51
|
Abstract
Mammals synchronize their circadian activity primarily to the cycles of light and darkness in the environment. This is achieved by ocular photoreception relaying signals to the suprachiasmatic nucleus (SCN) in the hypothalamus. Signals from the SCN cause the synchronization of independent circadian clocks throughout the body to appropriate phases. Signals that can entrain these peripheral clocks include humoral signals, metabolic factors, and body temperature. At the level of individual tissues, thousands of genes are brought to unique phases through the actions of a local transcription/translation-based feedback oscillator and systemic cues. In this molecular clock, the proteins CLOCK and BMAL1 cause the transcription of genes which ultimately feedback and inhibit CLOCK and BMAL1 transcriptional activity. Finally, there are also other molecular circadian oscillators which can act independently of the transcription-based clock in all species which have been tested.
Collapse
Affiliation(s)
- Ethan D Buhr
- Department of Ophthalmology, University of Washington, 1959 NE Pacific St, 356485 BB-857 HSB, Seattle, WA 98195, USA
| | | |
Collapse
|
52
|
François P, Despierre N, Siggia ED. Adaptive temperature compensation in circadian oscillations. PLoS Comput Biol 2012; 8:e1002585. [PMID: 22807663 PMCID: PMC3395600 DOI: 10.1371/journal.pcbi.1002585] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 05/02/2012] [Indexed: 11/17/2022] Open
Abstract
A temperature independent period and temperature entrainment are two defining features of circadian oscillators. A default model of distributed temperature compensation satisfies these basic facts yet is not easily reconciled with other properties of circadian clocks, such as many mutants with altered but temperature compensated periods. The default model also suggests that the shape of the circadian limit cycle and the associated phase response curves (PRC) will vary since the average concentrations of clock proteins change with temperature. We propose an alternative class of models where the twin properties of a fixed period and entrainment are structural and arise from an underlying adaptive system that buffers temperature changes. These models are distinguished by a PRC whose shape is temperature independent and orbits whose extrema are temperature independent. They are readily evolved by local, hill climbing, optimization of gene networks for a common quality measure of biological clocks, phase anticipation. Interestingly a standard realization of the Goodwin model for temperature compensation displays properties of adaptive rather than distributed temperature compensation.
Collapse
Affiliation(s)
- Paul François
- Ernest Rutherford Physics Building, McGill University, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
53
|
Larrondo LF, Loros JJ, Dunlap JC. High-resolution spatiotemporal analysis of gene expression in real time: in vivo analysis of circadian rhythms in Neurospora crassa using a FREQUENCY-luciferase translational reporter. Fungal Genet Biol 2012; 49:681-3. [PMID: 22695169 DOI: 10.1016/j.fgb.2012.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 05/22/2012] [Accepted: 06/01/2012] [Indexed: 11/30/2022]
Abstract
The pacemaker of the Neurospora circadian clock is composed of a transcriptional-translational feedback loop that has been intensively studied during the last two decades. Invaluable information has been derived from measuring the expression of the central clock component frequency (frq) under liquid culture conditions. Direct analyses of frq mRNA and protein levels on solid media - where overt circadian rhythms are normally visualized - have not been trivial due to technical issues. Nevertheless, a frq promoter-luciferase reporter has recently allowed the study of frq transcription under these conditions. It is known that FRQ undergoes extensive posttranslational modifications, and changes in its levels provide important information regarding the clockworks. Here we describe a FRQ-luciferase translational fusion reporter that directly tracks FRQ levels, granting access to a better understanding and analysis of FRQ dynamics in vivo. More generally the method, which allows the investigator to follow continuous gene expression in real time in a spatially and temporally unrestricted manner, should be widely applicable to analyses of environmentally and developmentally regulated gene expression in ascomycete filamentous fungi as well as in basidiomycetes.
Collapse
Affiliation(s)
- Luis F Larrondo
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | | | |
Collapse
|
54
|
Generic temperature compensation of biological clocks by autonomous regulation of catalyst concentration. Proc Natl Acad Sci U S A 2012; 109:8109-14. [PMID: 22566655 DOI: 10.1073/pnas.1120711109] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Circadian clocks--ubiquitous in life forms ranging from bacteria to multicellular organisms--often exhibit intrinsic temperature compensation; the period of circadian oscillators is maintained constant over a range of physiological temperatures, despite the expected Arrhenius form for the reaction coefficient. Observations have shown that the amplitude of the oscillation depends on the temperature but the period does not; this suggests that although not every reaction step is temperature independent, the total system comprising several reactions still exhibits compensation. Here we present a general mechanism for such temperature compensation. Consider a system with multiple activation energy barriers for reactions, with a common enzyme shared across several reaction steps. The steps with the highest activation energy rate-limit the cycle when the temperature is not high. If the total abundance of the enzyme is limited, the amount of free enzyme available to catalyze a specific reaction decreases as more substrates bind to the common enzyme. We show that this change in free enzyme abundance compensates for the Arrhenius-type temperature dependence of the reaction coefficient. Taking the example of circadian clocks with cyanobacterial proteins KaiABC, consisting of several phosphorylation sites, we show that this temperature compensation mechanism is indeed valid. Specifically, if the activation energy for phosphorylation is larger than that for dephosphorylation, competition for KaiA shared among the phosphorylation reactions leads to temperature compensation. Moreover, taking a simpler model, we demonstrate the generality of the proposed compensation mechanism, suggesting relevance not only to circadian clocks but to other (bio)chemical oscillators as well.
Collapse
|
55
|
Al-Musawi LI, Wagner E. Seasonal and lunar variation in the emergence time of a population of Uca lactea annulipes (Milne-Edwards, 1837) at a shore in Kuwait. Chronobiol Int 2012; 29:408-14. [PMID: 22489606 DOI: 10.3109/07420528.2012.669439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study monitored the endogenous emergence time of the fiddler crab Uca lactea annulipes (Milne-Edwards, 1837) in the field, for the first time, at an intertidal shore in Kuwait, from 1997 to 2001. The results revealed a significant cyclic change in the median emergence time as the season progressed from winter, through spring and summer, to autumn (.44, 1.29, 3.12, and 1.1 h prior to the dead-low tide, respectively). The data also revealed a significant shift in the median emergence time according to moon phase (2.27 h at new moon versus 2.56 h at full moon prior to the dead-low tide).
