51
|
Rahman M, Edwards H, Birze N, Gabrilska R, Rumbaugh KP, Blawzdziewicz J, Szewczyk NJ, Driscoll M, Vanapalli SA. NemaLife chip: a micropillar-based microfluidic culture device optimized for aging studies in crawling C. elegans. Sci Rep 2020; 10:16190. [PMID: 33004810 PMCID: PMC7530743 DOI: 10.1038/s41598-020-73002-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 09/10/2020] [Indexed: 01/23/2023] Open
Abstract
In this study, we report a microfluidic device for the whole-life culture of the nematode Caenorhabditis elegans that allows the scoring of animal survival and health measures. This device referred to as the NemaLife chip features: (1) an optimized micropillar arena in which animals can crawl, (2) sieve channels that separate progeny and prevent the loss of adults from the arena during culture maintenance, and (3) ports that allow rapid accessibility for feeding the adult-only population and introducing reagents as needed. The pillar arena geometry was optimized to accommodate the growing body size during culture and emulate the body gait and locomotion of animals reared on agar. Likewise, feeding protocols were optimized to recapitulate longevity outcomes typical of standard plate growth. Key benefits of the NemaLife Chip include eliminating the need to perform repeated manual transfers of adults during survival assays, negating the need for progeny-blocking chemical interventions, and avoiding the swim-induced stress across lifespan in animals reared in liquid. We also show that the culture of animals in pillar-less microfluidic chambers reduces lifespan and introduces physiological stress by increasing the occurrence of age-related vulval integrity disorder. We validated our pillar-based device with longevity analyses of classical aging mutants (daf-2, age-1, eat-2, and daf-16) and animals subjected to RNAi knockdown of age-related genes (age-1 and daf-16). We also showed that healthspan measures such as pharyngeal pumping and tap-induced stimulated reversals can be scored across the lifespan in the NemaLife chip. Overall, the capacity to generate reliable lifespan and physiological data underscores the potential of the NemaLife chip to accelerate healthspan and lifespan investigations in C. elegans.
Collapse
Affiliation(s)
- Mizanur Rahman
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Hunter Edwards
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Nikolajs Birze
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Rebecca Gabrilska
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, 79409, USA
| | - Kendra P Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, 79409, USA
| | - Jerzy Blawzdziewicz
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79430, USA
| | - Nathaniel J Szewczyk
- Ohio Musculoskeletal and Neurological Institute and Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, USA
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, 08854, USA
| | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
52
|
Abstract
The last few decades have seen the structural and functional elucidation of small-molecule chemical signals called ascarosides in C. elegans. Ascarosides mediate several biological processes in worms, ranging from development, to behavior. These signals are modular in their design architecture, with their building blocks derived from metabolic pathways. Behavioral responses are not only concentration dependent, but also are influenced by the current physiological state of the animal. Cellular and circuit-level analyses suggest that these signals constitute a complex communication system, employing both synergistic molecular elements and sex-specific neuronal circuits governing the response. In this review, we discuss research from multiple laboratories, including our own, that detail how these chemical signals govern several different social behaviors in C. elegans. We propose that the ascaroside repertoire represents a link between diverse metabolic and neurobiological life-history traits and governs the survival of C. elegans in its natural environment.
Collapse
Affiliation(s)
- Caroline S Muirhead
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
| |
Collapse
|
53
|
Billard B, Vigne P, Braendle C. A Natural Mutational Event Uncovers a Life History Trade-Off via Hormonal Pleiotropy. Curr Biol 2020; 30:4142-4154.e9. [PMID: 32888477 DOI: 10.1016/j.cub.2020.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/30/2022]
Abstract
Environmental signals often control central life history decisions, including the choice between reproduction and somatic maintenance. Such adaptive developmental plasticity occurs in the nematode Caenorhabditis elegans, where environmental cues govern whether larvae will develop directly into reproducing adults or arrest their development to become stress-resistant dauer larvae. Here, we identified a natural variant underlying enhanced sensitivity to dauer-inducing cues in C. elegans: a 92-bp deletion in the cis-regulatory region of the gene eak-3. This deletion reduces synthesis or activity of the steroid hormone dafachronic acid (DA), thereby increasing environmental sensitivity for dauer induction. Consistent with known pleiotropic roles of DA, this eak-3 variant significantly slows down reproductive growth. We experimentally show that, although the eak-3 deletion can provide a fitness advantage through facilitated dauer production in stressful environments, this allele becomes rapidly outcompeted in favorable environments. The identified eak-3 variant therefore reveals a trade-off in how hormonal responses influence both the pace of developmental timing and the way in which environmental sensitivity controls adaptive plasticity. Together, our results show how a single mutational event altering hormonal signaling can lead to the emergence of a complex life history trade-off.
Collapse
Affiliation(s)
| | - Paul Vigne
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice, France
| | | |
Collapse
|
54
|
Androwski RJ, Asad N, Wood JG, Hofer A, Locke S, Smith CM, Rose B, Schroeder NE. Mutually exclusive dendritic arbors in C. elegans neurons share a common architecture and convergent molecular cues. PLoS Genet 2020; 16:e1009029. [PMID: 32997655 PMCID: PMC7549815 DOI: 10.1371/journal.pgen.1009029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 10/12/2020] [Accepted: 08/05/2020] [Indexed: 12/31/2022] Open
Abstract
Stress-induced changes to the dendritic architecture of neurons have been demonstrated in numerous mammalian and invertebrate systems. Remodeling of dendrites varies tremendously among neuron types. During the stress-induced dauer stage of Caenorhabditis elegans, the IL2 neurons arborize to cover the anterior body wall. In contrast, the FLP neurons arborize to cover an identical receptive field during reproductive development. Using time-course imaging, we show that branching between these two neuron types is highly coordinated. Furthermore, we find that the IL2 and FLP arbors have a similar dendritic architecture and use an identical downstream effector complex to control branching; however, regulation of this complex differs between stress-induced IL2 branching and FLP branching during reproductive development. We demonstrate that the unfolded protein response (UPR) sensor IRE-1, required for localization of the complex in FLP branching, is dispensable for IL2 branching at standard cultivation temperatures. Exposure of ire-1 mutants to elevated temperatures results in defective IL2 branching, thereby demonstrating a previously unknown genotype by environment interaction within the UPR. We find that the FOXO homolog, DAF-16, is required cell-autonomously to control arborization during stress-induced arborization. Likewise, several aspects of the dauer formation pathway are necessary for the neuron to remodel, including the phosphatase PTEN/DAF-18 and Cytochrome P450/DAF-9. Finally, we find that the TOR associated protein, RAPTOR/DAF-15 regulates mutually exclusive branching of the IL2 and FLP dendrites. DAF-15 promotes IL2 branching during dauer and inhibits precocious FLP growth. Together, our results shed light on molecular processes that regulate stress-mediated remodeling of dendrites across neuron classes.
Collapse
Affiliation(s)
- Rebecca J. Androwski
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Nadeem Asad
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Janet G. Wood
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Allison Hofer
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Steven Locke
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Cassandra M. Smith
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Becky Rose
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Nathan E. Schroeder
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
55
|
Abstract
Caenorhabditis elegans secretes a complex cocktail of small chemicals collectively called ascaroside pheromones which serves as a chemical language for intra-species communication. Subsets of ascarosides have been shown to mediate a broad spectrum of C. elegans behavior and development, such as gender-specific attraction, repulsion, aggregation, olfactory plasticity, and dauer formation. Recent studies show that specific components of ascarosides elicit a rapid avoidance response that allows animals to avoid predators and escape from unfavorable conditions. Moreover, this avoidance behavior is modulated by external conditions, internal states, and previous experience, indicating that pheromone avoidance behavior is highly plastic. In this review, we describe molecular and circuit mechanisms underlying plasticity in pheromone avoidance behavior which pave a way to better understanding circuit mechanisms underlying behavioral plasticity in higher animals, including humans.
