51
|
Dang DK, Shin EJ, Kim DJ, Tran HQ, Jeong JH, Jang CG, Ottersen OP, Nah SY, Hong JS, Nabeshima T, Kim HC. PKCδ-dependent p47phox activation mediates methamphetamine-induced dopaminergic neurotoxicity. Free Radic Biol Med 2018; 115:318-337. [PMID: 29269308 PMCID: PMC7074955 DOI: 10.1016/j.freeradbiomed.2017.12.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 11/29/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022]
Abstract
Protein kinase C (PKC) has been recognized to activate NADPH oxidase (PHOX). However, the interaction between PKC and PHOX in vivo remains elusive. Treatment with methamphetamine (MA) resulted in a selective increase in PKCδ expression out of PKC isoforms. PKCδ co-immunoprecipitated with p47phox, and facilitated phosphorylation and membrane translocation of p47phox. MA-induced increases in PHOX activity and reactive oxygen species were attenuated by knockout of p47phox or PKCδ. In addition, MA-induced impairments in the Nrf-2-related glutathione synthetic system were also mitigated by knockout of p47phox or PKCδ. Glutathione-immunoreactivity was co-localized in Iba-1-labeled microglial cells and in NeuN-labeled neurons, but not in GFAP-labeled astrocytes, reflecting the necessity for self-protection against oxidative stress by mainly microglia. Buthionine-sulfoximine, an inhibitor of glutathione biosynthesis, potentiated microglial activation and pro-apoptotic changes, leading to dopaminergic losses. These neurotoxic processes were attenuated by rottlerin, a pharmacological inhibitor of PKCδ, genetic inhibitions of PKCδ [i.e., PKCδ knockout mice (KO) and PKCδ antisense oligonucleotide (ASO)], or genetic inhibition of p47phox (i.e., p47phox KO or p47phox ASO). Rottlerin did not exhibit any additive effects against the protective activity offered by genetic inhibition of p47phox. Therefore, we suggest that PKCδ is a critical regulator for p47phox activation induced by MA, and that Nrf-2-dependent GSH induction via inhibition of PKCδ or p47phox, is important for dopaminergic protection against MA insult.
Collapse
Affiliation(s)
- Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Dae-Joong Kim
- Department of Anatomy and Cell Biology, Medical School, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ole Petter Ottersen
- Laboratory of Molecular Neuroscience, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jau-Shyong Hong
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Toshitaka Nabeshima
- Nabeshima Laboratory, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya 468-8503, Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea.
| |
Collapse
|
52
|
Moore AF, Newman DJ, Ranganathan S, Liu F. Imaginative Order from Reasonable Chaos: Conformation-Driven Activity and Reactivity in Exploring Protein–Ligand Interactions. Aust J Chem 2018. [DOI: 10.1071/ch18416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sir Derek Barton’s seminal work on steroid conformational analysis opened up a new era of enquiry into how the preferred conformation of any molecule could have profound effects on its physical–chemical properties and activities. Conformation-based effects on molecular activity and reactivity continue to manifest, with one key area of investigation currently focussed on conformational entropy in driving protein–ligand interactions. Carrying on from Barton’s initial insight on natural product conformational properties, new questions now address how conformational flexibility within a bioactive natural product structural framework (reasonable chaos), can be directed to confer dynamically new protein–ligand interactions beyond the basic lock–key model (imaginative order). Here we summarise our work on exploring conformational diversity from fluorinated natural product fragments, and how this approach of conformation-coupled diversity-oriented synthesis can be used to iteratively derive ligands with enhanced specificity against highly homologous protein domains. Our results demonstrate that the conformation entropic states of highly conserved protein domains differ significantly, and this conformational diversity, beyond primary sequence analysis, can be duly captured and exploited by natural-product derived ligands with complementary conformational dynamics for enhancing recognition specificity in drug lead discovery.
Collapse
|
53
|
Li K, Zhang X, Chen G, Pei L, Xiao H, Jiang J, Li J, Zheng X, Li D. Association of fatty acids and lipids metabolism in placenta with early spontaneous pregnancy loss in Chinese women. Food Funct 2018; 9:1179-1186. [DOI: 10.1039/c7fo01545c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abnormal fatty acids and lipids metabolism in the placenta is associated with early spontaneous pregnancy loss.
Collapse
Affiliation(s)
- Kelei Li
- Institute of Nutrition and Health
- Qingdao University
- Qingdao
- China
- Department of Food Science and Nutrition
| | - Xiaotian Zhang
- The Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education
- Institute of Cell Biology
- College of Life Sciences
- Beijing Normal University
- Beijing
| | - Gong Chen
- Institute of Population Research/WHO Collaborating Center on Reproductive Health and Population Science
- Peking University
- Beijing
- China
| | - Lijun Pei
- Institute of Population Research/WHO Collaborating Center on Reproductive Health and Population Science
- Peking University
- Beijing
- China
| | - Hailong Xiao
- Hangzhou Institute for Food and Drug Control
- Hangzhou
- China
| | - Jiajing Jiang
- Department of Food Science and Nutrition
- Zhejiang University
- Hangzhou
- China
| | - Jiaomei Li
- Department of Food Science and Nutrition
- Zhejiang University
- Hangzhou
- China
| | - Xiaoying Zheng
- Institute of Population Research/WHO Collaborating Center on Reproductive Health and Population Science
- Peking University
- Beijing
- China
| | - Duo Li
- Institute of Nutrition and Health
- Qingdao University
- Qingdao
- China
- Department of Food Science and Nutrition
| |
Collapse
|
54
|
Yeh YC, Chang CC, Lee PP, Cheng W. The transcription of atypical protein kinase C in hemocytes of the giant freshwater prawn, Macrobrachium rosenbergii, during the molt stage and injection of pathogen-associated compounds. FISH & SHELLFISH IMMUNOLOGY 2017; 69:52-58. [PMID: 28818614 DOI: 10.1016/j.fsi.2017.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/27/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
Protein kinase C (PKC), which is involved in cell signaling pathways, comprises a family of serine/threonine kinases ubiquitously present in animals and its members are grouped on the basis of structural and activation characteristics into novel, classical, and atypical PKC forms. In this study, an atypical PKC of Macrobrachium rosenbergii, designated MraPKC, was successfully cloned, and its protein comprised structural domains similar to those of atypical PKC homologues, including the Phox and Bem1 (PB1) domain, a zinc finger phorbol-ester/DAG-type signature, protein kinase signatures, and a cAMP-dependent, cGMP-dependent, and PKC (AGC) kinase C-terminal domain. Phylogenetic analyses revealed a close evolutionary relationship between MraPKC and aPKCs of insects. MraPKC transcripts were detected in all tissues examined through an RT-PCR, with the highest level detected in muscles. A quantitative real-time PCR was used to evaluate MraPKC expression in hemocytes of M. rosenbergii in various molt stages, and in prawn challenged with Vibrio alginolyticus, Lactococcus garvieae, and white spot syndrome virus (WSSV) as well as in prawns injected with pathogen-associated molecular patterns (PAMPs), including lipopolysaccharide (LPS), peptidoglycan (PG), and polyinosinic:polycytidylic acid (Poly:IC). Results revealed that the expression pattern of MraPKC was distinctly modulated during molting, with significant enhancement in the C stage. MraPKC transcripts significantly increased in hemocytes of prawns infected with L. garvieae at 6-24 h and those injected with PG at 12-24 h. In contrast, significantly decreased expression of MraPKC was observed in hemocytes of prawns injected with V. alginolyticus and LPS for 3 and 12 h, respectively, and a similar phenomenon was observed in hemocytes of those injected with WSSV and Poly:IC for 12 h each. Therefore, MraPKC might play crucial roles in biological processes, and it may mediate the signaling pathway induced by varied pathogens for the potential regulation of host innate defense.
Collapse
Affiliation(s)
- Yi-Chun Yeh
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC; Eastern Marine Biology Research Center, Fisheries Research Institute, Taitung 96143, Taiwan, ROC
| | - Chin-Chyuan Chang
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC
| | - Pai-Po Lee
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC
| | - Winton Cheng
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC.
| |
Collapse
|
55
|
Cross sectional evaluation of the gut-microbiome metabolome axis in an Italian cohort of IBD patients. Sci Rep 2017; 7:9523. [PMID: 28842640 PMCID: PMC5573342 DOI: 10.1038/s41598-017-10034-5] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract of uncertain origin, which includes ulcerative colitis (UC) and Crohn’s disease (CD). The composition of gut microbiota may change in IBD affected individuals, but whether dysbiosis is the cause or the consequence of inflammatory processes in the intestinal tissue is still unclear. Here, the composition of the microbiota and the metabolites in stool of 183 subjects (82 UC, 50 CD, and 51 healthy controls) were determined. The metabolites content and the microbiological profiles were significantly different between IBD and healthy subjects. In the IBD group, Firmicutes, Proteobacteria, Verrucomicrobia, and Fusobacteria were significantly increased, whereas Bacteroidetes and Cyanobacteria were decreased. At genus level Escherichia, Faecalibacterium, Streptococcus, Sutterella and Veillonella were increased, whereas Bacteroides, Flavobacterium, and Oscillospira decreased. Various metabolites including biogenic amines, amino acids, lipids, were significantly increased in IBD, while others, such as two B group vitamins, were decreased in IBD compared to healthy subjects. This study underlines the potential role of an inter-omics approach in understanding the metabolic pathways involved in IBD. The combined evaluation of metabolites and fecal microbiome can be useful to discriminate between healthy subjects and patients with IBD.