Collapse
|
56
|
Tseng YY, Hunt SM, Heintzen C, Crosthwaite SK, Schwartz JM. Comprehensive modelling of the Neurospora circadian clock and its temperature compensation. PLoS Comput Biol 2012; 8:e1002437. [PMID: 22496627 PMCID: PMC3320131 DOI: 10.1371/journal.pcbi.1002437] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 02/06/2012] [Indexed: 11/19/2022] Open
Abstract
Circadian clocks provide an internal measure of external time allowing organisms to anticipate and exploit predictable daily changes in the environment. Rhythms driven by circadian clocks have a temperature compensated periodicity of approximately 24 hours that persists in constant conditions and can be reset by environmental time cues. Computational modelling has aided our understanding of the molecular mechanisms of circadian clocks, nevertheless it remains a major challenge to integrate the large number of clock components and their interactions into a single, comprehensive model that is able to account for the full breadth of clock phenotypes. Here we present a comprehensive dynamic model of the Neurospora crassa circadian clock that incorporates its key components and their transcriptional and post-transcriptional regulation. The model accounts for a wide range of clock characteristics including: a periodicity of 21.6 hours, persistent oscillation in constant conditions, arrhythmicity in constant light, resetting by brief light pulses, and entrainment to full photoperiods. Crucial components influencing the period and amplitude of oscillations were identified by control analysis. Furthermore, simulations enabled us to propose a mechanism for temperature compensation, which is achieved by simultaneously increasing the translation of frq RNA and decreasing the nuclear import of FRQ protein. Circadian clocks are internal timekeepers that integrate signals from the environment and orchestrate cellular events to occur at the most favourable time of day. Circadian clocks in animals, plants, fungi and bacteria have similar characteristic properties and molecular architecture. They have a periodicity of approximately 24 hours, persist in constant conditions and can be reset by environmental time cues such as light and temperature. Another essential property, whose molecular basis is poorly understood, is that the period is temperature compensated i.e. it remains the same over a range of temperatures. Computational modelling has become a valuable tool to predict and understand the underlying mechanisms of such complex molecular systems, but existing clock models are often restricted in the scope of molecular reactions they cover and in the breadth of conditions they are able to reproduce. We therefore built a comprehensive model of the circadian clock of the fungus Neurospora crassa, which encompasses existing knowledge of the biochemistry of the Neurospora clock. We validated this model against a wide range of experimental phenotypes and then used the model to investigate possible molecular explanations of temperature compensation. Our simulations suggest that temperature compensation of period is achieved by changing the abundance and cellular localisation of a key clock protein.
Collapse
Affiliation(s)
- Yu-Yao Tseng
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Suzanne M. Hunt
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Christian Heintzen
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Susan K. Crosthwaite
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail: (SKC); (JMS)
| | - Jean-Marc Schwartz
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail: (SKC); (JMS)
| |
Collapse
|
57
|
Chow AM, Beraud E, Tang DW, Ferrier-Pagès C, Brown IR. Hsp60 protein pattern in coral is altered by environmental changes in light and temperature. Comp Biochem Physiol A Mol Integr Physiol 2012; 161:349-53. [DOI: 10.1016/j.cbpa.2011.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/01/2011] [Accepted: 12/10/2011] [Indexed: 10/14/2022]
|
58
|
Abstract
Current model for circadian rhythms is wrong both theoretically and practically. A new model, called yin yang model, is proposed to explain the mechanism of circadian rhythms. The yin yang model separate circadian activities in a circadian system into yin (night activities) and yang (day activities) and a circadian clock into a day clock and a night clock. The day clock is the product of night activities, but it promotes day activities; the night clock is the product of day activities, but it promotes night activities. The clock maintains redox or energy homeostasis of the internal environment and allows temporal separations between biological processes with opposite impacts on the internal environment of a circadian system.
Collapse
Affiliation(s)
- HONGTAO MIN
- Department of Biology, Texas A & M University, College Station, Texas 77843-3258, USA
| |
Collapse
|
59
|
Iijima M, Matsushita N. A circadian and an ultradian rhythm are both evident in root growth of rice. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:2072-80. [PMID: 21802171 DOI: 10.1016/j.jplph.2011.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 06/21/2011] [Accepted: 06/21/2011] [Indexed: 05/11/2023]
Abstract
This paper presents evidence for the existence of both a circadian and an ultradian rhythm in the elongation growth of rice roots. Root elongation of rice (Oryza sativa) was recorded under dim green light by using a CCD camera connected to a computer. Four treatment conditions were set-up to investigate the existence of endogenous rhythms: 28°C constant temperature and continuous dark (28 DD); 28°C constant temperature and alternating light and dark (28 LD); 33°C constant temperature and continuous dark (33 DD); and diurnal temperature change and alternating light and dark (DT-LD). The resulting spectral densities suggested the existence of periodicities of 20.4-25.2 h (circadian cycles) and 2.0-6.0 h (ultradian cycles) in each of the 4 treatments. The shorter ultradian cycles can be attributed to circumnutational growth of roots and/or to mucilage exudation. The average values across all the replicate data showed that the highest power spectral densities (PSDs) corresponded to root growth rhythms with periods of 22.9, 23.7, and 2.1 h for the 28 DD, 28 LD, and 33 DD treatments, respectively. Accumulation of PSD for each data set indicated that the periodicity was similar in both the 28 DD and 33 DD treatments. We conclude that a 23-h circadian and a 2-h ultradian rhythmicity exist in rice root elongation. Moreover, root elongation rates during the day were 1.08 and 1.44 times faster than those during the night for the 28 LD and DT-LD treatments, respectively.
Collapse
Affiliation(s)
- Morio Iijima
- School of Agriculture, Kinki University, Nara 631-8505, Japan.
| | | |
Collapse
|
60
|
Abstract
Circadian clocks organize our inner physiology with respect to the external world, providing life with the ability to anticipate and thereby better prepare for major fluctuations in its environment. Circadian systems are widely represented in nearly all major branches of life, except archaebacteria, and within the eukaryotes, the filamentous fungus Neurospora crassa has served for nearly half a century as a durable model organism for uncovering the basic circadian physiology and molecular biology. Studies using Neurospora have clarified our fundamental understanding of the clock as nested positive and negative feedback loops regulated through transcriptional and post-transcriptional processes. These feedback loops are centered on a limited number of proteins that form molecular complexes, and their regulation provides a physical explanation for nearly all clock properties. This review will introduce the basics of circadian rhythms, the model filamentous fungus N. crassa, and provide an overview of the molecular components and regulation of the circadian clock.
Collapse
|
61
|
Understanding systems-level properties: timely stories from the study of clocks. Nat Rev Genet 2011; 12:407-16. [DOI: 10.1038/nrg2972] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
62
|
|
63
|
Buhr ED, Yoo SH, Takahashi JS. Temperature as a universal resetting cue for mammalian circadian oscillators. Science 2010; 330:379-85. [PMID: 20947768 DOI: 10.1126/science.1195262] [Citation(s) in RCA: 658] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Environmental temperature cycles are a universal entraining cue for all circadian systems at the organismal level with the exception of homeothermic vertebrates. We report here that resistance to temperature entrainment is a property of the suprachiasmatic nucleus (SCN) network and is not a cell-autonomous property of mammalian clocks. This differential sensitivity to temperature allows the SCN to drive circadian rhythms in body temperature, which can then act as a universal cue for the entrainment of cell-autonomous oscillators throughout the body. Pharmacological experiments show that network interactions in the SCN are required for temperature resistance and that the heat shock pathway is integral to temperature resetting and temperature compensation in mammalian cells. These results suggest that the evolutionarily ancient temperature resetting response can be used in homeothermic animals to enhance internal circadian synchronization.
Collapse
Affiliation(s)
- Ethan D Buhr
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208-3520, USA
| | | | | |
Collapse
|
64
|
Foley ME, Anderson JV, Chao WS, Doğramaci M, Horvath DP. Initial changes in the transcriptome of Euphorbia esula seeds induced to germinate with a combination of constant and diurnal alternating temperatures. PLANT MOLECULAR BIOLOGY 2010; 73:131-42. [PMID: 19916049 DOI: 10.1007/s11103-009-9569-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 10/30/2009] [Indexed: 05/20/2023]
Abstract
We investigated transcriptome changes in Euphorbia esula (leafy spurge) seeds with a focus on the effect of constant and diurnal fluctuating temperature on dormancy and germination. Leafy spurge seeds do not germinate when incubated for 21 days at 20 degrees C constant temperatures, but nearly 30% germinate after 21 days under fluctuating temperatures 20:30 degrees C (16:8 h). Incubation at 20 degrees C for 21 days followed by 20:30 degrees C resulted in approximately 63% germination in about 10 days. A cDNA microarray representing approximately 22,000 unique sequences was used to profile transcriptome changes in the first day after transfer of seeds from constant to alternating temperature conditions. Functional classification based on MIPS and gene ontology revealed active metabolism including up-regulation of energy, protein synthesis, and signal transduction processes. Down-regulated processes included translation elongation, translation, and some biosynthetic processes. Subnetwork analysis identified genes involved in abscisic acid, sugar, and circadian clock signaling as key regulators of physiological activity in seeds soon after the transfer to alternating conditions.
