51
|
Pakai E, Tekus V, Zsiboras C, Rumbus Z, Olah E, Keringer P, Khidhir N, Matics R, Deres L, Ordog K, Szentes N, Pohoczky K, Kemeny A, Hegyi P, Pinter E, Garami A. The Neurokinin-1 Receptor Contributes to the Early Phase of Lipopolysaccharide-Induced Fever via Stimulation of Peripheral Cyclooxygenase-2 Protein Expression in Mice. Front Immunol 2018; 9:166. [PMID: 29459872 PMCID: PMC5807668 DOI: 10.3389/fimmu.2018.00166] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/18/2018] [Indexed: 12/20/2022] Open
Abstract
Neurokinin (NK) signaling is involved in various inflammatory processes. A common manifestation of systemic inflammation is fever, which is usually induced in animal models with the administration of bacterial lipopolysaccharide (LPS). A role for the NK1 receptor was shown in LPS-induced fever, but the underlying mechanisms of how the NK1 receptor contributes to febrile response, especially in the early phase, have remained unknown. We administered LPS (120 µg/kg, intraperitoneally) to mice with the Tacr1 gene, i.e., the gene encoding the NK1 receptor, either present (Tacr1+/+ ) or absent (Tacr1-/- ) and measured their thermoregulatory responses, serum cytokine levels, tissue cyclooxygenase-2 (COX-2) expression, and prostaglandin (PG) E2 concentration. We found that the LPS-induced febrile response was attenuated in Tacr1-/- compared to their Tacr1+/+ littermates starting from 40 min postinfusion. The febrigenic effect of intracerebroventricularly administered PGE2 was not suppressed in the Tacr1-/- mice. Serum concentration of pyrogenic cytokines did not differ between Tacr1-/- and Tacr1+/+ at 40 min post-LPS infusion. Administration of LPS resulted in amplification of COX-2 mRNA expression in the lungs, liver, and brain of the mice, which was statistically indistinguishable between the genotypes. In contrast, the LPS-induced augmentation of COX-2 protein expression was attenuated in the lungs and tended to be suppressed in the liver of Tacr1-/- mice compared with Tacr1+/+ mice. The Tacr1+/+ mice responded to LPS with a significant surge of PGE2 production in the lungs, whereas Tacr1-/- mice did not. In conclusion, the NK1 receptor is necessary for normal fever genesis. Our results suggest that the NK1 receptor contributes to the early phase of LPS-induced fever by enhancing COX-2 protein expression in the periphery. These findings advance the understanding of the crosstalk between NK signaling and the "cytokine-COX-2-prostaglandin E2" axis in systemic inflammation, thereby open up the possibilities for new therapeutic approaches.
Collapse
Affiliation(s)
- Eszter Pakai
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
- Momentum Gastroenterology Multidisciplinary Research Group, Hungarian Academy of Sciences – University of Szeged, Szeged, Hungary
| | - Valeria Tekus
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pecs, Hungary
- Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Csaba Zsiboras
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Zoltan Rumbus
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Emoke Olah
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Patrik Keringer
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Nora Khidhir
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Robert Matics
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Laszlo Deres
- Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- First Department of Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Katalin Ordog
- Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- First Department of Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Nikolett Szentes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pecs, Hungary
- Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Krisztina Pohoczky
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pecs, Hungary
- Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Agnes Kemeny
- Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- Department of Medical Biology, Medical School, University of Pecs, Pecs, Hungary
| | - Peter Hegyi
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
- Momentum Gastroenterology Multidisciplinary Research Group, Hungarian Academy of Sciences – University of Szeged, Szeged, Hungary
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Erika Pinter
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pecs, Hungary
- Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Andras Garami
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| |
Collapse
|
52
|
Tsukamoto A, Ohgoda M, Haruki N, Hori M, Inomata T. The anti-inflammatory action of maropitant in a mouse model of acute pancreatitis. J Vet Med Sci 2018; 80:492-498. [PMID: 29343664 PMCID: PMC5880832 DOI: 10.1292/jvms.17-0483] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The neurokinin 1 receptor (NK1R) plays an important role in the pathogenesis of acute pancreatitis (AP). Maropitant is an NK1R antagonist that is widely used as an antiemetic in dogs and cats. In the present study, we investigated the anti-inflammatory action of maropitant in a mouse model of AP. AP was induced in BALB/c mice by intraperitoneal administration of cerulein, and maropitant was administered subcutaneously at a dose of 8 mg/kg. We assessed the mRNA expression levels of NK1R and substance P (SP) in the pancreatic tissue via real-time reverse transcription polymerase chain reaction. In addition, the effect of maropitant on plasma amylase, lipase, and interleukin-6 (IL-6) levels was measured in each mouse. Inflammatory cell infiltration in the pancreas was assessed by myeloperoxidase (MPO) staining. Our results showed that AP induction significantly elevated the mRNA expression of SP in the pancreatic tissue. Treatment with maropitant significantly lowered plasma amylase and IL-6 levels. In addition, treatment with maropitant inhibited the infiltration of MPO-positive cells in the pancreas. The present study suggests that maropitant possesses an anti-inflammatory activity, in addition to its antiemetic action.
Collapse
Affiliation(s)
- Atsushi Tsukamoto
- Laboratory of Laboratory Animal Science, Azabu University, 1-17-71 Fuchinobe, Chuou-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Minami Ohgoda
- Laboratory of Laboratory Animal Science, Azabu University, 1-17-71 Fuchinobe, Chuou-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Nozomi Haruki
- Laboratory of Laboratory Animal Science, Azabu University, 1-17-71 Fuchinobe, Chuou-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Masatoshi Hori
- Department of Veterinary Pharmacology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomo Inomata
- Laboratory of Laboratory Animal Science, Azabu University, 1-17-71 Fuchinobe, Chuou-ku, Sagamihara, Kanagawa 252-5201, Japan
| |
Collapse
|
53
|
Padovan E. Modulation of CD4+ T Helper Cell Memory Responses in the Human Skin. Int Arch Allergy Immunol 2017; 173:121-137. [PMID: 28787717 DOI: 10.1159/000477728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Immunological memory is defined as the capacity to mount faster and more effective immune responses against antigenic challenges that have been previously encountered by the host. CD4+ T helper (Th) cells play central roles in the establishment of immunological memory as they assist the functions of other leukocytes. Th cells express polarized cytokine profiles and distinct migratory and seeding capacities, but also retain a certain functional plasticity that allows them to modulate their proliferation, activity, and homing behaviour upon need. Thus, in healthy individuals, T cell immunomodulation fulfils the task of eliciting protective immune responses where they are needed. At times, however, Th plasticity can lead to collateral tissue damage and progression to autoimmune diseases or, conversely, incapacity to reject malignant tissues and clear chronic infections. Furthermore, common immune players and molecular pathways of diseases can lead to different outcomes in different individuals. A mechanistic understanding of those pathways is therefore crucial for developing precise and curative medical interventions. Here, I focus on the skin microenvironment and comprehensively describe some of the cellular and molecular determinants of CD4+ T cell memory responses in homeostatic and pathological conditions. In discussing the cellular network orchestrating cutaneous immunity, I comprehensively describe the bidirectional interaction of skin antigen-presenting cells and mononuclear phagocytes with Th17 lymphocytes, and examine how the outcome of this interaction is influenced by endogenous skin molecules, including sodium salts and neuropeptides.
Collapse
Affiliation(s)
- Elisabetta Padovan
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland
| |
Collapse
|
54
|
Sustained Low Serum Substance P Levels in Non-Surviving Septic Patients. Int J Mol Sci 2017; 18:ijms18071531. [PMID: 28714876 PMCID: PMC5536019 DOI: 10.3390/ijms18071531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 12/14/2022] Open
Abstract
Previously, researchers found higher serum substance P (SP) concentrations in survivors of severe sepsis than in non-survivors at the time of severe sepsis diagnosis. The objectives of our current study were to determine whether there is an association between serum SP levels during the first week and sepsis mortality, sepsis severity, serum levels of tumor necrosis factor (TNF)-α and interleukin (IL)-10, and whether serum SP levels during the first week could be used as a biomarker of sepsis mortality. We determined serum concentration of SP, TNF-α, and IL-10 at days 1, 4, and 8. The end-point of the study was mortality at 30 days. We found that non-survivor (n = 104) compared to survivor patients (n = 206) showed lower serum SP levels at days 1, 4, and 8 (p < 0.001). Multiple logistic regression analyses showed an association between 30-day mortality and serum SP levels at days 1, 4, and 8 (p < 0.001) controlling for SOFA score, diabetes mellitus, age, and lactic acid levels. The most interesting findings of our study were that there is an association between serum SP levels during the first week and sepsis mortality, and that serum SP levels during the first week could be used as a biomarker of sepsis mortality.
Collapse
|
55
|
Lai NY, Mills K, Chiu IM. Sensory neuron regulation of gastrointestinal inflammation and bacterial host defence. J Intern Med 2017; 282:5-23. [PMID: 28155242 PMCID: PMC5474171 DOI: 10.1111/joim.12591] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sensory neurons in the gastrointestinal tract have multifaceted roles in maintaining homeostasis, detecting danger and initiating protective responses. The gastrointestinal tract is innervated by three types of sensory neurons: dorsal root ganglia, nodose/jugular ganglia and intrinsic primary afferent neurons. Here, we examine how these distinct sensory neurons and their signal transducers participate in regulating gastrointestinal inflammation and host defence. Sensory neurons are equipped with molecular sensors that enable neuronal detection of diverse environmental signals including thermal and mechanical stimuli, inflammatory mediators and tissue damage. Emerging evidence shows that sensory neurons participate in host-microbe interactions. Sensory neurons are able to detect pathogenic and commensal bacteria through specific metabolites, cell-wall components, and toxins. Here, we review recent work on the mechanisms of bacterial detection by distinct subtypes of gut-innervating sensory neurons. Upon activation, sensory neurons communicate to the immune system to modulate tissue inflammation through antidromic signalling and efferent neural circuits. We discuss how this neuro-immune regulation is orchestrated through transient receptor potential ion channels and sensory neuropeptides including substance P, calcitonin gene-related peptide, vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Recent studies also highlight a role for sensory neurons in regulating host defence against enteric bacterial pathogens including Salmonella typhimurium, Citrobacter rodentium and enterotoxigenic Escherichia coli. Understanding how sensory neurons respond to gastrointestinal flora and communicate with immune cells to regulate host defence enhances our knowledge of host physiology and may form the basis for new approaches to treat gastrointestinal diseases.