Collapse
|
56
|
Cordeiro CD, Saiardi A, Docampo R. The inositol pyrophosphate synthesis pathway in Trypanosoma brucei is linked to polyphosphate synthesis in acidocalcisomes. Mol Microbiol 2017; 106:319-333. [PMID: 28792096 DOI: 10.1111/mmi.13766] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2017] [Indexed: 12/19/2022]
Abstract
Inositol pyrophosphates are novel signaling molecules possessing high-energy pyrophosphate bonds and involved in a number of biological functions. Here, we report the correct identification and characterization of the kinases involved in the inositol pyrophosphate biosynthetic pathway in Trypanosoma brucei: inositol polyphosphate multikinase (TbIPMK), inositol pentakisphosphate 2-kinase (TbIP5K) and inositol hexakisphosphate kinase (TbIP6K). TbIP5K and TbIP6K were not identifiable by sequence alone and their activities were validated by enzymatic assays with the recombinant proteins or by their complementation of yeast mutants. We also analyzed T. brucei extracts for the presence of inositol phosphates using polyacrylamide gel electrophoresis and high-performance liquid chromatography. Interestingly, we could detect inositol phosphate (IP), inositol 4,5-bisphosphate (IP2 ), inositol 1,4,5-trisphosphate (IP3 ), and inositol hexakisphosphate (IP6 ) in T. brucei different stages. Bloodstream forms unable to produce inositol pyrophosphates, due to downregulation of TbIPMK expression by conditional knockout, have reduced levels of polyphosphate and altered acidocalcisomes. Our study links the inositol pyrophosphate pathway to the synthesis of polyphosphate in acidocalcisomes, and may lead to better understanding of these organisms and provide new targets for drug discovery.
Collapse
Affiliation(s)
- Ciro D Cordeiro
- Department of Cellular Biology, and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, WC1E 6BT, Gower Street, London, UK
| | - Roberto Docampo
- Department of Cellular Biology, and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
57
|
Activation of Group II Metabotropic Glutamate Receptors Promotes LTP Induction at Schaffer Collateral-CA1 Pyramidal Cell Synapses by Priming NMDA Receptors. J Neurosci 2017; 36:11521-11531. [PMID: 27911756 DOI: 10.1523/jneurosci.1519-16.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 12/31/2022] Open
Abstract
It is well established that selective activation of group I metabotropic glutamate (mGlu) receptors induces LTD of synaptic transmission at Schaffer collateral-CA1 synapses. In contrast, application of 1S,3R-ACPD, a mixed agonist at group I and group II mGlu receptors, induces LTP. Using whole-cell recordings from CA1 pyramidal cells and field recordings in the hippocampal CA1 region, we investigated the specific contribution of group II mGlu receptors to synaptic plasticity at Schaffer collateral-CA1 synapses in acute slices of adult mice. Pharmacological activation of group II mGlu receptors (mGlu2 and mGlu3 receptors) with the specific agonist LY354740 in conjunction with electrical stimulation induced postsynaptic LTP. This form of plasticity requires coactivation of NMDA receptors (NMDARs). Group II mGlu receptor activation led to PKC-dependent phosphorylation of the GluN1 subunit. We found that both synaptic and extrasynaptic NMDARs, which are differentially modulated by mGlu2 and mGlu3 receptors, contribute to LTP induction. Furthermore, LTP initiated by activation of group II mGlu receptors was not occluded by LTP induced with high-frequency trains of stimuli. However, the phosphorylation of NMDARs mediated by group II mGlu receptor activation led to a priming effect that enhanced subsequent high-frequency stimulation-induced LTP. These findings reveal a novel metaplastic mechanism through which group II mGlu receptors modulate synaptic function at the Schaffer collateral input to CA1 pyramidal cells, thereby lowering the threshold to induce plasticity. SIGNIFICANCE STATEMENT The group II metabotropic glutamate (mGlu II) receptors exert a well characterized action on presynaptic neuron terminals to modulate neurotransmitter release. Here, we show that these receptors also have postsynaptic effects in promoting the induction of synaptic plasticity. Using an electrophysiological approach including field and whole-cell patch recording in hippocampi from wild-type and transgenic mice, we show that activation of group II mGlu receptors enhances NMDA receptor (NMDAR)-mediated currents through PKC-dependent phosphorylation. This priming of NMDARs lowers the threshold for the induction of LTP of synaptic transmission. These findings may also provide new insights into the mechanisms through which drugs targeting mGlu II receptors alleviate hypoglutamatergic conditions such as those occurring in certain brain disorders such as schizophrenia.
Collapse
|
58
|
Dang DK, Shin EJ, Mai AT, Jang CG, Nah SY, Jeong JH, Ledent C, Yamamoto T, Nabeshima T, Onaivi ES, Kim HC. Genetic or pharmacological depletion of cannabinoid CB1 receptor protects against dopaminergic neurotoxicity induced by methamphetamine in mice. Free Radic Biol Med 2017; 108:204-224. [PMID: 28363605 DOI: 10.1016/j.freeradbiomed.2017.03.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/14/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022]
Abstract
Accumulating evidence suggests that cannabinoid ligands play delicate roles in cell survival and apoptosis decisions, and that cannabinoid CB1 receptors (CB1R) modulate dopaminergic function. However, the role of CB1R in methamphetamine (MA)-induced dopaminergic neurotoxicity in vivo remains elusive. Multiple high doses of MA increased phospho-ERK and CB1R mRNA expressions in the striatum of CB1R (+/+) mice. These increases were attenuated by CB1R antagonists (i.e., AM251 and rimonabant), an ERK inhibitor (U0126), or dopamine D2R antagonist (sulpiride). In addition, treatment with MA resulted in dopaminergic impairments, which were attenuated by CB1R knockout or CB1R antagonists (i.e., AM251 and rimonabant). Consistently, MA-induced oxidative stresses (i.e., protein oxidation, lipid peroxidation and reactive oxygen species) and pro-apoptotic changes (i.e., increases in Bax, cleaved PKCδ- and cleaved caspase 3-expression and decrease in Bcl-2 expression) were observed in the striatum of CB1R (+/+) mice. These toxic effects were attenuated by CB1R knockout or CB1R antagonists. Consistently, treatment with four high doses of CB1R agonists (i.e., WIN 55,212-2 36mg/kg and ACEA 16mg/kg) also resulted in significant oxidative stresses, pro-apoptotic changes, and dopaminergic impairments. Since CB1R co-immunoprecipitates PKCδ in the presence of MA or CB1R agonists, we applied PKCδ knockout mice to clarify the role of PKCδ in the neurotoxicity elicited by CB1Rs. CB1R agonist-induced toxic effects were significantly attenuated by CB1R knockout, CB1R antagonists or PKCδ knockout. Therefore, our results suggest that interaction between D2R, ERK and CB1R is critical for MA-induced dopaminergic neurotoxicity and that PKCδ mediates dopaminergic damage induced by high-doses of CB1R agonist.
Collapse
MESH Headings
- Animals
- Apoptosis
- Butadienes/pharmacology
- Cells, Cultured
- Corpus Striatum/metabolism
- Corpus Striatum/pathology
- Dopamine/metabolism
- Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors
- Extracellular Signal-Regulated MAP Kinases/pharmacology
- Methamphetamine/administration & dosage
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neurotoxicity Syndromes/genetics
- Neurotoxicity Syndromes/metabolism
- Nitriles/pharmacology
- Oxidative Stress
- Piperidines/pharmacology
- Protein Kinase C-delta/genetics
- Protein Kinase C-delta/metabolism
- Pyrazoles/pharmacology
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Dopamine D2/metabolism
- Rimonabant
- Sulpiride/pharmacology
Collapse
Affiliation(s)
- Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Anh-Thu Mai
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | | | - Tsuneyuki Yamamoto
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki 859-3298, Japan
| | - Toshitaka Nabeshima
- Nabeshima Laboratory, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya 468-8503, Japan
| | - Emmanuel S Onaivi
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea.
| |
Collapse
|
59
|
Imaging of Abdominal and Pelvic Manifestations of Graft-Versus-Host Disease After Hematopoietic Stem Cell Transplant. AJR Am J Roentgenol 2017; 209:33-45. [PMID: 28463600 DOI: 10.2214/ajr.17.17866] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Graft-versus-host disease (GVHD) is a common complication of hematopoietic stem cell transplant (HSCT). GVHD predominantly affects the skin, gastrointestinal system and hepatobiliary systems. Imaging findings in the gastrointestinal tract include bowel wall thickening with mucosal enhancement, mesenteric edema, and vascular engorgement. In the hepatobiliary system, hepatosplenomegaly, periportal edema, bile duct dilatation, and gallbladder and biliary wall thickening are seen. Although the imaging findings of GVHD are nonspecific, with a known history of HSCT, GVHD should be considered. CONCLUSION GVHD is a serious complication of HSCT, which involves multiple organ systems, with imaging manifestations most commonly seen in the gastrointestinal tract and hepatobiliary system. Knowledge of the imaging manifestations of GVHD, which alone may be relatively nonspecific, taken in conjunction with clinical history including the timing and type of HSCT, laboratory values, stool studies, and dermatologic findings can increase radiologist confidence in suggesting this diagnosis.
Collapse
|
60
|
Yamaguchi M, Murata T. Involvement of regucalcin gene promoter region-related protein-p117, a transcription factor, in human obesity. Biomed Rep 2017; 6:374-378. [PMID: 28413634 DOI: 10.3892/br.2017.874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/15/2017] [Indexed: 11/06/2022] Open
Abstract
Regucalcin gene promoter region-related protein-p117 (RGPR-p117; gene symbol, rgpr-117) was identified in 2001 as a novel transcription factor that specifically binds to a nuclear factor I consensus motif, TTGGC(N)6CC in the promoter region of the regucalcin (rgn) gene. The human RGPR-p117 gene consists of 26 exons spanning ~4.1 kbp and is localized on chromosome 1q25.2. The nuclear translocation of cytoplasm RGPR-p117 is mediated via the protein kinase C-dependent signaling pathway. Overexpression of RGPR-p117 enhances the transcription activity of rgn, and a protective effect on cell death by inhibition of gene expression levels of caspase-3, caspase-8 and FADD proteins that possess the TTGGC motif in the promoter region of those genes was revealed. RGPR-p117 has a crucial role as a transcription factor. Notably, RGPR-p117 was shown to localize in the plasma membranes, mitochondria and microsomes (endoplasmic reticulum; ER). RGPR-p117, which is located in the ER, was also shown to have a role as an ER export factor implicated in the transports of proteins and lipids. As a result of this finding, it was proposed in 2007 that RGPR-p117 is renamed SEC 16 homolog B, endoplasmic reticulum export factor (SEC16B). Recently, there is increasing evidence that RGPR-p117/SEC16B may be involved in human obesity. Thus, the current review presents data regarding the involvement of RGPR-p117 in human obesity.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tomiyasu Murata
- Laboratory of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Nagoya, Aichi 468-8503, Japan
| |
Collapse
|
61
|
Differential Effects of Hormones on Cellular Metabolism in Keratoconus In Vitro. Sci Rep 2017; 7:42896. [PMID: 28211546 PMCID: PMC5314412 DOI: 10.1038/srep42896] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/18/2017] [Indexed: 12/28/2022] Open
Abstract
Keratoconus (KC) is a corneal thinning disease with an onset commonly immediately post-puberty and stabilization by 40 to 50 years of age. The role of hormones in regulating corneal tissue structure in homeostatic and pathological conditions is unknown. Our group recently linked altered hormone levels to KC. Our current study sought to investigate and delineate the effects of exogenous hormones, such as androgen, luteotropin, and estrogen, on corneal stroma bioenergetics. We utilized our established 3D in vitro model to characterize the effects of DHEA, prolactin, 17β-estradiol on insulin-growth factor-1 and -2 (IGF-1, -2) signaling and metabolic function in primary corneal fibroblasts from healthy controls (HCFs) and KC patients (HKCs). Our data showed that exogenous DHEA significantly downregulated IGF-1 and its receptor in both HCFs and HKCs with HKCs showing consistently lower basal pentose phosphate flux. Prolactin caused no significant change in IGF-1 levels and an increase in IGF-2 in HKCs correlating with an increase in ATP and NADH levels. 17β-estradiol led to a significant upregulation in pentose phosphate flux and glycolytic intermediates in HCFs. Our results identified hormone-specific responses regulated in HKCs compared to HCFs revealing a novel role for hormones on bioenergetics in KC.