Collapse
Affiliation(s)
- Michael E Foley
- USDA-Agricultural Research Service, Biosciences Research Lab, 1605 Albrecht Boulevard, Fargo, ND 58105-5674, USA.
| | | | | | | | | |
Collapse
|
65
|
Merrow M, Boesl C, Ricken J, Messerschmitt M, Goedel M, Roenneberg T. Entrainment of theNeurosporaCircadian Clock. Chronobiol Int 2009; 23:71-80. [PMID: 16687281 DOI: 10.1080/07420520500545888] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Neurospora crassa has been systematically investigated for circadian entrainment behavior. Many aspects of synchronization can be investigated in this simple, cellular system, ranging from systematic entrainment and drivenness to masking. Clock gene expression during entrainment and entrainment without clock genes suggest that the known transcription/translation feedback loop is not alone responsible for entrainment in Neurospora.
Collapse
Affiliation(s)
- Martha Merrow
- Biologisch Centrum, University of Groningen, Haren, The Netherlands.
| | | | | | | | | | | |
Collapse
|
66
|
López‐Olmeda JF, Sánchez‐Vázquez FJ. Zebrafish Temperature Selection and Synchronization of Locomotor Activity Circadian Rhythm to Ahemeral Cycles of Light and Temperature. Chronobiol Int 2009; 26:200-18. [DOI: 10.1080/07420520902765928] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
67
|
Abstract
Light and temperature are major environmental cues that influence circadian clocks. The molecular effects of these zeitgebers on the circadian clock of Neurospora crassa have been studied intensively during the last decade. While signal transduction of light into the circadian clock is quite well characterized, we have only recently begun to understand the molecular mechanisms that underlie temperature sensing. Here we summarize briefly the current knowledge about the effects of temperature on the circadian clock of Neurospora crassa.
Collapse
Affiliation(s)
- Michael Brunner
- University of Heidelberg (BZH), Biochemistry Center, Heidelberg, Germany
| | | |
Collapse
|
68
|
Abstract
Of the three defining properties of circadian rhythmicity--persisting free-running rhythm, temperature compensation, and entrainment--the last is often poorly understood by many chronobiologists. This paper gives an overview of entrainment. Where have we been? Where are we now? Whence should we be going? Particular emphasis is given to a discussion of the Discrete vs. Continuous models for entrainment. We provide an integrated mechanism for entrainment from a limit-cycle perspective.
Collapse
Affiliation(s)
- Carl Hirschie Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA.
| | | | | |
Collapse
|
69
|
MEHRA A, SHI M, BAKER CL, COLOT HV, LOROS JJ, DUNLAP JC. CK2 and temperature compensation inNeurospora. Sleep Biol Rhythms 2009. [DOI: 10.1111/j.1479-8425.2009.00406.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
70
|
Mehra A, Shi M, Baker CL, Colot HV, Loros JJ, Dunlap JC. A role for casein kinase 2 in the mechanism underlying circadian temperature compensation. Cell 2009; 137:749-60. [PMID: 19450520 DOI: 10.1016/j.cell.2009.03.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 01/19/2009] [Accepted: 03/12/2009] [Indexed: 11/28/2022]
Abstract
Temperature compensation of circadian clocks is an unsolved problem with relevance to the general phenomenon of biological compensation. We identify casein kinase 2 (CK2) as a key regulator of temperature compensation of the Neurospora clock by determining that two long-standing clock mutants, chrono and period-3, displaying distinctive alterations in compensation encode the beta1 and alpha subunits of CK2, respectively. Reducing the dose of these subunits, particularly beta1, significantly alters temperature compensation without altering the enzyme's Q(10). By contrast, other kinases and phosphatases implicated in clock function do not play appreciable roles in temperature compensation. CK2 exerts its effects on the clock by directly phosphorylating FREQUENCY (FRQ), and this phosphorylation is compromised in CK2 hypomorphs. Finally, mutation of certain putative CK2 phosphosites on FRQ, shown to be phosphorylated in vivo, predictably alters temperature compensation profiles effectively phenocopying CK2 mutants.
Collapse
Affiliation(s)
- Arun Mehra
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | | | |
Collapse
|
71
|
|
72
|
Nonparametric entrainment of the in vitro circadian phosphorylation rhythm of cyanobacterial KaiC by temperature cycle. Proc Natl Acad Sci U S A 2009; 106:1648-53. [PMID: 19164549 DOI: 10.1073/pnas.0806741106] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The three cyanobacterial Kai proteins and ATP are capable of generating an autonomous rhythm of KaiC phosphorylation in a test tube. As the period is approximately 24 hours and is stable in a wide temperature range, this rhythm is thought to function as the basic oscillator of the cyanobacterial circadian system. We have examined the rhythm under various temperature cycles and found that it was stably entrained by a temperature cycle of 20-28 hours. As the period length was not altered by temperature, entrainment by period change could be excluded from possible mechanisms. Instead, temperature steps between 30 degrees and 45 degrees C and vice versa shifted the phase of the rhythm in a phase-dependent manner. Based on the phase response curves of the step-up and step-down in temperature, phase shift by single temperature pulse was estimated using a nonparametric entrainment model (discontinuous phase jump by external stimuli). The predicted phase shift was consistent with the experimentally measured phase shift. Next, successive phase shifts caused by repeated temperature cycles were computed by two phase response curves and compared with actual entrainment of the rhythm. As the entrainment pattern observed after various combinations of temperature cycles matched the prediction, it is likely that nonparametric entrainment functions even in the simple three-protein system. We also analyzed entrainment of KaiC phosphorylation by temperature cycle in cyanobacterial cells and found both the parametric and the nonparametric models function in vivo.
Collapse
|
73
|
Low KH, Lim C, Ko HW, Edery I. Natural variation in the splice site strength of a clock gene and species-specific thermal adaptation. Neuron 2008; 60:1054-67. [PMID: 19109911 PMCID: PMC2631419 DOI: 10.1016/j.neuron.2008.10.048] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 09/16/2008] [Accepted: 10/28/2008] [Indexed: 11/17/2022]
Abstract
We show that multiple suboptimal splice sites underlie the thermal-sensitive splicing of the period (per) 3'-terminal intron (dmpi8) from D. melanogaster, enabling this species to prolong its midday "siesta," a mechanism that likely diminishes the deleterious effects of heat during the longer summer days in temperate climates. In D. yakuba and D. santomea, which have a more ancestral distribution indigenous to Afro-equatorial regions wherein day length and temperature exhibit little fluctuation throughout the year, the splicing efficiencies of their per 3'-terminal introns do not exhibit thermal calibration, consistent with the little effect of temperature on the daily distribution of activity in these species. We propose that the weak splice sites on dmpi8 underlie a mechanism that facilitated the acclimation of the widely colonized D. melanogaster (and possibly D. simulans) to temperate climates and that natural selection operating at the level of splicing signals plays an important role in the thermal adaptation of life forms.
