Cancer Drug Targets 2021; 21:619-630. [PMID: 33687882 DOI: 10.2174/1568009621666210308103541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/13/2021] [Accepted: 01/31/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND A major challenge in cervical cancer radiotherapy is tailoring the radiation doses efficiently to eliminate malignant cells and reduce the side effects in normal tissues. Oncolytic adenovirus drug H101 was recently tested and approved as a topical adjuvant treatment for several malignancies. OBJECTIVE This study aimed to evaluate the potential neoadjuvant radiotherapy benefits of H101 by testing the inhibitory function of H101 in combination with radiation in different cervical cancer cells. METHODS Human cervical cancer cell lines C33a, SiHa, CaSki, and HeLa were treated with varying concentrations of H101 alone or in combination with radiation (2 Gy or 4 Gy). Cell viability and apoptosis were measured at the indicated time intervals. HPV16 E6 and cellular p53 mRNA expression alteration was measured by qRT-PCR. In situ RNA scope was used to determine HPV E6 status. P53 protein alterations were detected by Western blot. RESULTS Cell viability and apoptosis assays revealed that the combination of a high dose of H101 (MOI=1000, 10000) with radiation yielded a synergistic anticancer effect in all tested cervical cancer cell lines (P<0.05), with the greatest effect achieved in HPV-negative C33a cells (P<0.05). Low-HPV16-viral-load SiHa cells were more sensitive to the combination therapy than high-HPV16- viral-load CaSki cells (P<0.05). The combined treatment reduced HPV16 E6 expression and increased cellular P53 levels compared to those observed with radiation alone in SiHa and CaSki cells (P<0.05). CONCLUSION Oncolytic adenovirus H101 effectively enhances the antitumor efficacy of radiation in cervical cancer cells and may serve as a novel combination therapy for cervical cancer.
Collapse
Affiliation(s)
- Yixin Duan
- Department of Radiation Oncology, Institute of Molecular Radiobiology of Cancer, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, China
| | - Haixia Bai
- Department of Radiation Oncology, Institute of Molecular Radiobiology of Cancer, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, China
| | - Xiang Li
- Department of Radiation Oncology, Institute of Molecular Radiobiology of Cancer, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, China
| | - Depu Wang
- Department of Radiation Oncology, Institute of Molecular Radiobiology of Cancer, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, China
| | - Ying Wang
- Department of Radiation Oncology, Institute of Molecular Radiobiology of Cancer, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, China
| | - Meng Cao
- Department of Radiation Oncology, Institute of Molecular Radiobiology of Cancer, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, China
| | - Nana Zhang
- Department of Radiation Oncology, Institute of Molecular Radiobiology of Cancer, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, China
| | - Hongwei Chen
- Department of Radiation Oncology, Institute of Molecular Radiobiology of Cancer, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, China
| | - Yili Wang
- Department of Radiation Oncology, Institute of Molecular Radiobiology of Cancer, The First Affiliated Hospital of Xi'an Jiaotong University, Xian, China
| |
Collapse
|
94
|
Mir BA, Rahaman PF, Ahmad A. Viral load and interaction of HPV oncoprotein E6 and E7 with host cellular markers in the progression of cervical cancer. AIMS MOLECULAR SCIENCE 2021. [DOI: 10.3934/molsci.2021014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
<abstract>
<p>Cervical cancer is the sequel of a multi-factorial, long-term unresolved disease that includes genetic, epigenetic, and viral components responsible for its development and progression. It is the second most common cancer of females in India. Human papillomavirus (HPV) is considered the primary causative agent of pre-neoplastic and cancerous lesions and 90% of all cervical carcinomas are linked to high-risk HPV type 16 and type 18. Although most HR-HPV infections are asymptomatic, transient, and self-limiting, the persistent infection with a high risk (HR-HPV) may cause precancerous lesions that can progress to cervical cancer. HPV type 16 is the most common HPV in India associated with more than 75% of cervical cancer, followed by HPV type 18 and other high-risk types. Infection with HPV alone is not sufficient for the development of cervical cancer but there is the involvement of some host genetic factors also that are responsible for the development and progression of cervical cancer. This article briefly reviews molecular pathogenesis, viral load, and the interaction of HPV oncoprotein E6 and E7 with host cellular markers in the progression of cervical cancer.</p>