Collapse
|
62
|
Kim H, Song CH, Kim DH, Jung NG, Lee SJ, Kim BT. Total Synthesis of Amino-Functionalized Calphostin Analogs as Potent and Selective Inhibitors of Protein Kinase C (PKC). B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hyoyeon Kim
- Department of Bioactive Material Sciences; Center of Bioactive Materials; Jeonju 561-756 Korea
| | - Choon-Ho Song
- Department of Bioactive Material Sciences; Center of Bioactive Materials; Jeonju 561-756 Korea
| | - Dae-Hyuk Kim
- Department of Molecular Biology; College of Natural Science; Jeonju 561-756 Korea
| | - Nam-Gin Jung
- Department of Crop Science and Biotechnology; College of Agriculture and Life Science; Jeonju 561-756 Korea
| | - Seung-Jae Lee
- Department of Chemistry; College of Natural Science; Jeonju 561-756 Korea
| | - Beom-Tae Kim
- Department of Bioactive Material Sciences; Center of Bioactive Materials; Jeonju 561-756 Korea
- Department of Molecular Biology; College of Natural Science; Jeonju 561-756 Korea
- Keunsaram Educational Development Institute; Chonbuk National University; Jeonju 561-756 Korea
| |
Collapse
|
63
|
Kim TT, Saunders T, Bieber E, Phillippe M. Tissue-Specific Protein Kinase C Isoform Expression in Rat Uterine Tissue. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155769900600603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | | | - Eric Bieber
- Department of Obstetrics and Gynecology, University of Chicago. Chicago, Illinois
| | - Mark Phillippe
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois
| |
Collapse
|
64
|
Polliack A. 12-0-Tetradecanoyl Phorbol-13-Acetate (TPA) and Its Effect on Leukaemic Cells, In-vitro-A Review. Leuk Lymphoma 2016; 3:173-82. [PMID: 27457435 DOI: 10.3109/10428199009050993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The action of the promoting agent 12-0-tetradecanoyl phorbol-13-acetate (TPA), an active component of croton oil, on the cell membrane, is described. TPA primarily acts on Protein Kinase C (PKC), which is the prime target for this agent. PKC activation and calcium mobilization are the basic pathways for signal transduction and the regulation of differentiation, explaining how TPA affects cell growth and proliferation in some cell types. The effects of TPA on leukaemic cells in-vitro, is reviewed and the changes in cell surface features, membrane phenotype, regulation of growth and differentiation in leukaemic cells and particularly in B-cell neoplasias are described and discussed in detail. The importance of incubation of leukaemic cells with TPA, as a routine in-vitro test in leukaemia is emphasized, in the light of information reported in this review.
Collapse
Affiliation(s)
- A Polliack
- a Head of Lymphoma-Leukaemia Unit, Department of Haematology, Hadassah University Hospital and Hebrew University Medical School, Jerusalem, Israel
| |
Collapse
|
65
|
Bizzarri M, Fuso A, Dinicola S, Cucina A, Bevilacqua A. Pharmacodynamics and pharmacokinetics of inositol(s) in health and disease. Expert Opin Drug Metab Toxicol 2016; 12:1181-96. [PMID: 27351907 DOI: 10.1080/17425255.2016.1206887] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Inositol and its derivatives comprise a huge field of biology. Myo-inositol is not only a prominent component of membrane-incorporated phosphatidylinositol, but participates in its free form, with its isomers or its phosphate derivatives, to a multitude of cellular processes, including ion channel permeability, metabolic homeostasis, mRNA export and translation, cytoskeleton remodeling, stress response. AREAS COVERED Bioavailability, safety, uptake and metabolism of inositol is discussed emphasizing the complexity of interconnected pathways leading to phosphoinositides, inositol phosphates and more complex molecules, like glycosyl-phosphatidylinositols. EXPERT OPINION Besides being a structural element, myo-inositol exerts unexpected functions, mostly unknown. However, several reports indicate that inositol plays a key role during phenotypic transitions and developmental phases. Furthermore, dysfunctions in the regulation of inositol metabolism have been implicated in several chronic diseases. Clinical trials using inositol in pharmacological doses provide amazing results in the management of gynecological diseases, respiratory stress syndrome, Alzheimer's disease, metabolic syndrome, and cancer, for which conventional treatments are disappointing. However, despite the widespread studies carried out to identify inositol-based effects, no comprehensive understanding of inositol-based mechanisms has been achieved. An integrated metabolomics-genomic study to identify the cellular fate of therapeutically administered myo-inositol and its genomic/enzymatic targets is urgently warranted.
Collapse
Affiliation(s)
- Mariano Bizzarri
- a Department of Experimental Medicine , Sapienza University of Rome , Rome , Italy.,b Systems Biology Group Lab , Sapienza University of Rome , Rome , Italy
| | - Andrea Fuso
- b Systems Biology Group Lab , Sapienza University of Rome , Rome , Italy.,c European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation , Rome , Italy
| | - Simona Dinicola
- d Department of Clinical and Molecular Medicine , Sapienza Universityof Rome , Rome , Italy.,e Department of Surgery 'Pietro Valdoni' , Sapienza University of Rome , Rome , Italy
| | - Alessandra Cucina
- e Department of Surgery 'Pietro Valdoni' , Sapienza University of Rome , Rome , Italy.,f Azienda Policlinico Umberto I , Rome , Italy
| | - Arturo Bevilacqua
- g Department of Psychology, Section of Neuroscience , Sapienza University of Rome , Rome , Italy
| |
Collapse
|
66
|
Johnson WT, Thomas AC, Lozano AA. Maternal Copper Deficiency Impairs the Developmental Expression of Protein Kinase C α, β and γ Isoforms in Neonatal Rat Brain. Nutr Neurosci 2016; 3:113-22. [DOI: 10.1080/1028415x.2000.11747307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
67
|
Malmersjö S, Di Palma S, Diao J, Lai Y, Pfuetzner RA, Wang AL, McMahon MA, Hayer A, Porteus M, Bodenmiller B, Brunger AT, Meyer T. Phosphorylation of residues inside the SNARE complex suppresses secretory vesicle fusion. EMBO J 2016; 35:1810-21. [PMID: 27402227 PMCID: PMC5010044 DOI: 10.15252/embj.201694071] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/09/2016] [Indexed: 12/22/2022] Open
Abstract
Membrane fusion is essential for eukaryotic life, requiring SNARE proteins to zipper up in an α‐helical bundle to pull two membranes together. Here, we show that vesicle fusion can be suppressed by phosphorylation of core conserved residues inside the SNARE domain. We took a proteomics approach using a PKCB knockout mast cell model and found that the key mast cell secretory protein VAMP8 becomes phosphorylated by PKC at multiple residues in the SNARE domain. Our data suggest that VAMP8 phosphorylation reduces vesicle fusion in vitro and suppresses secretion in living cells, allowing vesicles to dock but preventing fusion with the plasma membrane. Markedly, we show that the phosphorylation motif is absent in all eukaryotic neuronal VAMPs, but present in all other VAMPs. Thus, phosphorylation of SNARE domains is a general mechanism to restrict how much cells secrete, opening the door for new therapeutic strategies for suppression of secretion.
Collapse
Affiliation(s)
- Seth Malmersjö
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Serena Di Palma
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Jiajie Diao
- Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, CA, USA Howard Hughes Medical Institute, Stanford, CA, USA
| | - Ying Lai
- Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, CA, USA Howard Hughes Medical Institute, Stanford, CA, USA
| | - Richard A Pfuetzner
- Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, CA, USA Howard Hughes Medical Institute, Stanford, CA, USA
| | - Austin L Wang
- Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, CA, USA Howard Hughes Medical Institute, Stanford, CA, USA
| | - Moira A McMahon
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Arnold Hayer
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Matthew Porteus
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Bernd Bodenmiller
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Axel T Brunger
- Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, Photon Science, and Structural Biology, Stanford University, Stanford, CA, USA Howard Hughes Medical Institute, Stanford, CA, USA
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
68
|
Pala I, Srinivasan A, Vig PJS, Desaiah D. Modulation of Calmodulin and Protein Kinase C Activities by Pencillium Mycotoxins. Int J Toxicol 2016. [DOI: 10.1080/109158199225657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Calmodulin (CaM), a calcium-binding protein, is found in high concentrations in mammalian brain where it plays a pivotal role in a large number of cellular functions. Protein kinase C (PKC), a multifunctional cytosolic enzyme, in the presence of both Ca2+ and phospholipids, transduce extracellular signals into intracellu-lar events. Both CaM and PKC are partially involved in maintaining Ca2+ homeostasis in the cell. Any fluctuations in the intracel-lular Ca2+ can modulate cellular functions and may contribute to neuronal dysfunction. Hence, the present investigation was initiated to study the effects of some selected penicillium (naturally occurring tremorgenic) mycotoxins like secalonic acid, citreoviridin, and verruculogen on CaM activity, active conformation of CaM and PKC activity. Stimulation of CaM-deflcient bovine brain 3′-5′ phosphodieste rase (PDE) indicated CaM activity. The modification of CaM active conformation was studied by the binding of fluorescent probe N-phenyl-1-napthylamine (NPN) to CaM. Alterations in the fluorescence of dansyl-CaM was used to study the effect of these compounds on complex formation between CaM and PDE. Rat brain cytosolic PKC was studied using 32P-ATP as a measure of altered protein phosphorylation. The concentrations of mycotoxins used were in the range of 10 to 50 μM. All three mycotoxins inhibited CaM-stimulated PDE activity in a concentration-dependent manner. Citreoviridin and secalonic acid inhibited NPN fluorescence and Ca2+-dependent complex formation of dansyl-CaM and PDE. The IC50 values for NPN fluorescence of citreoviridin and secalonic acid were 13 μM and 19 μM respectively. However, verruculogen showed little effect on NPN fluorescence and the Ca2+-dependent complex formation of dansyl-CaM and PDE. These mycotoxins also inhibited PKC activity in a concentration-dependent manner with IC50 values of 19.8, 25.7, and 38.4 μM for secalonic acid, citreoviridin, and verruculogen, respectively. The results of our study suggest that these mycotoxins at very low concentrations are interacting with CaM and PKC. Such an effect could lead to impairment of neurotransmission and result in neurotoxicity.
