51
|
Identification of a repressor and an activator of azoreductase gene expression in Pseudomonas putida and Xanthomonas oryzae. Biochem Biophys Res Commun 2018; 502:9-14. [DOI: 10.1016/j.bbrc.2018.05.112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/16/2018] [Indexed: 11/18/2022]
|
52
|
Faraj Tabrizi P, Wennige S, Berneburg M, Maisch T. Susceptibility of sodA- and sodB-deficient Escherichia coli mutant towards antimicrobial photodynamic inactivation via the type I-mechanism of action. Photochem Photobiol Sci 2018; 17:352-362. [PMID: 29489001 DOI: 10.1039/c7pp00370f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Photodynamic antimicrobial chemotherapy (PACT) is a multi-target method to inactivate pathogenic microorganisms by exciting a photosensitizer (PS) with visible light of appropriate wavelength in the presence of molecular oxygen (3O2). There are two major pathways by which reactive oxygen species (ROS) are produced. In type I (TI)-reactions, radicals such as superoxide (O2˙-) and hydroxyl radicals (˙OH) are generated by electron transfer. In type II (TII)-reactions, highly reactive singlet oxygen (1O2) is produced by direct energy transfer. This study investigated the efficiency of PACT in Gram-negative Escherichia coli wild type (EC WT) and the mutant Escherichia coli PN134 (EC PN134) which is not able to produce SOD A and SOD B, by means of two different photosensitizers (PS) from different chemical classes with different 1O2 quantum yields: methylene blue (MB) and 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin tetra(p-toluenesulfonate) (TMPyP). Mutants, which lack antioxidant enzymes, were particularly susceptible towards TI-PACT. In the case of PACT with MB, quenching agents such as superoxide dismutase (SOD) and catalase (CAT) were sufficient for protecting both the wild type and the mutant, whereas they were not in PACT with TMPyP. The genetic levels of sodA and sodB were examined after photodynamic treatment regarding their potential resistance. This study showed that - under the photodynamic conditions presented in this study - expression of sodA and sodB was not directly influenced by PACT-generated oxidative stress, although SOD enzymes are part of the major defense machinery against oxidative stress and were thus expected to be upregulated. Overall the susceptibility of EC PN134 and EC WT differed towards photodynamic inactivation via TI-mechanism of action. Thus, already existing defense mechanisms against ROS in bacteria might influence the susceptibility against TI-PACT, while this was not the case using TII-photosensitizers.
Collapse
Affiliation(s)
- Pouriya Faraj Tabrizi
- Department of Dermatology, University Medical Center Regensburg, Regensburg, Germany.
| | | | | | | |
Collapse
|
53
|
Bloch S, Nejman-Faleńczyk B, Pierzynowska K, Piotrowska E, Węgrzyn A, Marminon C, Bouaziz Z, Nebois P, Jose J, Le Borgne M, Saso L, Węgrzyn G. Inhibition of Shiga toxin-converting bacteriophage development by novel antioxidant compounds. J Enzyme Inhib Med Chem 2018. [PMID: 29536772 PMCID: PMC6009899 DOI: 10.1080/14756366.2018.1444610] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Oxidative stress may be the major cause of induction of Shiga toxin-converting (Stx) prophages from chromosomes of Shiga toxin-producing Escherichia coli (STEC) in human intestine. Thus, we aimed to test a series of novel antioxidant compounds for their activities against prophage induction, thus, preventing pathogenicity of STEC. Forty-six compounds (derivatives of carbazole, indazole, triazole, quinolone, ninhydrine, and indenoindole) were tested. Fifteen of them gave promising results and were further characterized. Eleven compounds had acceptable profiles in cytotoxicity tests with human HEK-293 and HDFa cell lines. Three of them (selected for molecular studies) prevent the prophage induction at the level of expression of specific phage genes. In bacterial cells treated with hydrogen peroxide, expression of genes involved in the oxidative stress response was significantly less efficient in the presence of the tested compounds. Therefore, they apparently reduce the oxidative stress, which prevents induction of Stx prophage in E. coli.
Collapse
Affiliation(s)
- Sylwia Bloch
- a Department of Molecular Biology , Faculty of Biology, University of Gdansk , Gdansk , Poland
| | - Bożena Nejman-Faleńczyk
- a Department of Molecular Biology , Faculty of Biology, University of Gdansk , Gdansk , Poland
| | - Karolina Pierzynowska
- a Department of Molecular Biology , Faculty of Biology, University of Gdansk , Gdansk , Poland
| | - Ewa Piotrowska
- a Department of Molecular Biology , Faculty of Biology, University of Gdansk , Gdansk , Poland
| | - Alicja Węgrzyn
- b Laboratory of Molecular Biology , Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Gdańsk , Poland
| | - Christelle Marminon
- c Université de Lyon, Université Claude Bernard Lyon 1, Faculté de Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7 , Lyon , France
| | - Zouhair Bouaziz
- c Université de Lyon, Université Claude Bernard Lyon 1, Faculté de Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7 , Lyon , France
| | - Pascal Nebois
- c Université de Lyon, Université Claude Bernard Lyon 1, Faculté de Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7 , Lyon , France
| | - Joachim Jose
- d Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster , Münster , Germany
| | - Marc Le Borgne
- c Université de Lyon, Université Claude Bernard Lyon 1, Faculté de Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7 , Lyon , France
| | - Luciano Saso
- e Department of Physiology and Pharmacology "Vittorio Erspamer" , Sapienza University , Rome , Italy
| | - Grzegorz Węgrzyn
- a Department of Molecular Biology , Faculty of Biology, University of Gdansk , Gdansk , Poland
| |
Collapse
|
54
|
Wan F, Kong L, Gao H. Defining the binding determinants of Shewanella oneidensis OxyR: Implications for the link between the contracted OxyR regulon and adaptation. J Biol Chem 2018; 293:4085-4096. [PMID: 29367341 DOI: 10.1074/jbc.ra117.001530] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/16/2018] [Indexed: 01/06/2023] Open
Abstract
It is well-established that OxyR functions as a transcriptional activator of the peroxide stress response in bacteria, primarily based on studies on Escherichia coli Recent investigations have revealed that OxyRs of some other bacteria can regulate gene expression through both repression and activation or repression only; however, the underlying mechanisms remain largely unknown. Here, we demonstrated in γ-proteobacteriumShewanella oneidensis regulation of OxyR on expression of major catalase gene katB in a dual-control manner through interaction with a single site in the promoter region. Under non-stress conditions, katB expression was repressed by reduced OxyR (OxyRred), whereas when oxidized, OxyR (OxyRoxi) outcompeted OxyRred for the site because of substantially enhanced affinity, resulting in a graded response to oxidative stress, from repression to derepression to activation. The OxyR-binding motif is characterized as a combination of the E. coli motif (tetranucleotides spaced by heptanucleotide) and palindromic structure. We provided evidence to suggest that the S. oneidensis OxyR regulon is significantly contracted compared with those reported, probably containing only five members that are exclusively involved in oxygen reactive species scavenging and iron sequestering. These characteristics probably reflect the adapting strategy of the bacteria that S. oneidensis represents to thrive in redox-stratified microaerobic and anaerobic environments.
Collapse
Affiliation(s)
- Fen Wan
- From the Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Linggen Kong
- From the Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Haichun Gao
- From the Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
55
|
Koentjoro MP, Ogawa N. STRUCTURAL STUDIES OF TRANSCRIPTIONAL REGULATION BY LysR-TYPE TRANSCRIPTIONAL REGULATORS IN BACTERIA. ACTA ACUST UNITED AC 2018. [DOI: 10.7831/ras.6.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Naoto Ogawa
- The United Graduate School of Agricultural Science, Gifu University
- Faculty of Agriculture, Shizuoka University
| |
Collapse
|
56
|
Iwadate Y, Kato JI. Involvement of the ytfK gene from the PhoB regulon in stationary-phase H 2 O 2 stress tolerance in Escherichia coli. Microbiology (Reading) 2017; 163:1912-1923. [DOI: 10.1099/mic.0.000534] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yumi Iwadate
- Department of Biological Sciences, Graduate Schools of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Jun-ichi Kato
- Department of Biological Sciences, Graduate Schools of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
57
|
Translational Control of the SigR-Directed Oxidative Stress Response in Streptomyces via IF3-Mediated Repression of a Noncanonical GTC Start Codon. mBio 2017; 8:mBio.00815-17. [PMID: 28611250 PMCID: PMC5472188 DOI: 10.1128/mbio.00815-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The major oxidative stress response in Streptomyces is controlled by the sigma factor SigR and its cognate antisigma factor RsrA, and SigR activity is tightly controlled through multiple mechanisms at both the transcriptional and posttranslational levels. Here we show that sigR has a highly unusual GTC start codon and that this leads to another level of SigR regulation, in which SigR translation is repressed by translation initiation factor 3 (IF3). Changing the GTC to a canonical start codon causes SigR to be overproduced relative to RsrA, resulting in unregulated and constitutive expression of the SigR regulon. Similarly, introducing IF3* mutations that impair its ability to repress SigR translation has the same effect. Thus, the noncanonical GTC sigR start codon and its repression by IF3 are critical for the correct and proper functioning of the oxidative stress regulatory system. sigR and rsrA are cotranscribed and translationally coupled, and it had therefore been assumed that SigR and RsrA are produced in stoichiometric amounts. Here we show that RsrA can be transcribed and translated independently of SigR, present evidence that RsrA is normally produced in excess of SigR, and describe the factors that determine SigR-RsrA stoichiometry. In all sigma factor-antisigma factor regulatory switches, the relative abundance of the two proteins is critical to the proper functioning of the system. Many sigma-antisigma operons are cotranscribed and translationally coupled, leading to a generic assumption that the sigma and antisigma factors are produced in a fixed 1:1 ratio. In the case of sigR-rsrA, we show instead that the antisigma factor is produced in excess over the sigma factor, providing a buffer to prevent spurious release of sigma activity. This excess arises in part because sigR has an extremely rare noncanonical GTC start codon, and as a result, SigR translation initiation is repressed by IF3. This finding highlights the potential significance of noncanonical start codons, very few of which have been characterized experimentally. It also emphasizes the limitations of predicting start codons using bioinformatic approaches, which rely heavily on the assumption that ATG, GTG, and TTG are the only permissible start codons.