Collapse
Affiliation(s)
- N Y Lai
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - K Mills
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - I M Chiu
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
56
|
Yoo BB, Mazmanian SK. The Enteric Network: Interactions between the Immune and Nervous Systems of the Gut. Immunity 2017; 46:910-926. [PMID: 28636959 PMCID: PMC5551410 DOI: 10.1016/j.immuni.2017.05.011] [Citation(s) in RCA: 323] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 05/25/2017] [Accepted: 05/31/2017] [Indexed: 12/16/2022]
Abstract
Interactions between the nervous and immune systems enable the gut to respond to the variety of dietary products that it absorbs, the broad spectrum of pathogens that it encounters, and the diverse microbiome that it harbors. The enteric nervous system (ENS) senses and reacts to the dynamic ecosystem of the gastrointestinal (GI) tract by translating chemical cues from the environment into neuronal impulses that propagate throughout the gut and into other organs in the body, including the central nervous system (CNS). This review will describe the current understanding of the anatomy and physiology of the GI tract by focusing on the ENS and the mucosal immune system. We highlight emerging literature that the ENS is essential for important aspects of microbe-induced immune responses in the gut. Although most basic and applied research in neuroscience has focused on the brain, the proximity of the ENS to the immune system and its interface with the external environment suggest that novel paradigms for nervous system function await discovery.
Collapse
Affiliation(s)
- Bryan B Yoo
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Sarkis K Mazmanian
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
57
|
Polidoro G, Giancola F, Fracassi F, Pietra M, Bettini G, Asti M, Chiocchetti R. Substance P and the neurokinin-1 receptor expression in dog ileum with and without inflammation. Res Vet Sci 2017. [PMID: 28628846 DOI: 10.1016/j.rvsc.2017.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In the gastrointestinal tract, the tachykinin Substance P (SP) is involved in motility, fluid and electrolyte secretion, and blood flow and regulation of immunoinflammatory response. SP exerts its biological activity on target cells by interacting mainly with the neurokinin-1 receptor (NK1R). The present study aims to quantify the percentage of SP-immunoreactive (SP-IR) enteric neurons and the density of SP-IR nerve fibers in the ileum of control dogs (CTRL-dogs; n=7) vs dogs with spontaneous ileal inflammation (INF-dogs; n=8). In addition, the percentage of enteric neurons bearing NK1R, and nitrergic neurons (nNOS-IR) expressing NK1R immunoreactivity were evaluated in both groups. The percentages of SP-IR neurons were similar in CTRL- and INF-dogs, in either the myenteric (MP) (15±8% vs. 16±7%, respectively) and submucosal plexus (SMP) (26±7% vs. 24±14%, respectively). In INF-dogs, the density of SP-IR mucosal nerve fibers showed a trend to decrease (P=0.07). Myenteric neurons of CTRL- and INF-dogs expressed similar percentages of NK1R-immunoreactivity (39±5% vs. 38±20%, respectively). Submucosal NK1R-IR neurons were occasionally observed in a CTRL-dog. MP nitrergic neurons bearing NK1R showed a trend to decrease in INF-dogs vs. CTRL- dogs (41±22% vs. 65±10%, respectively; P=0.11). In INF-dogs, muscle cells and immune cells overexpressed NK1R immunoreactivity. These findings should be taken as a warning for possible intestinal motility disorders, which might occur during administration of NK1R-antagonist drugs. Conversely, the strong expression of NK1R immunoreactivity observed in muscle and mucosal immune cells of inflamed tissues may provide a rationale for the use of NK1R antagonist drugs in the treatment of intestinal inflammation.
Collapse
Affiliation(s)
- Giulia Polidoro
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Fiorella Giancola
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Federico Fracassi
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Marco Pietra
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Giuliano Bettini
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Martina Asti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Italy.
| |
Collapse
|
58
|
Muñoz M, Muñoz MF, Ayala A. Immunolocalization of Substance P and NK‐1 Receptor in ADIPOSE Stem Cells. J Cell Biochem 2017; 118:4686-4696. [DOI: 10.1002/jcb.26134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/12/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Miguel Muñoz
- Virgen del Rocío University HospitalResearch Laboratory on Neuropeptides (IBIS)SevilleSpain
| | - Mario F. Muñoz
- Department of Biochemistry and Molecular BiologyUniversity of SevilleSpain
| | - Antonio Ayala
- Department of Biochemistry and Molecular BiologyUniversity of SevilleSpain
| |
Collapse
|
59
|
The Implication of Substance P in the Development of Tendinopathy: A Case Control Study. Int J Mol Sci 2017; 18:ijms18061241. [PMID: 28598390 PMCID: PMC5486064 DOI: 10.3390/ijms18061241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/25/2017] [Accepted: 06/06/2017] [Indexed: 01/03/2023] Open
Abstract
It was reported that substance P had beneficial effects in the healing of acute tendon injury. However, the relationship between substance P and degenerative tendinopathy development remains unclear. The purpose of this study was to determine the role of substance P in the pathogenesis of tendinopathy. Healthy and tendinopathy tendon were harvested from human and tenocytes were cultured individually. The expression levels of genes associated with tendinopathy were compared. Next, substance P was exogenously administered to the healthy tenocyte and the effect was evaluated. The results showed that tendinopathy tenocytes had higher levels of COL3A1, MMP1, COX2, SCX, ACTA2, and substance P gene expression compared to healthy tenocytes. Next, substance P treatment on the healthy tenocyte displayed similar changes to that of the tendinopathy tenocytes. These differences between the two groups were also determined by Western blot. Additionally, cells with substance P had the tendinopathy change morphologically although cellular proliferation was significantly higher compared to that of the control group. In conclusion, substance P enhanced cellular proliferation, but concomitantly increased immature collagen (type 3 collagen). Substance P plays a crucial role in tendinopathy development and could be a future therapeutic target for treatment.
Collapse
|
60
|
Kovanur-Sampath K, Mani R, Cotter J, Gisselman AS, Tumilty S. Changes in biochemical markers following spinal manipulation-a systematic review and meta-analysis. Musculoskelet Sci Pract 2017; 29:120-131. [PMID: 28399479 DOI: 10.1016/j.msksp.2017.04.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/21/2017] [Accepted: 04/04/2017] [Indexed: 12/30/2022]
Abstract
The aim of this meta-analysis was to determine the effectiveness of spinal manipulation in influencing various biochemical markers in healthy and or symptomatic population. Electronic databases (n = 10) were searched (from inception till September 2016) and eight trials (325 participants) that met the inclusion criteria were included in the meta-analysis. Two authors independently extracted and assessed the risk of bias in included studies. Standardised mean differences for outcome measures were used to calculate effect sizes. The Grading of Recommendations, Assessment, Development and Evaluation (GRADE) tool was used for assessing the quality of the body of evidence for each outcome of interest. There was moderate quality evidence that spinal manipulation influenced biochemical markers. There was moderate quality evidence of significant difference that spinal manipulation is better (SMD -0.46, 95% CI - 0.93 to 0) than control in eliciting changes in cortisol levels immediately after intervention. There was also a low quality evidence that spinal manipulation is better than control at post-intervention in increasing substance-P (SMD -0.48,95%CI-0.87 to -0.1), neurotensin (SMD -1.8,95%CI-2.56 to -1.04) and oxytocin levels (SMD -2.61,95%CI-3.5to-1.72). However, low quality evidence indicated that spinal manipulation did not influence epinephrine (SMD 0.1,95%CI- 0.56to0.75) or nor-epinephrine levels (SMD -0.06,95%CI-0.71to0.6). The current review found that spinal manipulation can increase substance-p, neurotensin, oxytocin and interleukin levels and may influence cortisol levels post-intervention. However, future trials targeting symptomatic populations are required to understand the clinical importance of such changes.
Collapse
Affiliation(s)
- Kesava Kovanur-Sampath
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand.
| | - Ramakrishnan Mani
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
| | - Jim Cotter
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Angela Spontelli Gisselman
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
| | - Steve Tumilty
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
61
|
Grässel S, Muschter D. Peripheral Nerve Fibers and Their Neurotransmitters in Osteoarthritis Pathology. Int J Mol Sci 2017; 18:ijms18050931. [PMID: 28452955 PMCID: PMC5454844 DOI: 10.3390/ijms18050931] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 12/21/2022] Open
Abstract
The importance of the nociceptive nervous system for maintaining tissue homeostasis has been known for some time, and it has also been suggested that organogenesis and tissue repair are under neuronal control. Changes in peripheral joint innervation are supposed to be partly responsible for degenerative alterations in joint tissues which contribute to development of osteoarthritis. Various resident cell types of the musculoskeletal system express receptors for sensory and sympathetic neurotransmitters, allowing response to peripheral neuronal stimuli. Among them are mesenchymal stem cells, synovial fibroblasts, bone cells and chondrocytes of different origin, which express distinct subtypes of adrenoceptors (AR), receptors for vasoactive intestinal peptide (VIP), substance P (SP) and calcitonin gene-related peptide (CGRP). Some of these cell types synthesize and secrete neuropeptides such as SP, and they are positive for tyrosine-hydroxylase (TH), the rate limiting enzyme for biosynthesis of catecholamines. Sensory and sympathetic neurotransmitters are involved in the pathology of inflammatory diseases such as rheumatoid arthritis (RA) which manifests mainly in the joints. In addition, they seem to play a role in pathogenesis of priori degenerative joint disorders such as osteoarthritis (OA). Altogether it is evident that sensory and sympathetic neurotransmitters have crucial trophic effects which are critical for joint tissue and bone homeostasis. They modulate articular cartilage, subchondral bone and synovial tissue properties in physiological and pathophysiological conditions, in addition to their classical neurological features.
Collapse
Affiliation(s)
- Susanne Grässel
- Department of Orthopedic Surgery, Exp. Orthopedics, ZMB/Biopark 1, University of Regensburg, 93053 Regensburg, Germany.
| | - Dominique Muschter
- Department of Orthopedic Surgery, Exp. Orthopedics, ZMB/Biopark 1, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
62
|
Johnson MB, Young AD, Marriott I. The Therapeutic Potential of Targeting Substance P/NK-1R Interactions in Inflammatory CNS Disorders. Front Cell Neurosci 2017; 10:296. [PMID: 28101005 PMCID: PMC5209380 DOI: 10.3389/fncel.2016.00296] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/13/2016] [Indexed: 12/27/2022] Open
Abstract
The inflammatory responses of resident central nervous system (CNS) cells are now known to play a critical role in the initiation and progression of an array of infectious and sterile neuroinflammatory disorders such as meningitis, encephalitis, Parkinson's disease, Alzheimer's disease and multiple sclerosis (MS). Regulating glial inflammatory responses in a timely manner is therefore critical in preserving normal CNS functions. The neuropeptide substance P is produced at high levels within the CNS and its selective receptor, the neurokinin 1 receptor (NK-1R), is abundantly expressed by neurons and is present on glial cell types including microglia and astrocytes. In addition to its functions as a neurotransmitter in the perception of pain and its essential role in gut motility, this tachykinin is widely recognized to exacerbate inflammation at peripheral sites including the skin, gastrointestinal tract and the lungs. Recently, a number of studies have identified a role for substance P and NK-1R interactions in neuroinflammation and described the ability of this neuropeptide to alter the immune functions of activated microglia and astrocytes. In this review article, we describe the expression of substance P and its receptor by resident CNS cells, and we discuss the ability of this neuropeptide to exacerbate the inflammatory responses of glia and immune cells that are recruited to the brain during neurodegenerative diseases. In addition, we discuss the available data indicating that the NK-1R-mediated augmentation of such responses appears to be detrimental during microbial infection and some sterile neurodegenerative disorders, and propose the repurposed use of NK-1R antagonists, of a type that are currently approved as anti-emetic and anti-anxiolytic agents, as an adjunct therapy to ameliorate the inflammatory CNS damage in these conditions.