Collapse
Affiliation(s)
- I. Pala
- Department of Neurology, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi, USA
| | - A. Srinivasan
- Department of Biology, Tougaloo College, Tougaloo, Mississippi, USA
| | - P. J. S. Vig
- Department of Neurology, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi, USA
| | - D. Desaiah
- Department of Neurology, University of Mississippi Medical Center, 2500 North State Street, Jackson, Mississippi, USA
| |
Collapse
|
69
|
Zhao EY, Efendizade A, Cai L, Ding Y. The role of Akt (protein kinase B) and protein kinase C in ischemia-reperfusion injury. Neurol Res 2016; 38:301-8. [PMID: 27092987 DOI: 10.1080/01616412.2015.1133024] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Stroke is a leading cause of long-term disability and death in the United States. Currently, tissue plasminogen activator (tPA), is the only Food and Drug Administration-approved treatment for acute ischemic stroke. However, the use of tPA is restricted to a small subset of acute stroke patients due to its limited 3-h therapeutic time window. Given the limited therapeutic options at present and the multi-factorial progression of ischemic stroke, emphasis has been placed on the discovery and use of combination therapies aimed at various molecular targets contributing to ischemic cell death. Protein kinase C (PKC) and Akt (protein kinase B) are serine/threonine kinases that play a critical role in mediating ischemic-reperfusion injury and cellular growth and survival, respectively. The present review will examine the role of PKC and Akt in the cellular response to ischemic-reperfusion injury.
Collapse
Affiliation(s)
- Ethan Y Zhao
- a Departmentof Neurosurgery , Wayne State University School of Medicine , Detroit , MI 48201 , USA
| | - Aslan Efendizade
- b Michigan State University College of Osteopathic Medicine , East Lansing , MI 48825 , USA
| | - Lipeng Cai
- c Department of Neurology , China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University , Beijing , China
| | - Yuchuan Ding
- a Departmentof Neurosurgery , Wayne State University School of Medicine , Detroit , MI 48201 , USA.,c Department of Neurology , China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University , Beijing , China
| |
Collapse
|
70
|
Targeting TRPV1 for Body Weight Control using TRPV1(-/-) Mice and Electroacupuncture. Sci Rep 2015; 5:17366. [PMID: 26621679 PMCID: PMC4664894 DOI: 10.1038/srep17366] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/28/2015] [Indexed: 01/07/2023] Open
Abstract
Obesity is a global social medical problem resulting in morbidity as high as 20–30%. Here we investigated whether the manipulation of TRPV1 can control mice body weight through electroacupuncture (EA). The results demonstrated that body weight increased with time in the control group (108.19 ± 1.31%, n = 7). The increase of mice body weight was significantly less in the EA group (104.41 ± 0.76%, p < 0.05, compared with the control group, n = 7) but not in the sham EA group (109.1 ± 0.63%, p < 0.05, compared with EA group, n = 7). EA did not decrease the gain of body weight in TRPV1 knock mice (107.94 ± 0.41% and 107.79 ± 1.04% for TRPV1−/− and TRPV1−/− with EA, respectively, p > 0.05). The visceral white adipose tissue (WAT) weight was lower in the EA group at 4 weeks after manipulation. Moreover, the protein levels of TRPV1, pPKA, pPKC, and pERK were increased in the dorsal root ganglion (DRG) and spinal cord (SC) after EA treatment but not in the sham EA and TRPV1−/− mice. This study suggests that targeting TRPV1 is beneficial in controlling body weight and TRPV1-associated mechanisms in mice.
Collapse
|
71
|
Zabelinskii SA, Chebotareva MA, Shukolyukova EP, Krivchenko AI. Phospholipids and fatty acids in erythrocytes of lamprey Lampetra fluviatilis during autumn prespawning period and the absorption spectrum of their lipid extract. J EVOL BIOCHEM PHYS+ 2015. [DOI: 10.1134/s0022093015040043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
72
|
Zhou XL, Zhang CJ, Wang Y, Wang M, Sun LH, Yu LN, Cao JL, Yan M. EphrinB–EphB signaling regulates spinal pain processing via PKCγ. Neuroscience 2015; 307:64-72. [DOI: 10.1016/j.neuroscience.2015.08.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/02/2015] [Accepted: 08/20/2015] [Indexed: 01/30/2023]
|
73
|
Seed Ahmed M, Ahmed MS, Pelletier J, Leumann H, Gu HF, Östenson CG. Expression of Protein Kinase C Isoforms in Pancreatic Islets and Liver of Male Goto-Kakizaki Rats, a Model of Type 2 Diabetes. PLoS One 2015; 10:e0135781. [PMID: 26398746 PMCID: PMC4580567 DOI: 10.1371/journal.pone.0135781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/27/2015] [Indexed: 02/03/2023] Open
Abstract
Protein kinase C (PKC) is a family of protein kinases controlling protein phosphorylation and playing important roles in the regulation of metabolism. We have investigated expression levels of PKC isoforms in pancreatic islets and liver of diabetic Goto-Kakizaki (GK) rats with and without insulin treatment to evaluate their association with glucose homeostasis. mRNA and protein expression levels of PKC isoforms were assessed in pancreatic islets and liver of Wistar rats and GK rats with or without insulin treatment. PKCα and PKCζ mRNA expressions were down-regulated in islets of GK compared with Wistar rats. PKCα and phosphorylated PKCα (p-PKCα) protein expressions were decreased in islets of GK compared with insulin-treated GK and Wistar rats. PKCζ protein expression in islets was reduced in GK and insulin-treated GK compared with Wistar rats, but p-PKCζ was decreased only in GK rats. Islet PKCε mRNA and protein expressions were lower in GK compared with insulin-treated GK and Wistar rats. In liver, PKCδ and PKCζ mRNA expressions were decreased in both GK and insulin-treated GK compared with Wistar rats. Hepatic PKCζ protein expression was diminished in both GK rats with and without insulin treatment compared with Wistar rats. Hepatic PKCε mRNA expression was down-regulated in insulin-treated GK compared with GK and Wistar rats. PKCα, PKCε, and p-PKCζ expressions were secondary to hyperglycaemia in GK rat islets. Hepatic PKCδ and PKCζ mRNA expressions were primarily linked to hyperglycaemia. Additionally, hepatic PKCε mRNA expression could be under control of insulin.
Collapse
Affiliation(s)
- Mohammed Seed Ahmed
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden; Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Julien Pelletier
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Hannes Leumann
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Harvest F Gu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Claes-Göran Östenson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| |
Collapse
|
74
|
Tian K, Yang X, Kong Q, Yin C, He RL, Yau SST. Two Dimensional Yau-Hausdorff Distance with Applications on Comparison of DNA and Protein Sequences. PLoS One 2015; 10:e0136577. [PMID: 26384293 PMCID: PMC4575136 DOI: 10.1371/journal.pone.0136577] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/05/2015] [Indexed: 11/20/2022] Open
Abstract
Comparing DNA or protein sequences plays an important role in the functional analysis of genomes. Despite many methods available for sequences comparison, few methods retain the information content of sequences. We propose a new approach, the Yau-Hausdorff method, which considers all translations and rotations when seeking the best match of graphical curves of DNA or protein sequences. The complexity of this method is lower than that of any other two dimensional minimum Hausdorff algorithm. The Yau-Hausdorff method can be used for measuring the similarity of DNA sequences based on two important tools: the Yau-Hausdorff distance and graphical representation of DNA sequences. The graphical representations of DNA sequences conserve all sequence information and the Yau-Hausdorff distance is mathematically proved as a true metric. Therefore, the proposed distance can preciously measure the similarity of DNA sequences. The phylogenetic analyses of DNA sequences by the Yau-Hausdorff distance show the accuracy and stability of our approach in similarity comparison of DNA or protein sequences. This study demonstrates that Yau-Hausdorff distance is a natural metric for DNA and protein sequences with high level of stability. The approach can be also applied to similarity analysis of protein sequences by graphic representations, as well as general two dimensional shape matching.