Collapse
Affiliation(s)
- Kwang Huei Low
- Department of Molecular Biology and Biochemistry, Rutgers University, Center for Advanced Biotechnology and Medicine, 679 Hoes lane, Piscataway, New Jersey, USA 08854
| | - Cecilia Lim
- Department of Molecular Biology and Biochemistry, Rutgers University, Center for Advanced Biotechnology and Medicine, 679 Hoes lane, Piscataway, New Jersey, USA 08854
| | | | - Isaac Edery
- Department of Molecular Biology and Biochemistry, Rutgers University, Center for Advanced Biotechnology and Medicine, 679 Hoes lane, Piscataway, New Jersey, USA 08854
| |
Collapse
|
74
|
Dunlap JC, Loros JJ, Colot HV, Mehra A, Belden WJ, Shi M, Hong CI, Larrondo LF, Baker CL, Chen CH, Schwerdtfeger C, Collopy PD, Gamsby JJ, Lambreghts R. A circadian clock in Neurospora: how genes and proteins cooperate to produce a sustained, entrainable, and compensated biological oscillator with a period of about a day. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2008; 72:57-68. [PMID: 18522516 DOI: 10.1101/sqb.2007.72.072] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neurospora has proven to be a tractable model system for understanding the molecular bases of circadian rhythms in eukaryotes. At the core of the circadian oscillatory system is a negative feedback loop in which two transcription factors, WC-1 and WC-2, act together to drive expression of the frq gene. WC-2 enters the promoter region of frq coincident with increases in frq expression and then exits when the cycle of transcription is over, whereas WC-1 can always be found there. FRQ promotes the phosphorylation of the WCs, thereby decreasing their activity, and phosphorylation of FRQ then leads to its turnover, allowing the cycle to reinitiate. By understanding the action of light and temperature on frq and FRQ expression, the molecular basis of circadian entrainment to environmental light and temperature cues can be understood, and recently a specific role for casein kinase 2 has been found in the mechanism underlying circadian temperature-compensation. These data promise molecular explanations for all of the canonical circadian properties of this model system, providing biochemical answers and regulatory logic that may be extended to more complex eukaryotes including humans.
Collapse
Affiliation(s)
- J C Dunlap
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Kuhlman SJ, Mackey SR, Duffy JF. Biological Rhythms Workshop I: introduction to chronobiology. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2008; 72:1-6. [PMID: 18419258 DOI: 10.1101/sqb.2007.72.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this chapter, we present a series of four articles derived from a Introductory Workshop on Biological Rhythms presented at the 72nd Annual Cold Spring Harbor Symposium on Quantitative Biology: Clocks and Rhythms. A diverse range of species, from cyanobacteria to humans, evolved endogenous biological clocks that allow for the anticipation of daily variations in light and temperature. The ability to anticipate environmental variation promotes optimal performance and survival. In the first article, Introduction to Chronobiology, we present a brief historical timeline of how circadian concepts and terminology have emerged since the early observation of daily leaf movement in plants made by an astronomer in the 1700s. Workshop Part IA provides an overview of the molecular basis for rhythms generation in several key model organisms, Workshop Part IB focuses on how biology built a brain clock capable of coordinating the daily timing of essential brain and physiological processes, and Workshop Part IC gives key insight into how researchers study sleep and rhythms in humans.
Collapse
Affiliation(s)
- S J Kuhlman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
76
|
Roenneberg T, Merrow M. Entrainment of the human circadian clock. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2008; 72:293-9. [PMID: 18419286 DOI: 10.1101/sqb.2007.72.043] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Humans are an excellent model system for studying entrainment of the circadian clock in the real world. Unlike the situation in laboratory experiments, entrainment under natural conditions is achieved by different external signals as well as by internal signals generated by multiple feedbacks within the system (e.g., behavior-dependent light and temperature changes, melatonin levels, or regular nutrient intake). Signals that by themselves would not be sufficient zeitgebers may contribute to entrainment in conjunction with other self-sufficient zeitgeber signals (e.g., light). The investigation of these complex zeitgeber interactions seems to be problematic in most model systems and strengthens the human system for circadian research. Here, we review our endeavors measuring human entrainment in real life, predominantly with the help of the Munich ChronoType Questionnaire (MCTQ). The large number of participants in our current MCTQ database allows accurate quantification of the human phase of entrainment (chronotype) and how it depends on age or sex. We also present new data showing how chronotype depends on natural light exposure. The results indicate the importance of zeitgeber strength on human entrainment and help in understanding the differences in chronotype, e.g., between urban and rural regions.
Collapse
Affiliation(s)
- T Roenneberg
- Centre for Chronobiology, Institute for Medical Psychology, University of Munich, 80336 Munich, Germany
| | | |
Collapse
|
77
|
Merrow M, Roenneberg T. Circadian entrainment of Neurospora crassa. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2008; 72:279-85. [PMID: 18419284 DOI: 10.1101/sqb.2007.72.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The circadian clock evolved under entraining conditions, yet most circadian experiments and much circadian theory are built around free-running rhythms. The interpretation of entrainment experiments is certainly more complex than that of free-running rhythms due to the relationship between exogenous and endogenous cycles. Here, we systematically describe entrainment in the simplest of the traditional eukaryotic model systems in circadian research, Neurospora crassa. This fungus forms a mass of spores (bands of conidia) each day. Over a wide range of photoperiods, these bands begin to appear at midnight, suggesting integration of neither dawn nor dusk signals alone. However, when symmetrical light/dark cycles (T cycles, each with 50% light) are applied, dusk determines the time of conidiation with a uniform, period-dependent delay in phase. This "forced" synchronization appears to be specific for the zeitgeber light because similar experiments, but using temperature, result in systematic entrainment, with bands appearing relatively later in shorter cycles and earlier in longer cycles. We find that the molecular mechanism of entrainment primarily concerns posttranscriptional regulation. Finally, we have used Neurospora to investigate acute effects of zeitgeber stimuli known as "masking."
Collapse
Affiliation(s)
- M Merrow
- The Biological Center, University of Groningen, 9750AA Haren, The Netherlands
| | | |
Collapse
|
78
|
Chen WF, Low KH, Lim C, Edery I. Thermosensitive splicing of a clock gene and seasonal adaptation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2008; 72:599-606. [PMID: 18419319 DOI: 10.1101/sqb.2007.72.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Similar to many diurnal animals, the daily distribution of activity in Drosophila exhibits a bimodal pattern with clock-controlled morning and evening peaks separated by a midday "siesta." In prior work, we showed that the thermosensitive splicing of a 3'-terminal intron in the RNA product from the Drosophila period (per) gene (dper) is critical for temperature-induced adjustments in the timing of evening activity. Cold temperatures enhance the splicing efficiency of this intron (termed dmpi8, Drosophila melanogaster per intron 8), an event that stimulates the daily accumulation of dper RNA and protein, leading to earlier evening activity. Conversely, warm temperatures attenuate dmpi8 splicing efficiency contributing to delayed evening activity, likely ensuring that flies avoid activity during the hot midday sun when they are at increased risk of desiccation. Here, we discuss the underlying molecular mechanisms governing the thermosensitive splicing of dmpi8 and how it contributes to seasonal changes in the daily activity patterns of Drosophila. On a broader perspective, RNA-RNA interactions likely have fundamental roles in the thermal adaptation of life forms to the daily and seasonal changes in temperature.