Collapse
Affiliation(s)
- YongJin Cheon
- Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| | - Hyeonjeong Hwang
- Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| | - Kyuhyung Kim
- Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| |
Collapse
|
56
|
Billard B, Gimond C, Braendle C. [Genetics and evolution of developmental plasticity in the nematode C. elegans: Environmental induction of the dauer stage]. Biol Aujourdhui 2020; 214:45-53. [PMID: 32773029 DOI: 10.1051/jbio/2020006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Indexed: 12/28/2022]
Abstract
Adaptive developmental plasticity is a common phenomenon across diverse organisms and allows a single genotype to express multiple phenotypes in response to environmental signals. Developmental plasticity is thus thought to reflect a key adaptation to cope with heterogenous habitats. Adaptive plasticity often relies on highly regulated processes in which organisms sense environmental cues predictive of unfavourable environments. The integration of such cues may involve sophisticated neuro-endocrine signaling pathways to generate subtle or complete developmental shifts. A striking example of adaptive plasticity is found in the nematode C. elegans, which can undergo two different developmental trajectories depending on the environment. In favourable conditions, C. elegans develops through reproductive growth to become an adult in three days at 20 °C. In contrast, in unfavourable conditions (high population density, food scarcity, elevated temperature) larvae can adopt an alternative developmental stage, called dauer. dauer larvae are highly stress-resistant and exhibit specific anatomical, metabolic and behavioural features that allow them to survive and disperse. In C. elegans, the sensation of environmental cues is mediated by amphid ciliated sensory neurons by means of G-coupled protein receptors. In favourable environments, the perception of pro-reproductive cues, such as food and the absence of pro-dauer cues, upregulates insulin and TGF-β signaling in the nervous system. In unfavourable conditions, pro-dauer cues lead to the downregulation of insulin and TGF-β signaling. In favourable conditions, TGF-β and insulin act in parallel to promote synthesis of dafachronic acid (DA) in steroidogenic tissues. Synthetized DA binds to the DAF-12 nuclear receptor throughout the whole body. DA-bound DAF-12 positively regulates genes of reproductive development in all C. elegans tissues. In poor conditions, the inhibition of insulin and TGF-β signaling prevents DA synthesis, thus the unliganded DAF-12 and co-repressor DIN-1 repress genes of reproductive development and promote dauer formation. Wild C. elegans have often been isolated as dauer larvae suggesting that dauer formation is very common in nature. Natural populations of C. elegans have colonized a great variety of habitats across the planet, which may differ substantially in environmental conditions. Consistent with divergent adaptation to distinct ecological niches, wild isolates of C. elegans and other nematode species isolated from different locations show extensive variation in dauer induction. Quantitative genetic and population-genomic approaches have identified many quantitative trait loci (QTL) associated with differences in dauer induction as well as a few underlying causative molecular variants. In this review, we summarize how C. elegans dauer formation is genetically regulated and how this trait evolves- both within and between species.
Collapse
|
57
|
Mao YQ, Han SF, Zhang SL, Zhang ZY, Kong CY, Chen HL, Li ZM, Cai PR, Han B, Wang LS. An approach using Caenorhabditis elegans screening novel targets to suppress tumour cell proliferation. Cell Prolif 2020; 53:e12832. [PMID: 32452127 PMCID: PMC7309951 DOI: 10.1111/cpr.12832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/07/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Tumour cell proliferation requires high metabolism to meet the bioenergetics and biosynthetic needs. Dauer in Caenorhabditis elegans is characterized by lower metabolism, and we established an approach with C elegans to find potential tumour therapy targets. MATERIALS AND METHODS RNAi screening was used to find dauer-related genes, and these genes were further analysed in glp-1(-) mutants for tumour-suppressing testing. The identified tumour-related genes were verified in clinical tumour tissues. RESULTS The lifespan of glp-1(-) mutants was found to be extended by classical dauer formation signalling. Then, 61 of 287 kinase-coding genes in Caenorhabditis elegans were identified as dauer-related genes, of which 27 were found to be homologous to human oncogenes. Furthermore, 12 dauer-related genes were randomly selected for tumour-suppressing test, and six genes significantly extended the lifespan of glp-1(-) mutants. Of these six genes, F47D12.9, W02B12.12 and gcy-21 were newly linked to dauer formation. These three new dauer-related genes significantly suppressed tumour cell proliferation and thus extended the lifespan of glp-1(-) mutants in a longevity- or dauer-independent manner. The mRNA expression profiles indicated that these dauer-related genes trigged similar low metabolism pattern in glp-1(-) mutants. Notably, the expression of homolog gene DCAF4L2/F47D12.9, TSSK6/W02B12.12 and NPR1/gcy-21 was found to be higher in glioma compared with adjacent normal tissue. In addition, the high expression of TSSK6/W02B12.12 and NPR1/gcy-21 correlated with a worse survival in glioma patients. CONCLUSIONS Dauer gene screening in combination with tumour-suppressing test in glp-1(-) mutants provided a useful approach to find potential targets for tumour therapy via suppressing tumour cell proliferation and rewiring tumour cell metabolism.
Collapse
Affiliation(s)
- Yu-Qin Mao
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - San-Feng Han
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Shi-Long Zhang
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Zheng-Yan Zhang
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Chao-Yue Kong
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Hui-Ling Chen
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Zhan-Ming Li
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Pei-Ran Cai
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Bing Han
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Li-Shun Wang
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital, Fudan University, Shanghai, China.,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
58
|
Wong SS, Yu J, Schroeder FC, Kim DH. Population Density Modulates the Duration of Reproduction of C. elegans. Curr Biol 2020; 30:2602-2607.e2. [PMID: 32442457 DOI: 10.1016/j.cub.2020.04.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/20/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
Population density can modulate the developmental trajectory of Caenorhabditis elegans larvae by promoting entry into dauer diapause, which is characterized by metabolic and anatomical remodeling and stress resistance [1, 2]. Genetic analysis of dauer formation has identified the involvement of evolutionarily conserved endocrine signaling pathways, including the DAF-2/insulin-like receptor signaling pathway [3-7]. Chemical and metabolomic analysis of dauer-inducing pheromone has identified a family of small molecules, ascarosides, which act potently to communicate increased population density and promote dauer formation [1, 8-10]. Here, we show that adult animals respond to ascarosides produced under conditions of increased population density by increasing the duration of reproduction. We observe that the ascarosides that promote dauer entry of larvae also act on adult animals to attenuate expression of the insulin peptide INS-6 from the ASI chemosensory neurons, resulting in diminished neuroendocrine insulin signaling that extends the duration of reproduction. Genetic analysis of ins-6 and corresponding insulin-signaling pathway mutants showed that the effect of increased population density on reproductive span was mimicked by ins-6 loss of function that exerted effects on duration of reproduction through the canonical DAF-2-DAF-16 pathway. We further observed that the effect of population density on reproductive span acted through DAF-16-dependent and DAF-16-independent pathways upstream of DAF-12, paralleling in adults what has been observed for the dauer developmental decision of larvae. Our data suggest that, under conditions of increased population density, C. elegans animals prolong the duration of reproductive egg laying, which may enable the subsequent development of progeny under more favorable conditions.