Collapse
Affiliation(s)
- Kun Tian
- Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoqian Yang
- Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
| | - Qin Kong
- Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
| | - Changchuan Yin
- Department of Mathematics, Statistics and Computer Science, The University of Illinois at Chicago, Chicago, IL 60607-7045, United States of America
| | - Rong L He
- Department of Biological Sciences, Chicago State University, Chicago, IL 60628, United States of America
| | - Stephen S-T Yau
- Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
75
|
Castro Fonseca MD, Da Silva JH, Ferraz VP, Gomez RS, Guatimosim C. Comparative presynaptic effects of the volatile anesthetics sevoflurane and isoflurane at the mouse neuromuscular junction. Muscle Nerve 2015; 52:876-84. [DOI: 10.1002/mus.24589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Matheus De Castro Fonseca
- Departamento de Morfologia, Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Av. Antônio Carlos, 6627 Belo Horizonte MG 31270-901 Brasil
| | - Janice Henriques Da Silva
- Departamento de Morfologia, Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Av. Antônio Carlos, 6627 Belo Horizonte MG 31270-901 Brasil
| | - Vany Perpetua Ferraz
- Departamento de Química, Instituto de Ciências Exatas; Universidade Federal de Minas Gerais; MG Brasil
| | - Renato Santiago Gomez
- Departamento de Cirurgia, Faculdade de Medicina; Universidade Federal de Minas Gerais; Belo Horizonte MG Brasil
| | - Cristina Guatimosim
- Departamento de Morfologia, Instituto de Ciências Biológicas; Universidade Federal de Minas Gerais; Av. Antônio Carlos, 6627 Belo Horizonte MG 31270-901 Brasil
| |
Collapse
|
76
|
Yao J, Li J, Zhou L, Cheng J, Chim SM, Zhang G, Quinn JMW, Tickner J, Zhao J, Xu J. Protein kinase C inhibitor, GF109203X attenuates osteoclastogenesis, bone resorption and RANKL-induced NF-κB and NFAT activity. J Cell Physiol 2015; 230:1235-42. [PMID: 25363829 DOI: 10.1002/jcp.24858] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 10/28/2014] [Indexed: 12/14/2022]
Abstract
Osteolytic bone diseases are characterized by excessive osteoclast formation and activation. Protein kinase C (PKC)-dependent pathways regulate cell growth, differentiation and apoptosis in many cellular systems, and have been implicated in cancer development and osteoclast formation. A number of PKC inhibitors with anti-cancer properties have been developed, but whether they might also influence osteolysis (a common complication of bone invading cancers) is unclear. We studied the effects of the PKC inhibitor compound, GF109203X on osteoclast formation and activity, processes driven by receptor activator of NFκB ligand (RANKL). We found that GF109203X strongly and dose dependently suppresses osteoclastogenesis and osteoclast activity in RANKL-treated primary mouse bone marrow cells. Consistent with this GF109203X reduced expression of key osteoclastic genes, including cathepsin K, calcitonin receptor, tartrate resistant acid phosphatase (TRAP) and the proton pump subunit V-ATPase-d2 in RANKL-treated primary mouse bone marrow cells. Expression of these proteins is dependent upon RANKL-induced NF-κB and NFAT transcription factor actions; both were reduced in osteoclast progenitor populations by GF109203X treatment, notably NFATc1 levels. Furthermore, we showed that GF109203X inhibits RANKL-induced calcium oscillation. Together, this study shows GF109203X may block osteoclast functions, suggesting that pharmacological blockade of PKC-dependent pathways has therapeutic potential in osteolytic diseases.
Collapse
Affiliation(s)
- Jun Yao
- Department of Orthopaedic Surgery, Research Centre for Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China; School of Pathology and Laboratory Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Molecular mechanism underlying chemoprotective effects of Ganoderma atrum polysaccharide in cyclophosphamide-induced immunosuppressed mice. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.03.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
78
|
Yu Q, Nie SP, Wang JQ, Huang DF, Li WJ, Xie MY. Signaling pathway involved in the immunomodulatory effect of Ganoderma atrum polysaccharide in spleen lymphocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2734-2740. [PMID: 25715057 DOI: 10.1021/acs.jafc.5b00028] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aim of this study was to investigate the molecular mechanism underlying the immunomodulatory effect of Ganoderma atrum polysaccharide (PSG-1) in spleen lymphocytes. Our results showed that PSG-1 increased the intracellular Ca2+ concentration and calcineurin (CaN) activity. Moreover, PSG-1 was found to elevate nuclear factor of activated T cells (NFAT) activity, but this effect could be diminished by the treatment of CaN inhibitors (cyclosporin A and FK506). PSG-1-induced interleukin (IL)-2 production was also inhibited by cyclosporin A and FK506. In addition, PSG-1 was found to significantly enhance protein kinase C (PKC) activity. PKC was involved in induction of NFAT activity by PSG-1, as evidenced by abrogation of NFAT activity by PKC inhibitor calphostin C, which significantly decreased PSG-1-induced IL-2 production. On the basis of these results, we concluded that PSG-1 may induce activation of spleen lymphocytes at least in part via the Ca2+/CaN/NFAT/IL-2 signaling pathway and the PKC/NFAT/IL-2 signaling pathway cooperatively regulated PSG-1-induced activation of spleen lymphocytes.
Collapse
Affiliation(s)
- Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Jun-Qiao Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Dan-Fei Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Wen-Juan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| |
Collapse
|
79
|
Ca2+ Regulation of Trypanosoma brucei Phosphoinositide Phospholipase C. EUKARYOTIC CELL 2015; 14:486-94. [PMID: 25769297 DOI: 10.1128/ec.00019-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 03/09/2015] [Indexed: 11/20/2022]
Abstract
We characterized a phosphoinositide phospholipase C (PI-PLC) from the procyclic form (PCF) of Trypanosoma brucei. The protein contains a domain organization characteristic of typical PI-PLCs, such as X and Y catalytic domains, an EF-hand calcium-binding motif, and a C2 domain, but it lacks a pleckstrin homology (PH) domain. In addition, the T. brucei PI-PLC (TbPI-PLC) contains an N-terminal myristoylation consensus sequence found only in trypanosomatid PI-PLCs. A peptide containing this N-terminal domain fused to green fluorescent protein (GFP) was targeted to the plasma membrane. TbPI-PLC enzymatic activity was stimulated by Ca(2+) concentrations below the cytosolic levels in the parasite, suggesting that the enzyme is constitutively active. TbPI-PLC hydrolyzes both phosphatidylinositol (PI) and phosphatidylinositol 4,5-bisphosphate (PIP2), with a higher affinity for PIP2. We found that modification of a single amino acid in the EF-hand motif greatly affected the protein's Ca(2+) sensitivity and substrate preference, demonstrating the role of this motif in Ca(2+) regulation of TbPI-PLC. Endogenous TbPI-PLC localizes to intracellular vesicles and might be using an intracellular source of PIP2. Knockdown of TbPI-PLC expression by RNA interference (RNAi) did not result in growth inhibition, although enzymatic activity was still present in parasites, resulting in hydrolysis of PIP2 and a contribution to the inositol 1,4,5-trisphosphate (IP3)/diacylglycerol (DAG) pathway.
Collapse
|
80
|
Hanaki Y, Yanagita RC, Sugahara T, Aida M, Tokuda H, Suzuki N, Irie K. Synthesis and biological activities of the amide derivative of aplog-1, a simplified analog of aplysiatoxin with anti-proliferative and cytotoxic activities. Biosci Biotechnol Biochem 2015; 79:888-95. [PMID: 25612633 DOI: 10.1080/09168451.2014.1002452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Aplog-1 is a simplified analog of the tumor-promoting aplysiatoxin with anti-proliferative and cytotoxic activities against several cancer cell lines. Our recent findings have suggested that protein kinase Cδ (PKCδ) could be one of the target proteins of aplog-1. In this study, we synthesized amide-aplog-1 (3), in which the C-1 ester group was replaced with an amide group, to improve chemical stability in vivo. Unfortunately, 3 exhibited seventy-fold weaker binding affinity to the C1B domain of PKCδ than that of aplog-1, and negligible anti-proliferative and cytotoxic activities even at 10(-4) M. A conformational analysis and density functional theory calculations indicated that the stable conformation of 3 differed from that of aplog-1. Since 27-methyl and 27-methoxy derivatives (1, 2) without the ability to bind to PKC isozymes exhibited marked anti-proliferative and cytotoxic activities at 10(-4) M, 3 may be an inactive control to identify the target proteins of aplogs.
Collapse
Affiliation(s)
- Yusuke Hanaki
- a Division of Food Science and Biotechnology , Graduate School of Agriculture, Kyoto University , Kyoto , Japan
| | | | | | | | | | | | | |
Collapse
|
81
|
Nguyen XKT, Lee J, Shin EJ, Dang DK, Jeong JH, Nguyen TTL, Nam Y, Cho HJ, Lee JC, Park DH, Jang CG, Hong JS, Nabeshima T, Kim HC. Liposomal melatonin rescues methamphetamine-elicited mitochondrial burdens, pro-apoptosis, and dopaminergic degeneration through the inhibition PKCδ gene. J Pineal Res 2015; 58:86-106. [PMID: 25407782 DOI: 10.1111/jpi.12195] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 11/12/2014] [Indexed: 12/11/2022]
Abstract
We have demonstrated that mitochondrial oxidative damage and PKCδ overexpression contribute to methamphetamine-induced dopaminergic degeneration. Although it is recognized that antioxidant melatonin is effective in preventing neurotoxicity induced by methamphetamine, its precise mechanism remains elusive. C57BL/6J wild-type mice exhibited a similar degree of dopaminergic deficit when methamphetamine was administered during light and dark phases. Furthermore, dopaminergic neuroprotection by genetic inhibition of PKCδ during the light phase was comparable to that during the dark phase. Thus, we have focused on the light phase to examine whether melatonin modulates PKCδ-mediated neurotoxic signaling after multiple high doses of methamphetamine. To enhance the bioavailability of melatonin, we applied liposomal melatonin. Treatment with methamphetamine resulted in hyperthermia, mitochondrial translocation of PKCδ, oxidative damage (mitochondria > cytosol), mitochondrial dysfunction, pro-apoptotic changes, ultrastructural mitochondrial degeneration, dopaminergic degeneration, and behavioral impairment in wild-type mice. Treatment with liposomal melatonin resulted in a dose-dependent attenuation against degenerative changes induced by methamphetamine in wild-type mice. Attenuation by liposomal melatonin might be comparable to that by genetic inhibition (using PKCδ((-/-)) mice or PKCδ antisense oligonucleotide). However, liposomal melatonin did not show any additional protective effects on the attenuation by genetic inhibition of PKCδ. Our results suggest that the circadian cycle cannot be a key factor in modulating methamphetamine toxicity under the current experimental condition and that PKCδ is one of the critical target genes for melatonin-mediated protective effects against mitochondrial burdens (dysfunction), oxidative stress, pro-apoptosis, and dopaminergic degeneration induced by methamphetamine.