Collapse
|
58
|
|
59
|
Mei GY, Tang J, Bach S, Kostrzynska M. Changes in Gene Transcription Induced by Hydrogen Peroxide Treatment of Verotoxin-Producing Escherichia coli O157:H7 and Non-O157 Serotypes on Romaine Lettuce. Front Microbiol 2017; 8:477. [PMID: 28377761 PMCID: PMC5359304 DOI: 10.3389/fmicb.2017.00477] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/08/2017] [Indexed: 01/05/2023] Open
Abstract
Disease outbreaks of verotoxin-producing Escherichia coli (VTEC) O157:H7 and non-O157 serotypes associated with leafy green vegetables are becoming a growing concern. A better understanding of the behavior of VTEC, particularly non-O157 serotypes, on lettuce under stress conditions is necessary for designing more effective control strategies. Hydrogen peroxide (H2O2) can be used as a sanitizer to reduce the microbial load in leafy green vegetables, particularly in fresh produce destined for the organic market. In this study, we tested the hypothesis that H2O2 treatment of contaminated lettuce affects in the same manner transcription of stress-associated and virulence genes in VTEC strains representing O157 and non-O157 serotypes. Six VTEC isolates representing serotypes O26:H11, O103:H2, O104:H4, O111:NM, O145:NM, and O157:H7 were included in this study. The results indicate that 50 mM H2O2 caused a population reduction of 2.4-2.8 log10 (compared to non-treated control samples) in all six VTEC strains present on romaine lettuce. Following the treatment, the transcription of genes related to oxidative stress (oxyR and sodA), general stress (uspA and rpoS), starvation (phoA), acid stress (gadA, gadB, and gadW), and virulence (stx1A, stx2A, and fliC) were dramatically downregulated in all six VTEC serotypes (P ≤ 0.05) compared to not treated control samples. Therefore, VTEC O157:H7 and non-O157 serotypes on lettuce showed similar survival rates and gene transcription profiles in response to 50 mM H2O2 treatment. Thus, the results derived from this study provide a basic understanding of the influence of H2O2 treatment on the survival and virulence of VTEC O157:H7 and non-O157 serotypes on lettuce.
Collapse
Affiliation(s)
- Gui-Ying Mei
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada Guelph, ON, Canada
| | - Joshua Tang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada Guelph, ON, Canada
| | - Susan Bach
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada Summerland, BC, Canada
| | - Magdalena Kostrzynska
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada Guelph, ON, Canada
| |
Collapse
|
60
|
Wible RS, Sutter TR. Soft Cysteine Signaling Network: The Functional Significance of Cysteine in Protein Function and the Soft Acids/Bases Thiol Chemistry That Facilitates Cysteine Modification. Chem Res Toxicol 2017; 30:729-762. [DOI: 10.1021/acs.chemrestox.6b00428] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ryan S. Wible
- Department
of Chemistry, ‡Department of Biological Sciences, and §W. Harry Feinstone Center for Genomic
Research, University of Memphis, 3700 Walker Avenue, Memphis, Tennessee 38152-3370, United States
| | - Thomas R. Sutter
- Department
of Chemistry, ‡Department of Biological Sciences, and §W. Harry Feinstone Center for Genomic
Research, University of Memphis, 3700 Walker Avenue, Memphis, Tennessee 38152-3370, United States
| |
Collapse
|
61
|
Goulart CL, Barbosa LC, Bisch PM, von Krüger WMA. Catalases and PhoB/PhoR system independently contribute to oxidative stress resistance in Vibrio cholerae O1. MICROBIOLOGY-SGM 2016; 162:1955-1962. [PMID: 27665757 DOI: 10.1099/mic.0.000364] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
All cells are subjected to oxidative stress, a condition under which reactive oxygen species (ROS) production exceeds elimination. Bacterial defences against ROS include synthesis of antioxidant enzymes like peroxidases and catalases. Vibrio cholerae can produce two distinct catalases, KatB and KatG, which contribute to ROS homeostasis. In this study, we analysed the mechanism behind katG and katB expression in two V. cholerae O1 pandemic strains, O395 and N16961, of classical and El Tor biotypes, respectively. Both strains express these genes, especially at stationary phase. However, El Tor N16961 produces higher KatB and KatG levels and is much more resistant to peroxide challenge than the classical strain, confirming a direct relationship between catalase activity and oxidative stress resistance. Moreover, we showed that katG and katB expression levels depend on inorganic phosphate (Pi) availability, in contrast to other bacterial species. In N16961, katB and katG expression is reduced under Pi limitation relative to Pi abundance. Total catalase activity in N16961 and its phoB mutant cells was similar, independently of growth conditions, indicating that the PhoB/PhoR system is not required for katB and katG expression. However, N16961 cells from Pi-limited cultures were 50-100-fold more resistant to H2O2 challenge and accumulated less ROS than phoB mutant cells. Together, these findings suggest that, besides KatB and KatG, the PhoB/PhoR system is an important protective factor against ROS in V. cholerae N16961. They also corroborate previous results from our and other groups, suggesting that the PhoB/PhoR system is fundamental for V. cholerae biology.
Collapse
Affiliation(s)
- Carolina L Goulart
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Livia C Barbosa
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo M Bisch
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wanda M A von Krüger
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
62
|
Kumar H, Savaliya M, Biswas S, Nayak PG, Maliyakkal N, Manjunath Setty M, Gourishetti K, Pai KSR. Assessment of the in vitro cytotoxicity and in vivo anti-tumor activity of the alcoholic stem bark extract/fractions of Mimusops elengi Linn. Cytotechnology 2016; 68:861-877. [PMID: 25701190 PMCID: PMC4960137 DOI: 10.1007/s10616-014-9839-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 12/23/2014] [Indexed: 01/14/2023] Open
Abstract
Various parts of Mimusops elengi Linn. (Sapotaceae) have been used widely in traditional Indian medicine for the treatment of pain, inflammation and wounds. The study was conducted to explore the use of stem bark of M. elengi on pharmacological grounds and to evaluate the scientific basis of cytotoxic and anti-tumor activity. Extract/fractions were prepared and in vitro cytotoxicity was assessed using SRB assay. Most effective fractions were subjected to fluorescence microscopy based acridine orange/ethidium bromide (AO/EB) and Hoechst 33342 staining to determine apoptosis induction and DNA fragmentation assay. Comet and micronuclei assay were performed to assess genotoxicity. Cell cycle analysis was also performed. In vivo anti-tumor potential was evaluated by Ehrlich ascites carcinoma (EAC) model in mice. The alcoholic stem bark extract of M. elengi along with four fractions showed potential in vitro cytotoxicity in SRB assay. Of these, dichloromethane and ethyl acetate fractions were selected for further studies. The fractions revealed apoptosis inducing potential in AO/EB and Hoechst 33342 staining, which was further confirmed by DNA fragmentation assay. Genotoxic potential was revealed by comet and micronuclei assay. Fractions also exhibited specific cell cycle inhibition in G0/G1 phase. In EAC model, ethyl acetate fraction along with the standard (cisplatin) effectively reduced the increase in body weight compared to control and improved mean survival time. Both fractions were able to restore the altered hematological and biochemical parameters. Hence, M. elengi stem bark may be a possible therapeutic candidate having cytotoxic and anti-tumor potential.