Collapse
Affiliation(s)
- M Brittany Johnson
- Department of Biological Sciences, The University of North Carolina at Charlotte Charlotte, NC, USA
| | - Ada D Young
- Department of Biological Sciences, The University of North Carolina at Charlotte Charlotte, NC, USA
| | - Ian Marriott
- Department of Biological Sciences, The University of North Carolina at Charlotte Charlotte, NC, USA
| |
Collapse
|
63
|
Abstract
The psychophysiological phenomenon of pain is of tremendous concern to nurses because of its potential to adversely affect the mental, emotional, and physical health of patients. Increasingly appreciated is the ability of pain to influence immune variables including enumerative and functional measures of leukocyte subsets. In this review, a theoretical model of the role of pain in producing positive changes in the expression of leukocyte cellular adhesion molecules is developed. The model is based on a conceptualization of pain as a perturbing influence on the complex web of neuroendocrine-immune relationships that regulate leukocyte migration. Findings from multiple lines of research are reviewed, including the neurophysiology and psychophysiology of pain, neuroendocrine and proinflammatory cytokine responses to painful stress, animal models linking pain to proinflammatory central immune activation, and pain-specific neurogenic inflammation. Relevant findings are synthesized to develop the physiological pathways from the perspective that pain may alter the balance of this multidirectional system in a proinflammatory direction. Clinical implications and suggestions for further research in the area of painful stress-related inflammation are offered.
Collapse
Affiliation(s)
- Charles A Griffis
- Department of Anesthesiology, School of Nursing, University of California, Los Angeles 90095, USA.
| | | | | |
Collapse
|
64
|
Lorente L, Martín MM, Almeida T, Pérez-Cejas A, Ramos L, Argueso M, Riaño-Ruiz M, Solé-Violán J, Hernández M. Serum Levels of Substance P and Mortality in Patients with a Severe Acute Ischemic Stroke. Int J Mol Sci 2016; 17:E991. [PMID: 27338372 PMCID: PMC4926519 DOI: 10.3390/ijms17060991] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/07/2016] [Accepted: 06/15/2016] [Indexed: 02/07/2023] Open
Abstract
Substance P (SP), a member of tachykinin family, is involved in the inflammation of the central nervous system and in the appearance of cerebral edema. Higher serum levels of SP have been found in 18 patients with cerebral ischemia compared with healthy controls. The aim of our multi-center study was to analyze the possible association between serum levels of SP and mortality in ischemic stroke patients. We included patients with malignant middle cerebral artery infarction (MMCAI) and a Glasgow Coma Scale (GCS) lower than 9. Non-surviving patients at 30 days (n = 31) had higher serum concentrations of SP levels at diagnosis of severe MMCAI than survivors (n = 30) (p < 0.001). We found in multiple regression an association between serum concentrations of SP higher than 362 pg/mL and mortality at 30 days (Odds Ratio = 5.33; 95% confidence interval = 1.541-18.470; p = 0.008) after controlling for age and GCS. Thus, the major novel finding of our study was the association between serum levels of SP and mortality in patients suffering from severe acute ischemic stroke.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n. La Laguna, Tenerife 38320, Spain.
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora Candelaria, Crta Rosario s/n, Santa Cruz Tenerife 38010, Spain.
| | - Teresa Almeida
- Unidad de Genética, Instituto de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Campus de Anchieta, Avda. Astrofísico Francisco Sánchez s/n, La Laguna, Tenerife 38071, Spain.
| | - Antonia Pérez-Cejas
- Laboratory Department, Hospital Universitario de Canarias, Ofra, s/n. La Laguna, Tenerife 38320, Spain.
| | - Luis Ramos
- Intensive Care Unit, Hospital General La Palma, Buenavista de Arriba s/n, Breña Alta, La Palma 38713, Spain.
| | - Mónica Argueso
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Avda. Blasco Ibáñez nº17-19, Valencia 46004, Spain.
| | - Marta Riaño-Ruiz
- Servicio de Bioquímica Clínica, Complejo Hospitalario Universitario Insular Materno-Infantil, Plaza Dr. Pasteur s/n, Las Palmas de Gran Canaria 35016, Spain.
| | - Jordi Solé-Violán
- Intensive Care Unit, Hospital Universitario Dr. Negrín, CIBERES. Barranco de la Ballena s/n, Las Palmas de Gran Canaria 35010, Spain.
| | - Mariano Hernández
- Unidad de Genética, Instituto de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Campus de Anchieta, Avda. Astrofísico Francisco Sánchez s/n, La Laguna, Tenerife 38071, Spain.
| |
Collapse
|
65
|
Serum Levels of Substance P and Mortality in Patients with a Severe Acute Ischemic Stroke. Int J Mol Sci 2016. [PMID: 27338372 DOI: 10.3390/ijms170609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Substance P (SP), a member of tachykinin family, is involved in the inflammation of the central nervous system and in the appearance of cerebral edema. Higher serum levels of SP have been found in 18 patients with cerebral ischemia compared with healthy controls. The aim of our multi-center study was to analyze the possible association between serum levels of SP and mortality in ischemic stroke patients. We included patients with malignant middle cerebral artery infarction (MMCAI) and a Glasgow Coma Scale (GCS) lower than 9. Non-surviving patients at 30 days (n = 31) had higher serum concentrations of SP levels at diagnosis of severe MMCAI than survivors (n = 30) (p < 0.001). We found in multiple regression an association between serum concentrations of SP higher than 362 pg/mL and mortality at 30 days (Odds Ratio = 5.33; 95% confidence interval = 1.541-18.470; p = 0.008) after controlling for age and GCS. Thus, the major novel finding of our study was the association between serum levels of SP and mortality in patients suffering from severe acute ischemic stroke.
Collapse
|
66
|
Ordovas-Montanes J, Rakoff-Nahoum S, Huang S, Riol-Blanco L, Barreiro O, von Andrian UH. The Regulation of Immunological Processes by Peripheral Neurons in Homeostasis and Disease. Trends Immunol 2016; 36:578-604. [PMID: 26431937 DOI: 10.1016/j.it.2015.08.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 02/06/2023]
Abstract
The nervous system and the immune system are the principal sensory interfaces between the internal and external environment. They are responsible for recognizing, integrating, and responding to varied stimuli, and have the capacity to form memories of these encounters leading to learned or 'adaptive' future responses. We review current understanding of the cross-regulation between these systems. The autonomic and somatosensory nervous systems regulate both the development and deployment of immune cells, with broad functions that impact on hematopoiesis as well as on priming, migration, and cytokine production. In turn, specific immune cell subsets contribute to homeostatic neural circuits such as those controlling metabolism, hypertension, and the inflammatory reflex. We examine the contribution of the somatosensory system to autoimmune, autoinflammatory, allergic, and infectious processes in barrier tissues and, in this context, discuss opportunities for therapeutic manipulation of neuro-immune interactions.
Collapse
Affiliation(s)
- Jose Ordovas-Montanes
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Seth Rakoff-Nahoum
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Boston Children's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Siyi Huang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Olga Barreiro
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ulrich H von Andrian
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, MA 02139, USA.
| |
Collapse
|
67
|
Koeck FX, Schmitt M, Baier C, Stangl H, Beckmann J, Grifka J, Straub RH. Predominance of synovial sensory nerve fibers in arthrofibrosis following total knee arthroplasty compared to osteoarthritis of the knee. J Orthop Surg Res 2016; 11:25. [PMID: 26888574 PMCID: PMC4758104 DOI: 10.1186/s13018-016-0359-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 02/11/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND So far, there exists no golden standard for the treatment of arthrofibrosis (AF) following total knee arthroplasty (TKA). Although pain is a hallmark of AF, nociceptive nerve fibers have never been investigated in affected joint tissue. METHODS A total of 24 patients with osteoarthritis (OA) of the knee (n = 12) and post-TKA AF of the knee (n = 12) were included. Along evaluation of typical clinical signs and symptoms by using the Knee Society Clinical Rating System (KSS), the Knee Injury and Osteoarthritis Outcome Score (KOOS), and the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC index), the innervation of joint tissue was studied by semiquantitative immunofluorescence of nerve fibers. RESULTS Patients with AF compared to OA had a lower KSS and lower KOOS. In all compartments (anterior, medial, and lateral recesses), the density of synovial sympathetic nerve fibers was significantly higher in OA compared to AF, which was also true for the density of sensory nerve fibers in the medial and lateral recesses. In synovial tissue of the anterior recess of patients with AF compared to OA, the density of nociceptive sensory nerve fibers was significantly higher relative to sympathetic nerve fibers. This was similarly observed in the neighboring infrapatellar fat pad of the knee. CONCLUSIONS Similar as in many painful musculoskeletal diseases, this study indicates that patients with arthrofibrosis of the knee after TKA demonstrate a preponderance of profibrotic sensory nerve fibers over antifibrotic sympathetic nerve fibers. This could serve as a starting point for AF therapy with specific antifibrotic pain medication or regional anesthetic techniques.
Collapse
Affiliation(s)
- Franz Xaver Koeck
- MedArtes - Private Orthopaedic Clinic, Regensburger Strasse 13, 93073, Neutraubling, Germany.
| | - Miriam Schmitt
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine I, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042, Regensburg, Germany.
| | - Clemens Baier
- Department of Orthopedic Surgery, University of Regensburg, Kaiser-Karl-V.-Allee 3, 93073, Bad Abbach, Germany.
| | - Hubert Stangl
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine I, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042, Regensburg, Germany.
| | - Johannes Beckmann
- Sportklinik Stuttgart, Taubenheimstrasse 8, 70372, Stuttgart, Germany.
| | - Joachim Grifka
- Department of Orthopedic Surgery, University of Regensburg, Kaiser-Karl-V.-Allee 3, 93073, Bad Abbach, Germany.