Collapse
Affiliation(s)
- Xuan-Khanh Thi Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Roberts HM, Ling MR, Insall R, Kalna G, Spengler J, Grant MM, Chapple ILC. Impaired neutrophil directional chemotactic accuracy in chronic periodontitis patients. J Clin Periodontol 2015; 42:1-11. [PMID: 25360483 PMCID: PMC4340045 DOI: 10.1111/jcpe.12326] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2014] [Indexed: 12/13/2022]
Abstract
AIM To investigate the chemotactic accuracy of peripheral blood neutrophils from patients with chronic periodontitis compared with matched healthy controls, before and after non-surgical periodontal therapy. MATERIAL & METHODS Neutrophils were isolated from patients and controls (n = 18) by density centrifugation. Using the Insall chamber and video microscopy, neutrophils were analysed for directional chemotaxis towards N-formyl-methionyl-leucyl-phenylalanine [fMLP (10 nM), or CXCL8 (200 ng/ml)]. Circular statistics were utilized for the analysis of cell movement. RESULTS Prior to treatment, neutrophils from patients with chronic periodontitis had significantly reduced speed, velocity and chemotactic accuracy compared to healthy controls for both chemoattractants. Following periodontal treatment, patient neutrophils continued to display reduced speed in response to both chemoattractants. However, velocity and accuracy were normalized for the weak chemoattractant CXCL8 while they remained significantly reduced for fMLP. CONCLUSIONS Chronic periodontitis is associated with reduced neutrophil chemotaxis, and this is only partially restored by successful treatment. Dysfunctional neutrophil chemotaxis may predispose patients with periodontitis to their disease by increasing tissue transit times, thus exacerbating neutrophil-mediated collateral host tissue damage.
Collapse
Affiliation(s)
- Helen M Roberts
- Periodontal Research Group and MRC Centre for Immune Regulation, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | |
Collapse
|
83
|
Nam Y, Wie MB, Shin EJ, Nguyen TTL, Nah SY, Ko SK, Jeong JH, Jang CG, Kim HC. Ginsenoside Re protects methamphetamine-induced mitochondrial burdens and proapoptosis via genetic inhibition of protein kinase C δ in human neuroblastoma dopaminergic SH-SY5Y cell lines. J Appl Toxicol 2014; 35:927-44. [PMID: 25523949 DOI: 10.1002/jat.3093] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/13/2014] [Accepted: 10/26/2014] [Indexed: 01/08/2023]
Abstract
Recently, we have demonstrated that ginsenoside Re protects methamphetamine (MA)-induced dopaminergic toxicity in mice via genetic inhibition of PKCδ and attenuation of mitochondrial stress. In addition, we have reported that induction of mitochondrial glutathione peroxidase (GPx) is also important for neuroprotection mediated by ginsenoside Re. To extend our knowledge, we examined the effects of ginsenoside Re against MA toxicity in vitro condition using SH-SY5Y neuroblastoma cells. Treatment with ginsenoside Re resulted in significant attenuations against a decrease in the activity of GPx and an increase in the activity of superoxide dismutase (SOD) in the cytosolic and mitochondrial fraction. The changes in glutathione (GSH) paralleled those in GPx in the same experimental condition. Consistently, ginsenoside Re treatment exhibited significant protections against cytosolic and mitochondrial oxidative damage (i.e. lipid peroxidation and protein oxidation), mitochondrial translocation of PKCδ, mitochondrial dysfunction (mitochondrial transmembrane potential and intra-mitochondrial Ca(2+)), apoptotic events [i.e., cytochrome c release from mitochondria, cleavage of caspase-3 and poly(ADP-ribose)polymerase-1, nuclear condensation, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive apoptotic cells], and a reduction in the tyrosine hydroxylase (TH) expression and TH activity induced by MA in SH-SY5Y neuroblastoma cells. These protective effects of ginsenoside Re were comparable to those of PKCδ antisense oligonucleotide (ASO). However, ginsenoside Re did not significantly provide additional protective effects mediated by genetic inhibition of PKCδ. Our results suggest that PKCδ is a specific target for ginsenoside Re-mediated protective activity against MA toxicity in SH-SY5Y neuroblastoma cells.
Collapse
Affiliation(s)
- Yunsung Nam
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | - Myung Bok Wie
- School of Veterinary Medicine, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | - Thuy-Ty Lan Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | - Seung-Yeol Nah
- Ginseng Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Sung Kwon Ko
- Department of Oriental Medical Food & Nutrition, Semyung University, Jecheon, 390-711, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 200-701, Republic of Korea
| |
Collapse
|
84
|
Abstract
ABSTRACT:Malignant astrocytomas are aggressive neoplasms with a dismal prognosis despite optimal treatment. Maximal resective surgery is traditionally complemented by radiation therapy. Chemotherapy is now used on patients as initial therapy when their functional status is congruent with further treatment. The classic agents used are nitrosoureas, but temozolomide has taken the front seat recently, with recent data demonstrating increased survival when this agent is used concurrently with radiation therapy in newly diagnosed glioblastoma patients. A new class of agents, refered to as biological modifiers, are increasingly used in clinical trials in an effort to affect the intrinsic biologic aberrations harboured by tumor cells. These drugs comprise differentiation agents, anti-angiogenic agents, matrix-metalloproteinase inhibitors and signal transduction inhibitors, among others. This article reviews the standard cytotoxic agents that have been used to treat malignant astrocytomas, and the different combination regimens offering promise. In addition, recent advances with biological modifiers are also discussed.
Collapse
Affiliation(s)
- David Mathieu
- Division of Neurosurgery/Neuro-Oncology, Department of Surgery, Sherbrooke University and Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | | |
Collapse
|
85
|
Patel RS, Carter G, Cooper DR, Apostolatos H, Patel NA. Transformer 2β homolog (Drosophila) (TRA2B) regulates protein kinase C δI (PKCδI) splice variant expression during 3T3L1 preadipocyte cell cycle. J Biol Chem 2014; 289:31662-31672. [PMID: 25261467 DOI: 10.1074/jbc.m114.592337] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Obesity is characterized by adipocyte hyperplasia and hypertrophy. We previously showed that PKCδ expression is dysregulated in obesity (Carter, G., Apostolatos, A., Patel, R., Mathur, A., Cooper, D., Murr, M., and Patel, N. A. (2013) ISRN Obes. 2013, 161345). Using 3T3L1 preadipocytes, we studied adipogenesis in vitro and showed that expression of PKCδ splice variants, PKCδI and PKCδII, have different expression patterns during adipogenesis (Patel, R., Apostolatos, A., Carter, G., Ajmo, J., Gali, M., Cooper, D. R., You, M., Bisht, K. S., and Patel, N. A. (2013) J. Biol. Chem. 288, 26834-26846). Here, we evaluated the role of PKCδI splice variant during adipogenesis. Our results indicate that PKCδI expression level is high in preadipocytes and decreasing PKCδI accelerated terminal differentiation. Our results indicate that PKCδI is required for mitotic clonal expansion of preadipocytes. We next evaluated the splice factor regulating the expression of PKCδI during 3T3L1 adipogenesis. Our results show TRA2B increased PKCδI expression. To investigate the molecular mechanism, we cloned a heterologous splicing PKCδ minigene and showed that inclusion of PKCδ exon 9 is increased by TRA2B. Using mutagenesis and a RNA-immunoprecipitation assay, we evaluated the binding of Tra2β on PKCδI exon 9 and show that its association is required for PKCδI splicing. These results provide a better understanding of the role of PKCδI in adipogenesis. Determination of this molecular mechanism of alternative splicing presents a novel therapeutic target in the management of obesity and its co-morbidities.
Collapse
Affiliation(s)
- Rekha S Patel
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612
| | - Gay Carter
- James A. Haley Veterans Hospital and University of South Florida, Tampa, Florida 33612
| | - Denise R Cooper
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612; James A. Haley Veterans Hospital and University of South Florida, Tampa, Florida 33612
| | - Hercules Apostolatos
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612
| | - Niketa A Patel
- Department of Molecular Medicine, University of South Florida, Tampa, Florida 33612; James A. Haley Veterans Hospital and University of South Florida, Tampa, Florida 33612.
| |
Collapse
|
86
|
Polk A, Vistisen K, Vaage-Nilsen M, Nielsen DL. A systematic review of the pathophysiology of 5-fluorouracil-induced cardiotoxicity. BMC Pharmacol Toxicol 2014; 15:47. [PMID: 25186061 PMCID: PMC4170068 DOI: 10.1186/2050-6511-15-47] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 08/19/2014] [Indexed: 12/29/2022] Open
Abstract
Background Cardiotoxicity is a serious side effect to treatment with 5-fluorouracil (5-FU), but the underlying mechanisms are not fully understood. The objective of this systematic review was to evaluate the pathophysiology of 5-FU- induced cardiotoxicity. Methods We systematically searched PubMed for articles in English using the search terms: 5-FU OR 5-fluorouracil OR capecitabine AND cardiotoxicity. Papers evaluating the pathophysiology of this cardiotoxicity were included. Results We identified 27 articles of 26 studies concerning the pathophysiology of 5-FU-induced cardiotoxicity. The studies demonstrated 5-FU-induced: hemorrhagic infarction, interstitial fibrosis and inflammatory reaction in the myocardium; damage of the arterial endothelium followed by platelet aggregation; increased myocardial energy metabolism and depletion of high energy phosphate compounds; increased superoxide anion levels and a reduced antioxidant capacity; vasoconstriction of arteries; changes in red blood cell (RBC) structure, function and metabolism; alterations in plasma levels of substances involved in coagulation and fibrinolysis and increased endothelin-1 levels and N-terminal-pro brain natriuretic peptide levels. Based on these findings the proposed mechanisms are: endothelial injury followed by thrombosis, increased metabolism leading to energy depletion and ischemia, oxidative stress causing cellular damage, coronary artery spasm leading to myocardial ischemia and diminished ability of RBCs to transfer oxygen resulting in myocardial ischemia. Conclusions There is no evidence for a single mechanism responsible for 5-FU-induced cardiotoxicity, and the underlying mechanisms might be multifactorial. Further research is needed to elucidate the pathogenesis of this side effect.