Collapse
Affiliation(s)
- Harish Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, Karnataka, India
| | - Mihir Savaliya
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, Karnataka, India
| | - Subhankar Biswas
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, Karnataka, India
| | - Pawan G Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, Karnataka, India
| | - Naseer Maliyakkal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, Karnataka, India
| | - M Manjunath Setty
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, Karnataka, India
| | - Karthik Gourishetti
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, Karnataka, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, 576104, Karnataka, India.
| |
Collapse
|
63
|
Kullik I, Storz G. Transcriptional regulators of the oxidative stress response in prokaryotes and eukaryotes. Redox Rep 2016; 1:23-9. [DOI: 10.1080/13510002.1994.11746951] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
64
|
Tacchini L, Pogliaghi G, Radice L, Bernelli-Zazzera A, Cairo G. Post-transcriptional control of increased hepatic catalase gene expression in response to oxidative stress. Redox Rep 2016; 2:273-8. [DOI: 10.1080/13510002.1996.11747061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
65
|
Storz G. New perspectives: Insights into oxidative stress from bacterial studies. Arch Biochem Biophys 2016; 595:25-7. [PMID: 27095210 PMCID: PMC4838771 DOI: 10.1016/j.abb.2015.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 05/23/2015] [Accepted: 09/18/2015] [Indexed: 12/24/2022]
Abstract
Studies of the response to hydrogen peroxide as well as the characterization of small, noncoding RNAs and small proteins of less than 50 amino acids in Escherichia coli have given new perspectives on redox sensing, the nature of regulators and gene organization that are relevant to all organisms.
Collapse
Affiliation(s)
- Gisela Storz
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA.
| |
Collapse
|
66
|
Müller A, Eller J, Albrecht F, Prochnow P, Kuhlmann K, Bandow JE, Slusarenko AJ, Leichert LIO. Allicin Induces Thiol Stress in Bacteria through S-Allylmercapto Modification of Protein Cysteines. J Biol Chem 2016; 291:11477-90. [PMID: 27008862 PMCID: PMC4882420 DOI: 10.1074/jbc.m115.702308] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Indexed: 12/18/2022] Open
Abstract
Allicin (diallyl thiosulfinate) from garlic is a highly potent natural antimicrobial substance. It inhibits growth of a variety of microorganisms, among them antibiotic-resistant strains. However, the precise mode of action of allicin is unknown. Here, we show that growth inhibition of Escherichia coli during allicin exposure coincides with a depletion of the glutathione pool and S-allylmercapto modification of proteins, resulting in overall decreased total sulfhydryl levels. This is accompanied by the induction of the oxidative and heat stress response. We identified and quantified the allicin-induced modification S-allylmercaptocysteine for a set of cytoplasmic proteins by using a combination of label-free mass spectrometry and differential isotope-coded affinity tag labeling of reduced and oxidized thiol residues. Activity of isocitrate lyase AceA, an S-allylmercapto-modified candidate protein, is largely inhibited by allicin treatment in vivo. Allicin-induced protein modifications trigger protein aggregation, which largely stabilizes RpoH and thereby induces the heat stress response. At sublethal concentrations, the heat stress response is crucial to overcome allicin stress. Our results indicate that the mode of action of allicin is a combination of a decrease of glutathione levels, unfolding stress, and inactivation of crucial metabolic enzymes through S-allylmercapto modification of cysteines.
Collapse
Affiliation(s)
- Alexandra Müller
- From the Institute of Biochemistry and Pathobiochemistry-Microbial Biochemistry
| | - Jakob Eller
- From the Institute of Biochemistry and Pathobiochemistry-Microbial Biochemistry
| | - Frank Albrecht
- Department of Plant Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52056 Aachen, Germany
| | | | - Katja Kuhlmann
- Medizinisches Proteom-Center, Ruhr University Bochum, 44780 Bochum, Germany and
| | | | - Alan John Slusarenko
- Department of Plant Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52056 Aachen, Germany
| | | |
Collapse
|
67
|
Sewelam N, Kazan K, Schenk PM. Global Plant Stress Signaling: Reactive Oxygen Species at the Cross-Road. FRONTIERS IN PLANT SCIENCE 2016; 7:187. [PMID: 26941757 PMCID: PMC4763064 DOI: 10.3389/fpls.2016.00187] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/04/2016] [Indexed: 05/18/2023]
Abstract
Current technologies have changed biology into a data-intensive field and significantly increased our understanding of signal transduction pathways in plants. However, global defense signaling networks in plants have not been established yet. Considering the apparent intricate nature of signaling mechanisms in plants (due to their sessile nature), studying the points at which different signaling pathways converge, rather than the branches, represents a good start to unravel global plant signaling networks. In this regard, growing evidence shows that the generation of reactive oxygen species (ROS) is one of the most common plant responses to different stresses, representing a point at which various signaling pathways come together. In this review, the complex nature of plant stress signaling networks will be discussed. An emphasis on different signaling players with a specific attention to ROS as the primary source of the signaling battery in plants will be presented. The interactions between ROS and other signaling components, e.g., calcium, redox homeostasis, membranes, G-proteins, MAPKs, plant hormones, and transcription factors will be assessed. A better understanding of the vital roles ROS are playing in plant signaling would help innovate new strategies to improve plant productivity under the circumstances of the increasing severity of environmental conditions and the high demand of food and energy worldwide.
Collapse
Affiliation(s)
- Nasser Sewelam
- Botany Department, Faculty of Science, Tanta UniversityTanta, Egypt
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organization Agriculture, Queensland Bioscience Precinct, St LuciaQLD, Australia
- Queensland Alliance for Agriculture & Food Innovation, The University of Queensland, BrisbaneQLD, Australia
| | - Peer M. Schenk
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, BrisbaneQLD, Australia
| |
Collapse
|
68
|
Hillion M, Antelmann H. Thiol-based redox switches in prokaryotes. Biol Chem 2016; 396:415-44. [PMID: 25720121 DOI: 10.1515/hsz-2015-0102] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/05/2015] [Indexed: 12/12/2022]
Abstract
Bacteria encounter reactive oxygen species (ROS) as a consequence of the aerobic life or as an oxidative burst of activated neutrophils during infections. In addition, bacteria are exposed to other redox-active compounds, including hypochloric acid (HOCl) and reactive electrophilic species (RES) such as quinones and aldehydes. These reactive species often target the thiol groups of cysteines in proteins and lead to thiol-disulfide switches in redox-sensing regulators to activate specific detoxification pathways and to restore the redox balance. Here, we review bacterial thiol-based redox sensors that specifically sense ROS, RES and HOCl via thiol-based mechanisms and regulate gene transcription in Gram-positive model bacteria and in human pathogens, such as Staphylococcus aureus and Mycobacterium tuberculosis. We also pay particular attention to emerging widely conserved HOCl-specific redox regulators that have been recently characterized in Escherichia coli. Different mechanisms are used to sense and respond to ROS, RES and HOCl by 1-Cys-type and 2-Cys-type thiol-based redox sensors that include versatile thiol-disulfide switches (OxyR, OhrR, HypR, YodB, NemR, RclR, Spx, RsrA/RshA) or alternative Cys phosphorylations (SarZ, MgrA, SarA), thiol-S-alkylation (QsrR), His-oxidation (PerR) and methionine oxidation (HypT). In pathogenic bacteria, these redox-sensing regulators are often important virulence regulators and required for adapation to the host immune defense.
Collapse
|
69
|
Liu X, Sun M, Cheng Y, Yang R, Wen Y, Chen Z, Li J. OxyR is a key regulator in response to oxidative stress in Streptomyces avermitilis. MICROBIOLOGY-SGM 2016; 162:707-716. [PMID: 26839064 DOI: 10.1099/mic.0.000251] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The role of the H2O2-sensing transcriptional regulator OxyR in oxidative stress responses in Streptomyces avermitilis was investigated. An oxyR deletion mutant was more sensitive to H2O2 and tert-butyl hydroperoxide than was the WT strain, indicating that OxyR mediates the defensive system against H2O2 and organic peroxide. Evidence presented herein suggests that in cells treated with exogenous H2O2, the oxidized form of OxyR activated expression of ahpCD by binding to a palindromic sequence of the promoter region. Oxidized OxyR also induced expression of other antioxidant enzymes (KatA1, KatA2, KatA3 and OhrB1) and oxidative stress regulators (CatR, OhrR and σR). The thiol-oxidative stress regulator gene sigR was regulated at the transcription level by OxyR. We conclude that OxyR is necessary to activate transcription of sigR from the σR-dependent promoter to express an unstable larger isoform of σR during oxidative stress. In response to oxidative stress, OxyR facilitates rapid production of H2O2-scavenging enzymes to repair oxidative damage through direct regulation and cascaded regulation of CatR, OhrR and σR.