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine I, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042, Regensburg, Germany.
| |
Collapse
|
68
|
Atkinson SK, Sadofsky LR, Morice AH. How does rhinovirus cause the common cold cough? BMJ Open Respir Res 2016; 3:e000118. [PMID: 26835135 PMCID: PMC4716235 DOI: 10.1136/bmjresp-2015-000118] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/18/2015] [Indexed: 01/13/2023] Open
Abstract
Cough is a protective reflex to prevent aspiration and can be triggered by a multitude of stimuli. The commonest form of cough is caused by upper respiratory tract infection and has no benefit to the host. The virus hijacks this natural defence mechanism in order to propagate itself through the population. Despite the resolution of the majority of cold symptoms within 2 weeks, cough can persist for some time thereafter. Unfortunately, the mechanism of infectious cough brought on by pathogenic viruses, such as human rhinovirus, during colds, remains elusive despite the extensive work that has been undertaken. For socioeconomic reasons, it is imperative we identify the mechanism of cough. There are several theories which have been proposed as the causative mechanism of cough in rhinovirus infection, encompassing a range of different processes. Those of which hold most promise are physical disruption of the epithelial lining, excess mucus production and an inflammatory response to rhinovirus infection which may be excessive. And finally, neuronal modulation, the most convincing hypothesis, is thought to potentiate cough long after the original stimulus has been cleared. All these hypotheses will be briefly covered in the following sections.
Collapse
Affiliation(s)
- Samantha K Atkinson
- Centre for Cardiovascular and Metabolic Research (CCMR), The Hull York Medical School (HYMS), The University of Hull , Hull , UK
| | - Laura R Sadofsky
- Centre for Cardiovascular and Metabolic Research (CCMR), The Hull York Medical School (HYMS), The University of Hull , Hull , UK
| | - Alyn H Morice
- Centre for Cardiovascular and Metabolic Research (CCMR), The Hull York Medical School (HYMS), The University of Hull , Hull , UK
| |
Collapse
|
69
|
The role of peripheral nerve fibers and their neurotransmitters in cartilage and bone physiology and pathophysiology. Arthritis Res Ther 2015; 16:485. [PMID: 25789373 PMCID: PMC4395972 DOI: 10.1186/s13075-014-0485-1] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The peripheral nervous system is critically involved in bone metabolism, osteogenesis, and bone remodeling. Nerve fibers of sympathetic and sensory origin innervate synovial tissue and subchondral bone of diathrodial joints. They modulate vascularization and matrix differentiation during endochondral ossification in embryonic limb development, indicating a distinct role in skeletal growth and limb regeneration processes. In pathophysiological situations, the innervation pattern of sympathetic and sensory nerve fibers is altered in adult joint tissues and bone. Various resident cell types of the musculoskeletal system express receptors for sensory and sympathetic neurotransmitters. Osteoblasts, osteoclasts, mesenchymal stem cells, synovial fibroblasts, and different types of chondrocytes produce distinct subtypes of adrenoceptors, receptors for vasointestinal peptide, for substance P and calcitonin gene-related peptide. Many of these cells even synthesize neuropeptides such as substance P and calcitonin gene-related peptide and are positive for tyrosine-hydroxylase, the rate-limiting enzyme for biosynthesis of catecholamines. Sensory and sympathetic neurotransmitters modulate osteo-chondrogenic differentiation of mesenchymal progenitor cells during endochondral ossification in limb development. In adults, sensory and sympathetic neurotransmitters are critical for bone regeneration after fracture and are involved in the pathology of inflammatory diseases as rheumatoid arthritis which manifests mainly in joints. Possibly, they might also play a role in pathogenesis of degenerative joint disorders, such as osteoarthritis. All together, accumulating data imply that sensory and sympathetic neurotransmitters have crucial trophic effects which are critical for proper limb formation during embryonic skeletal growth. In adults, they modulate bone regeneration, bone remodeling, and articular cartilage homeostasis in addition to their classic neurological actions.
Collapse
|
70
|
Abstract
STUDY DESIGN Laboratory study. OBJECTIVE To evaluate whether blockade of the Substance P (SP) NK1R attenuates its proinflammatory effect on human intervertebral disc cells (IVD), and to evaluate the signaling pathways associated with SP. SUMMARY OF BACKGROUND DATA SP and its receptors are expressed in human IVD cells, and cause upregulation of inflammatory mediators; however, the effects of blocking these receptors have not been studied in human IVD cells. METHODS Human annulus fibrosus (AF) and nucleus pulposus (NP) cells were expanded in monolayer, and then suspended in alginate beads. The alginate beads were treated with culture medium first containing a high affinity NK1R antagonist (L-760735) at different concentrations, and then with medium containing both NK1R antagonist and SP at 2 concentrations. Ribonucleic acid was isolated and transcribed into cDNA. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to evaluate expression of interleukin (IL)-1β, IL-6, and IL-8. Western blot analysis was performed to examine levels of the phosphorylated p38 mitogen-activated protein kinase (MAPK), extracellular signal regulated kinase 1/2 (ERK1/2) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB p65). The cells were pretreated with specific inhibitors of p38 (SB203580), ERK1/2 (PD98059), and p65 (SM7368) and then stimulated with SP. RESULTS We detected expression of NK1R, neurokinin receptor 2 (NK2R), and neurokinin receptor 3 (NK3R) in AF and NP cells. Treatment of disc cells with the NK1R antagonist was able to suppress expression of IL-1β, IL-6, and IL-8 in a dose-dependent manner. SP stimulation increased phosphorylation of p38-MAPK and ERK1/2, but not of NFκB p65. This indicates that p38-MAPK and ERK1/2 control SP-induced cytokine expression independently from NF-kB p65. Inhibition of p38 and ERK1/2 activation reduced SP-induced IL-6 production in human disc cells. CONCLUSION NK1R is responsible for the proinflammatory effect of SP on IVD cells and this effect can be blocked by preventing binding of SP to NK1R. This study shows for the first time that SP mediates signaling in disc cells through NK1R and that SP activates the proinflammatory p38-MAPK and ERK1/2 pathways. LEVEL OF EVIDENCE 4.
Collapse
|
71
|
Muñoz M, Coveñas R. Targeting NK-1 Receptors to Prevent and Treat Pancreatic Cancer: a New Therapeutic Approach. Cancers (Basel) 2015; 7:1215-32. [PMID: 26154566 PMCID: PMC4586765 DOI: 10.3390/cancers7030832] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/27/2015] [Accepted: 06/30/2015] [Indexed: 12/28/2022] Open
Abstract
Pancreatic cancer (PC) is the fourth leading cause of cancer related-deaths in both men and women, and the 1- and 5-year relative survival rates are 25% and 6%, respectively. It is known that smoking, alcoholism and psychological stress are risk factors that can promote PC and increase PC progression. To date, the prevention of PC is crucial because there is no curative treatment. After binding to the neurokinin-1 (NK-1) receptor (a receptor coupled to the stimulatory G-protein Gαs that activates adenylate cyclase), the peptide substance P (SP)-at high concentrations-is involved in many pathophysiological functions, such as depression, smoking, alcoholism, chronic inflammation and cancer. It is known that PC cells and samples express NK-1 receptors; that the NK-1 receptor is overexpressed in PC cells in comparison with non-tumor cells, and that nanomolar concentrations of SP induce PC cell proliferation. By contrast, NK-1 receptor antagonists exert antidepressive, anxiolytic and anti-inflammatory effects and anti-alcohol addiction. These antagonists also exert An antitumor action since in vitro they inhibit PC cell proliferation (PC cells death by apoptosis), and in a xenograft PC mouse model they exert both antitumor and anti-angiogenic actions. NK-1 receptor antagonists could be used for the treatment of PC and hence the NK-1 receptor could be a new promising therapeutic target in PC.
Collapse
Affiliation(s)
- Miguel Muñoz
- Research Laboratory on Neuropeptides (IBIS), Virgen del Rocío University Hospital,41013 Sevilla, Spain.
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic System (Lab. 14), Institute of Neurosciences ofCastilla y León (INCYL), University of Salamanca, 37008 Salamanca, Spain.
| |
Collapse
|
72
|
Lorente L, Martín MM, Almeida T, Hernández M, Ferreres J, Solé-Violán J, Labarta L, Díaz C, Jiménez A. Association between serum substance P levels and mortality in patients with severe sepsis. J Crit Care 2015; 30:924-8. [PMID: 26072386 DOI: 10.1016/j.jcrc.2015.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/17/2015] [Accepted: 05/14/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Substance P (SP) is a peptide of the tachykinins family involved in the inflammatory response. Circulating SP levels have been assessed in septic patients in 2 previous studies with a small number of subjects (61 and 42 patients, respectively), and there were no significant differences in SP levels at the moment of sepsis diagnosis between surviving and nonsurviving patients. The main goal of this study was to determine a possible relationship between serum SP levels and patient outcome in the largest cohort of severe septic patients analyzed so far. METHODS We performed an observational, prospective, multicenter study in 6 Spanish intensive care units. Serum SP levels were measured at the moment of severe sepsis diagnosis in 238 patients. The end point of the study was 30-day mortality. RESULTS We found that surviving septic patients (n = 153) showed higher serum SP levels than did nonsurvivors (n = 85). Multiple logistic regression analysis showed that serum SP levels higher than 350 pg/mL were associated with survival at 30 days (odds ratio, 0.43; 95% confidence interval, 0.24-0.77; P = .005) after controlling for serum lactic acid levels and Sepsis-related Organ Failure Assessment score. CONCLUSIONS The major new finding of our study was that serum SP levels were associated with mortality in severe septic patients.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, La Laguna, Tenerife, Spain.