Collapse
Affiliation(s)
- W-F Chen
- Department of Molecular Biology and Biochemistry, Rutgers University, Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
79
|
Nagao R, Epstein IR, Gonzalez ER, Varela H. Temperature (Over)Compensation in an Oscillatory Surface Reaction. J Phys Chem A 2008; 112:4617-24. [PMID: 18433166 DOI: 10.1021/jp801361j] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Raphael Nagao
- Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, CEP 13560-970, São Carlos - SP, Brasil, and Department of Chemistry and Volen Center for Complex Systems, MS 015, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Irving R. Epstein
- Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, CEP 13560-970, São Carlos - SP, Brasil, and Department of Chemistry and Volen Center for Complex Systems, MS 015, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Ernesto R. Gonzalez
- Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, CEP 13560-970, São Carlos - SP, Brasil, and Department of Chemistry and Volen Center for Complex Systems, MS 015, Brandeis University, Waltham, Massachusetts 02454-9110
| | - Hamilton Varela
- Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, CEP 13560-970, São Carlos - SP, Brasil, and Department of Chemistry and Volen Center for Complex Systems, MS 015, Brandeis University, Waltham, Massachusetts 02454-9110
| |
Collapse
|
80
|
|
81
|
Abstract
Circadian clocks drive daily rhythms in physiology and behaviour, and thus allow organisms to better adapt to rhythmic changes in the environment. Circadian oscillators are cell-autonomous systems, which generate via transcriptional, post-transcriptional, translational and post-translational control mechanisms a daily activity-rhythm of a circadian transcription factor complex. According to recent models, this complex of transcription factors controls directly or indirectly expression of a large number of genes, and thus generates the potential to modulate physiological processes in a rhythmic fashion. The basic principles of the generation of circadian oscillation are similar in all eukaryotic systems. The circadian clock of the filamentous fungus Neurospora crassa is well characterized at the molecular level. Focusing on the molecular properties, interactions and post-translational modifications of the core Neurospora clock proteins WHITE COLLAR-1, WHITE COLLAR-2, FREQUENCY and VIVID, this review summarizes our knowledge of the molecular basis of circadian time keeping in Neurospora. Moreover, we discuss the mechanisms by which environmental cues like light and temperature entrain and reset this circadian system.
Collapse
Affiliation(s)
- Michael Brunner
- University of Heidelberg Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | |
Collapse
|
82
|
Akman OE, Locke JCW, Tang S, Carré I, Millar AJ, Rand DA. Isoform switching facilitates period control in the Neurospora crassa circadian clock. Mol Syst Biol 2008; 4:164. [PMID: 18277380 PMCID: PMC2267733 DOI: 10.1038/msb.2008.5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 12/21/2007] [Indexed: 11/09/2022] Open
Abstract
A striking and defining feature of circadian clocks is the small variation in period over a physiological range of temperatures. This is referred to as temperature compensation, although recent work has suggested that the variation observed is a specific, adaptive control of period. Moreover, given that many biological rate constants have a Q(10) of around 2, it is remarkable that such clocks remain rhythmic under significant temperature changes. We introduce a new mathematical model for the Neurospora crassa circadian network incorporating experimental work showing that temperature alters the balance of translation between a short and long form of the FREQUENCY (FRQ) protein. This is used to discuss period control and functionality for the Neurospora system. The model reproduces a broad range of key experimental data on temperature dependence and rhythmicity, both in wild-type and mutant strains. We present a simple mechanism utilising the presence of the FRQ isoforms (isoform switching) by which period control could have evolved, and argue that this regulatory structure may also increase the temperature range where the clock is robustly rhythmic.
Collapse
Affiliation(s)
- Ozgur E Akman
- Interdisciplinary Programme for Cellular Regulation, University of Warwick, Coventry, UK
- Systems Biology Centre, University of Warwick, Coventry, UK
- Mathematics Institute, University of Warwick, Coventry, UK
| | - James C W Locke
- Interdisciplinary Programme for Cellular Regulation, University of Warwick, Coventry, UK
- Department of Physics, University of Warwick, Coventry, UK
| | - Sanyi Tang
- Interdisciplinary Programme for Cellular Regulation, University of Warwick, Coventry, UK
- Systems Biology Centre, University of Warwick, Coventry, UK
- Mathematics Institute, University of Warwick, Coventry, UK
| | - Isabelle Carré
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | - Andrew J Millar
- Interdisciplinary Programme for Cellular Regulation, University of Warwick, Coventry, UK
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - David A Rand
- Interdisciplinary Programme for Cellular Regulation, University of Warwick, Coventry, UK
- Systems Biology Centre, University of Warwick, Coventry, UK
- Mathematics Institute, University of Warwick, Coventry, UK
| |
Collapse
|
83
|
Yoshida Y, Maeda T, Lee B, Hasunuma K. Conidiation rhythm and light entrainment in superoxide dismutase mutant in Neurospora crassa. Mol Genet Genomics 2007; 279:193-202. [DOI: 10.1007/s00438-007-0308-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 11/19/2007] [Accepted: 11/21/2007] [Indexed: 02/02/2023]
|
84
|
Busza A, Murad A, Emery P. Interactions between circadian neurons control temperature synchronization of Drosophila behavior. J Neurosci 2007; 27:10722-33. [PMID: 17913906 PMCID: PMC6672815 DOI: 10.1523/jneurosci.2479-07.2007] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Most animals rely on circadian clocks to synchronize their physiology and behavior with the day/night cycle. Light and temperature are the major physical variables that can synchronize circadian rhythms. Although the effects of light on circadian behavior have been studied in detail in Drosophila, the neuronal mechanisms underlying temperature synchronization of circadian behavior have received less attention. Here, we show that temperature cycles synchronize and durably affect circadian behavior in Drosophila in the absence of light input. This synchronization depends on the well characterized and functionally coupled circadian neurons controlling the morning and evening activity under light/dark cycles: the M cells and E cells. However, circadian neurons distinct from the M and E cells are implicated in the control of rhythmic behavior specifically under temperature cycles. These additional neurons play a dual role: they promote evening activity and negatively regulate E cell function in the middle of the day. We also demonstrate that, although temperature synchronizes circadian behavior more slowly than light, this synchronization is considerably accelerated when the M cell oscillator is absent or genetically altered. Thus, whereas the E cells show great responsiveness to temperature input, the M cells and their robust self-sustained pacemaker act as a resistance to behavioral synchronization by temperature cycles. In conclusion, the behavioral responses to temperature input are determined by both the individual properties of specific groups of circadian neurons and their organization in a neural network.