Collapse
Affiliation(s)
- Anne Polk
- Departments of Cardiology, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730 Herlev, Denmark.
| | | | | | | |
Collapse
|
87
|
Lee YA, Kim KA, Min A, Shin MH. Amoebic PI3K and PKC is required for Jurkat T cell death induced by Entamoeba histolytica. THE KOREAN JOURNAL OF PARASITOLOGY 2014; 52:355-65. [PMID: 25246714 PMCID: PMC4170031 DOI: 10.3347/kjp.2014.52.4.355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 05/29/2014] [Accepted: 06/04/2014] [Indexed: 01/01/2023]
Abstract
The enteric protozoan parasite Entamoeba histolytica is the causative agent of human amebiasis. During infection, adherence of E. histolytica through Gal/GalNAc lectin on the surface of the amoeba can induce caspase-3-dependent or -independent host cell death. Phosphorylinositol 3-kinase (PI3K) and protein kinase C (PKC) in E. histolytica play an important function in the adhesion, killing, or phagocytosis of target cells. In this study, we examined the role of amoebic PI3K and PKC in amoeba-induced apoptotic cell death in Jurkat T cells. When Jurkat T cells were incubated with E. histolytica trophozoites, phosphatidylserine (PS) externalization and DNA fragmentation in Jurkat cells were markedly increased compared to those of cells incubated with medium alone. However, when amoebae were pretreated with a PI3K inhibitor, wortmannin before being incubated with E. histolytica, E. histolytica-induced PS externalization and DNA fragmentation in Jurkat cells were significantly reduced compared to results for amoebae pretreated with DMSO. In addition, pretreatment of amoebae with a PKC inhibitor, staurosporine strongly inhibited Jurkat T cell death. However, E. histolytica-induced cleavage of caspase-3, -6, and -7 were not inhibited by pretreatment of amoebae with wortmannin or staurosporin. In addition, we found that amoebic PI3K and PKC have an important role on amoeba adhesion to host compartment. These results suggest that amebic PI3K and PKC activation may play an important role in caspase-independent cell death in Entamoeba-induced apoptosis.
Collapse
Affiliation(s)
- Young Ah Lee
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Kyeong Ah Kim
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Arim Min
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Myeong Heon Shin
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
88
|
Tanabe K, Matsushima-Nishiwaki R, Kozawa O, Iida H. Dexmedetomidine suppresses interleukin-1β-induced interleukin-6 synthesis in rat glial cells. Int J Mol Med 2014; 34:1032-8. [PMID: 25069417 DOI: 10.3892/ijmm.2014.1863] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 07/18/2014] [Indexed: 11/06/2022] Open
Abstract
Dexmedetomidine, an α2-adrenoceptor agonist, is used as a sedative medication for criticalyl ill patients and is known to exert neuroprotective effects by direct action on neurons and indirect action on neurons through astrocytes. Interleukin (IL)-6 plays a key role in neuroinflammation, which accompanies infection, traumatic brain injury, ischemia, neurodegenerative disorders, as both a pro-inflammatory cytokine and an anti-inflammatory cytokine. Dexmedetomidine suppresses immune function. However, the effects of dexmedetomidine on cytokine synthesis in the central nervous system (CNS) remain elusive. We previously reported that IL-1β stimulates IL-6 synthesis in the rat C6 glioma cell line through the phosphorylation of p38 mitogen-activated protein (MAP) kinase, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) and IκB. In the present study, we investigated the effects of dexmedetomidine on the IL-1β-induced IL-6 synthesis in C6 cells. Dexmedetomidine inhibited the IL-1β-stimulated IL-6 release and mRNA expression in C6 cells. 8-Bromo-adenosine-3',5'-cyclic monophosphate, but not 8-bromo-guanosine 3',5'-cyclic monophosphate, significantly enhanced the IL-1β-induced IL-6 release and mRNA expression. However, dexmedetomidine failed to affect cAMP accumulation in the cells treated with IL-1β or forskolin, an activator of adenylyl cyclase. Yohimbine, an α2-adrenoceptor antagonist, did not reverse the suppressive effects of dexmedetomidine on the IL-1β-induced IL-6 release. Dexmedetomidine did not affect the IL-1β-induced phosphorylation of p38 MAP kinase, SAPK/JNK, IκB, nuclear factor (NF)-κB or c-Jun. Our findings strongly suggest that dexmedetomidine inhibits the IL-1β-induced IL-6 synthesis independently of the adenylyl cyclase-cAMP pathway through α2-adrenoceptors in C6 glioma cells. It is possible that dexmedetomidine may affect the immune system in the CNS by regulating the production of IL-6.
Collapse
Affiliation(s)
- Kumiko Tanabe
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | | | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| |
Collapse
|
89
|
Kim TJ, Cho MK, Lee JS, Whang KU, Jin SY, Hoshino T. The Expression of Melanogenic Proteins in Korean Skin after Ultraviolet Irradiation. J Dermatol 2014; 30:665-72. [PMID: 14578556 DOI: 10.1111/j.1346-8138.2003.tb00455.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2003] [Accepted: 05/27/2003] [Indexed: 11/28/2022]
Abstract
For proper melanin production, several specific enzymes such as tyrosinase, tyrosinase-related protein 1 (TRP-1) and dopachrome tautomerase are required. Their expressions are increased after exposure to UVB. However, it is not known how long tyrosinase and TRP-1 activities continue after UV irradiation in vivo. The purpose of this study is to measure the changes in expressions of tyrosinase, TRP1, and MITF after exposure to UV on skin in a Korean population. We established an immunohistochemical staining protocol for specimens which were obtained from UV-irradiated skin in five healthy Korean males on the 2nd, 5th, 7th, 28th, and 56th days after UV irradiation. Tyrosinase, TRP-1, and MITF expressions increased until 7 days after UV irradiation and then dropped to the basal constitutive level 4 and 8 weeks later. Interestingly, tyrosinase increased prior to TRP-1. This study reveals the time-sequence of melanin-synthesized enzymes and provides important information for the clinical evaluation of the effectiveness of whitening agents.
Collapse
Affiliation(s)
- Tae Jin Kim
- Department of Dermatology, College of Medicine, Soonchunhyang University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
90
|
Vanikar A. Transplantation tolerance; myth or reality? J Nephropathol 2014; 3:18-21. [PMID: 24644538 DOI: 10.12860/jnp.2014.04] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 05/27/2013] [Indexed: 11/20/2022] Open
Abstract
Implication for health policy/practice/research/medical education: Transplantation is now a well-accepted therapy for end organ failure. However the recipients are required to take life-long immunosuppression to prevent rejection. This leads to immunosuppression associated morbidity in the form of viral/ fungal/ bacterial infections in addition to causing financial burden on the system. Over a long run these patients are at high risk to develop malignancies.In spite of all these efforts, the graft is lost over 7-10 years to chronic graftattrition/ rejection. The only answer to this problem is "Transplant tolerance" which means stable allograft function while maintaining third party immuneresponse intact in absence of rejections on no immunosuppression. Since last 60 years transplanters across the globe are in search of this "Mackenna's gold". The following editorial discusses how far have we progressed in our search for the promised land of "Transplant Tolerance."
Collapse
Affiliation(s)
- Aruna Vanikar
- G.R. Doshi and K.M. Mehta Institute of Kidney Diseases & Research Centre and Dr. H.L. Trivedi Institute of Transplantation Sciences, Civil Hospital Campus, Asarwa, Ahmedabad, India
| |
Collapse
|
91
|
Tanabe F, Nakajima T, Ito M. Involvement of diacylglycerol produced by phospholipase D activation in Aβ-induced reduction of sAPPα secretion in SH-SY5Y neuroblastoma cells. Biochem Biophys Res Commun 2014; 446:933-9. [PMID: 24650665 DOI: 10.1016/j.bbrc.2014.03.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 03/10/2014] [Indexed: 01/13/2023]
Abstract
We previously reported that the thiol proteinase inhibitor, E-64-d, ameliorated amyloid β (Aβ)-induced reduction of soluble amyloid precursor protein α (sAPPα) secretion by reversing ceramide-induced protein kinase C down-regulation in SH-SY5Y neuroblastoma cells. In the present study, we showed that Aβ (1-42) peptide enhanced diacylglycerol (DAG) production by phospholipase D (PLD) activation in these cells. We subsequently examined whether PLD was involved in Aβ-induced reduction of sAPPα secretion and showed that 2 μM CAY10593, which selectively inhibits PLD2, ameliorated reduction of sAPPα secretion, whereas 50 nM CAY10593, which selectively inhibits PLD1, did not. Moreover, 50 µM propranolol, a phosphatidic acid phosphohydrolase inhibitor, also ameliorated Aβ-induced reduction of sAPPα secretion, suggesting that DAG may be responsible for Aβ-induced reduction of sAPPα. We subsequently examined whether DAG affects sAPPα secretion and showed that a DAG analog reduced sAPPα secretion in SH-SY5Y cells. In addition, DAG enhanced ceramide production by stimulating neutral sphingomyelinase (N-SMase) activity. We previously demonstrated that Aβ stimulates N-SMase activity in SH-SY5Y cells. Here, we showed that inhibition of PLD2 by 2 μM CAY10593 suppressed Aβ-induced N-SMase activation. Taken together, the results suggest that DAG produced through the PLD pathway is involved in Aβ-induced reduction of sAPPα secretion in SH-SY5Y cells.
Collapse
Affiliation(s)
- Fuminori Tanabe
- Department of Human Science, Interdisciplinary Graduate School of Medicine and Engineering, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan.
| | - Tomoko Nakajima
- Department of Human Science, Interdisciplinary Graduate School of Medicine and Engineering, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Masahiko Ito
- Department of Microbiology, Interdisciplinary Graduate School of Medicine and Engineering, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
92
|
Satter RL, Morse MJ, Lee Y, Crain RC, Coté GG, Moran N. Light- and Clock-Controlled Leaflet Movements inSamanea saman*: A Physiological, Biophysical and Biochemical Analysis**. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1988.tb00034.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
93
|
He XP, Wen R, McNamara JO. Impairment of kindling development in phospholipase Cγ1 heterozygous mice. Epilepsia 2014; 55:456-63. [PMID: 24502564 DOI: 10.1111/epi.12536] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2013] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Elucidating molecular mechanisms underlying limbic epileptogenesis may reveal novel targets for preventive therapy. Studies of TrkB mutant mice led us to hypothesize that signaling through a specific phospholipase (PLC), PLCγ1, promoted development of kindling. METHODS To test this hypothesis, we examined the development of kindling in PLCγ1 heterozygous mice. We also examined the cellular and subcellular location of PLCγ1 in adult wild-type mice. RESULTS The development of kindling was impaired in PLCγ1 heterozygous mice compared to wild-type controls. PLCγ1 immunoreactivity was localized to the soma and dendrites of both excitatory and inhibitory neurons in the hippocampus of adult mice. SIGNIFICANCE This study implicates PLCγ1 signaling as the dominant pathway by which TrkB activation promotes limbic epileptogenesis. Its cellular localization places PLCγ1 in a position to modify the efficacy of both excitatory and inhibitory synaptic transmission. These findings advance PLCγ1 as a novel target for therapies aimed at preventing temporal lobe epilepsy induced by status epilepticus.