Collapse
Affiliation(s)
- Spencer S Wong
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jingfang Yu
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14850, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca 14850, NY, USA
| | - Frank C Schroeder
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14850, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca 14850, NY, USA
| | - Dennis H Kim
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
59
|
Park JY, Cheong MC, Cho JY, Koo HS, Paik YK. A novel functional cross-interaction between opioid and pheromone signaling may be involved in stress avoidance in Caenorhabditis elegans. Sci Rep 2020; 10:7524. [PMID: 32371913 PMCID: PMC7200713 DOI: 10.1038/s41598-020-64567-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 04/17/2020] [Indexed: 11/09/2022] Open
Abstract
Upon sensing starvation stress, Caenorhabditis elegans larvae (L2d) elicit two seemingly opposing behaviors to escape from the stressful condition: food-seeking roaming mediated by the opioid peptide NLP-24 and dauer formation mediated by pheromones. Because opioid and pheromone signals both originate in ASI chemosensory neurons, we hypothesized that they might act sequentially or competitively to avoid starvation stress. Our data shows that NPR-17 opioid receptor signaling suppressed pheromone biosynthesis and the overexpression of opioid genes disturbed dauer formation. Likewise, DAF-37 pheromone receptor signaling negatively modulated nlp-24 expression in the ASI neurons. Under short-term starvation (STS, 3 h), both pheromone and opioid signaling were downregulated in gpa-3 mutants. Surprisingly, the gpa-3;nlp-24 double mutants exhibited much higher dauer formation than seen in either of the single mutants. Under long-term starvation (LTS, >24 h), the stress-activated SKN-1a downregulated opioid signaling and then enhanced dauer formation. Both insulin and serotonin stimulated opioid signaling, whereas NHR-69 suppressed opioid signaling. Thus, GPA-3 and SKN-1a are proposed to regulate cross-antagonistic interaction between opioids and pheromones in a cell-specific manner. These regulatory functions are suggested to be exerted via the selective interaction of GPA-3 with NPR-17 and site-specific SKN-1 binding to the promoter of nlp-24 to facilitate stress avoidance.
Collapse
Affiliation(s)
- Jun Young Park
- Interdisciplinary Program in Integrative Omics for Biomedical Science, Yonsei University, Seoul, 03722, Korea
- Yonsei Proteome Research Center, Yonsei University, Seoul, 03722, Korea
| | - Mi Cheong Cheong
- Department of Pharmacology, UT Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Jin-Young Cho
- Yonsei Proteome Research Center, Yonsei University, Seoul, 03722, Korea
| | - Hyeon-Sook Koo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Young-Ki Paik
- Interdisciplinary Program in Integrative Omics for Biomedical Science, Yonsei University, Seoul, 03722, Korea.
- Yonsei Proteome Research Center, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
60
|
Dong C, Weadick CJ, Truffault V, Sommer RJ. Convergent evolution of small molecule pheromones in Pristionchus nematodes. eLife 2020; 9:55687. [PMID: 32338597 PMCID: PMC7224695 DOI: 10.7554/elife.55687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/24/2020] [Indexed: 01/05/2023] Open
Abstract
The small molecules that mediate chemical communication between nematodes-so-called 'nematode-derived-modular-metabolites' (NDMMs)-are of major interest because of their ability to regulate development, behavior, and life-history. Pristionchus pacificus nematodes produce an impressive diversity of structurally complex NDMMs, some of which act as primer pheromones that are capable of triggering irreversible developmental switches. Many of these NDMMs have only ever been found in P. pacificus but no attempts have been made to study their evolution by profiling closely related species. This study brings a comparative perspective to the biochemical study of NDMMs through the systematic MS/MS- and NMR-based analysis of exo-metabolomes from over 30 Pristionchus species. We identified 36 novel compounds and found evidence for the convergent evolution of complex NDMMs in separate branches of the Pristionchus phylogeny. Our results demonstrate that biochemical innovation is a recurrent process in Pristionchus nematodes, a pattern that is probably typical across the animal kingdom.
Collapse
Affiliation(s)
- Chuanfu Dong
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Cameron J Weadick
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | | | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
61
|
Park S, Park JY, Paik YK. A Molecular Basis for Reciprocal Regulation between Pheromones and Hormones in Response to Dietary Cues in C. elegans. Int J Mol Sci 2020; 21:ijms21072366. [PMID: 32235409 PMCID: PMC7177881 DOI: 10.3390/ijms21072366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 01/31/2023] Open
Abstract
Under stressful conditions, the early larvae of C. elegans enter dauer diapause, a non-aging period, driven by the seemingly opposite influence of ascaroside pheromones (ASCRs) and steroid hormone dafachronic acids (DAs). However, the molecular basis of how these small molecules engage in competitive crosstalk in coordination with insulin/IGF-1 signaling (IIS) remains elusive. Here we report a novel transcriptional regulatory pathway that seems to operate between the ASCR and DA biosynthesis under ad libitum (AL) feeding conditions or bacterial deprivation (BD). Although expression of the ASCR and DA biosynthetic genes reciprocally inhibit each other, ironically and interestingly, such dietary cue-mediated modulation requires the presence of the competitors. Under BD, induction of ASCR biosynthetic gene expression required DA, while ASCR suppresses the expression of the DA biosynthetic gene daf-36. The negative regulation of DA by ASCR was IIS-dependent, whereas daf-36 regulation appeared to be independent of IIS. These observations suggest that the presence of ASCR determines the IIS-dependency of DA gene expression regardless of dietary conditions. Thus, our work defines a molecular basis for a novel reciprocal gene regulation of pheromones and hormones to cope with stressful conditions during development and aging.
Collapse
|
62
|
Carranza-García E, Navarro RE. Insights Into the Hypometabolic Stage Caused by Prolonged Starvation in L4-Adult Caenorhabditis elegans Hermaphrodites. Front Cell Dev Biol 2020; 8:124. [PMID: 32211406 PMCID: PMC7057233 DOI: 10.3389/fcell.2020.00124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 02/12/2020] [Indexed: 11/24/2022] Open
Abstract
Animals alter their reproductive cycles in response to changing nutritional conditions, to ensure that offspring production only occurs under favorable circumstances. These adaptive strategies include reversible hypometabolic states of dormancy such as “arrest” and “diapause.” The free-living nematode Caenorhabditis elegans can arrest its life cycle during some larval stages without modifying its anatomy and physiology until conditions improve but it can also modify its morphological and physiological features to cope with harsh conditions and transition into diapause. The well-defined “dauer” diapause was described more than 40 years ago and has been the subject of comprehensive investigations. The existence of another hypometabolic state, termed adult reproductive diapause (ARD), has been debated after it was first described 10 years ago. Here, we review the current knowledge regarding the effect of food deprivation during the pre-reproductive larval and adult stages on overall organismal homeostasis, highlighting the implications on germ cell maintenance and fertility preservation.