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora Candelaria, Santa Cruz, Tenerife, Spain.
| | - Teresa Almeida
- Unidad de Genética, Instituto de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Tenerife, Spain.
| | - Mariano Hernández
- Unidad de Genética, Instituto de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Tenerife, Spain.
| | - José Ferreres
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Valencia, Spain.
| | - Jordi Solé-Violán
- Intensive Care Unit, Hospital Universitario Dr. Negrín, Barranco de la Ballena, Las Palmas de Gran Canaria, Spain.
| | - Lorenzo Labarta
- Intensive Care Unit, Hospital San Jorge de Huesca, Huesca, Spain.
| | - César Díaz
- Intensive Care Unit, Hospital Insular, Las Palmas de Gran Canaria, Spain.
| | - Alejandro Jiménez
- Research Unit, Hospital Universitario de Canarias, Ofra, La Laguna, Tenerife, Spain.
| |
Collapse
|
73
|
Lorente L, Martín MM, Almeida T, Hernández M, Ramos L, Argueso M, Cáceres JJ, Solé-Violán J, Jiménez A. Serum substance P levels are associated with severity and mortality in patients with severe traumatic brain injury. Crit Care 2015; 19:192. [PMID: 25928056 PMCID: PMC4424826 DOI: 10.1186/s13054-015-0911-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/04/2015] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Substance P (SP) is a member of the tachykinin family of neuropeptides, which are widely distributed throughout the central nervous system (CNS) and actively involved in inflammatory processes. SP is released early following acute injury to the CNS, promoting a neurogenic inflammatory response characterized by an increase in the permeability of the blood-brain barrier and the development of vasogenic edema. High levels of SP could lead to an exacerbated inflammatory response that could be fatal for patients with traumatic brain injury (TBI). Thus, the main goal of the present study was to determine whether serum SP levels are associated with injury severity and mortality in patients with severe TBI. METHODS This multicenter, observational, prospective study was carried out in six Spanish intensive care units and included patients with Glasgow Coma Scale (GCS) scores ≤ 8. Patients with an Injury Severity Score ≥ 10 in non-cranial aspects were excluded. Blood samples were collected on day 1 of TBI to measure serum SP levels. The endpoint was 30-day mortality. RESULTS We found higher serum SP levels (P = 0.002) in non-surviving patients (n = 27) than in surviving patients (n = 73). The area under the curve for serum SP levels with regard to predicting 30-day mortality was 0.70 (95% confidence interval (CI), 0.60 to 0.79; P < 0.001). Survival analysis showed that patients with serum SP levels >299 pg/ml had higher 30-day mortality than patients with lower levels (hazard ratio = 3.7; 95% CI, 1.75 to 7.94; P < 0.001). Multiple binomial logistic regression analysis showed that serum SP levels >299 pg/ml were associated with 30-day mortality when we controlled for APACHE II score and Marshall computed tomography lesion classification (odds ratio (OR) = 5.97; 95% CI, 1.432 to 24.851; P = 0.01) and for GCS score and age (OR = 5.71; 95% CI, 1.461 to 22.280; P = 0.01). We found a negative association between serum SP levels and GCS score (Spearman's ρ = -0.22; P = 0.03). CONCLUSIONS We report, for the first time to our knowledge, that serum SP levels were associated with injury severity and mortality in patients with severe TBI. These results open the possibility that SP antagonists may be useful in the treatment of patients with severe TBI.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n La Laguna, 38320, Tenerife, Spain.
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora Candelaria, Carretera del Rosario s/n, 38010, Santa Cruz Tenerife, Spain.
| | - Teresa Almeida
- Unidad de Genética, Instituto de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez s/n, Campus de Anchieta, La Laguna, 38071, Tenerife, Spain.
| | - Mariano Hernández
- Unidad de Genética, Instituto de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez s/n, Campus de Anchieta, La Laguna, 38071, Tenerife, Spain.
| | - Luis Ramos
- Intensive Care Unit, Hospital General La Palma, Buenavista de Arriba s/n, Breña Alta, 38713, La Palma, Spain.
| | - Mónica Argueso
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Avenida Blasco Ibáñez n° 17-19, 46004, Valencia, Spain.
| | - Juan J Cáceres
- Intensive Care Unit, Hospital Insular, Plaza Dr Pasteur s/n, 35016, Las Palmas de Gran Canaria, Spain.
| | - Jordi Solé-Violán
- Intensive Care Unit, Hospital Universitario Dr Negrín, Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Barranco de la Ballena s/n, 35010, Las Palmas de Gran Canaria, Spain.
| | - Alejandro Jiménez
- Research Unit, Hospital Universitario de Canarias, Ofra, s/n, La Laguna, 38320, Santa Cruz de Tenerife, Spain.
| |
Collapse
|
74
|
Gingival Crevicular Fluid Levels of Neuropeptides following Dental Restorations. J Appl Biomater Funct Mater 2015; 13:e186-93. [DOI: 10.5301/jabfm.5000197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2013] [Indexed: 11/20/2022] Open
Abstract
Purpose Local neuropeptide release has a critical role in the initiation and progression of an inflammatory response. This study investigated the effects of different restorative materials on periodontium in this regard, by evaluating their neuropeptide-producing effects on gingival crevicular fluid (GCF). Methods The study included 14 patients suitable for metal-ceramic, composite and amalgam restorations. Four weeks after periodontal therapy, the restorations were performed. Study groups were constituted regarding the tooth/restoration surfaces contacting gingiva in each patient: 1 ceramic surface of a metal-ceramic crown (ceramic group), its opposite metal surface (metal group), 1 composite surface (composite group), its opposite enamel surface (opposite-composite group), 1 amalgam surface (amalgam group), its opposite enamel surface (opposite-amalgam group) and 1 nonrestored enamel surface (enamel group). Four weeks after dental restorations, clinical data and GCF were obtained from the group sites. Clinical data, GCF volume and its proinflammatory cytokine profile were utilized to evaluate the periodontal health. GCF levels of substance P (SP), neurokinin A (NKA) and calcitonin-gene related peptide (CGRP) were determined by ELISA for revealing the neuropeptide levels. Results GCF volume was found to increase in all groups compared with the enamel group (p<0.05). SP and NKA levels were higher in the ceramic, composite and amalgam groups than those in the enamel group (p<0.05). SP and NKA levels were also higher in the composite and amalgam groups than those in the opposite-composite/amalgam groups (p<0.05). Conclusions These results suggest that ceramic, composite and amalgam materials may uniquely trigger local neuropeptide release in periodontium.
Collapse
|
75
|
Reciprocal Regulation of Substance P and IL-12/IL-23 and the Associated Cytokines, IFNγ/IL-17: A Perspective on the Relevance of This Interaction to Multiple Sclerosis. J Neuroimmune Pharmacol 2015; 10:457-67. [PMID: 25690155 PMCID: PMC4543419 DOI: 10.1007/s11481-015-9589-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 01/19/2015] [Indexed: 12/31/2022]
Abstract
The neuropeptide substance P (SP) exhibits cytokine-like properties and exerts different effects in autoimmune inflammation. Various immune cells express SP and its neurokinin-1 receptor (NK1R) isoforms. A role for SP has been demonstrated in a number of autoimmune conditions, including multiple sclerosis (MS). In this work, we studied the role of SP and NK1R in human immune cells with a focus on their relationship with IL-12/IL-23 family cytokines and the associated IFN-γ/IL-17. AIMS: (1) To determine the role of SP mediated effects on induction of various inflammatory cytokines in peripheral blood mononuclear cells (PBMC); (2) to investigate the expression of SP and its receptor in T cells and the effects of stimulation with IL-12 and IL-23. Quantitative real-time PCR, flow cytometry, ELISA, promoter studies on PBMC and primary T cells from healthy volunteers, and Jurkat cell line. Treatment with SP significantly increased the expression of IL-12/IL-23 subunit p40, IL-23 p19 and IL-12 p35 mRNA in human PBMC. Expression of NK1R and SP in T cells was upregulated by IL-23 but a trend was observed with IL-12. The IL-23 effect likely involves IL-17 production that additionally mediates IL-23 effects. Mutual interactions exist with SP enhancing the cytokines IL-23 and IL-12, and SP and NK1R expression being differentially but potentially synergistically regulated by these cytokines. These findings suggest a proinflammatory role for SP in autoimmune inflammation. We propose a model whereby immunocyte derived SP stimulates Th1 and Th17 autoreactive cells migrating to the central nervous system (CNS), enhances their crossing the blood brain barrier and perpetuates inflammation in the CNS by being released from damaged nerves and activating both resident glia and infiltrating immune cells. SP may be a therapeutic target in MS.
Collapse
|
76
|
Chen Y, Lyga J. Brain-skin connection: stress, inflammation and skin aging. ACTA ACUST UNITED AC 2015; 13:177-90. [PMID: 24853682 PMCID: PMC4082169 DOI: 10.2174/1871528113666140522104422] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 05/07/2014] [Accepted: 05/20/2014] [Indexed: 02/06/2023]
Abstract
The intricate relationship between stress and skin conditions has been documented since ancient times. Recent clinical observations also link psychological stress to the onset or aggravation of multiple skin diseases. However, the exact underlying mechanisms have only been studied and partially revealed in the past 20 years or so. In this review, the authors will discuss the recent discoveries in the field of “Brain-Skin Connection”, summarizing findings from the overlapping fields of psychology, endocrinology, skin neurobiology, skin inflammation, immunology, and pharmacology.
Collapse
Affiliation(s)
| | - John Lyga
- Global R&D, Avon Products. 1 Avon Place, Suffern, NY 10901, USA.
| |
Collapse
|
77
|
Camargo LL, Denadai-Souza A, Yshii LM, Mesquita FPN, Soares AG, Lima C, Schenka A, Grant A, Fernandes E, Muscará MN, Costa SKP. Peripheral neurokinin-1 receptors contribute to kaolin-induced acute monoarthritis in rats. Neuroimmunomodulation 2015; 22:373-84. [PMID: 26088412 DOI: 10.1159/000381549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 03/06/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE intra-articular co-injection of kaolin with carrageenan (CGN) in rodents is widely used as an experimental model of arthritis. However, the ability of kaolin to cause arthritis and related immune responses when administered alone is unclear. We evaluated the contribution of prostanoids and sensory C-fibres (and their neuropeptide substance P) to kaolin-induced inflammation in the rat knee. METHODS Wistar rats, 8-10 weeks old, received an intra-articular injection of kaolin (1-10 μg/joint) or saline into the knee joint. Knee inflammation, proinflammatory cytokines, pain behaviour and secondary tactile allodynia were assessed over 5 h, when synovial leukocyte counts, histopathological changes and proinflammatory cytokine levels were evaluated. RESULTS The intra-articular injection of kaolin caused a dose- and time-dependent knee swelling and impairment of motion that were associated with secondary tactile allodynia, elevated concentrations of IL-1β, IL-6 and TNFα, leukocyte infiltration, and histopathological changes in the ipsilateral hindpaw. The neurokinin-1 (NK1) receptor antagonist SR140333 or neonatal treatment with capsaicin markedly reduced the inflammatory parameters, cytokines and allodynia but failed to significantly inhibit the impaired motion. The cyclo-oxygenase inhibitor indomethacin partially inhibited knee oedema and allodynia but did not affect the leukocyte influx, myeloperoxidase activity or impaired motion in the kaolin-injected rat. CONCLUSIONS We show the first evidence that intra-articular injection of kaolin without CGN produced severe acute monoarthritis. This was highly dependent on substance P (released from C-fibres) and NK1 receptor activation, which stimulated local production of proinflammatory cytokines. This model may be of critical importance for mechanistic studies and screening new anti-inflammatory/analgesic drugs.