</abstract>
Collapse
|
95
|
High Risk α-HPV E6 Impairs Translesion Synthesis by Blocking POLη Induction. Cancers (Basel) 2020; 13:cancers13010028. [PMID: 33374731 PMCID: PMC7793514 DOI: 10.3390/cancers13010028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 01/22/2023] Open
Abstract
Simple Summary Cervical cancers (CaCx) are caused by the expression of human papillomavirus oncogenes (HPV E6 and E7). Here, in vitro assays, computational approaches and immunohistochemical analysis of cervical biopsies show that HPV oncogenes impair translesion synthesis (TLS). This limits the pathway’s ability to prevent replication stress from causing fork collapse and DNA damage. As a result, HPV oncogenes make cells more sensitive to replication stressing agents, such as Cisplatin. Mechanistically, HPV E6 prevents replication stress from triggering the accumulation of a TLS-specific polymerase (POLη). Supplying exogenous POLη to CaCx cells rescues TLS and lowers Cisplatin toxicity. Abstract High risk genus α human papillomaviruses (α-HPVs) express two versatile oncogenes (α-HPV E6 and E7) that cause cervical cancer (CaCx) by degrading tumor suppressor proteins (p53 and RB). α-HPV E7 also promotes replication stress and alters DNA damage responses (DDR). The translesion synthesis pathway (TLS) mitigates DNA damage by preventing replication stress from causing replication fork collapse. Computational analysis of gene expression in CaCx transcriptomic datasets identified a frequent increased expression of TLS genes. However, the essential TLS polymerases did not follow this pattern. These data were confirmed with in vitro and ex vivo systems. Further interrogation of TLS, using POLη as a representative TLS polymerase, demonstrated that α-HPV16 E6 blocks TLS polymerase induction by degrading p53. This doomed the pathway, leading to increased replication fork collapse and sensitivity to treatments that cause replication stress (e.g., UV and Cisplatin). This sensitivity could be overcome by the addition of exogenous POLη.
Collapse
|
96
|
Szymonowicz KA, Chen J. Biological and clinical aspects of HPV-related cancers. Cancer Biol Med 2020; 17:864-878. [PMID: 33299640 PMCID: PMC7721094 DOI: 10.20892/j.issn.2095-3941.2020.0370] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer-related diseases represent the second overall cause of death worldwide. Human papilloma virus (HPV) is an infectious agent which is mainly sexually transmitted and may lead to HPV-associated cancers in both men and women. Almost all cervical cancers are HPV-associated, however, an increasing number of head and neck cancers (HNCs), especially oropharyngeal cancer, can be linked to HPV infection. Moreover, anogenital cancers, including vaginal, vulvar, penial, and anal cancers, represent a subset of HPV-related cancers. Whereas testing and prevention of cervical cancer have significantly improved over past decades, anogenital cancers remain more difficult to confirm. Current clinical trials including patients with HPV-related cancers focus on finding proper testing for all HPV-associated cancers as well as improve the currently applied treatments. The HPV viral oncoproteins, E6 and E7, lead to degradation of, respectively, p53 and pRb resulting in entering the S phase without G1 arrest. These high-risk HPV viral oncogenes alter numerous cellular processes, including DNA repair, angiogenesis, and/or apoptosis, which eventually result in carcinogenesis. Additionally, a comprehensive analysis of gene expression and alteration among a panel of DNA double strand breaks (DSB) repair genes in HPV-negative and HPV-positive HNC cancers reveals differences pointing to HPV-dependent modifications of DNA repair processes in these cancers. In this review, we discuss the current knowledge regarding HPV-related cancers, current screening, and treatment options as well as DNA damage response-related biological aspects of the HPV infection and clinical trials.