Collapse
Affiliation(s)
- E Carranza-García
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosa E Navarro
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
63
|
Elucidating the molecular and developmental biology of parasitic nematodes: Moving to a multiomics paradigm. ADVANCES IN PARASITOLOGY 2020; 108:175-229. [PMID: 32291085 DOI: 10.1016/bs.apar.2019.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the past two decades, significant progress has been made in the sequencing, assembly, annotation and analyses of genomes and transcriptomes of parasitic worms of socioeconomic importance. This progress has somewhat improved our knowledge and understanding of these pathogens at the molecular level. However, compared with the free-living nematode Caenorhabditis elegans, the areas of functional genomics, transcriptomics, proteomics and metabolomics of parasitic nematodes are still in their infancy, and there are major gaps in our knowledge and understanding of the molecular biology of parasitic nematodes. The information on signalling molecules, molecular pathways and microRNAs (miRNAs) that are known to be involved in developmental processes in C. elegans and the availability of some molecular resources (draft genomes, transcriptomes and some proteomes) for selected parasitic nematodes provide a basis to start exploring the developmental biology of parasitic nematodes. Indeed, some studies have identified molecules and pathways that might associate with developmental processes in related, parasitic nematodes, such as Haemonchus contortus (barber's pole worm). However, detailed information is often scant and 'omics resources are limited, preventing a proper integration of 'omic data sets and comprehensive analyses. Moreover, little is known about the functional roles of pheromones, hormones, signalling pathways and post-transcriptional/post-translational regulations in the development of key parasitic nematodes throughout their entire life cycles. Although C. elegans is an excellent model to assist molecular studies of parasitic nematodes, its use is limited when it comes to explorations of processes that are specific to parasitism within host animals. A deep understanding of parasitic nematodes, such as H. contortus, requires substantially enhanced resources and the use of integrative 'omics approaches for analyses. The improved genome and well-established in vitro larval culture system for H. contortus provide unprecedented opportunities for comprehensive studies of the transcriptomes (mRNA and miRNA), proteomes (somatic, excretory/secretory and phosphorylated proteins) and lipidomes (e.g., polar and neutral lipids) of this nematode. Such resources should enable in-depth explorations of its developmental biology at a level, not previously possible. The main aims of this review are (i) to provide a background on the development of nematodes, with a particular emphasis on the molecular aspects involved in the dauer formation and exit in C. elegans; (ii) to critically appraise the current state of knowledge of the developmental biology of parasitic nematodes and identify key knowledge gaps; (iii) to cover salient aspects of H. contortus, with a focus on the recent advances in genomics, transcriptomics, proteomics and lipidomics as well as in vitro culturing systems; (iv) to review recent advances in our knowledge and understanding of the molecular and developmental biology of H. contortus using an integrative multiomics approach, and discuss the implications of this approach for detailed explorations of signalling molecules, molecular processes and pathways likely associated with nematode development, adaptation and parasitism, and for the identification of novel intervention targets against these pathogens. Clearly, the multiomics approach established recently is readily applicable to exploring a wide range of interesting and socioeconomically significant parasitic worms (including also trematodes and cestodes) at the molecular level, and to elucidate host-parasite interactions and disease processes.
Collapse
|
64
|
Manohar M, Tenjo-Castano F, Chen S, Zhang YK, Kumari A, Williamson VM, Wang X, Klessig DF, Schroeder FC. Plant metabolism of nematode pheromones mediates plant-nematode interactions. Nat Commun 2020; 11:208. [PMID: 31924834 PMCID: PMC6954178 DOI: 10.1038/s41467-019-14104-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022] Open
Abstract
Microorganisms and nematodes in the rhizosphere profoundly impact plant health, and small-molecule signaling is presumed to play a central role in plant rhizosphere interactions. However, the nature of the signals and underlying mechanisms are poorly understood. Here we show that the ascaroside ascr#18, a pheromone secreted by plant-parasitic nematodes, is metabolized by plants to generate chemical signals that repel nematodes and reduce infection. Comparative metabolomics of plant tissues and excretions revealed that ascr#18 is converted into shorter side-chained ascarosides that confer repellency. An Arabidopsis mutant defective in two peroxisomal acyl-CoA oxidases does not metabolize ascr#18 and does not repel nematodes, indicating that plants, like nematodes, employ conserved peroxisomal β-oxidation to edit ascarosides and change their message. Our results suggest that plant-editing of nematode pheromones serves as a defense mechanism that acts in parallel to conventional pattern-triggered immunity, demonstrating that plants may actively manipulate chemical signaling of soil organisms.
Collapse
Affiliation(s)
| | | | - Shiyan Chen
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Ying K Zhang
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Anshu Kumari
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | | | - Xiaohong Wang
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY, 14853, USA
| | - Daniel F Klessig
- Boyce Thompson Institute, Ithaca, NY, 14853, USA.
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Frank C Schroeder
- Boyce Thompson Institute, Ithaca, NY, 14853, USA.
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
65
|
Study of Steinernema hermaphroditum (Nematoda, Rhabditida), from the West Uttar Pradesh, India. Acta Parasitol 2019; 64:720-737. [PMID: 31077031 DOI: 10.2478/s11686-019-00061-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/24/2019] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The entomopathogenic nematodes have been reported from all continents (except Antarctica) and almost all regions of the world. Surveys of EPNs in India has resulted in the recovery of several isolates of Steinernema. Among one of them, isolate CS34 was identified as S. hermaphroditum Stock, Griffin & Chaerani, 2004. We investigated the identification and the pathogenicity of S. hermaphroditum in District Meerut of Western Uttar Pradesh, India. MATERIALS AND METHODS The Steinernema was examined for its pathogenicity and accurate identification by the mean of morphological and molecular technique and its geographical distribution was mapped based on meta-analysis of the ITS GenBank records. RESULTS The surveys of agricultural soils of district Meerut, India, resulted in the isolation of one strain from entomopathogenic nematode labelled CS34 through Galleria baiting technique. Morphological characters and morphometrical analysis indicated that the strain CS34 was closely related to the "glaseri" group of Steinernema spp. The Nblast results indicated that ITS rDNA sequence had no nucleotide differences in comparison with the S. hermaphroditum (JQ687355). However, one variation in the D2-D3 segment of 28S rDNA was observed in comparison with the AY598358. The phylogenetic analysis using ITS and 28S rDNA indicated that the Indian S. hermaphroditum could be placed together with other S. hermaphroditum, with strong posterior probability. Besides, the PCA analysis demonstrated some variability within the test populations. The distribution of S. hermaphroditum based on meta-analysis of the GenBank records showed its presence in the three Asian countries-India, Thailand and Indonesia. The Indian strain of S. hermaphroditum also tested positively for its virulence against three major pests, namely, Galleria mellonella, Helicoverpa armigera, and Spodoptera litura, with resultant which showed good efficacy on the mortalities. CONCLUSIONS In conclusion, the economy of India is agriculture-based, but there are huge losses due to different insect pests infesting different crops. Steinernema hermaphroditum CS34 is an indigenous species to Indian subcontinent and efforts should be made to evaluate its virulence and pathogenicity against the other agricultural pests hampering productivity throughout the country. This may lead to incorporate S. hermaphroditum strain CS34 as a regular biological control agent against important lepidopteran pest in integrated pest management programs in the future.