Collapse
Affiliation(s)
- Ania Busza
- Department of Neurobiology and Program in Neuroscience and
- MD/PhD Program, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | | | - Patrick Emery
- Department of Neurobiology and Program in Neuroscience and
| |
Collapse
|
85
|
Simulating dark expressions and interactions of frq and wc-1 in the Neurospora circadian clock. Biophys J 2007; 94:1221-32. [PMID: 17965132 DOI: 10.1529/biophysj.107.115154] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Circadian rhythms are considered to play an essential part in the adaptation of organisms to their environments. The occurrence of circadian oscillations appears to be based on the presence of transcriptional-translational negative feedback loops. In Neurospora crassa, the protein FREQUENCY (FRQ) is part of such a negative feedback loop apparently by a direct interaction with its transcription factor WHITE COLLAR-1 (WC-1). Based on the observation that nuclear FRQ levels are significantly lower than nuclear WC-1 levels, it was suggested that FRQ would act more like a catalyst in inhibiting WC-1 rather than binding to WC-1 and making an inactive FRQ:WC-1 complex. Intrigued by this hypothesis, we constructed a model for the Neurospora circadian clock, which includes expression of the frq and the wc-1 genes and their possible interactions. The model suggests that even small amounts of nuclear FRQ-protein are capable of inhibiting frq transcription in a rhythmic manner by binding to WC-1 and promoting its degradation. Our model predicts the importance of a FRQ dependent degradation of WC-1 in closing the negative feedback loop. The model shows good agreement with experimental levels in nuclear and cytosolic FRQ and WC-1, their phase relationships, and several clock mutant phenotypes.
Collapse
|
86
|
Mori T, Williams DR, Byrne MO, Qin X, Egli M, Mchaourab HS, Stewart PL, Johnson CH. Elucidating the ticking of an in vitro circadian clockwork. PLoS Biol 2007; 5:e93. [PMID: 17388688 PMCID: PMC1831719 DOI: 10.1371/journal.pbio.0050093] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 02/01/2007] [Indexed: 11/19/2022] Open
Abstract
A biochemical oscillator can be reconstituted in vitro with three purified proteins, that displays the salient properties of circadian (daily) rhythms, including self-sustained 24-h periodicity that is temperature compensated. We analyze the biochemical basis of this oscillator by quantifying the time-dependent interactions of the three proteins (KaiA, KaiB, and KaiC) by electron microscopy and native gel electrophoresis to elucidate the timing of the formation of complexes among the Kai proteins. The data are used to derive a dynamic model for the in vitro oscillator that accurately reproduces the rhythms of KaiABC complexes and of KaiC phosphorylation, and is consistent with biophysical observations of individual Kai protein interactions. We use fluorescence resonance energy transfer (FRET) to confirm that monomer exchange among KaiC hexamers occurs. The model demonstrates that the function of this monomer exchange may be to maintain synchrony among the KaiC hexamers in the reaction, thereby sustaining a high-amplitude oscillation. Finally, we apply the first perturbation analyses of an in vitro oscillator by using temperature pulses to reset the phase of the KaiABC oscillator, thereby testing the resetting characteristics of this unique circadian oscillator. This study analyzes a circadian clockwork to an unprecedented level of molecular detail. Circadian biological clocks are present in a diverse range of organisms, from bacteria to humans. A central function of circadian clocks is controlling the adaptive response to the daily cycle of light and darkness. As such, altering the clock (e.g., by jet lag or shiftwork) affects mental and physical health in humans. It has generally been thought that the underlying molecular mechanism of circadian oscillations is an autoregulatory transcriptional/translational feedback loop. However, in cyanobacteria, only three purified clock proteins can reconstitute a circadian rhythm of protein phosphorylation in a test tube (in vitro). Using this in vitro system we found that the three proteins interact to form complexes of different compositions throughout the cycle. We derived a dynamic model for the in vitro oscillator that accurately reproduces the rhythms of complexes and of protein phosphorylation. One of the proteins undergoes phase-dependent exchange of its monomers, and the model demonstrates that this monomer exchange allows the maintenance of robust oscillations. Finally, we perturbed the in vitro oscillator with temperature pulses to demonstrate the resetting characteristics of this unique circadian oscillator. Our study analyzes a circadian clockwork to an unprecedented level of molecular detail. The interaction dynamics of the three-Kai-protein in vitro oscillator derived from the cyanobacterial circadian clock were determined to an unprecedented level of molecular detail.
Collapse
Affiliation(s)
- Tetsuya Mori
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Dewight R Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Mark O Byrne
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ximing Qin
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Martin Egli
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Phoebe L Stewart
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Carl Hirschie Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
87
|
Hunt SM, Elvin M, Crosthwaite SK, Heintzen C. The PAS/LOV protein VIVID controls temperature compensation of circadian clock phase and development in Neurospora crassa. Genes Dev 2007; 21:1964-74. [PMID: 17671094 PMCID: PMC1935033 DOI: 10.1101/gad.437107] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Circadian clocks are cellular timekeepers that regulate aspects of temporal organization on daily and seasonal time scales. To allow accurate time measurement, the period lengths of clocks are conserved in a range of temperatures--a phenomenon known as temperature compensation. Temperature compensation of circadian clock period aids in maintaining a stable "target time" or phase of clock-controlled events. Here we show that the Neurospora protein VIVID (VVD) buffers the circadian system against temperature fluctuations. In vvd-null mutants, the circadian period of clock-controlled events such as asexual sporulation (conidiation) is temperature compensated, but the phase of this clock time marker is not. Consistent with delayed conidiation at lower temperatures in vvd(KO) strains, the levels of vvd gene products in the wild type increase with decreasing temperatures. Moreover, vvd(C108A) mutants that lack the light function of VVD maintain a dark activity that transiently influences the phase of conidiation, indicating that VVD influences the time of conidiation downstream from the clock. FREQUENCY (FRQ) phosphorylation is altered in a vvd(KO) strain, suggesting a mechanism by which VVD can influence the timing of clock-controlled processes in the dark. Thus, temperature compensation of clock-controlled output is a key factor in maintaining temperature compensation of the entire circadian system.
Collapse
Affiliation(s)
- Suzanne M. Hunt
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Mark Elvin
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Susan K. Crosthwaite
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
| | - Christian Heintzen
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
- Corresponding author.E-MAIL ; FAX 44-0161-275-5082
| |
Collapse
|
88
|
Gooch VD, Mehra A, Larrondo LF, Fox J, Touroutoutoudis M, Loros JJ, Dunlap JC. Fully codon-optimized luciferase uncovers novel temperature characteristics of the Neurospora clock. EUKARYOTIC CELL 2007; 7:28-37. [PMID: 17766461 PMCID: PMC2224151 DOI: 10.1128/ec.00257-07] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the complete reconstruction of the firefly luciferase gene, fully codon optimized for expression in Neurospora crassa. This reporter enhances light output by approximately 4 log orders over that with previously available versions, now producing light that is visible to the naked eye and sufficient for monitoring the activities of many poorly expressed genes. Time lapse photography of strains growing in race tubes, in which the frq or eas/ccg-2 promoter is used to drive luciferase, shows the highest levels of luciferase activity near the growth front and newly formed conidial bands. Further, we have established a sorbose medium colony assay that will facilitate luciferase-based screens. The signals from sorbose-grown colonies of strains in which the frq promoter drives luciferase exhibit the properties of circadian rhythms and can be tracked for many days to weeks. This reporter now makes it possible to follow the clock in real time, even in strains or under conditions in which the circadian rhythm in conidial banding is not expressed. This property has been used to discover short, ca. 15-h period rhythms at high temperatures, at which banding becomes difficult to observe in race tubes, and to generate a high-resolution temperature phase-response curve.