Collapse
Affiliation(s)
- Xingchao Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Meng Sun
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yaqing Cheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Renjun Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Ying Wen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Zhi Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Jilun Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
70
|
Putker M, O’Neill JS. Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal. Mol Cells 2016; 39:6-19. [PMID: 26810072 PMCID: PMC4749875 DOI: 10.14348/molcells.2016.2323] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 12/16/2022] Open
Abstract
Redox signalling comprises the biology of molecular signal transduction mediated by reactive oxygen (or nitrogen) species. By specific and reversible oxidation of redox-sensitive cysteines, many biological processes sense and respond to signals from the intracellular redox environment. Redox signals are therefore important regulators of cellular homeostasis. Recently, it has become apparent that the cellular redox state oscillates in vivo and in vitro, with a period of about one day (circadian). Circadian time-keeping allows cells and organisms to adapt their biology to resonate with the 24-hour cycle of day/night. The importance of this innate biological time-keeping is illustrated by the association of clock disruption with the early onset of several diseases (e.g. type II diabetes, stroke and several forms of cancer). Circadian regulation of cellular redox balance suggests potentially two distinct roles for redox signalling in relation to the cellular clock: one where it is regulated by the clock, and one where it regulates the clock. Here, we introduce the concepts of redox signalling and cellular timekeeping, and then critically appraise the evidence for the reciprocal regulation between cellular redox state and the circadian clock. We conclude there is a substantial body of evidence supporting circadian regulation of cellular redox state, but that it would be premature to conclude that the converse is also true. We therefore propose some approaches that might yield more insight into redox control of cellular timekeeping.
Collapse
Affiliation(s)
- Marrit Putker
- Laboratory of Molecular Biology, Medical Research Council, Francis Crick Avenue, Cambridge CB2 0QH,
UK
| | - John Stuart O’Neill
- Laboratory of Molecular Biology, Medical Research Council, Francis Crick Avenue, Cambridge CB2 0QH,
UK
| |
Collapse
|
71
|
Abstract
The ancestors of Escherichia coli and Salmonella ultimately evolved to thrive in air-saturated liquids, in which oxygen levels reach 210 μM at 37°C. However, in 1976 Brown and colleagues reported that some sensitivity persists: growth defects still become apparent when hyperoxia is imposed on cultures of E. coli. This residual vulnerability was important in that it raised the prospect that normal levels of oxygen might also injure bacteria, albeit at reduced rates that are not overtly toxic. The intent of this article is both to describe the threat that molecular oxygen poses for bacteria and to detail what we currently understand about the strategies by which E. coli and Salmonella defend themselves against it. E. coli mutants that lack either superoxide dismutases or catalases and peroxidases exhibit a variety of growth defects. These phenotypes constitute the best evidence that aerobic cells continually generate intracellular superoxide and hydrogen peroxide at potentially lethal doses. Superoxide has reduction potentials that allow it to serve in vitro as either a weak univalent reductant or a stronger univalent oxidant. The addition of micromolar hydrogen peroxide to lab media will immediately block the growth of most cells, and protracted exposure will result in the loss of viability. The need for inducible antioxidant systems seems especially obvious for enteric bacteria, which move quickly from the anaerobic gut to fully aerobic surface waters or even to ROS-perfused phagolysosomes. E. coli and Salmonella have provided two paradigmatic models of oxidative-stress responses: the SoxRS and OxyR systems.
Collapse
|
72
|
Abstract
SIGNIFICANCE The redox code is a set of principles that defines the positioning of the nicotinamide adenine dinucleotide (NAD, NADP) and thiol/disulfide and other redox systems as well as the thiol redox proteome in space and time in biological systems. The code is richly elaborated in an oxygen-dependent life, where activation/deactivation cycles involving O₂ and H₂O₂ contribute to spatiotemporal organization for differentiation, development, and adaptation to the environment. Disruption of this organizational structure during oxidative stress represents a fundamental mechanism in system failure and disease. RECENT ADVANCES Methodology in assessing components of the redox code under physiological conditions has progressed, permitting insight into spatiotemporal organization and allowing for identification of redox partners in redox proteomics and redox metabolomics. CRITICAL ISSUES Complexity of redox networks and redox regulation is being revealed step by step, yet much still needs to be learned. FUTURE DIRECTIONS Detailed knowledge of the molecular patterns generated from the principles of the redox code under defined physiological or pathological conditions in cells and organs will contribute to understanding the redox component in health and disease. Ultimately, there will be a scientific basis to a modern redox medicine.
Collapse
Affiliation(s)
- Dean P. Jones
- Department of Medicine, Emory University, Atlanta, Georgia
| | - Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Leibniz Research Institute for Environmental Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
73
|
Shi M, Wan F, Mao Y, Gao H. Unraveling the Mechanism for the Viability Deficiency of Shewanella oneidensis oxyR Null Mutant. J Bacteriol 2015; 197:2179-2189. [PMID: 25897035 PMCID: PMC4455265 DOI: 10.1128/jb.00154-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 04/16/2015] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Oxidative stresses triggered by reactive oxygen species (ROS) that damage various cellular components are unavoidable for virtually all living organisms. In defense, microorganisms have evolved sophisticated mechanisms to sense, respond to, and battle against ROS. Shewanella oneidensis, an important research model for applied and environmental microbes, employs OxyR to mediate the response to H2O2 by derepressing the production of the major H2O2 scavenger KatB as a major means toward these goals. Surprisingly, despite enhanced H2O2 degradation, the oxyR mutant carries a viability deficiency phenotype (plating defect), which can be suppressed by the addition of exogenous iron species. Experiments showed that the defect was not due to iron starvation. Rather, multiple lines of evidence suggested that H2O2 generated abiotically in lysogeny broth (LB) is responsible for the defect by quickly killing mutant cells. We then showed that the iron species suppressed the plating defect by two distinct mechanisms, either as an H2O2 scavenger without involving living cells or as an environmental cue to stimulate an OxyR-independent response to help cells cope with oxidative stress. Based on the suppression of the plating defect by overproduction of H2O2 scavengers in vivo, we propose that cellular components that are vulnerable to H2O2 and responsible for the defect may reside outside the cytoplasm. IMPORTANCE In bacteria, OxyR is the major regulator controlling the cellular response to H2O2. The loss of OxyR results in reduced viability in many species, but the underlying mechanism is unknown. We showed in S. oneidensis that this defect was due to H2O2 generated abiotically in LB. We then showed that this defect could be corrected by the addition of Fe(2+) or catalase to the LB or increased intracellular production of catalase. Further analyses revealed that Fe(2+) was able not only to decompose H2O2 directly but also to stimulate the activity of OxyR-independent H2O2-scavenging enzymes. Our data indicate that iron species play a previously underappreciated role in protecting cells from H2O2 in environments.
Collapse
Affiliation(s)
- Miaomiao Shi
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory for Agro-Microbial Research and Utilization, Zhejiang Province, Hangzhou, Zhejiang, China
| | - Fen Wan
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory for Agro-Microbial Research and Utilization, Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yinting Mao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory for Agro-Microbial Research and Utilization, Zhejiang Province, Hangzhou, Zhejiang, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory for Agro-Microbial Research and Utilization, Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
74
|
Briehl MM. Oxygen in human health from life to death--An approach to teaching redox biology and signaling to graduate and medical students. Redox Biol 2015; 5:124-139. [PMID: 25912168 PMCID: PMC4412967 DOI: 10.1016/j.redox.2015.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 04/08/2015] [Indexed: 02/07/2023] Open
Abstract
In the absence of oxygen human life is measured in minutes. In the presence of oxygen, normal metabolism generates reactive species (ROS) that have the potential to cause cell injury contributing to human aging and disease. Between these extremes, organisms have developed means for sensing oxygen and ROS and regulating their cellular processes in response. Redox signaling contributes to the control of cell proliferation and death. Aberrant redox signaling underlies many human diseases. The attributes acquired by altered redox homeostasis in cancer cells illustrate this particularly well. This teaching review and the accompanying illustrations provide an introduction to redox biology and signaling aimed at instructors of graduate and medical students. The ability to sense oxygen and respond to oxidative stress is ancient. Chemical and kinetic properties of ROS are key to understanding redox signaling. Redox signaling participates in normal control of cell proliferation and death. Aberrant redox signaling contributes to the hallmarks of cancer. Novel redox-based chemotherapeutics are being developed.