Collapse
|
66
|
Li X, Itani OA, Haataja L, Dumas KJ, Yang J, Cha J, Flibotte S, Shih HJ, Delaney CE, Xu J, Qi L, Arvan P, Liu M, Hu PJ. Requirement for translocon-associated protein (TRAP) α in insulin biogenesis. SCIENCE ADVANCES 2019; 5:eaax0292. [PMID: 31840061 PMCID: PMC6892615 DOI: 10.1126/sciadv.aax0292] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/07/2019] [Indexed: 05/26/2023]
Abstract
The mechanistic basis for the biogenesis of peptide hormones and growth factors is poorly understood. Here, we show that the conserved endoplasmic reticulum membrane translocon-associated protein α (TRAPα), also known as signal sequence receptor 1, plays a critical role in the biosynthesis of insulin. Genetic analysis in the nematode Caenorhabditis elegans and biochemical studies in pancreatic β cells reveal that TRAPα deletion impairs preproinsulin translocation while unexpectedly disrupting distal steps in insulin biogenesis including proinsulin processing and secretion. The association of common intronic single-nucleotide variants in the human TRAPα gene with susceptibility to type 2 diabetes and pancreatic β cell dysfunction suggests that impairment of preproinsulin translocation and proinsulin trafficking may contribute to the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Xin Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Omar A. Itani
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Leena Haataja
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kathleen J. Dumas
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jing Yang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Jeeyeon Cha
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephane Flibotte
- Departments of Zoology and Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hung-Jen Shih
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Colin E. Delaney
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jialu Xu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Ling Qi
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter Arvan
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Patrick J. Hu
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
67
|
Marks ND, Winter AD, Gu HY, Maitland K, Gillan V, Ambroz M, Martinelli A, Laing R, MacLellan R, Towne J, Roberts B, Hanks E, Devaney E, Britton C. Profiling microRNAs through development of the parasitic nematode Haemonchus identifies nematode-specific miRNAs that suppress larval development. Sci Rep 2019; 9:17594. [PMID: 31772378 PMCID: PMC6879476 DOI: 10.1038/s41598-019-54154-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/04/2019] [Indexed: 02/05/2023] Open
Abstract
Parasitic nematodes transition between dramatically different free-living and parasitic stages, with correctly timed development and migration crucial to successful completion of their lifecycle. However little is known of the mechanisms controlling these transitions. microRNAs (miRNAs) negatively regulate gene expression post-transcriptionally and regulate development of diverse organisms. Here we used microarrays to determine the expression profile of miRNAs through development and in gut tissue of the pathogenic nematode Haemonchus contortus. Two miRNAs, mir-228 and mir-235, were enriched in infective L3 larvae, an arrested stage analogous to Caenorhabditis elegans dauer larvae. We hypothesized that these miRNAs may suppress development and maintain arrest. Consistent with this, inhibitors of these miRNAs promoted H. contortus development from L3 to L4 stage, while genetic deletion of C. elegans homologous miRNAs reduced dauer arrest. Epistasis studies with C. elegans daf-2 mutants showed that mir-228 and mir-235 synergise with FOXO transcription factor DAF-16 in the insulin signaling pathway. Target prediction suggests that these miRNAs suppress metabolic and transcription factor activity required for development. Our results provide novel insight into the expression and functions of specific miRNAs in regulating nematode development and identify miRNAs and their target genes as potential therapeutic targets to limit parasite survival within the host.
Collapse
Affiliation(s)
- Neil D Marks
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Alan D Winter
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
- West of Scotland Genetic Services, Level 2B, Laboratory Medicine, Queen Elizabeth University Hospital, Govan Road, Glasgow, G51 4TF, UK
| | - Henry Y Gu
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Kirsty Maitland
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Victoria Gillan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Martin Ambroz
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | - Axel Martinelli
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20 W10, Kita-ku, Sapporo, Japan
| | - Roz Laing
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Rachel MacLellan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Jessica Towne
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Brett Roberts
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University Avenue, Glasgow, G12 8QQ, UK
| | - Eve Hanks
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Eileen Devaney
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK.
| | - Collette Britton
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK.
| |
Collapse
|
68
|
Reynolds JA. Noncoding RNA Regulation of Dormant States in Evolutionarily Diverse Animals. THE BIOLOGICAL BULLETIN 2019; 237:192-209. [PMID: 31714856 DOI: 10.1086/705484] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dormancy is evolutionarily widespread and can take many forms, including diapause, dauer formation, estivation, and hibernation. Each type of dormancy is characterized by distinct features; but accumulating evidence suggests that each is regulated by some common processes, often referred to as a common "toolkit" of regulatory mechanisms, that likely include noncoding RNAs that regulate gene expression. Noncoding RNAs, especially microRNAs, are well-known regulators of biological processes associated with numerous dormancy-related processes, including cell cycle progression, cell growth and proliferation, developmental timing, metabolism, and environmental stress tolerance. This review provides a summary of our current understanding of noncoding RNAs and their involvement in regulating dormancy.
Collapse
|
69
|
Roder AC, Wang Y, Butcher RA, Stock SP. Influence of symbiotic and non-symbiotic bacteria on pheromone production in Steinernema nematodes (Nematoda, Steinernematidae). ACTA ACUST UNITED AC 2019; 222:jeb.212068. [PMID: 31511342 DOI: 10.1242/jeb.212068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/04/2019] [Indexed: 11/20/2022]
Abstract
In this study, we assessed the effect of symbiotic (cognate and non-cognate) and non-symbiotic bacteria on ascaroside production of first-generation adults in two Steinernema spp.: S. carpocapsae All strain and S. feltiae SN strain. Each nematode species was reared under three bacterial scenarios: (1) cognate symbiotic, (2) non-cognate symbiotic strain and (3) non-cognate symbiotic species. Our results showed S. carpocapsae produced four quantifiable ascaroside molecules: asc-C5, asc-C6, asc-C7 and asc-C11, whereas in S. feltiae only three molecules were detected: asc-C5, asc-C7 and asc-C11. Bacterial conditions did not significantly affect the quantity of the secreted ascarosides in first-generation adults of S. carpocapsae However, in S. feltiae, Xenorhabdus nematophila All strain influenced the production of two ascaroside molecules: asc-C5 and asc-C11.
Collapse
Affiliation(s)
- Alexandra C Roder
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Yuting Wang
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Rebecca A Butcher
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - S Patricia Stock
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA .,Department of Entomology, University of Arizona, Forbes Building Rm 410, 1140 E. South Campus Drive, Tucson, AZ 85721, USA
| |
Collapse
|
70
|
Heestand B, Simon M, Frenk S, Titov D, Ahmed S. Transgenerational Sterility of Piwi Mutants Represents a Dynamic Form of Adult Reproductive Diapause. Cell Rep 2019; 23:156-171. [PMID: 29617657 PMCID: PMC5918633 DOI: 10.1016/j.celrep.2018.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/24/2018] [Accepted: 03/05/2018] [Indexed: 01/17/2023] Open
Abstract
Environmental stress can induce adult reproductive diapause, a state of developmental arrest that temporarily suspends reproduction. Deficiency for C. elegans Piwi protein PRG-1 results in strains that reproduce for many generations but then become sterile. We found that sterile-generation prg-1/Piwi mutants typically displayed pronounced germ cell atrophy as L4 larvae matured into 1-day-old adults. Atrophied germlines spontaneously reproliferated across the first days of adulthood, and this was accompanied by fertility for day 2–4 adults. Sterile day 5 prg-1 mutant adults remained sterile indefinitely, but providing an alternative food source could restore their fertility. Our data imply that late-generation prg-1 mutants experience a dynamic form of adult reproductive diapause, promoted by stress response, cell death, and RNAi pathways, where delayed fertility and reproductive quiescence represent parallel adaptive developmental outcomes. This may occur in response to a form of “heritable stress” that is transmitted by gametes and epigenetic in nature.
Collapse
Affiliation(s)
- Bree Heestand
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Matt Simon
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Stephen Frenk
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Denis Titov
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Shawn Ahmed
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
71
|
Pine chemical volatiles promote dauer recovery of a pine parasitic nematode, Bursaphelenchus xylophilus. Parasitology 2019; 147:50-57. [PMID: 31455450 DOI: 10.1017/s0031182019001264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pinewood nematode, Bursaphelenchus xylophilus, a pine parasitic nematode, poses a serious threat to its host pine forests globally. When dispersal-stage larvae 4 (dauer, DL4) of B. xylophilus enters the new pine, it moults into propagative adult (dauer recovery) and reproduces quickly to kill the host pine. Here, we found pine chemical volatiles, rather than the common dauer recovery factors of nematodes (e.g. suitable temperatures, nutrient availability or density), promote B. xylophilus dauer recovery. The results showed that volatilization of chemicals in host pines could attract DL4 and promote DL4 recovery. To identify which chemicals promote this process, we determined the stimulated activity of the main volatiles of pines including six monoterpenes and two sesquiterpenes. Results showed that all the six monoterpenes promoted dauer recovery, especially β-pinene and β-myrcene, but the two sesquiterpenes have no effect on the transformation. Furthermore, β-pinene performed gradient effects on dauer recovery. We hypothesized that when DL4 infect pine trees, the pine volatiles released from the feeding wounds are used as chemical signals for DL4 transformation to adult to reproduce and rapidly kill the pines. Our study identified the B. xylophilus dauer recovery chemical signal and may contribute to preventing pine wilt disease.