Collapse
Affiliation(s)
- Van D Gooch
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | | | | | |
Collapse
|
89
|
Abstract
The filamentous fungus Neurospora crassa is one of a handful of model organisms that has proven tractable for dissecting the molecular basis of a eukaryotic circadian clock. Work on Neurospora and other eukaryotic and prokaryotic organisms has revealed that a limited set of clock genes and clock proteins are required for generating robust circadian rhythmicity. This molecular clockwork is tuned to the daily rhythms in the environment via light- and temperature-sensitive pathways that adjust its periodicity and phase. The circadian clockwork in turn transduces temporal information to a large number of clock-controlled genes that ultimately control circadian rhythms in physiology and behavior. In summarizing our current understanding of the molecular basis of the Neurospora circadian system, this chapter aims to elucidate the basic building blocks of model eukaryotic clocks as we understand them today.
Collapse
Affiliation(s)
- Christian Heintzen
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | |
Collapse
|
90
|
Miyasako Y, Umezaki Y, Tomioka K. Separate sets of cerebral clock neurons are responsible for light and temperature entrainment of Drosophila circadian locomotor rhythms. J Biol Rhythms 2007; 22:115-26. [PMID: 17440213 DOI: 10.1177/0748730407299344] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The fruit fly Drosophila melanogaster shows a bimodal circadian locomotor rhythm with peaks at lights-on and before lights-off, which are regulated by multiple clocks in the brain. Even under light-dark cycles, the timing of the evening peak is highly dependent on temperature, starting earlier under lower ambient temperature but terminating almost at the same time. In the present study, using behavioral and immunohistochemical assays, the authors show that separate groups of clock neurons, either light-entrainable or temperature-entrainable, form a functional system driving the locomotor rhythm. When subjected to a light cycle combined with a temperature cycle advanced by 6 h relative to the light cycle, the dorsally located neurons (DNs) and lateral posterior neurons (LPNs) shifted their phase of TIMELESS expression, but the laterally located protocerebral neurons (LNs) basically maintained their original phase. Thus, the LNs seem to be preferentially light-entrainable and the DNs and LPNs to be primarily temperature-entrainable. In pdf(01) mutant flies that lack the neuropeptide PDF in the ventral groups of LNs, the onset of the evening peak was greatly advanced even under synchronized light and temperature cycles and was shifted even more than in wild-type flies in response to a 6-h phase shift of the temperature cycle, suggesting that ventral LNs have a strong impact on the phase of the other cells. It seems likely that the 2 sets of clock cells with different entrainability to light and temperature, and the coupling between them, enable Drosophila to keep a proper phase relationship of circadian activity with respect to the daily light and temperature cycles.
Collapse
Affiliation(s)
- Yoko Miyasako
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | | | |
Collapse
|
91
|
Ding Z, Doyle MR, Amasino RM, Davis SJ. A complex genetic interaction between Arabidopsis thaliana TOC1 and CCA1/LHY in driving the circadian clock and in output regulation. Genetics 2007; 176:1501-10. [PMID: 17483414 PMCID: PMC1931532 DOI: 10.1534/genetics.107.072769] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
It has been proposed that CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) together with TIMING OF CAB EXPRESSION 1 (TOC1) make up the central oscillator of the Arabidopsis thaliana circadian clock. These genes thus drive rhythmic outputs, including seasonal control of flowering and photomorphogenesis. To test various clock models and to disclose the genetic relationship between TOC1 and CCA1/LHY in floral induction and photomorphogenesis, we constructed the cca1 lhy toc1 triple mutant and cca1 toc1 and lhy toc1 double mutants and tested various rhythmic responses and circadian output regulation. Here we report that rhythmic activity was dramatically attenuated in cca1 lhy toc1. Interestingly, we also found that TOC1 regulates the floral transition in a CCA1/LHY-dependent manner while CCA1/LHY functions upstream of TOC1 in regulating a photomorphogenic process. This suggests to us that TOC1 and CCA1/LHY participate in these two processes through different strategies. Collectively, we have used genetics to provide direct experimental support of previous modeling efforts where CCA1/LHY, along with TOC1, drives the circadian oscillator and have shown that this clock is essential for correct output regulation.
Collapse
Affiliation(s)
- Zhaojun Ding
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | | | | |
Collapse
|
92
|
Liu Y, Bell-Pedersen D. Circadian rhythms in Neurospora crassa and other filamentous fungi. EUKARYOTIC CELL 2007; 5:1184-93. [PMID: 16896204 PMCID: PMC1539135 DOI: 10.1128/ec.00133-06] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9040, USA.
| | | |
Collapse
|
93
|
Loros JJ, Dunlap JC, Larrondo LF, Shi M, Belden WJ, Gooch VD, Chen CH, Baker CL, Mehra A, Colot HV, Schwerdtfeger C, Lambreghts R, Collopy PD, Gamsby JJ, Hong CI. Circadian output, input, and intracellular oscillators: insights into the circadian systems of single cells. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:201-14. [PMID: 18419278 PMCID: PMC3671946 DOI: 10.1101/sqb.2007.72.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Circadian output comprises the business end of circadian systems in terms of adaptive significance. Work on Neurospora pioneered the molecular analysis of circadian output mechanisms, and insights from this model system continue to illuminate the pathways through which clocks control metabolism and overt rhythms. In Neurospora, virtually every strain examined in the context of rhythms bears the band allele that helps to clarify the overt rhythm in asexual development. Recent cloning of band showed it to be an allele of ras-1 and to affect a wide variety of signaling pathways yielding enhanced light responses and asexual development. These can be largely phenocopied by treatments that increase levels of intracellular reactive oxygen species. Although output is often unidirectional, analysis of the prd-4 gene provided an alternative paradigm in which output feeds back to affect input. prd-4 is an allele of checkpoint kinase-2 that bypasses the requirement for DNA damage to activate this kinase; FRQ is normally a substrate of activated Chk2, so in Chk2(PRD-4), FRQ is precociously phosphorylated and the clock cycles more quickly. Finally, recent adaptation of luciferase to fully function in Neurospora now allows the core FRQ/WCC feedback loop to be followed in real time under conditions where it no longer controls the overt rhythm in development. This ability can be used to describe the hierarchical relationships among FRQ-Less Oscillators (FLOs) and to see which are connected to the circadian system. The nitrate reductase oscillator appears to be connected, but the oscillator controlling the long-period rhythm elicited upon choline starvation appears completely disconnected from the circadian system; it can be seen to run with a very long noncompensated 60-120-hour period length under conditions where the circadian FRQ/WCC oscillator continues to cycle with a fully compensated circadian 22-hour period.
Collapse
Affiliation(s)
- J J Loros
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Cha J, Huang G, Guo J, Liu Y. Posttranslational control of the Neurospora circadian clock. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:185-191. [PMID: 18419276 DOI: 10.1101/sqb.2007.72.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The eukaryotic circadian clocks are composed of autoregulatory circadian negative feedback loops that include both positive and negative elements. Investigations of the Neurospora circadian clock system have elucidated many of the basic mechanisms that underlie circadian rhythms, including negative feedback and light and temperature entrainment common to all eukaryotic clocks. The conservation of the posttranslational regulators in divergent circadian systems suggests that the processes mediating the modification and degradation of clock proteins may be the common foundation that allows the evolution of circadian clocks in eukaryotic systems. In this chapter, we summarize recent studies of the Neurospora circadian clock with emphasis on posttranslational regulation in the circadian negative feedback loop.