Collapse
Affiliation(s)
- Margaret M Briehl
- Department of Pathology, University of Arizona, PO Box 24-5043, Tucson, AZ 85724-5043, USA.
| |
Collapse
|
75
|
Bhatla N, Horvitz HR. Light and hydrogen peroxide inhibit C. elegans Feeding through gustatory receptor orthologs and pharyngeal neurons. Neuron 2015; 85:804-18. [PMID: 25640076 DOI: 10.1016/j.neuron.2014.12.061] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 11/11/2014] [Accepted: 12/22/2014] [Indexed: 11/29/2022]
Abstract
While gustatory sensing of the five primary flavors (sweet, salty, sour, bitter, and savory) has been extensively studied, pathways that detect non-canonical taste stimuli remain relatively unexplored. In particular, while reactive oxygen species cause generalized damage to biological systems, no gustatory mechanism to prevent ingestion of such material has been identified in any organism. We observed that light inhibits C. elegans feeding and used light as a tool to uncover molecular and neural mechanisms for gustation. Light can generate hydrogen peroxide, and we discovered that hydrogen peroxide similarly inhibits feeding. The gustatory receptor family members LITE-1 and GUR-3 are required for the inhibition of feeding by light and hydrogen peroxide. The I2 pharyngeal neurons increase calcium in response to light and hydrogen peroxide, and these responses require GUR-3 and a conserved antioxidant enzyme peroxiredoxin PRDX-2. Our results demonstrate a gustatory mechanism that mediates the detection and blocks ingestion of a non-canonical taste stimulus, hydrogen peroxide.
Collapse
Affiliation(s)
- Nikhil Bhatla
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - H Robert Horvitz
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
76
|
Holyoake LV, Poole RK, Shepherd M. The CydDC Family of Transporters and Their Roles in Oxidase Assembly and Homeostasis. Adv Microb Physiol 2015. [PMID: 26210105 DOI: 10.1016/bs.ampbs.2015.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The CydDC complex of Escherichia coli is a heterodimeric ATP-binding cassette type transporter (ABC transporter) that exports the thiol-containing redox-active molecules cysteine and glutathione. These reductants are thought to aid redox homeostasis of the periplasm, permitting correct disulphide folding of periplasmic and secreted proteins. Loss of CydDC results in the periplasm becoming more oxidising and abolishes the assembly of functional bd-type respiratory oxidases that couple the oxidation of ubiquinol to the reduction of oxygen to water. In addition, CydDC-mediated redox control is important for haem ligation during cytochrome c assembly. Given the diverse roles for CydDC in redox homeostasis, respiratory metabolism and the maturation of virulence factors, this ABC transporter is an intriguing system for researchers interested in both the physiology of redox perturbations and the role of low-molecular-weight thiols during infection.
Collapse
|
77
|
I n Vitro Anti-inflammatory and Immunomodulatory Effects of Ciprofloxacin or Azithromycin in Staphylococcus aureus-Stimulated Murine Macrophages are Beneficial in the Presence of Cytochalasin D. Inflammation 2014; 38:1050-69. [DOI: 10.1007/s10753-014-0070-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
78
|
Yingping F, Lemeille S, Talla E, Janicki A, Denis Y, Zhang CC, Latifi A. Unravelling the cross-talk between iron starvation and oxidative stress responses highlights the key role of PerR (alr0957) in peroxide signalling in the cyanobacterium Nostoc PCC 7120. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:468-475. [PMID: 25646537 DOI: 10.1111/1758-2229.12157] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The cyanobacterial phylum includes oxygenic photosynthetic prokaryotes of a wide variety of morphologies, metabolisms and ecologies. Their adaptation to their various ecological niches is mainly achieved by sophisticated regulatory mechanisms and depends on a fine cross-talk between them. We assessed the global transcriptomic response of the filamentous cyanobacterium Nostoc PCC 7120 to iron starvation and oxidative stress. More than 20% of the differentially expressed genes in response to iron stress were also responsive to oxidative stress. These transcripts include antioxidant proteins-encoding genes that confirms that iron depletion leads to reactive oxygen accumulation. The activity of the Fe-superoxide dismutase was not significantly decreased under iron starvation, indicating that the oxidative stress generated under iron deficiency is not a consequence of (SOD) deficiency. The transcriptional data indicate that the adaptation of Nostoc to iron-depleted conditions displays important differences with what has been shown in unicellular cyanobacteria. While the FurA protein that regulates the response to iron deprivation has been well characterized in Nostoc, the regulators in charge of the oxidative stress response are unknown. Our study indicates that the alr0957 (perR) gene encodes the master regulator of the peroxide stress. PerR is a peroxide-sensor repressor that senses peroxide by metal-catalysed oxidation.
Collapse
|
79
|
Eason MM, Fan X. The role and regulation of catalase in respiratory tract opportunistic bacterial pathogens. Microb Pathog 2014; 74:50-8. [DOI: 10.1016/j.micpath.2014.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 07/03/2014] [Accepted: 07/06/2014] [Indexed: 12/27/2022]
|
80
|
Kumar N, Dhamija I, Vasanth Raj P, Jayashree B, Parihar V, Manjula S, Thomas S, Gopalan Kutty N, Mallikarjuna Rao C. Preliminary investigation of cytotoxic potential of 2-quinolone derivatives using in vitro and in vivo (solid tumor and liquid tumor) models of cancer. ARAB J CHEM 2014. [DOI: 10.1016/j.arabjc.2012.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
81
|
Kim S, Bang YJ, Kim D, Lim JG, Oh MH, Choi SH. Distinct characteristics of OxyR2, a new OxyR-type regulator, ensuring expression of Peroxiredoxin 2 detoxifying low levels of hydrogen peroxide inVibrio vulnificus. Mol Microbiol 2014; 93:992-1009. [DOI: 10.1111/mmi.12712] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Suyeon Kim
- National Research Laboratory of Molecular Microbiology and Toxicology; Department of Agricultural Biotechnology; Center for Food Safety and Toxicology; Seoul National University; Seoul 151-921 Korea
| | - Ye-Ji Bang
- National Research Laboratory of Molecular Microbiology and Toxicology; Department of Agricultural Biotechnology; Center for Food Safety and Toxicology; Seoul National University; Seoul 151-921 Korea
| | - Dukyun Kim
- National Research Laboratory of Molecular Microbiology and Toxicology; Department of Agricultural Biotechnology; Center for Food Safety and Toxicology; Seoul National University; Seoul 151-921 Korea
| | - Jong Gyu Lim
- National Research Laboratory of Molecular Microbiology and Toxicology; Department of Agricultural Biotechnology; Center for Food Safety and Toxicology; Seoul National University; Seoul 151-921 Korea
| | - Man Hwan Oh
- Department of Nanobiomedical Science; Dankook University; Cheonan 330-714 Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology; Department of Agricultural Biotechnology; Center for Food Safety and Toxicology; Seoul National University; Seoul 151-921 Korea
| |
Collapse
|
82
|
Berndt C, Lillig CH, Flohé L. Redox regulation by glutathione needs enzymes. Front Pharmacol 2014; 5:168. [PMID: 25100998 PMCID: PMC4101335 DOI: 10.3389/fphar.2014.00168] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 06/25/2014] [Indexed: 11/30/2022] Open
Affiliation(s)
- Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine Universität Düsseldorf, Germany
| | - Christopher H Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz-Arndt Universität Greifswald, Germany
| | - Leopold Flohé
- Departamento de Bioquímica, Universidad de la República Montevideo, Uruguay ; Department of Chemistry, University of Padova Padova, Italy
| |
Collapse
|
83
|
Bishayi B, Bandyopadhyay D, Majhi A, Adhikary R. Possible Role of Toll-like Receptor-2 in the Intracellular Survival ofStaphylococcus aureusin Murine Peritoneal Macrophages: Involvement of Cytokines and Anti-Oxidant Enzymes. Scand J Immunol 2014; 80:127-43. [PMID: 24846691 DOI: 10.1111/sji.12195] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/13/2014] [Indexed: 11/29/2022]
Affiliation(s)
- B. Bishayi
- Department of Physiology, Immunology Laboratory; University of Calcutta; University Colleges of Science and Technology; Calcutta West Bengal India
| | - D. Bandyopadhyay
- Department of Physiology, Oxidative Stress and Free Radical Biology Laboratory; University of Calcutta; University Colleges of Science and Technology; Calcutta West Bengal India
| | - A. Majhi
- Department of Physiology, Immunology Laboratory; University of Calcutta; University Colleges of Science and Technology; Calcutta West Bengal India
| | - R. Adhikary
- Department of Physiology, Immunology Laboratory; University of Calcutta; University Colleges of Science and Technology; Calcutta West Bengal India
| |
Collapse
|
84
|
Gama-Castro S, Rinaldi F, López-Fuentes A, Balderas-Martínez YI, Clematide S, Ellendorff TR, Santos-Zavaleta A, Marques-Madeira H, Collado-Vides J. Assisted curation of regulatory interactions and growth conditions of OxyR in E. coli K-12. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bau049. [PMID: 24903516 PMCID: PMC4207228 DOI: 10.1093/database/bau049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Given the current explosion of data within original publications generated in the field of genomics, a recognized bottleneck is the transfer of such knowledge into comprehensive databases. We have for years organized knowledge on transcriptional regulation reported in the original literature of Escherichia coli K-12 into RegulonDB (http://regulondb.ccg.unam.mx), our database that is currently supported by >5000 papers. Here, we report a first step towards the automatic biocuration of growth conditions in this corpus. Using the OntoGene text-mining system (http://www.ontogene.org), we extracted and manually validated regulatory interactions and growth conditions in a new approach based on filters that enable the curator to select informative sentences from preprocessed full papers. Based on a set of 48 papers dealing with oxidative stress by OxyR, we were able to retrieve 100% of the OxyR regulatory interactions present in RegulonDB, including the transcription factors and their effect on target genes. Our strategy was designed to extract, as we did, their growth conditions. This result provides a proof of concept for a more direct and efficient curation process, and enables us to define the strategy of the subsequent steps to be implemented for a semi-automatic curation of original literature dealing with regulation of gene expression in bacteria. This project will enhance the efficiency and quality of the curation of knowledge present in the literature of gene regulation, and contribute to a significant increase in the encoding of the regulatory network of E. coli. RegulonDB Database URL:http://regulondb.ccg.unam.mx OntoGene URL:http://www.ontogene.org