Collapse
|
72
|
Environmental Programming of Adult Foraging Behavior in C. elegans. Curr Biol 2019; 29:2867-2879.e4. [PMID: 31422888 DOI: 10.1016/j.cub.2019.07.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 05/26/2019] [Accepted: 07/12/2019] [Indexed: 11/22/2022]
Abstract
Foraging strategies should be tuned to the expected distribution of resources in the environment. Tuning can occur over generations and lead to genetic differences in innate foraging behavior or over shorter timescales within an individual's lifespan. Both genetically encoded and experience-based strategies are implemented by neural circuits that respond to environmental cues and track internal states. Caenorhabditis elegans exhibit both between-strain genetic differences and within-strain plasticity in foraging. In individuals, changes in foraging are usually short term and based on recent experience. Here, we tested whether developmental experience could permanently alter foraging. We found that, in most wild strains, early-life starvation led to "cautious" foraging strategies, in which exploration is reduced, and these behavioral changes are associated with altered dynamics in a locomotory circuit. Possessing either the derived (domestication-associated) or ancestral allele of the neuroglobin glb-5 determines foraging plasticity. Overall, we show that C. elegans exhibit adaptive developmental plasticity that affects multiple aspects of foraging behavior and leads to changes in a core navigation circuit and that innate foraging traits and plasticity in those traits are genetically separable. VIDEO ABSTRACT.
Collapse
|
73
|
Ascaroside Pheromones: Chemical Biology and Pleiotropic Neuronal Functions. Int J Mol Sci 2019; 20:ijms20163898. [PMID: 31405082 PMCID: PMC6719183 DOI: 10.3390/ijms20163898] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 07/26/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022] Open
Abstract
Pheromones are neuronal signals that stimulate conspecific individuals to react to environmental stressors or stimuli. Research on the ascaroside (ascr) pheromones in Caenorhabditis elegans and other nematodes has made great progress since ascr#1 was first isolated and biochemically defined in 2005. In this review, we highlight the current research on the structural diversity, biosynthesis, and pleiotropic neuronal functions of ascr pheromones and their implications in animal physiology. Experimental evidence suggests that ascr biosynthesis starts with conjugation of ascarylose to very long-chain fatty acids that are then processed via peroxisomal β-oxidation to yield diverse ascr pheromones. We also discuss the concentration and stage-dependent pleiotropic neuronal functions of ascr pheromones. These functions include dauer induction, lifespan extension, repulsion, aggregation, mating, foraging and detoxification, among others. These roles are carried out in coordination with three G protein-coupled receptors that function as putative pheromone receptors: SRBC-64/66, SRG-36/37, and DAF-37/38. Pheromone sensing is transmitted in sensory neurons via DAF-16-regulated glutamatergic neurotransmitters. Neuronal peroxisomal fatty acid β-oxidation has important cell-autonomous functions in the regulation of neuroendocrine signaling, including neuroprotection. In the future, translation of our knowledge of nematode ascr pheromones to higher animals might be beneficial, as ascr#1 has some anti-inflammatory effects in mice. To this end, we propose the establishment of pheromics (pheromone omics) as a new subset of integrated disciplinary research area within chemical ecology for system-wide investigation of animal pheromones.
Collapse
|
74
|
An excreted small molecule promotes C. elegans reproductive development and aging. Nat Chem Biol 2019; 15:838-845. [PMID: 31320757 PMCID: PMC6650165 DOI: 10.1038/s41589-019-0321-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/31/2019] [Indexed: 01/16/2023]
Abstract
Excreted small-molecule signals can bias developmental trajectories and physiology in diverse animal species. However, the chemical identity of these signals remains largely obscure. Here we report identification of an unusual N-acylated glutamine derivative, nacq#1, that accelerates reproductive development and shortens lifespan in C. elegans. Produced predominantly by C. elegans males, nacq#1 hastens onset of sexual maturity in hermaphrodites by promoting exit from the larval dauer diapause and by accelerating late larval development. Even at picomolar concentrations, nacq#1 shortens hermaphrodite lifespan, suggesting a trade-off between reproductive investment and longevity. Acceleration of development by nacq#1 requires chemosensation and depends on three homologs of vertebrate steroid hormone receptors. Unlike ascaroside pheromones, which are restricted to nematodes, fatty acylated amino acid derivatives similar to nacq#1 have been reported from humans and invertebrates, suggesting that related compounds may serve signaling functions throughout Metazoa.
Collapse
|
75
|
Butcher RA. Natural products as chemical tools to dissect complex biology in C. elegans. Curr Opin Chem Biol 2019; 50:138-144. [PMID: 31102973 DOI: 10.1016/j.cbpa.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022]
Abstract
The search for novel pheromones, hormones, and other types of natural products in the nematode Caenorhabditis elegans has accelerated over the last 10-15 years. Many of these natural products perturb fundamental processes such as developmental progression, metabolism, reproductive and somatic aging, and various behaviors and have thus become essential tools for probing these processes, which are difficult to study in higher organisms. Furthermore, given the similarity between C. elegans and parasitic nematodes, these natural products could potentially be used to manipulate the development and behavior of parasitic nematodes and target the infections caused by them.
Collapse
Affiliation(s)
- Rebecca A Butcher
- Department of Chemistry, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
76
|
Lohr JN, Galimov ER, Gems D. Does senescence promote fitness in Caenorhabditis elegans by causing death? Ageing Res Rev 2019; 50:58-71. [PMID: 30639341 PMCID: PMC6520499 DOI: 10.1016/j.arr.2019.01.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 12/14/2022]
Abstract
A widely appreciated conclusion from evolutionary theory is that senescence (aging) is of no adaptive value to the individual that it afflicts. Yet studies of Caenorhabditis elegans and Saccharomyces cerevisiae are increasingly revealing the presence of processes which actively cause senescence and death, leading some biogerontologists to wonder about the established theory. Here we argue that programmed death that increases fitness could occur in C. elegans and S. cerevisiae, and that this is consistent with the classic evolutionary theory of aging. This is because of the special conditions under which these organisms have evolved, particularly the existence of clonal populations with limited dispersal and, in the case of C. elegans, the brevity of the reproductive period caused by protandrous hermaphroditism. Under these conditions, death-promoting mechanisms could promote worm fitness by enhancing inclusive fitness, or worm colony fitness through group selection. Such altruistic, adaptive death is not expected to evolve in organisms with outbred, dispersed populations (e.g. most vertebrate species). The plausibility of adaptive death in C. elegans is supported by computer modelling studies, and new knowledge about the ecology of this species. To support these arguments we also review the biology of adaptive death, and distinguish three forms: consumer sacrifice, biomass sacrifice and defensive sacrifice.