Collapse
Affiliation(s)
- Livia L Camargo
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sx00E3;o Paulo (USP), Sx00E3;o Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Turner RJ, Vink R. NK1 tachykinin receptor treatment is superior to capsaicin pre-treatment in improving functional outcome following acute ischemic stroke. Neuropeptides 2014; 48:267-72. [PMID: 25151181 DOI: 10.1016/j.npep.2014.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 07/12/2014] [Accepted: 07/22/2014] [Indexed: 12/15/2022]
Abstract
Previous results from our laboratory have shown that blockade of the substance P (SP) pathway with an NK1 tachykinin receptor antagonist significantly reduces blood brain barrier breakdown, cerebral edema and functional deficits following ischemic stroke. However, it is unclear whether removal of all neuropeptides is more efficacious than blocking SP alone. As such, the aim of the present study was to determine the effect of neuropeptide depletion with capsaicin pre-treatment on functional outcome following acute ischemic stroke in rats. Animals received 125 mg/kg of capsaicin or equal volume of saline vehicle, administered subcutaneously over a 3-day period. At 14 days following treatment animals were subject to 2h of middle cerebral artery occlusion followed by reperfusion. A subset of animals was treated with an NK1 tachykinin receptor antagonist (NAT) or vehicle at 4h after the onset of stroke only. The functional outcome of animals was assessed for a 7-day period following stroke using a rotarod device, the bilateral asymmetry test, modified neurological severity score, open field and angleboard. Although capsaicin pre-treatment improved outcome, treatment with an NK1 tachykinin receptor antagonist was superior in improving post-stroke functional outcome. This data suggests that some neuropeptides may play a beneficial role following stroke, whilst others such as SP are deleterious.
Collapse
Affiliation(s)
- Renée J Turner
- Adelaide Centre for Neuroscience Research, School of Medical Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Robert Vink
- Adelaide Centre for Neuroscience Research, School of Medical Sciences, University of Adelaide, Adelaide, SA, Australia; Divsion of Health Sciences, The University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
79
|
Bär F, Föh B, Pagel R, Schröder T, Schlichting H, Hirose M, Lemcke S, Klinger A, König P, Karsten CM, Büning J, Lehnert H, Fellermann K, Ibrahim SM, Sina C. Carboxypeptidase E modulates intestinal immune homeostasis and protects against experimental colitis in mice. PLoS One 2014; 9:e102347. [PMID: 25051500 PMCID: PMC4106776 DOI: 10.1371/journal.pone.0102347] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 06/18/2014] [Indexed: 12/24/2022] Open
Abstract
Enteroendocrine cells (EEC) produce neuropeptides, which are crucially involved in the maintenance of the intestinal barrier. Hence, EEC dysfunction is suggested to be involved in the complex pathophysiology of inflammatory bowel disease (IBD), which is characterized by decreased intestinal barrier function. However, the underlying mechanisms for EEC dysfunction are not clear and suitable models for a better understanding are lacking. Here, we demonstrate that Carboxypeptidase E (CPE) is specifically expressed in EEC of the murine colon and ileum and that its deficiency is associated with reduced intestinal levels of Neuropeptide Y (NPY) and Peptide YY (PYY), which are both produced by EEC. Moreover, cpe−/− mice exhibit an aggravated course of DSS-induced chronic colitis compared to wildtype littermates. In addition, we observed elevated mucosal IL-6 and KC transcript levels already at baseline conditions in cpe−/− mice. Moreover, supernatants obtained from isolated intestinal crypts of cpe−/− mice lead to increased IL-6 and KC expression in MODE-K cells in the presence of LPS. This effect was reversible by co-administration of recombinant NPY, suggesting a CPE mediated immunosuppressive effect in the intestines by influencing the processing of specific neuropeptides. In this context, the chemotaxis of bone marrow derived macrophages towards respective supernatants was enhanced. In conclusion, our data point to an anti-inflammatory role of CPE in the intestine by influencing local cytokine levels and thus regulating the migration of myeloid immune cells into the mucosa. These findings highlight the importance of EEC for intestinal homeostasis and propose EEC as potential therapeutic targets in IBD.
Collapse
Affiliation(s)
- Florian Bär
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Bandik Föh
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - René Pagel
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Torsten Schröder
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Heidi Schlichting
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Misa Hirose
- Department of Dermatology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Susanne Lemcke
- Department of Dermatology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Antje Klinger
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Peter König
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Christian M. Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jürgen Büning
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Hendrik Lehnert
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Klaus Fellermann
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Saleh M. Ibrahim
- Department of Dermatology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Christian Sina
- Medical Department I, University Hospital Schleswig-Holstein, Lübeck, Germany
- * E-mail:
| |
Collapse
|
80
|
Meeran NA. Biological response at the cellular level within the periodontal ligament on application of orthodontic force - An update. J Orthod Sci 2014; 1:2-10. [PMID: 24987618 PMCID: PMC4072349 DOI: 10.4103/2278-0203.94769] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Orthodontic force elicits a biological response in the tissues surrounding the teeth, resulting in remodeling of the periodontal ligament and the alveolar bone. The force-induced tissue strain result in reorganization of both cellular and extracellular matrix, besides producing changes in the local vascularity. This in turn leads to the synthesis and release of various neurotransmitters, arachidonic acid, growth factors, metabolites, cytokines, colony-stimulating factors, and enzymes like cathepsin K, matrix metalloproteinases, and aspartate aminotransferase. Despite the availability of many studies in the orthodontic and related scientific literature, a concise integration of all data is still lacking. Such a consolidation of the rapidly accumulating scientific information should help in understanding the biological processes that underlie the phenomenon of tooth movement in response to mechanical loading. Therefore, the aim of this review was to describe the biological processes taking place at the molecular level on application of orthodontic force and to provide an update of the current literature.
Collapse
Affiliation(s)
- Nazeer Ahmed Meeran
- Departments of Orthodontics and Dentofacial Orthopedics, Priyadarshini Dental College and Hospital, Tamil Nadu, India
| |
Collapse
|
81
|
Lucrezi JD, Burns TJ, Matesic DF, Oldham CD, May SW. Inhibition of JNK and p38 MAPK phosphorylation by 5-(acetylamino)-4-oxo-6-phenyl-2-hexenoic acid methyl ester and 4-phenyl-butenoic acid decreases substance P-induced TNF-α upregulation in macrophages. Int Immunopharmacol 2014; 21:44-50. [PMID: 24746749 DOI: 10.1016/j.intimp.2014.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/20/2014] [Accepted: 04/04/2014] [Indexed: 11/26/2022]
Abstract
The interactions between the immune and nervous systems play an important role in immune and inflammatory conditions. Substance P (SP), the undecapeptide RPKPQQFFGLM-NH2, is known to upregulate the production of pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α. We report here that 5-(acetylamino)-4-oxo-6-phenyl-2-hexenoic acid methyl ester (AOPHA-Me) and 4-phenyl-3-butenoic acid (PBA), two anti-inflammatory compounds developed in our laboratory, reduce SP-stimulated TNF-α expression in RAW 264.7 macrophages. We also show that AOPHA-Me and PBA both inhibit SP-stimulated phosphorylation of JNK and p38 MAPK. Furthermore, molecular modeling studies indicate that both AOPHA-Me and PBA dock at the ATP binding site of apoptosis signal-regulating kinase 1 (ASK1), a member of the MAPKs upstream of both JNK and p38 MAPK, with predicted interaction energies of -7.0 kcal/mol and -5.9 kcal/mol, respectively; this binding overlaps with that of staurosporine, a known inhibitor of ASK1. Taken together, these findings suggest that AOPHA-Me and PBA inhibition of TNF-α expression in SP-stimulated RAW 264.7 macrophages is a consequence of the inhibition of JNK and p38 MAPK phosphorylation. We have previously shown that AOPHA-Me and PBA inhibit the amidative bioactivation of SP, which also would be expected to decrease formation of pro-inflammatory cytokines. It is conceivable that this dual action of inhibiting amidation and MAPK phosphorylation may be of some advantage in enhancing the anti-inflammatory activity of a therapeutic molecule.
Collapse
Affiliation(s)
- Jacob D Lucrezi
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Timothy J Burns
- Department of Pharmacological Sciences, College of Pharmacy and Health Sciences, Mercer University, Atlanta, GA 30341, USA
| | - Diane F Matesic
- Department of Pharmacological Sciences, College of Pharmacy and Health Sciences, Mercer University, Atlanta, GA 30341, USA
| | - Charlie D Oldham
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sheldon W May
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
82
|
Involvement of substance P and the NK-1 receptor in human pathology. Amino Acids 2014; 46:1727-50. [PMID: 24705689 DOI: 10.1007/s00726-014-1736-9] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 03/23/2014] [Indexed: 10/25/2022]
Abstract
The peptide substance P (SP) shows a widespread distribution in both the central and peripheral nervous systems, but it is also present in cells not belonging to the nervous system (immune cells, liver, lung, placenta, etc.). SP is located in all body fluids, such as blood, cerebrospinal fluid, breast milk, etc. i.e. it is ubiquitous in human body. After binding to the neurokinin-1 (NK-1) receptor, SP regulates many pathophysiological functions in the central nervous system, such as emotional behavior, stress, depression, anxiety, emesis, vomiting, migraine, alcohol addiction, seizures and neurodegeneration. SP has been also implicated in pain, inflammation, hepatitis, hepatotoxicity, cholestasis, pruritus, myocarditis, bronchiolitis, abortus, bacteria and viral infection (e.g., HIV infection) and it plays an important role in cancer (e.g., tumor cell proliferation, antiapoptotic effects in tumor cells, angiogenesis, migration of tumor cells for invasion, infiltration and metastasis). This means that the SP/NK-1 receptor system is involved in the molecular bases of many human pathologies. Thus, knowledge of this system is the key for a better understanding and hence a better management of many human diseases. In this review, we update the involvement of the SP/NK-1 receptor system in the physiopathology of the above-mentioned pathologies and we suggest valuable future therapeutic interventions involving the use of NK-1 receptor antagonists, particularly in the treatment of emesis, depression, cancer, neural degeneration, inflammatory bowel disease, viral infection and pruritus, in which that system is upregulated.