Collapse
Affiliation(s)
- Klaudia Anna Szymonowicz
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
97
|
Goddard ZR, Marín MJ, Russell DA, Searcey M. Active targeting of gold nanoparticles as cancer therapeutics. Chem Soc Rev 2020; 49:8774-8789. [PMID: 33089858 DOI: 10.1039/d0cs01121e] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Gold nanoparticles (AuNPs) are of increasing interest for their unique properties and their biocompatability, minimal toxicity, multivalency and size tunability make them exciting drug carriers. The functionalisaton of AuNPs with targeting moieties allows for their selective delivery to cancers, with antibodies, proteins, peptides, aptamers, carbohydrates and small molecules all exploited. Here, we review the recent advances in targeted-AuNPs for the treatment of cancer, with a particular focus on these classes of targeting ligands. We highlight the benefits and potential drawbacks of each ligand class and propose directions in which the field could grow.
Collapse
Affiliation(s)
- Zoë Rachael Goddard
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | | | | | | |
Collapse
|
98
|
Revathidevi S, Murugan AK, Nakaoka H, Inoue I, Munirajan AK. APOBEC: A molecular driver in cervical cancer pathogenesis. Cancer Lett 2020; 496:104-116. [PMID: 33038491 PMCID: PMC7539941 DOI: 10.1016/j.canlet.2020.10.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/16/2020] [Accepted: 10/04/2020] [Indexed: 02/09/2023]
Abstract
Cervical cancer is one of the foremost common cancers in women. Human papillomavirus (HPV) infection remains a major risk factor of cervical cancer. In addition, numerous other genetic and epigenetic factors also are involved in the underlying pathogenesis of cervical cancer. Recently, it has been reported that apolipoprotein B mRNA editing enzyme catalytic polypeptide like (APOBEC), DNA-editing protein plays an important role in the molecular pathogenesis of cancer. Particularly, the APOBEC3 family was shown to induce tumor mutations by aberrant DNA editing mechanism. In general, APOBEC3 enzymes play a pivotal role in the deamination of cytidine to uridine in DNA and RNA to control diverse biological processes such as regulation of protein expression, innate immunity, and embryonic development. Innate antiviral activity of the APOBEC3 family members restrict retroviruses, endogenous retro-element, and DNA viruses including the HPV that is the leading risk factor for cervical cancer. This review briefly describes the pathogenesis of cervical cancer and discusses in detail the recent findings on the role of APOBEC in the molecular pathogenesis of cervical cancer. APOBEC enzymes deaminate cytidine to uridine and control diverse biological processes including viral restriction. APOBEC3, DNA/RNA-editing enzyme plays an important role in the molecular pathogenesis of cervical cancer. APOBEC3-mediated DNA editing leads to the accumulation of somatic mutations in tumors and HPV genome. Deregulation of APOBEC3 family genes cause genomic instability and result in drug resistance, and immune-evasion in tumors.
Collapse
Affiliation(s)
- Sundaramoorthy Revathidevi
- Department of Genetics, Dr ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai, 600113, India; Division of Human Genetics, National Institute of Genetics, Mishima, 411-8540, Japan
| | - Avaniyapuram Kannan Murugan
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Hirofumi Nakaoka
- Division of Human Genetics, National Institute of Genetics, Mishima, 411-8540, Japan; Department of Cancer Genome Research, Sasaki Institute, Sasaki Foundation, Chiyoda-ku, 101-0062, Japan
| | - Ituro Inoue
- Division of Human Genetics, National Institute of Genetics, Mishima, 411-8540, Japan
| | - Arasambattu Kannan Munirajan
- Department of Genetics, Dr ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai, 600113, India.