Collapse
Affiliation(s)
- Socorro Gama-Castro
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100 and Institute of Computational Linguistics, University of Zurich, Binzmuhlestrasse 14, Zurich 8050, Switzerland
| | - Fabio Rinaldi
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100 and Institute of Computational Linguistics, University of Zurich, Binzmuhlestrasse 14, Zurich 8050, Switzerland
| | - Alejandra López-Fuentes
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100 and Institute of Computational Linguistics, University of Zurich, Binzmuhlestrasse 14, Zurich 8050, Switzerland
| | - Yalbi Itzel Balderas-Martínez
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100 and Institute of Computational Linguistics, University of Zurich, Binzmuhlestrasse 14, Zurich 8050, Switzerland
| | - Simon Clematide
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100 and Institute of Computational Linguistics, University of Zurich, Binzmuhlestrasse 14, Zurich 8050, Switzerland
| | - Tilia Renate Ellendorff
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100 and Institute of Computational Linguistics, University of Zurich, Binzmuhlestrasse 14, Zurich 8050, Switzerland
| | - Alberto Santos-Zavaleta
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100 and Institute of Computational Linguistics, University of Zurich, Binzmuhlestrasse 14, Zurich 8050, Switzerland
| | - Hernani Marques-Madeira
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100 and Institute of Computational Linguistics, University of Zurich, Binzmuhlestrasse 14, Zurich 8050, Switzerland
| | - Julio Collado-Vides
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, A.P. 565-A, Cuernavaca, Morelos 62100 and Institute of Computational Linguistics, University of Zurich, Binzmuhlestrasse 14, Zurich 8050, Switzerland
| |
Collapse
|
85
|
Belousov VV, Enikolopov GN, Mishina NM. [Compartmentalization of ROS-mediated signal transduction]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2014; 39:383-99. [PMID: 24707719 DOI: 10.1134/s1068162013040043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The localization of signaling molecules close to their targets is the central principle of cell signaling. The colocalization of multicomponent signaling complexes is realized through protein scaffolds that provide better specificity than undirected diffusion ofthe same components. ROS-generating complexes have been suggested to follow this principle by specific intracellular localization of ROS production and the limitation of ROS diffusion distances. However, the lack of adequate methods did not allow direct detection of local ROS production to confirm the model ofredox signaling compartmentalization. Nevertheless, evidences of local ROS production and restriction of diffusion were provided by kinetic modeling and data on the subcellular localization of NADPH-oxidase isoforms, their adapter proteins and local restriction of ROS diffusion. Here we shall discuss the properties of antioxidant system which prevents uncontrolled ROS diffusion from the sites of generation to the adjacent subcellular compartments; the current data of the specific localization NADPH-oxidases activity and its influence on intracellular processes; the recent evidences of the ROS diffusion restriction.
Collapse
|
86
|
García-Santamarina S, Boronat S, Hidalgo E. Reversible Cysteine Oxidation in Hydrogen Peroxide Sensing and Signal Transduction. Biochemistry 2014; 53:2560-80. [DOI: 10.1021/bi401700f] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sarela García-Santamarina
- Oxidative
Stress and Cell
Cycle Group, Departament de Ciències Experimentals i de la
Salut, Universitat Pompeu Fabra, C/Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Susanna Boronat
- Oxidative
Stress and Cell
Cycle Group, Departament de Ciències Experimentals i de la
Salut, Universitat Pompeu Fabra, C/Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Elena Hidalgo
- Oxidative
Stress and Cell
Cycle Group, Departament de Ciències Experimentals i de la
Salut, Universitat Pompeu Fabra, C/Dr. Aiguader 88, E-08003 Barcelona, Spain
| |
Collapse
|
87
|
Chan SW. Establishment of chronic hepatitis C virus infection: Translational evasion of oxidative defence. World J Gastroenterol 2014; 20:2785-2800. [PMID: 24659872 PMCID: PMC3961964 DOI: 10.3748/wjg.v20.i11.2785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/03/2013] [Accepted: 01/15/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) causes a clinically important disease affecting 3% of the world population. HCV is a single-stranded, positive-sense RNA virus belonging to the genus Hepacivirus within the Flaviviridae family. The virus establishes a chronic infection in the face of an active host oxidative defence, thus adaptation to oxidative stress is key to virus survival. Being a small RNA virus with a limited genomic capacity, we speculate that HCV deploys a different strategy to evade host oxidative defence. Instead of counteracting oxidative stress, it utilizes oxidative stress to facilitate its own survival. Translation is the first step in the replication of a plus strand RNA virus so it would make sense if the virus can exploit the host oxidative defence in facilitating this very first step. This is particularly true when HCV utilizes an internal ribosome entry site element in translation, which is distinctive from that of cap-dependent translation of the vast majority of cellular genes, thus allowing selective translation of genes under conditions when global protein synthesis is compromised. Indeed, we were the first to show that HCV translation was stimulated by an important pro-oxidant-hydrogen peroxide in hepatocytes, suggesting that HCV is able to adapt to and utilize the host anti-viral response to facilitate its own translation thus allowing the virus to thrive under oxidative stress condition to establish chronicity. Understanding how HCV translation is regulated under oxidative stress condition will advance our knowledge on how HCV establishes chronicity. As chronicity is the initiator step in disease progression this will eventually lead to a better understanding of pathogenicity, which is particularly relevant to the development of anti-virals and improved treatments of HCV patients using anti-oxidants.
Collapse
|
88
|
Kubota T, Tanaka Y, Takemoto N, Watanabe A, Hiraga K, Inui M, Yukawa H. Chorismate-dependent transcriptional regulation of quinate/shikimate utilization genes by LysR-type transcriptional regulator QsuR inCorynebacterium glutamicum: carbon flow control at metabolic branch point. Mol Microbiol 2014; 92:356-68. [DOI: 10.1111/mmi.12560] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Takeshi Kubota
- Research Institute of Innovative Technology for the Earth (RITE); 9-2, Kizugawadai, Kizugawa Kyoto 619-0292 Japan
| | - Yuya Tanaka
- Research Institute of Innovative Technology for the Earth (RITE); 9-2, Kizugawadai, Kizugawa Kyoto 619-0292 Japan
| | - Norihiko Takemoto
- Research Institute of Innovative Technology for the Earth (RITE); 9-2, Kizugawadai, Kizugawa Kyoto 619-0292 Japan
| | - Akira Watanabe
- Research Institute of Innovative Technology for the Earth (RITE); 9-2, Kizugawadai, Kizugawa Kyoto 619-0292 Japan
| | - Kazumi Hiraga
- Research Institute of Innovative Technology for the Earth (RITE); 9-2, Kizugawadai, Kizugawa Kyoto 619-0292 Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth (RITE); 9-2, Kizugawadai, Kizugawa Kyoto 619-0292 Japan
| | - Hideaki Yukawa
- Research Institute of Innovative Technology for the Earth (RITE); 9-2, Kizugawadai, Kizugawa Kyoto 619-0292 Japan
| |
Collapse
|
89
|
Marinho HS, Real C, Cyrne L, Soares H, Antunes F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol 2014; 2:535-62. [PMID: 24634836 PMCID: PMC3953959 DOI: 10.1016/j.redox.2014.02.006] [Citation(s) in RCA: 619] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 12/12/2022] Open
Abstract
The regulatory mechanisms by which hydrogen peroxide (H2O2) modulates the activity of transcription factors in bacteria (OxyR and PerR), lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4) and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1) are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1) synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii) stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii) cytoplasm–nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and (iv) DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M−1 s−1 and ≥1.3 × 103 M−1 s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for highly specific effects on gene regulation that depend on the cell type and on signals received from the cellular microenvironment. Complexity of redox regulation increases along the phylogenetic tree. Complex regulatory networks allow for a high degree of H2O2 biological plasticity. H2O2 modulates gene expression at all steps from transcription to protein synthesis. Fast response (s) is mediated by sensors with high H2O2 reactivity. Low reactivity H2O2 sensors may mediate slow (h) or localized H2O2 responses.