Collapse
|
83
|
Barcena de Arellano ML, Mechsner S. The peritoneum--an important factor for pathogenesis and pain generation in endometriosis. J Mol Med (Berl) 2014; 92:595-602. [PMID: 24590000 DOI: 10.1007/s00109-014-1135-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 01/08/2014] [Accepted: 01/10/2014] [Indexed: 12/16/2022]
Abstract
Endometriosis (EM) is an oestrogen-dependent disease affecting 10-15 % of women during reproductive age. It is characterised by the presence of endometrial glands, stromal- and smooth muscle-like cells outside of the uterine cavity. Fifty to sixty per cent of women and teenage girls with pelvic pain suffer from EM. EM causes disability and compromises the quality of life in women and young girls significantly. Pain generation in EM is an intricate interplay of several factors such as the endometriotic lesions themselves and the pain-mediating substances, nerve fibres and cytokine-releasing immune cells such as macrophages. These interactions seem to induce a neurogenic inflammatory process. Recently published data demonstrated an increased peptidergic and decreased noradrenergic nerve fibre density in peritoneal lesions. These data could be substantiated by in vitro analyses demonstrating that the peritoneal fluids of patients suffering from EM induced an enhanced sprouting of sensory neurites from chicken dorsal root ganglia and decreased neurite outgrowth from sympathetic ganglia. These findings might be directly involved in the perpetuation of inflammation and pain. Furthermore, the evidence of EM-associated smooth muscle-like cells seems another important factor in pain generation. The peritoneal endometriotic lesion leads to reactions in the surrounding tissue and, therefore, is larger than generally believed. The identification of EM-associated nerve fibres and smooth muscle-like cells fuel discussions on the mechanisms of pain generation in EM, and may present new targets for innovative treatments.
Collapse
Affiliation(s)
- Maria-Luisa Barcena de Arellano
- Campus Benjamin Franklin, Charité Endometriosis Center, Clinic for Gynecology, Charité University Hospital, Hindenburgdamm 30, Berlin, 12200, Germany
| | | |
Collapse
|
84
|
Boularan C, Kehrl JH. Implications of non-canonical G-protein signaling for the immune system. Cell Signal 2014; 26:1269-82. [PMID: 24583286 DOI: 10.1016/j.cellsig.2014.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 02/22/2014] [Indexed: 01/13/2023]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins), which consist of three subunits α, β, and γ, function as molecular switches to control downstream effector molecules activated by G protein-coupled receptors (GPCRs). The GTP/GDP binding status of Gα transmits information about the ligand binding state of the GPCR to intended signal transduction pathways. In immune cells heterotrimeric G proteins impact signal transduction pathways that directly, or indirectly, regulate cell migration, activation, survival, proliferation, and differentiation. The cells of the innate and adaptive immune system abundantly express chemoattractant receptors and lesser amounts of many other types of GPCRs. But heterotrimeric G-proteins not only function in classical GPCR signaling, but also in non-canonical signaling. In these pathways the guanine exchange factor (GEF) exerted by a GPCR in the canonical pathway is replaced or supplemented by another protein such as Ric-8A. In addition, other proteins such as AGS3-6 can compete with Gβγ for binding to GDP bound Gα. This competition can promote Gβγ signaling by freeing Gβγ from rapidly rebinding GDP bound Gα. The proteins that participate in these non-canonical signaling pathways will be briefly described and their role, or potential one, in cells of the immune system will be highlighted.
Collapse
Affiliation(s)
- Cédric Boularan
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - John H Kehrl
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
85
|
Neuroendocrine immunoregulation in multiple sclerosis. Clin Dev Immunol 2013; 2013:705232. [PMID: 24382974 PMCID: PMC3870621 DOI: 10.1155/2013/705232] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/29/2013] [Accepted: 09/30/2013] [Indexed: 12/03/2022]
Abstract
Currently, it is generally accepted that multiple sclerosis (MS) is a complex multifactorial disease involving genetic and environmental factors affecting the autoreactive immune responses that lead to damage of myelin. In this respect, intrinsic or extrinsic factors such as emotional, psychological, traumatic, or inflammatory stress as well as a variety of other lifestyle interventions can influence the neuroendocrine system. On its turn, it has been demonstrated that the neuroendocrine system has immunomodulatory potential. Moreover, the neuroendocrine and immune systems communicate bidirectionally via shared receptors and shared messenger molecules, variously called hormones, neurotransmitters, or cytokines. Discrepancies at any level can therefore lead to changes in susceptibility and to severity of several autoimmune and inflammatory diseases. Here we provide an overview of the complex system of crosstalk between the neuroendocrine and immune system as well as reported dysfunctions involved in the pathogenesis of autoimmunity, including MS. Finally, possible strategies to intervene with the neuroendocrine-immune system for MS patient management will be discussed. Ultimately, a better understanding of the interactions between the neuroendocrine system and the immune system can open up new therapeutic approaches for the treatment of MS as well as other autoimmune diseases.
Collapse
|
86
|
Bodkin JV, Fernandes ES. TRPV1 and SP: key elements for sepsis outcome? Br J Pharmacol 2013; 170:1279-92. [PMID: 23145480 PMCID: PMC3838676 DOI: 10.1111/bph.12056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/10/2012] [Accepted: 11/04/2012] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Sensory neurons play important roles in many disorders, including inflammatory diseases, such as sepsis. Sepsis is a potentially lethal systemic inflammatory reaction to a local bacterial infection, affecting thousands of patients annually. Although associated with a high mortality rate, sepsis outcome depends on the severity of systemic inflammation, which can be directly influenced by several factors, including the immune response of the patient. Currently, there is a lack of effective drugs to treat sepsis, and thus there is a need to develop new drugs to improve sepsis outcome. Several mediators involved in the formation of sepsis have now been identified, but the mechanisms underlying the pathology remain poorly understood. The transient receptor potential vanilloid 1 (TRPV1) receptor and the neuropeptide substance P (SP) have recently been demonstrated as important targets for sepsis and are located on sensory neurones and non-neuronal cells. Herein, we highlight and review the importance of sensory neurones for the modulation of sepsis, with specific focus on recent findings relating to TRPV1 and SP, with their distinct abilities to alter the transition from local to systemic inflammation and also modify the overall sepsis outcome. We also emphasize the protective role of TRPV1 in this context. LINKED ARTICLES This article is part of a themed section on Neuropeptides. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.170.issue-7.
Collapse
|
87
|
Nerve-derived transmitters including peptides influence cutaneous immunology. Brain Behav Immun 2013; 34:1-10. [PMID: 23517710 PMCID: PMC3750093 DOI: 10.1016/j.bbi.2013.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/27/2013] [Accepted: 03/10/2013] [Indexed: 01/01/2023] Open
Abstract
Clinical observations suggest that the nervous and immune systems are closely related. For example, inflammatory skin disorders; such as psoriasis, atopic dermatitis, rosacea and acne; are widely believed to be exacerbated by stress. A growing body of research now suggests that neuropeptides and neurotransmitters serve as a link between these two systems. Neuropeptides and neurotransmitters are released by nerves innervating the skin to influence important actors of the immune system, such as Langerhans cells and mast cells, which are located within close anatomic proximity. Catecholamines and other sympathetic transmitters that are released in response to activation of the sympathetic nervous system are also able to reach the skin and affect immune cells. Neuropeptides appear to direct the outcome of Langerhans cell antigen presentation with regard to the subtypes of Th cells generated and neuropeptides induce the degranulation of mast cells, among other effects. Additionally, endothelial cells, which release many inflammatory mediators and express cell surface molecules that allow leukocytes to exit the bloodstream, appear to be regulated by certain neuropeptides and transmitters. This review focuses on the evidence that products of nerves have important regulatory activities on antigen presentation, mast cell function and endothelial cell biology. These activities are highly likely to have clinical and therapeutic relevance.
Collapse
|
88
|
The Orthoester Johnson-Claisen Rearrangement in the Synthesis of Bioactive Molecules, Natural Products, and Synthetic Intermediates - Recent Advances. European J Org Chem 2013. [DOI: 10.1002/ejoc.201301033] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
89
|
Yang Y, Yan M, Zhang H, Wang X. Substance P participates in immune-mediated hepatic injury induced by concanavalin A in mice and stimulates cytokine synthesis in Kupffer cells. Exp Ther Med 2013; 6:459-464. [PMID: 24137208 PMCID: PMC3786810 DOI: 10.3892/etm.2013.1152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 05/17/2013] [Indexed: 12/14/2022] Open
Abstract
Studies have indicated that the immune system plays a pivotal role in hepatitis. Substance P (SP) has been shown to modulate the immune response. In order to investigate the role of SP in liver injury and to determine whether it leads to pro-inflammatory signaling, we established a mouse model of hepatic injury induced by concanavalin A (ConA). We also exposed mouse Kupffer cells (KCs) to SP in vitro. Cytokine and SP levels in liver homogenates were detected using enzyme-linked immunosorbent assay (ELISA) and the protective effects of L-703,606 were evaluated through serological and histological assessments. Neurokinin-1 receptor (NK-1R) expression was evaluated by immunofluorescence and quantitative polymerase chain reaction (PCR). The levels of SP, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were significantly increased in the ConA-treated mice and the levels of ALT and AST were markedly reduced by L-703,606-pretreatment. Liver injury was significantly reduced by treatment with L-703,606. The mouse KCs expressed NK-1R and SP increased NK-1R mRNA expression. Furthermore, NK-1R blockade eliminated the effect of SP on NK-1R mRNA expression. The cytokine levels exhibited a substantial increase in the SP-pretreated KCs compared with the KCs that were cultured in control medium. The inter-leukin (IL)-6 and tumor necrosis factor (TNF)-α levels in the L-703,606-pretreated KCs were significantly lower compared with those in the SP-pretreated KCs. Our study suggests that neurogenic inflammation induced by SP plays an important role in hepatitis. Mouse KCs express NK-1R and SP increases NK-1R mRNA expression. SP enhances IL-6 and TNF-α secretion and an NK-1R antagonist inhibits this secretion.
Collapse
Affiliation(s)
- Yan Yang
- Health Examination Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012
| | | | | | | |
Collapse
|
90
|
Orhan CE, Önal A, Uyanıkgil Y, Ülker S. Antihyperalgesic and antiallodynic effect of sirolimus in rat model of adjuvant arthritis. Eur J Pharmacol 2013; 705:35-41. [DOI: 10.1016/j.ejphar.2013.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 01/13/2023]
|
91
|
Yokoyama H, Oguchi T, Goins WF, Goss JR, Nishizawa O, de Groat WC, Wolfe D, Krisky DM, Glorioso JC, Yoshimura N. Effects of herpes simplex virus vector-mediated enkephalin gene therapy on bladder overactivity and nociception. Hum Gene Ther 2013; 24:170-80. [PMID: 23316929 DOI: 10.1089/hum.2011.180] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We previously reported the effects of herpes simplex virus (HSV) vector-mediated enkephalin on bladder overactivity and pain. In this study, we evaluated the effects of vHPPE (E1G6-ENK), a newly engineered replication-deficient HSV vector encoding human preproenkephalin (hPPE). vHPPE or control vector was injected into the bladder wall of female rats 2 weeks prior to the following studies. A reverse-transcription PCR study showed high hPPE transgene levels in L6 dorsal root ganglia innervating the bladder in the vHPPE group. The number of freezing behaviors, which is a nociceptive reaction associated with bladder pain, was also significantly lower in the vHPPE group compared with the control group. The number of L6 spinal cord c-fos-positive cells and the urinary interleukin (IL)-1β and IL-6 levels after resiniferatoxin (RTx) administration into the bladder of the vHPPE group were significantly lower compared with those of the control vector-injected group. In continuous cystometry, the vHPPE group showed a smaller reduction in intercontraction interval after RTx administration into the bladder. This antinociceptive effect was antagonized by naloxone hydrochloride. Thus, the HSV vector vHPPE encoding hPPE demonstrated physiological improvement in visceral pain induced by bladder irritation. Gene therapy may represent a potentially useful treatment modality for bladder hypersensitive disorders such as bladder pain syndrome/interstitial cystitis.