| |
Collapse
|
99
|
De Souza ALPB. Finding the hot spot: identifying immune sensitive gastrointestinal tumors. Transl Gastroenterol Hepatol 2020; 5:48. [PMID: 33073043 DOI: 10.21037/tgh.2019.12.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/06/2019] [Indexed: 12/16/2022] Open
Abstract
Although researchers have been trying to harness the immune system for over 100 years, the advent of immune checkpoint blockers (ICB) marks an era of significant clinical outcomes in various metastatic solid tumors, characterized by complete and durable responses. ICBs are monoclonal antibodies that target either of a pair of transmembrane molecules in tumors or T-cells involved in immune evasion. Currently 2 ICBs targeting the checkpoint program death 1 (PD-1), nivolumab and pembrolizumab, and one cytotoxic lymphocyte antigen-4 (CTLA-4) inhibitor (ipilimumab) are approved in gastrointestinal malignancies. We review herein the current evidence on predictive biomarkers for ICB response in gastrointestinal tumors. A review of literature based on the National Cancer Institute list of FDA-approved drugs for neoplasms and FDA-approved therapies at the FDA website was performed. An initial literature review was based on the American Association for Clinical Research meeting 2019, the American Society of Clinical Oncology meeting 2019 and the European Society of Medical Oncology 2019 proceedings. A systematic search of PubMed was performed involving MeSH browser terms such as biomarkers, immunotherapy, gastrointestinal diseases and neoplasms. When appropriate, American and British terms were used in the search. The most relevant predictor of response to ICBs is microsatellite instability (MSI) and the data is strongest for colorectal cancer. At least 3 prospective trials show evidence of PD-L1 as a predictive biomarker for ICB response in gastroesophageal malignancies. At least one prospective trial has described tumor mutational burden high (TMB-H), independent of MSI, as predictive of response in anal and biliary tract carcinomas. DNA Polymerase Epsilon (POLE) or delta (POL-D) mutations have been implicated in a subset of MSS colorectal cancer with TMB-H but this biomarker requires prospective validation. There is evolving data based on retrospective observations that gene alterations predicting acquired resistance and hyper-progression. Ongoing clinical research is assessing the role of the human microbiome and RNA-editing complex mutations as predictive biomarkers of response to ICBs. MSI has the strongest predictive power among current biomarkers for ICB response in gastrointestinal cancers. Data continue to accumulate from ongoing clinical trials and new biomarkers are emerging from pre-clinical studies, suggesting that drug combinations targeting pathways complimentary to the PD-1/PD-L1 axis inhibition will define a robust field of clinical research.
Collapse
|
100
|
The Undervalued Avenue to Reinstate Tumor Suppressor Functionality of the p53 Protein Family for Improved Cancer Therapy-Drug Repurposing. Cancers (Basel) 2020; 12:cancers12092717. [PMID: 32971841 PMCID: PMC7563196 DOI: 10.3390/cancers12092717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
p53 and p73 are critical tumor suppressors that are often inactivated in human cancers through various mechanisms. Owing to their high structural homology, the proteins have many joined functions and recognize the same set of genes involved in apoptosis and cell cycle regulation. p53 is known as the 'guardian of the genome' and together with p73 forms a barrier against cancer development and progression. The TP53 is mutated in more than 50% of all human cancers and the germline mutations in TP53 predispose to the early onset of multiple tumors in Li-Fraumeni syndrome (LFS), the inherited cancer predisposition. In cancers where TP53 gene is intact, p53 is degraded. Despite the ongoing efforts, the treatment of cancers remains challenging. This is due to late diagnoses, the toxicity of the current standard of care and marginal benefit of newly approved therapies. Presently, the endeavors focus on reactivating p53 exclusively, neglecting the potential of the restoration of p73 protein for cancer eradication. Taken that several small molecules reactivating p53 failed in clinical trials, there is a need to develop new treatments targeting p53 proteins in cancer. This review outlines the most advanced strategies to reactivate p53 and p73 and describes drug repurposing approaches for the efficient reinstatement of the p53 proteins for cancer therapy.
Collapse
|