Collapse
Affiliation(s)
- Xiao Ping He
- Department of Medicine (Neurology), Duke University Medical Center, Durham, North Carolina, U.S.A
| | | | | |
Collapse
|
94
|
Shin EJ, Shin SW, Nguyen TTL, Park DH, Wie MB, Jang CG, Nah SY, Yang BW, Ko SK, Nabeshima T, Kim HC. Ginsenoside Re rescues methamphetamine-induced oxidative damage, mitochondrial dysfunction, microglial activation, and dopaminergic degeneration by inhibiting the protein kinase Cδ gene. Mol Neurobiol 2014; 49:1400-21. [PMID: 24430743 DOI: 10.1007/s12035-013-8617-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 12/09/2013] [Indexed: 11/26/2022]
Abstract
Ginsenoside Re, one of the main constituents of Panax ginseng, possesses novel antioxidant and anti-inflammatory properties. However, the pharmacological mechanism of ginsenoside Re in dopaminergic degeneration remains elusive. We suggested that protein kinase C (PKC) δ mediates methamphetamine (MA)-induced dopaminergic toxicity. Treatment with ginsenoside Re significantly attenuated methamphetamine-induced dopaminergic degeneration in vivo by inhibiting impaired enzymatic antioxidant systems, mitochondrial oxidative stress, mitochondrial translocation of protein kinase Cδ, mitochondrial dysfunction, pro-inflammatory microglial activation, and apoptosis. These protective effects were comparable to those observed with genetic inhibition of PKCδ in PKCδ knockout (-/-) mice and with PKCδ antisense oligonucleotides, and ginsenoside Re did not provide any additional protective effects in the presence of PKCδ inhibition. Our results suggest that PKCδ is a critical target for ginsenoside Re-mediated protective activity in response to dopaminergic degeneration induced by MA.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Jiang L, Sun ST, Heine N, Liu JW, Yacovitch TI, Wende T, Liu ZF, Neumark DM, Asmis KR. Large amplitude motion in cold monohydrated dihydrogen phosphate anions H2PO4−(H2O): infrared photodissociation spectroscopy combined with ab initio molecular dynamics simulations. Phys Chem Chem Phys 2014; 16:1314-8. [DOI: 10.1039/c3cp54250e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
96
|
Saha T, Maitra R, Chattopadhyay SK. A unified approach to the important protein kinase inhibitor balanol and a proposed analogue. Beilstein J Org Chem 2013; 9:2910-5. [PMID: 24454570 PMCID: PMC3896276 DOI: 10.3762/bjoc.9.327] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/07/2013] [Indexed: 11/26/2022] Open
Abstract
A common approach to the important protein kinase inhibitor (−)-balanol and an azepine-ring-modified balanol derivative has been developed using an efficient fragment coupling protocol which proceeded in good overall yield.
Collapse
Affiliation(s)
- Tapan Saha
- Department of Chemistry, University of Kalyani, Kalyani - 741235, West Bengal, India
| | - Ratnava Maitra
- Department of Chemistry, University of Kalyani, Kalyani - 741235, West Bengal, India
| | | |
Collapse
|
97
|
Teshima Y, Takahashi N, Nishio S, Saito S, Kondo H, Fukui A, Aoki K, Yufu K, Nakagawa M, Saikawa T. Production of reactive oxygen species in the diabetic heart. Roles of mitochondria and NADPH oxidase. Circ J 2013; 78:300-6. [PMID: 24334638 DOI: 10.1253/circj.cj-13-1187] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reactive oxygen species (ROS) are the main facilitators of cardiovascular complications in diabetes mellitus (DM), and the ROS level is increased in cultured cells exposed to high glucose concentrations or in diabetic animal models. Emerging evidence shows that mitochondria and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase are dominant mechanisms of ROS production in the diabetic heart. Hyperpolarization of the mitochondrial inner membrane potentials and impaired mitochondrial function promote ROS production in the mitochondria of the diabetic heart. Uncoupling proteins are upregulated and may reduce the ROS level by depolarizing the mitochondrial inner membrane potential. NADPH oxidase is another major site of ROS production and its contribution to DM-induced ROS increase has been elucidated not only in vascular smooth muscle cells and endothelial cells, but also in cardiomyocytes. Protein kinase C, angiotensin II, and advanced glycation endproducts (AGEs)/receptor for AGEs can activate NADPH oxidase. Increased intracellular calcium level mediated via the Na(+)-H(+) exchanger and subsequent activation of Ca(2+)/calmodulin-dependent protein kinase II may also activate NADPH oxidase. This review presents the current understanding of the mechanisms of ROS production, focusing especially on the roles of mitochondria and NADPH oxidase.
Collapse
Affiliation(s)
- Yasushi Teshima
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Yun B, Lee H, Ghosh M, Cravatt BF, Hsu KL, Bonventre JV, Ewing H, Gelb MH, Leslie CC. Serine hydrolase inhibitors block necrotic cell death by preventing calcium overload of the mitochondria and permeability transition pore formation. J Biol Chem 2013; 289:1491-504. [PMID: 24297180 DOI: 10.1074/jbc.m113.497651] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Perturbation of calcium signaling that occurs during cell injury and disease, promotes cell death. In mouse lung fibroblasts A23187 triggered mitochondrial permeability transition pore (MPTP) formation, lactate dehydrogenase (LDH) release, and necrotic cell death that were blocked by cyclosporin A (CsA) and EGTA. LDH release temporally correlated with arachidonic acid release but did not involve cytosolic phospholipase A2α (cPLA2α) or calcium-independent PLA2. Surprisingly, release of arachidonic acid and LDH from cPLA2α-deficient fibroblasts was inhibited by the cPLA2α inhibitor pyrrophenone, and another serine hydrolase inhibitor KT195, by preventing mitochondrial calcium uptake. Inhibitors of calcium/calmodulin-dependent protein kinase II, a mitochondrial Ca(2+) uniporter (MCU) regulator, also prevented MPTP formation and arachidonic acid release induced by A23187 and H2O2. Pyrrophenone blocked MCU-mediated mitochondrial calcium uptake in permeabilized fibroblasts but not in isolated mitochondria. Unlike pyrrophenone, the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol and CsA blocked cell death and arachidonic acid release not by preventing mitochondrial calcium uptake but by inhibiting MPTP formation. In fibroblasts stimulated with thapsigargin, which induces MPTP formation by a direct effect on mitochondria, LDH and arachidonic acid release were blocked by CsA and 1-oleoyl-2-acetyl-sn-glycerol but not by pyrrophenone or EGTA. Therefore serine hydrolase inhibitors prevent necrotic cell death by blocking mitochondrial calcium uptake but not the enzyme releasing fatty acids that occurs by a novel pathway during MPTP formation. This work reveals the potential for development of small molecule cell-permeable serine hydrolase inhibitors that block MCU-mediated mitochondrial calcium overload, MPTP formation, and necrotic cell death.
Collapse
Affiliation(s)
- Bogeon Yun
- From the Department of Pediatrics, National Jewish Health, Denver, Colorado 80206
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Fluorescence methods to study lipid-protein association: The interaction of protein kinase C with lipid-loaded mixed micelles. J Fluoresc 2013; 4:377-83. [PMID: 24233621 DOI: 10.1007/bf01881462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/1993] [Indexed: 10/25/2022]
Abstract
The interaction of protein kinase C with lipids was studied in a mixed micellar system. Two fluorescence spectroscopic methods are presented with a different but complementary information content. Diffusion monitored by fluorescence correlation spectroscopy provides information on the interaction of the protein with the whole lipid aggregate. Resonance energy transfer from tryptophans to pyrene-labeled lipids monitored by time-correlated single-photon counting supplies information on the interaction of the protein with specific lipid cofactors within the micelle. The results can be extended to postulate new mechanisms for the activation of protein kinase C by the signal transduction cascades in the cell. Both fluorescence spectroscopic methods can be easily applied to other protein systems which interact with lipids.
Collapse
|
100
|
Tanabe F, Nakajima T, Ito M. The thiol proteinase inhibitor E-64-d ameliorates amyloid-β-induced reduction of sAPPα secretion by reversing ceramide-induced protein kinase C down-regulation in SH-SY5Y neuroblastoma cells. Biochem Biophys Res Commun 2013; 441:256-61. [PMID: 24141119 DOI: 10.1016/j.bbrc.2013.10.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
Abstract
In Alzheimer's disease (AD), enhancing α-secretase processing of amyloid precursor protein (APP) is an important pathway to decrease neurotoxic amyloid β (Aβ) secretion. The α-secretase is reported to be regulated by protein kinase C (PKC) and various endogenous proteins or cell surface receptors. In this report, we first examined whether Aβ reduces α-secretase activity, and showed that Aβ peptide 1-40 (0.001 and 0.01 μM) reduced the secretion of soluble amyloid precursor protein α (sAPPα) in carbachol-stimulated SH-SY5Y neuroblastoma cells. E-64-d (3 μM), which is a potent calpain inhibitor that prevents PKC degradation, ameliorated the Aβ-induced reduction of sAPPα secretion. In addition, we observed that Aβ significantly enhanced ceramide production by activating neutral sphingomyelinase. The cell-permeable ceramide analog, C2-ceramide (1 μg/mL), also reduced sAPPα secretion, and in addition, E-64-d eliminated the observed decrease of sAPPα secretion. C2-ceramide induced down-regulation of PKC-α, -β1, and -β2 isozymes in SH-SY5Y cells. These findings suggest that ceramide may play an important role in sAPPα processing by modulating PKC activity.
Collapse
Affiliation(s)
- Fuminori Tanabe
- Department of Human Science, Interdisciplinary Graduate School of Medicine and Engineering, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan.
| | | | | |
Collapse
|