Collapse
Affiliation(s)
- J Cha
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA
| | | | | | | |
Collapse
|
95
|
Huang G, Wang L, Liu Y. Molecular mechanism of suppression of circadian rhythms by a critical stimulus. EMBO J 2006; 25:5349-57. [PMID: 17066078 PMCID: PMC1636615 DOI: 10.1038/sj.emboj.7601397] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 09/21/2006] [Indexed: 11/09/2022] Open
Abstract
Circadian singularity behavior (also called suppression of circadian rhythms) is a phenomenon characterized by the abolishment of circadian rhythmicities by a critical stimulus. Here we demonstrate that both temperature step up and light pulse, stimuli that activate the expression of the Neurospora circadian clock gene frequency (frq), can trigger singularity behavior in this organism. The arrhythmicity is transient and is followed by the resumption of rhythm in randomly distributed phases. In addition, we show that induction of FRQ expression alone can trigger singularity behavior, indicating that FRQ is a state variable of the Neurospora circadian oscillator. Furthermore, mutations of frq lead to changes in the amplitude of FRQ oscillation, which determines the sensitivity of the clock to phase-resetting cues. Our results further suggest that the singularity behavior is due to the loss of rhythm in all cells. Together, these data suggest that the singularity behavior is due to a circadian negative feedback loop driven to a steady state after the critical treatment. After the initial arrhythmicity, cell populations are then desynchronized.
Collapse
Affiliation(s)
- Guocun Huang
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lixin Wang
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
96
|
Dunlap JC, Loros JJ. How fungi keep time: circadian system in Neurospora and other fungi. Curr Opin Microbiol 2006; 9:579-87. [PMID: 17064954 DOI: 10.1016/j.mib.2006.10.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Accepted: 10/11/2006] [Indexed: 02/07/2023]
Abstract
The circadian system in Neurospora remains a premier model system for understanding circadian rhythms, and evidence has now begun to accumulate suggesting broad conservation of rhythmicity amongst the filamentous fungi. A well-described transcription-translation-based negative feedback loop involving the FREQUENCY, WHITE COLLAR-1 and WHITE COLLAR-2 proteins is integral to the Neurospora system. Recent advances include descriptions of the surprisingly complex frequency transcription unit, an enhanced appreciation of the roles of kinases and their regulation in the generation of the circadian rhythm and their links to the cell cycle, and strong evidence for an additional WHITE COLLAR-associated feedback loop. Documentation of sequence homologs of integral circadian and photoresponsive proteins amongst the 42 available sequenced fungal genomes suggests unexpected roles for circadian timing among both pathogens and saprophytes.
Collapse
Affiliation(s)
- Jay C Dunlap
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA.
| | | |
Collapse
|
97
|
López-Olmeda JF, Madrid JA, Sánchez-Vázquez FJ. Light and temperature cycles as zeitgebers of zebrafish (Danio rerio) circadian activity rhythms. Chronobiol Int 2006; 23:537-50. [PMID: 16753940 DOI: 10.1080/07420520600651065] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Light and temperature cycles are the most important synchronizers of biological rhythms in nature. However, the relative importance of each, especially when they are not in phase, has been poorly studied. The aim of this study was to analyze the entrainment of daily locomotor activity to light and/or temperature cycles in zebrafish. Under two constant temperatures (20 degrees C and 26 degrees C) and 12:12 light-dark (LD) cycles, zebrafish were most active during the day (light) time and showed higher total activity at the warmer temperature, while diurnalism was higher at 20 degrees C than at 26 degrees C (87% and 77%, respectively). Under thermocycles (12:12 LD, 26:20 degrees C thermophase:chryophase or TC), zebrafish daily activity synchronized to the light phase, both when the thermophase and light phase were in phase (LD/TC) or in antiphase (LD/CT). Under constant dim light (3 lux), nearly all zebrafish synchronized to thermocycles (tau=24 h), although activity rhythms (60% to 67% of activity occurred during the thermophase) were not as marked as those observed under the LD cycle. Under constant dim light of 3 lux and constant temperature (22.5 degrees C), 4 of 6 groups of zebrafish previously entrained to thermocycles displayed free-running rhythms (tau=22.9 to 23.6 h). These results indicate that temperature cycles alone can also entrain zebrafish locomotor activity.
Collapse
Affiliation(s)
- José F López-Olmeda
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain.
| | | | | |
Collapse
|
98
|
Affiliation(s)
- Jay C Dunlap
- Department of Genetics, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| |
Collapse
|
99
|
Brunner M, Schafmeier T. Transcriptional and post-transcriptional regulation of the circadian clock of cyanobacteria and Neurospora. Genes Dev 2006; 20:1061-74. [PMID: 16651653 DOI: 10.1101/gad.1410406] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Circadian clocks are self-sustained oscillators modulating rhythmic transcription of large numbers of genes. Clock-controlled gene expression manifests in circadian rhythmicity of many physiological and behavioral functions. In eukaryotes, expression of core clock components is organized in a network of interconnected positive and negative feedback loops. This network is thought to constitute the pacemaker that generates circadian rhythmicity. The network of interconnected loops is embedded in a supra-net via a large number of interacting factors that affect expression and function of core clock components on transcriptional and post-transcriptional levels. In particular, phosphorylation and dephosphorylation of clock components are critical processes ensuring robust self-sustained circadian rhythmicity and entrainment of clocks to external cues. In cyanobacteria, three clock proteins have the capacity to generate a self-sustained circadian rhythm of autophosphorylation and dephosphorylation independent of transcription and translation. This phosphorylation rhythm regulates the function of these clock components, which then facilitate rhythmic gene transcription, including negative feedback on their own genes. In this article, we briefly present the mechanism of clock function in cyanobacteria. We then discuss in detail the contribution of transcriptional feedback and protein phosphorylation to various functional aspects of the circadian clock of Neurospora crassa.
Collapse
Affiliation(s)
- Michael Brunner
- Biochemie-Zentrum der Universität Heidelberg, 69120 Heidelberg, Germany.
| | | |
Collapse
|
100
|
Gould PD, Locke JCW, Larue C, Southern MM, Davis SJ, Hanano S, Moyle R, Milich R, Putterill J, Millar AJ, Hall A. The molecular basis of temperature compensation in the Arabidopsis circadian clock. THE PLANT CELL 2006; 18:1177-87. [PMID: 16617099 PMCID: PMC1456873 DOI: 10.1105/tpc.105.039990] [Citation(s) in RCA: 270] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Circadian clocks maintain robust and accurate timing over a broad range of physiological temperatures, a characteristic termed temperature compensation. In Arabidopsis thaliana, ambient temperature affects the rhythmic accumulation of transcripts encoding the clock components TIMING OF CAB EXPRESSION1 (TOC1), GIGANTEA (GI), and the partially redundant genes CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY). The amplitude and peak levels increase for TOC1 and GI RNA rhythms as the temperature increases (from 17 to 27 degrees C), whereas they decrease for LHY. However, as temperatures decrease (from 17 to 12 degrees C), CCA1 and LHY RNA rhythms increase in amplitude and peak expression level. At 27 degrees C, a dynamic balance between GI and LHY allows temperature compensation in wild-type plants, but circadian function is impaired in lhy and gi mutant plants. However, at 12 degrees C, CCA1 has more effect on the buffering mechanism than LHY, as the cca1 and gi mutations impair circadian rhythms more than lhy at the lower temperature. At 17 degrees C, GI is apparently dispensable for free-running circadian rhythms, although partial GI function can affect circadian period. Numerical simulations using the interlocking-loop model show that balancing LHY/CCA1 function against GI and other evening-expressed genes can largely account for temperature compensation in wild-type plants and the temperature-specific phenotypes of gi mutants.
Collapse
Affiliation(s)
- Peter D Gould
- School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|