Collapse
Affiliation(s)
- H. Susana Marinho
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Carla Real
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Luísa Cyrne
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Helena Soares
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, IPL, Lisboa, Portugal
| | - Fernando Antunes
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Corresponding author.
| |
Collapse
|
90
|
Zhou J, Huang K, Lei XG. Selenium and diabetes--evidence from animal studies. Free Radic Biol Med 2013; 65:1548-1556. [PMID: 23867154 PMCID: PMC3859733 DOI: 10.1016/j.freeradbiomed.2013.07.012] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/06/2013] [Accepted: 07/09/2013] [Indexed: 02/07/2023]
Abstract
Whereas selenium was found to act as an insulin mimic and to be antidiabetic in earlier studies, recent animal experiments and human trials have shown an unexpected risk of prolonged high Se intake in potentiating insulin resistance and type 2 diabetes. Elevating dietary Se intake (0.4 to 3.0mg/kg of diet) above the nutrient requirements, similar to overproduction of selenoproteins, led to insulin resistance and/or diabetes-like phenotypes in mice, rats, and pigs. Although its diabetogenic mechanism remains unclear, high Se intake elevated activity or production of selenoproteins including GPx1, MsrB1, SelS, and SelP. This upregulation diminished intracellular reactive oxygen species and then dysregulated key regulators of β cells and insulin synthesis and secretion, leading to chronic hyperinsulinemia. Overscavenging intracellular H2O2 also attenuated oxidative inhibition of protein tyrosine phosphatases and suppressed insulin signaling. High Se intake might affect expression and/or function of key regulators of glycolysis, gluconeogenesis, and lipogenesis. Future research is needed to find out if certain forms of Se metabolites in addition to selenoproteins and if mechanisms other than intracellular redox control mediate the diabetogenic effects of high Se intake. Furthermore, a potential interactive role of high Se intake in the interphase of carcinogenesis and diabetogenesis should be explored to make optimal use of Se in human nutrition and health.
Collapse
Affiliation(s)
- Jun Zhou
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kaixun Huang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
91
|
A study on the role of (+)-catechin in suppression of HepG2 proliferation via caspase dependent pathway and enhancement of itsin vitro and in vivo cytotoxic potential through liposomal formulation. Eur J Pharm Sci 2013; 50:353-65. [DOI: 10.1016/j.ejps.2013.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/29/2013] [Accepted: 08/05/2013] [Indexed: 01/04/2023]
|
92
|
Parker BW, Schwessinger EA, Jakob U, Gray MJ. The RclR protein is a reactive chlorine-specific transcription factor in Escherichia coli. J Biol Chem 2013; 288:32574-32584. [PMID: 24078635 DOI: 10.1074/jbc.m113.503516] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Reactive chlorine species (RCS) such as hypochlorous acid are powerful antimicrobial oxidants. Used extensively for disinfection in household and industrial settings (i.e. as bleach), RCS are also naturally generated in high quantities during the innate immune response. Bacterial responses to RCS are complex and differ substantially from the well characterized responses to other physiologically relevant oxidants, like peroxide or superoxide. Several RCS-sensitive transcription factors have been identified in bacteria, but most of them respond to multiple stressors whose damaging effects overlap with those of RCS, including reactive oxygen species and electrophiles. We have now used in vivo genetic and in vitro biochemical methods to identify and demonstrate that Escherichia coli RclR (formerly YkgD) is a redox-regulated transcriptional activator of the AraC family, whose highly conserved cysteine residues are specifically sensitive to oxidation by RCS. Oxidation of these cysteines leads to strong, highly specific activation of expression of genes required for survival of RCS stress. These results demonstrate the existence of a widely conserved bacterial regulon devoted specifically to RCS resistance.
Collapse
Affiliation(s)
- Benjamin W Parker
- From the Department of Molecular, Cellular, and Developmental Biology
| | | | - Ursula Jakob
- From the Department of Molecular, Cellular, and Developmental Biology; the Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan 48109.
| | - Michael J Gray
- From the Department of Molecular, Cellular, and Developmental Biology.
| |
Collapse
|
93
|
Rothe M, Blaut M. Evolution of the gut microbiota and the influence of diet. Benef Microbes 2013; 4:31-7. [PMID: 23257016 DOI: 10.3920/bm2012.0029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Diet is a major force that shapes the composition and activity of the gut microbiota. This is evident from alterations in gut microbiota composition after weaning or drastic dietary changes. Owing to the complexity of the microbiota, interactions of intestinal bacteria with the host are difficult to study. Gnotobiotic animal models offer the opportunity to reduce the complexity and the interindividual variability of the intestinal microbiota. Germ-free animals were associated with a simplified microbial community consisting of eight bacterial species, that are found in the human gut. These microbes were selected because their genome sequences are available, and they mimic to some extent the metabolic activity of the human gut microbiota. The microbiota responded to dietary modifications by changes in the relative proportions of the community members. This model offers the chance to better define the role of intestinal bacteria in obesity development, but little is known on how diet affects intestinal bacteria at the cellular level. Mice monoassociated with Escherichia coli were used as a simplified model to investigate the influence of dietary factors on bacterial protein expression in the intestine. The mice were fed three different diets: a carbohydrate (lactose)-rich diet, a protein-rich diet and a diet rich in starch. The lactose-rich diet led to an induction of proteins involved in E. coli's oxidative stress response (Fur, AhpF, Dps). The corresponding genes are under control of the OxyR transcriptional regulator which is activated by oxidative stress. Further experiments demonstrated that osmotic stress exerted by various carbohydrates leads to an upregulation of proteins belonging to the oxyR regulon. The data suggest that the upregulated proteins enable intestinal E. coli to better cope with diet-induced osmotic stress. These examples demonstrate that gnotobiotic animal models are a valuable tool for studying diet-induced changes at the community and the cell level.
Collapse
Affiliation(s)
- M Rothe
- Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114.116, 14558 Nuthetal, Germany
| | | |
Collapse
|
94
|
Vatansever F, de Melo WCMA, Avci P, Vecchio D, Sadasivam M, Gupta A, Chandran R, Karimi M, Parizotto NA, Yin R, Tegos GP, Hamblin MR. Antimicrobial strategies centered around reactive oxygen species--bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol Rev 2013; 37:955-89. [PMID: 23802986 DOI: 10.1111/1574-6976.12026] [Citation(s) in RCA: 626] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) can attack a diverse range of targets to exert antimicrobial activity, which accounts for their versatility in mediating host defense against a broad range of pathogens. Most ROS are formed by the partial reduction in molecular oxygen. Four major ROS are recognized comprising superoxide (O2•-), hydrogen peroxide (H2O2), hydroxyl radical (•OH), and singlet oxygen ((1)O2), but they display very different kinetics and levels of activity. The effects of O2•- and H2O2 are less acute than those of •OH and (1)O2, because the former are much less reactive and can be detoxified by endogenous antioxidants (both enzymatic and nonenzymatic) that are induced by oxidative stress. In contrast, no enzyme can detoxify •OH or (1)O2, making them extremely toxic and acutely lethal. The present review will highlight the various methods of ROS formation and their mechanism of action. Antioxidant defenses against ROS in microbial cells and the use of ROS by antimicrobial host defense systems are covered. Antimicrobial approaches primarily utilizing ROS comprise both bactericidal antibiotics and nonpharmacological methods such as photodynamic therapy, titanium dioxide photocatalysis, cold plasma, and medicinal honey. A brief final section covers reactive nitrogen species and related therapeutics, such as acidified nitrite and nitric oxide-releasing nanoparticles.
Collapse
Affiliation(s)
- Fatma Vatansever
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Isom CE, Turner JL, Lessner DJ, Karr EA. Redox-sensitive DNA binding by homodimeric Methanosarcina acetivorans MsvR is modulated by cysteine residues. BMC Microbiol 2013; 13:163. [PMID: 23865844 PMCID: PMC3729527 DOI: 10.1186/1471-2180-13-163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 07/12/2013] [Indexed: 11/16/2022] Open
Abstract
Background Methanoarchaea are among the strictest known anaerobes, yet they can survive exposure to oxygen. The mechanisms by which they sense and respond to oxidizing conditions are unknown. MsvR is a transcription regulatory protein unique to the methanoarchaea. Initially identified and characterized in the methanogen Methanothermobacter thermautotrophicus (Mth), MthMsvR displays differential DNA binding under either oxidizing or reducing conditions. Since MthMsvR regulates a potential oxidative stress operon in M. thermautotrophicus, it was hypothesized that the MsvR family of proteins were redox-sensitive transcription regulators. Results An MsvR homologue from the methanogen Methanosarcina acetivorans, MaMsvR, was overexpressed and purified. The two MsvR proteins bound the same DNA sequence motif found upstream of all known MsvR encoding genes, but unlike MthMsvR, MaMsvR did not bind the promoters of select genes involved in the oxidative stress response. Unlike MthMsvR that bound DNA under both non-reducing and reducing conditions, MaMsvR bound DNA only under reducing conditions. MaMsvR appeared as a dimer in gel filtration chromatography analysis and site-directed mutagenesis suggested that conserved cysteine residues within the V4R domain were involved in conformational rearrangements that impact DNA binding. Conclusions Results presented herein suggest that homodimeric MaMsvR acts as a transcriptional repressor by binding Ma PmsvR under non-reducing conditions. Changing redox conditions promote conformational changes that abrogate binding to Ma PmsvR which likely leads to de-repression.