Collapse
Affiliation(s)
- Hitoshi Yokoyama
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Bardelli C, Amoruso A, Manzetti E, Fresu LG, Valsesia R, Zeppegno P, Brunelleschi S. Recurrent major depressive disorder: Imbalance of neurokinin (NK)-1 and NK-2 receptor expression in monocytes. Pharmacol Res 2013; 68:24-30. [DOI: 10.1016/j.phrs.2012.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 10/31/2012] [Accepted: 10/31/2012] [Indexed: 11/28/2022]
|
93
|
The role of substance p in ischaemic brain injury. Brain Sci 2013; 3:123-42. [PMID: 24961310 PMCID: PMC4061838 DOI: 10.3390/brainsci3010123] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 01/23/2013] [Accepted: 01/23/2013] [Indexed: 12/27/2022] Open
Abstract
Stroke is a leading cause of death, disability and dementia worldwide. Despite extensive pre-clinical investigation, few therapeutic treatment options are available to patients, meaning that death, severe disability and the requirement for long-term rehabilitation are common outcomes. Cell loss and tissue injury following stroke occurs through a number of diverse secondary injury pathways, whose delayed nature provides an opportunity for pharmacological intervention. Amongst these secondary injury factors, increased blood-brain barrier permeability and cerebral oedema are well-documented complications of cerebral ischaemia, whose severity has been shown to be associated with final outcome. Whilst the mechanisms of increased blood-brain barrier permeability and cerebral oedema are largely unknown, recent evidence suggests that the neuropeptide substance P (SP) plays a central role. The aim of this review is to examine the role of SP in ischaemic stroke and report on the potential utility of NK1 tachykinin receptor antagonists as therapeutic agents.
Collapse
|
94
|
Rosenkranz MA, Davidson RJ, Maccoon DG, Sheridan JF, Kalin NH, Lutz A. A comparison of mindfulness-based stress reduction and an active control in modulation of neurogenic inflammation. Brain Behav Immun 2013; 27:174-84. [PMID: 23092711 PMCID: PMC3518553 DOI: 10.1016/j.bbi.2012.10.013] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Revised: 10/11/2012] [Accepted: 10/12/2012] [Indexed: 12/27/2022] Open
Abstract
Psychological stress is a major provocative factor of symptoms in chronic inflammatory conditions. In recent years, interest in addressing stress responsivity through meditation training in health-related domains has increased astoundingly, despite a paucity of evidence that reported benefits are specific to meditation practice. We designed the present study to rigorously compare an 8-week Mindfulness-Based Stress Reduction (MBSR) intervention to a well-matched active control intervention, the Health Enhancement Program (HEP) in ability to reduce psychological stress and experimentally-induced inflammation. The Trier Social Stress Test (TSST) was used to induce psychological stress and inflammation was produced using topical application of capsaicin cream to forearm skin. Immune and endocrine measures of inflammation and stress were collected both before and after MBSR training. Results show those randomized to MBSR and HEP training had comparable post-training stress-evoked cortisol responses, as well as equivalent reductions in self-reported psychological distress and physical symptoms. However, MBSR training resulted in a significantly smaller post-stress inflammatory response compared to HEP, despite equivalent levels of stress hormones. These results suggest behavioral interventions designed to reduce emotional reactivity may be of therapeutic benefit in chronic inflammatory conditions. Moreover, mindfulness practice, in particular, may be more efficacious in symptom relief than the well-being promoting activities cultivated in the HEP program.
Collapse
Affiliation(s)
- Melissa A Rosenkranz
- Waisman Laboratory for Brain Imaging & Behavior and Center for Investigating Healthy Minds, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705, United States.
| | | | | | | | | | | |
Collapse
|
95
|
Bayram C, Osmanağaoğlu MA, Aran T, Güven S, Bozkaya H. The effect of chronic pelvic pain scoring on pre-term delivery rate. J OBSTET GYNAECOL 2012; 33:32-7. [PMID: 23259875 DOI: 10.3109/01443615.2012.727044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A total of 57 pregnant women, who were admitted to the outpatient clinic having high visual analogue scale (VAS) and a history of chronic pelvic pain before pregnancy, were evaluated with the international pelvic pain assessment form (IPPAF). Gynaecological disorders, pain at ovulation, dysmenorrhoea, level of cramps with period and suspicion of endometriosis were determined to be higher in the pre-term group (p < 0.05). Regarding urological disorders, pain when the bladder was full, pain with urination, a positive answer to the question, 'Does your urgency bother you?' and suspicion of interstitial cystitis were also determined to be higher in the pre-term group (p < 0.05). Thus, the total IPPAF scores were significantly higher in the pre-term group (p < 0.05). The pregnant women with a higher total IPPAF score before pregnancy may thus have a higher probability of pre-term labour.
Collapse
Affiliation(s)
- C Bayram
- Department of Obstetrics and Gynecology, School of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | | | | | | | | |
Collapse
|
96
|
|
97
|
Abstract
Substance P (SP1-11) was exposed to a continuous flux of superoxide (O2-) or hydroxyl radicals (.OH) in a hypoxanthine (HX)/xanthine oxidase (86 mU) system in the presence of 1 mM deferoxamine and 40 mM D-mannitol or 50 μM FeCI3. 6H2O and 50 μM EDTA, respectively. O2- caused fragmentation between the Phe7 and Phe8, whereas .OH induced cleavage also between the Phe8 and Gly9. Reactive oxygen species H2O2 and HCIO did not cause fragmentation, but modification of the amino acid side chains and/or aggregation with altered hydrophobicity in reverse phase high performance liquid chromatography compared to native SP1-11. Furthermore, exposure of SP1-11 to phorbol myristate acetate preactivated neutrophils resuited in products similar to those observed upon exposure to superoxide or hydroxyl radicals in a cell-free HX/xanthine oxidase system. This study suggests that, in contrast to rigid proteins, fragmentation is relatively easily induced in a small peptide like SP1-11, perhaps due to strain on the peptide and t-carbon bonds caused by the movable, random coil configuration acquired by SP1-11 in an aqueous solution. Oxidative modification might modulate paracrine actions of SP1-11 at site of inflammation.
Collapse
|
98
|
Abstract
Intestinal inflammation is controlled by various immunomodulating cells, interacting by molecular mediators. Neuropeptides, released by enteric nerve cells and neuroendocrine mucosa cells, are able to affect several aspects of the general and intestinal immune system, with both pro- as well as anti-inflammatory activities. In inflammatory bowel disease (IBD) there is both morphological as well as experimental evidence for involvement of neuropeptides in the pathogenesis. Somatostatin is the main inhibitory peptide in inflammatory processes, and its possible role in IBD is discussed.
Collapse
Affiliation(s)
- J D van Bergeijk
- Department of Gastroenterology/Internal Medicine, University Hospital Dijkzigt, Rotterdam, The Netherlands
| | | |
Collapse
|
99
|
Lucas K, Karamichos D, Mathew R, Zieske JD, Stein-Streilein J. Retinal laser burn-induced neuropathy leads to substance P-dependent loss of ocular immune privilege. THE JOURNAL OF IMMUNOLOGY 2012; 189:1237-42. [PMID: 22745377 DOI: 10.4049/jimmunol.1103264] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inflammation in the eye is tightly regulated by multiple mechanisms that together contribute to ocular immune privilege. Many studies have shown that it is very difficult to abrogate the immune privileged mechanism called anterior chamber-associated immune deviation (ACAID). Previously, we showed that retinal laser burn (RLB) to one eye abrogated immune privilege (ACAID) bilaterally for an extended period of time. In an effort to explain the inflammation in the nonburned eye, we postulated that neuronal signals initiated inflammation in the contralateral eye. In this study, we test the role of substance P, a neuroinflamatory peptide, in RLB-induced loss of ACAID. Histological examination of the retina with and without RLB revealed an increase of the substance P-inducible neurokinin 1 receptor (NK1-R) in the retina of first, the burned eye, and then the contralateral eye. Specific antagonists for NK1-R, given locally with Ag within 24 h, but not 3, 5, or 7 d post-RLB treatment, prevented the bilateral loss of ACAID. Substance P knockout (KO) mice retained their ability to develop ACAID post-RLB. These data support the postulate that substance P transmits early inflammatory signals from the RLB eye to the contralateral eye to induce changes to ocular immune privilege and has a central role in the bilateral loss of ACAID. The possibility is raised that blocking of the substance P pathway with NK1-R antagonists postocular trauma may prevent unwanted and perhaps extended consequences of trauma-induced inflammation in the eye.
Collapse
Affiliation(s)
- Kenyatta Lucas
- Schepens Eye Research Institute/Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
100
|
Abstract
In recent years, increasing awareness of hypomagnesemia has resulted in clinical trials that associate this mineral deficiency with diabetes, metabolic syndrome, and drug therapies for cancer and cardiovascular diseases. However, diagnostic testing for tissue deficiency of magnesium still presents a challenge. Investigations of animal and cellular responses to magnesium deficiency have found evidence of complex proinflammatory pathways that may lead to greater understanding of mediators of the pathobiology in neuronal, cardiovascular, intestinal, renal, and hematological tissues. The roles of free radicals, cytokines, neuropeptides, endotoxin, endogenous antioxidants, and vascular permeability, and interventions to limit the inflammatory response associated with these parameters, are outlined in basic studies of magnesium deficiency. It is hoped that this limited review of inflammation associated with some diseases complicated by magnesium deficiency will prompt greater awareness by clinicians and other health providers and in turn increase efforts to prevent and treat this disorder.
Collapse
Affiliation(s)
- William B Weglicki
- Department of Biochemistry and Molecular Biology, Division of Experimental Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| |
Collapse
|