Collapse
Affiliation(s)
- Jennifer N Lohr
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Evgeniy R Galimov
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.
| |
Collapse
|
77
|
Palmisano NJ, Meléndez A. Autophagy in C. elegans development. Dev Biol 2019; 447:103-125. [PMID: 29709599 PMCID: PMC6204124 DOI: 10.1016/j.ydbio.2018.04.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 03/19/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022]
Abstract
Autophagy involves the sequestration of cytoplasmic contents in a double-membrane structure referred to as the autophagosome and the degradation of its contents upon delivery to lysosomes. Autophagy activity has a role in multiple biological processes during the development of the nematode Caenorhabditis elegans. Basal levels of autophagy are required to remove aggregate prone proteins, paternal mitochondria, and spermatid-specific membranous organelles. During larval development, autophagy is required for the remodeling that occurs during dauer development, and autophagy can selectively degrade components of the miRNA-induced silencing complex, and modulate miRNA-mediated silencing. Basal levels of autophagy are important in synapse formation and in the germ line, to promote the proliferation of proliferating stem cells. Autophagy activity is also required for the efficient removal of apoptotic cell corpses by promoting phagosome maturation. Finally, autophagy is also involved in lipid homeostasis and in the aging process. In this review, we first describe the molecular complexes involved in the process of autophagy, its regulation, and mechanisms for cargo recognition. In the second section, we discuss the developmental contexts where autophagy has been shown to be important. Studies in C. elegans provide valuable insights into the physiological relevance of this process during metazoan development.
Collapse
Affiliation(s)
- Nicholas J Palmisano
- Biology Department, Queens College, CUNY, Flushing, NY, USA; Biology Ph.D. Program, The Graduate Center of the City University of New York, NK, USA
| | - Alicia Meléndez
- Biology Department, Queens College, CUNY, Flushing, NY, USA; Biology Ph.D. Program, The Graduate Center of the City University of New York, NK, USA; Biochemistry Ph.D. Program, The Graduate Center of the City University of New York, NY, USA.
| |
Collapse
|
78
|
Coraggio F, Püschel R, Marti A, Meister P. Polycomb and Notch signaling regulate cell proliferation potential during Caenorhabditis elegans life cycle. Life Sci Alliance 2019; 2:e201800170. [PMID: 30599047 PMCID: PMC6306570 DOI: 10.26508/lsa.201800170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/27/2022] Open
Abstract
Stable cell fate is an essential feature for multicellular organisms in which individual cells achieve specialized functions. Caenorhabditis elegans is a great model to analyze the determinants of cell fate stability because of its invariant lineage. We present a tractable cell fate challenge system that uses the induction of fate-specifying transcription factors. We show that wild-type differentiated animals are highly resistant to fate challenge. Removal of heterochromatin marks showed marked differences: the absence of histone 3 lysine 9 methylation (H3K9) has no effect on fate stability, whereas Polycomb homolog mes-2 mutants lacking H3K27 methylation terminally arrest larval development upon fate challenge. Unexpectedly, the arrest correlated with widespread cell proliferation rather than transdifferentiation. Using a candidate RNAi larval arrest-rescue screen, we show that the LIN-12Notch pathway is essential for hyperplasia induction. Moreover, Notch signaling appears downstream of food-sensing pathways, as dauers and first larval stage diapause animals are resistant to fate challenge. Our results demonstrate an equilibrium between proliferation and differentiation regulated by Polycomb and Notch signaling in the soma during the nematode life cycle.
Collapse
Affiliation(s)
- Francesca Coraggio
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Ringo Püschel
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Alisha Marti
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Peter Meister
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Bern, Switzerland
| |
Collapse
|
79
|
Park J, Choi W, Dar AR, Butcher RA, Kim K. Neuropeptide Signaling Regulates Pheromone-Mediated Gene Expression of a Chemoreceptor Gene in C. elegans. Mol Cells 2019; 42:28-35. [PMID: 30453729 PMCID: PMC6354054 DOI: 10.14348/molcells.2018.0380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 11/27/2022] Open
Abstract
Animals need to be able to alter their developmental and behavioral programs in response to changing environmental conditions. This developmental and behavioral plasticity is mainly mediated by changes in gene expression. The knowledge of the mechanisms by which environmental signals are transduced and integrated to modulate changes in sensory gene expression is limited. Exposure to ascaroside pheromone has been reported to alter the expression of a subset of putative G protein-coupled chemosensory receptor genes in the ASI chemosensory neurons of C. elegans (Kim et al., 2009; Nolan et al., 2002; Peckol et al., 1999). Here we show that ascaroside pheromone reversibly represses expression of the str-3 chemoreceptor gene in the ASI neurons. Repression of str-3 expression can be initiated only at the L1 stage, but expression is restored upon removal of ascarosides at any developmental stage. Pheromone receptors including SRBC-64/66 and SRG-36/37 are required for str-3 repression. Moreover, pheromone-mediated str-3 repression is mediated by FLP-18 neuropeptide signaling via the NPR-1 neuropeptide receptor. These results suggest that environmental signals regulate chemosensory gene expression together with internal neuropeptide signals which, in turn, modulate behavior.
Collapse
Affiliation(s)
- Jisoo Park
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988,
Korea
| | - Woochan Choi
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988,
Korea
| | - Abdul Rouf Dar
- Department of Chemistry, University of Florida, Gainesville, FL 32611,
USA
| | - Rebecca A. Butcher
- Department of Chemistry, University of Florida, Gainesville, FL 32611,
USA
| | - Kyuhyung Kim
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988,
Korea
| |
Collapse
|
80
|
Zhou Y, Zhang X, Butcher RA. Tryptophan Metabolism in Caenorhabditis elegans Links Aggregation Behavior to Nutritional Status. ACS Chem Biol 2019; 14:50-57. [PMID: 30586284 DOI: 10.1021/acschembio.8b00872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Caenorhabditis elegans uses aggregation pheromones to communicate its nutritional status and recruit fellow members of its species to food sources. These aggregation pheromones include the IC-ascarosides, ascarosides modified with an indole-3-carbonyl (IC) group on the 4'-position of the ascarylose sugar. Nothing is known about the biosynthesis of the IC modification beyond the fact that it is derived from tryptophan. Here, we show that C. elegans produces endogenously several indole-containing metabolites, including indole-3-pyruvic acid (IPA), indole-3-acetic acid (IAA; auxin), and indole-3-carboxylic acid, and that these metabolites are intermediates in the biosynthetic pathway from tryptophan to the IC group. Stable isotope-labeled IPA and IAA are incorporated into the IC-ascarosides. Importantly, we show that flux through the biosynthetic pathway is affected by the activity of the pyruvate dehydrogenase complex (PDC). Knockdown of the PDC by RNA interference leads to an accumulation of upstream metabolites and a reduction in downstream metabolites in the pathway. Our results show that production of aggregation pheromones is linked to PDC activity and that aggregation behavior may reflect a favorable metabolic state in the worm. Lastly, we show that treatment of C. elegans with indole-containing metabolites in the pathway induces the biosynthesis of the IC-ascarosides. Because the natural environment of C. elegans is rotting plant material, indole-containing metabolites in this environment could potentially stimulate pheromone biosynthesis and aggregation behavior in the worm. Thus, there may be important links between tryptophan metabolism in C. elegans and in plants and bacteria that enable interkingdom signaling.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Xinxing Zhang
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Rebecca A. Butcher
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
81
|
Flatt KM, Beshers C, Unal C, Cohen JD, Sundaram MV, Schroeder NE. Epidermal Remodeling in Caenorhabditis elegans Dauers Requires the Nidogen Domain Protein DEX-1. Genetics 2019; 211:169-183. [PMID: 30409788 PMCID: PMC6325711 DOI: 10.1534/genetics.118.301557] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/29/2019] [Indexed: 01/23/2023] Open
Abstract
Phenotypic plasticity is a critical component of an organism's ability to thrive in a changing environment. The free-living nematode Caenorhabditis elegans adapts to unfavorable environmental conditions by pausing reproductive development and entering a stress-resistant larval stage known as dauer. The transition into dauer is marked by vast morphological changes, including remodeling of epidermis, neurons, and muscle. Although many of these dauer-specific traits have been described, the molecular basis of dauer-specific remodeling is still poorly understood. Here we show that the nidogen domain-containing protein DEX-1 facilitates stage-specific tissue remodeling during dauer morphogenesis. DEX-1 was previously shown to regulate sensory dendrite formation during embryogenesis. We find that DEX-1 is also required for proper remodeling of the stem cell-like epidermal seam cells. dex-1 mutant dauers lack distinct lateral cuticular alae during dauer and have increased sensitivity to sodium dodecyl sulfate. Furthermore, we find that DEX-1 is required for proper dauer mobility. We show that DEX-1 is secreted from the seam cells during dauer, but acts locally in a cell-autonomous manner. We find that dex-1 expression during dauer is regulated through DAF-16/FOXO-mediated transcriptional activation. Finally, we show that dex-1 acts with a family of zona pellucida domain-encoding genes to regulate dauer-specific epidermal remodeling. Taken together, our data indicate that DEX-1 is an extracellular matrix component that plays a central role in C. elegans epidermal remodeling during dauer.