Collapse
Affiliation(s)
- Catherine E Isom
- Department of Microbiology and Plant Biology, University of Oklahoma, 770 Van Vleet Oval, Norman, OK, 73019, USA
| | | | | | | |
Collapse
|
96
|
Abstract
Reactive oxygen species (ROS) react preferentially with certain atoms to modulate functions ranging from cell homeostasis to cell death. Molecular actions include both inhibition and activation of proteins, mutagenesis of DNA and activation of gene transcription. Cellular actions include promotion or suppression of inflammation, immunity and carcinogenesis. ROS help the host to compete against microorganisms and are also involved in intermicrobial competition. ROS chemistry and their pleiotropy make them difficult to localize, to quantify and to manipulate - challenges we must overcome to translate ROS biology into medical advances.
Collapse
|
97
|
Ozyamak E, de Almeida C, de Moura APS, Miller S, Booth IR. Integrated stress response of Escherichia coli to methylglyoxal: transcriptional readthrough from the nemRA operon enhances protection through increased expression of glyoxalase I. Mol Microbiol 2013; 88:936-50. [PMID: 23646895 PMCID: PMC3739934 DOI: 10.1111/mmi.12234] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2013] [Indexed: 12/02/2022]
Abstract
Methylglyoxal (MG) elicits activation of K+ efflux systems to protect cells against the toxicity of the electrophile. ChIP-chip targeting RNA polymerase, supported by a range of other biochemical measurements and mutant creation, was used to identify genes transcribed in response to MG and which complement this rapid response. The SOS DNA repair regulon is induced at cytotoxic levels of MG, even when exposure to MG is transient. Glyoxalase I alone among the core MG protective systems is induced in response to MG exposure. Increased expression is an indirect consequence of induction of the upstream nemRA operon, encoding an enzyme system that itself does not contribute to MG detoxification. Moreover, this induction, via nemRA only occurs when cells are exposed to growth inhibitory concentrations of MG. We show that the kdpFABCDE genes are induced and that this expression occurs as a result of depletion of cytoplasmic K+ consequent upon activation of the KefGB K+ efflux system. Finally, our analysis suggests that the transcriptional changes in response to MG are a culmination of the damage to DNA and proteins, but that some integrate specific functions, such as DNA repair, to augment the allosteric activation of the main protective system, KefGB.
Collapse
Affiliation(s)
- Ertan Ozyamak
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
| | | | | | | | | |
Collapse
|
98
|
Nonnative disulfide bond formation activates the σ32-dependent heat shock response in Escherichia coli. J Bacteriol 2013; 195:2807-16. [PMID: 23585533 DOI: 10.1128/jb.00127-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formation of nonnative disulfide bonds in the cytoplasm, so-called disulfide stress, is an integral component of oxidative stress. Quantification of the extent of disulfide bond formation in the cytoplasm of Escherichia coli revealed that disulfide stress is associated with oxidative stress caused by hydrogen peroxide, paraquat, and cadmium. To separate the impact of disulfide bond formation from unrelated effects of these oxidative stressors in subsequent experiments, we worked with two complementary approaches. We triggered disulfide stress either chemically by diamide treatment of cells or genetically in a mutant strain lacking the major disulfide-reducing systems TrxB and Gor. Studying the proteomic response of E. coli exposed to disulfide stress, we found that intracellular disulfide bond formation is a particularly strong inducer of the heat shock response. Real-time quantitative PCR experiments showed that disulfide stress induces the heat shock response in E. coli σ(32) dependently. However, unlike heat shock treatment, which induces these genes transiently, transcripts of σ(32)-dependent genes accumulated over time in disulfide stress-treated cells. Analyzing the stability of σ(32), we found that this constant induction can be attributed to an increase of the half-life of σ(32) upon disulfide stress. This is concomitant with aggregation of E. coli proteins treated with diamide. We conclude that oxidative stress triggers the heat shock response in E. coli σ(32) dependently. The component of oxidative stress responsible for the induction of heat shock genes is disulfide stress. Nonnative disulfide bond formation in the cytoplasm causes protein unfolding. This stabilizes σ(32) by preventing its DnaK- and FtsH-dependent degradation.
Collapse
|
99
|
Dhamija I, Kumar N, Manjula SN, Parihar V, Setty MM, Pai KSR. Preliminary evaluation of in vitro cytotoxicity and in vivo antitumor activity of Premna herbacea Roxb. in Ehrlich ascites carcinoma model and Dalton's lymphoma ascites model. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2013; 65:235-242. [PMID: 21920724 DOI: 10.1016/j.etp.2011.08.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/13/2011] [Accepted: 08/18/2011] [Indexed: 12/23/2022]
Abstract
In the present study, the root nodules of Premna herbacea Roxb. (PH) was investigated for its in vitro cytotoxicity and in vivo antitumor activity. Two extracts, aqueous and alcoholic; two fractions of alcoholic extract, ethyl acetate and butanol fractions were screened for their in vitro cytotoxicity by brine shrimp lethality (BSL) assay, trypan blue exclusion assay and MTT assay. Alcoholic extract and its ethyl acetate fraction were found to be the most effective in BSL assay, trypan blue exclusion assay. In vivo antitumor activity was screened in the Ehrlich ascites carcinoma (EAC) model and the Dalton lymphoma ascites (DLA) model. The extracts and the fractions were tested at two dosages (250 and 500 mg/kg) by intraperitoneally (i.p.) route on every alternate day upto 13th day. Cisplatin was used as positive control in both studies in single dose (day 1) 3.5 mg/kg by i.p. route. In EAC model, ascites tumor was induced by inoculating 2.5 million of EAC cells i.p. alcoholic extract at 500 mg/kg was the most effective in elevating MST, reduction in body weight in EAC induced tumor. Only the effective extract i.e., alcoholic extract were studied for hematological and antioxidant parameter. It showed a restoring effect on altered hematological parameters and a significant improvement in biochemical parameters at 250 mg/kg dose of alcoholic extract. These results explain the toxicity of 500 mg/kg might be high. In the Dalton lymphoma ascites (DLA) model, solid tumor was developed by i.m. injection of 1 million DLA cells. Both the extracts and the fractions possessed potent antitumor activity against solid tumor models by significantly reducing the solid tumor weight and volume.
Collapse
Affiliation(s)
- Isha Dhamija
- Manipal College of Pharmaceutical Sciences, Manipal University, Manipal-576104, India
| | | | | | | | | | | |
Collapse
|
100
|
Rothe M, Alpert C, Loh G, Blaut M. Novel insights into E. coli's hexuronate metabolism: KduI facilitates the conversion of galacturonate and glucuronate under osmotic stress conditions. PLoS One 2013; 8:e56906. [PMID: 23437267 PMCID: PMC3578941 DOI: 10.1371/journal.pone.0056906] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/15/2013] [Indexed: 11/20/2022] Open
Abstract
Using a gnotobiotic mouse model, we previously observed the upregulation of 2-deoxy-D-gluconate 3-dehydrogenase (KduD) in intestinal E. coli of mice fed a lactose-rich diet and the downregulation of this enzyme and of 5-keto 4-deoxyuronate isomerase (KduI) on a casein-rich diet. The present study aimed to define the role of the so far poorly characterized E. coli proteins KduD and KduI in vitro. Galacturonate and glucuronate induced kduD and kduI gene expression 3-fold and 7 to 11-fold, respectively, under aerobic conditions as well as 9 to 20-fold and 19 to 54-fold, respectively, under anaerobic conditions. KduI facilitated the breakdown of these hexuronates. In E. coli, galacturonate and glucuronate are normally degraded by UxaABC and UxuAB. However, osmotic stress represses the expression of the corresponding genes in an OxyR-dependent manner. When grown in the presence of galacturonate or glucuronate, kduID-deficient E. coli had a 30% to 80% lower maximal cell density and 1.5 to 2-fold longer doubling times under osmotic stress conditions than wild type E. coli. Growth on lactose promoted the intracellular formation of hexuronates, which possibly explain the induction of KduD on a lactose-rich diet. These results indicate a novel function of KduI and KduD in E. coli and demonstrate the crucial influence of osmotic stress on the gene expression of hexuronate degrading enzymes.
Collapse
Affiliation(s)
- Monique Rothe
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | | | | | | |
Collapse
|