Collapse
Affiliation(s)
- Kristen M Flatt
- Program in Neuroscience, University of Illinois at Urbana-Champaign, Illinois 61801-4730
| | - Caroline Beshers
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Illinois 61801-4730
| | - Cagla Unal
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Illinois 61801-4730
| | - Jennifer D Cohen
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6145
| | - Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6145
| | - Nathan E Schroeder
- Program in Neuroscience, University of Illinois at Urbana-Champaign, Illinois 61801-4730
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Illinois 61801-4730
| |
Collapse
|
82
|
Werner MS, Claaßen MH, Renahan T, Dardiry M, Sommer RJ. Adult Influence on Juvenile Phenotypes by Stage-Specific Pheromone Production. iScience 2018; 10:123-134. [PMID: 30513394 PMCID: PMC6279967 DOI: 10.1016/j.isci.2018.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
Many animal and plant species respond to population density by phenotypic plasticity. To investigate if specific age classes and/or cross-generational signaling affect density-dependent plasticity, we developed a dye-based method to differentiate co-existing nematode populations. We applied this method to Pristionchus pacificus, which develops a predatory mouth form to exploit alternative resources and kill competitors in response to high population densities. Remarkably, adult, but not juvenile, crowding induces the predatory morph in other juveniles. High-performance liquid chromatography-mass spectrometry of secreted metabolites combined with genetic mutants traced this result to the production of stage-specific pheromones. In particular, the P. pacificus-specific di-ascaroside#1 that induces the predatory morph is induced in the last juvenile stage and young adults, even though mouth forms are no longer plastic in adults. Cross-generational signaling between adults and juveniles may serve as an indication of rapidly increasing population size, arguing that age classes are an important component of phenotypic plasticity.
Collapse
Affiliation(s)
- Michael S Werner
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Marc H Claaßen
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Tess Renahan
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Mohannad Dardiry
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Ralf J Sommer
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany.
| |
Collapse
|
83
|
Kaplan REW, Webster AK, Chitrakar R, Dent JA, Baugh LR. Food perception without ingestion leads to metabolic changes and irreversible developmental arrest in C. elegans. BMC Biol 2018; 16:112. [PMID: 30296941 PMCID: PMC6176503 DOI: 10.1186/s12915-018-0579-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/24/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Developmental physiology is very sensitive to nutrient availability. For instance, in the nematode Caenorhabditis elegans, newly hatched L1-stage larvae require food to initiate postembryonic development. In addition, larvae arrested in the dauer diapause, a non-feeding state of developmental arrest that occurs during the L3 stage, initiate recovery when exposed to food. Despite the essential role of food in C. elegans development, the contribution of food perception versus ingestion on physiology has not been delineated. RESULTS We used a pharmacological approach to uncouple the effects of food (bacteria) perception and ingestion in C. elegans. Perception was not sufficient to promote postembryonic development in L1-stage larvae. However, L1 larvae exposed to food without ingestion failed to develop upon return to normal culture conditions, instead displaying an irreversible arrest phenotype. Inhibition of gene expression during perception rescued subsequent development, demonstrating that the response to perception without feeding is deleterious. Perception altered DAF-16/FOXO subcellular localization, reflecting activation of insulin/IGF signaling (IIS). The insulin-like peptide daf-28 was specifically required, suggesting perception in chemosensory neurons, where it is expressed, regulates peptide synthesis and possibly secretion. However, genetic manipulation of IIS did not modify the irreversible arrest phenotype caused by food perception, revealing that wild-type function of the IIS pathway is not required to produce this phenotype and that other pathways affected by perception of food in the absence of its ingestion are likely to be involved. Gene expression and Nile red staining showed that food perception could alter lipid metabolism and storage. We found that starved larvae sense environmental polypeptides, with similar molecular and developmental effects as perception of bacteria. Environmental polypeptides also promoted recovery from dauer diapause, suggesting that perception of polypeptides plays an important role in the life history of free-living nematodes. CONCLUSIONS We conclude that actual ingestion of food is required to initiate postembryonic development in C. elegans. We also conclude that polypeptides are perceived as a food-associated cue in this and likely other animals, initiating a signaling and gene regulatory cascade that alters metabolism in anticipation of feeding and development, but that this response is detrimental if feeding does not occur.
Collapse
Affiliation(s)
- Rebecca E W Kaplan
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708-0338, USA
| | - Amy K Webster
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708-0338, USA
| | - Rojin Chitrakar
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708-0338, USA
| | - Joseph A Dent
- Department of Biology, McGill University, Montreal, QC, H3A 1B1, Canada
| | - L Ryan Baugh
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708-0338, USA.
| |
Collapse
|
84
|
McGrath PT, Ruvinsky I. A primer on pheromone signaling in Caenorhabditis elegans for systems biologists. ACTA ACUST UNITED AC 2018; 13:23-30. [PMID: 30984890 DOI: 10.1016/j.coisb.2018.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Individuals communicate information about their age, sex, social status, and recent life history with other members of their species through the release of pheromones, chemical signals that elicit behavioral or physiological changes in the recipients. Pheromones provide a fascinating example of information exchange: animals have evolved intraspecific languages in the presence of eavesdroppers and cheaters. In this review, we discuss the recent work using the nematode C. elegans to decipher its chemical language through the analysis of ascaroside pheromones. Genetic dissection has started to identify the enzymes that produce pheromones and the neural circuits that process these signals. Ecological experiments have characterized the biotic environment of C. elegans and its relatives, including ecological relationships with a variety of species that sense or release similar blends of ascarosides. Systems biology approaches should be fruitful in understanding the organization and function of communication systems in C. elegans.
Collapse
Affiliation(s)
- Patrick T McGrath
- Department of Biological Sciences, Department of Physics; Georgia Institute of Technology, Atlanta, GA 30332.
| | - Ilya Ruvinsky
- Department of Molecular Biosciences; Northwestern University, Evanston, IL 60208.
| |
Collapse
|
85
|
Abstract
Dauer diapause is a stress-resistant, developmentally quiescent, and long-lived larval stage adopted by Caenorhabditis elegans when conditions are unfavorable for growth and reproduction. This chapter contains methods to induce dauer larva formation, to isolate dauer larvae, and to study pre- and post-dauer stages.
Collapse
Affiliation(s)
- Xantha Karp
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859 USA
| |
Collapse
|
86
|
de Souza TAJ, Pereira TC. Caenorhabditis elegans Tolerates Hyperaccelerations up to 400,000 x g. ASTROBIOLOGY 2018; 18:825-833. [PMID: 29746159 DOI: 10.1089/ast.2017.1802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
One of the most important laboratory animal species is the nematode Caenorhabditis elegans, which has been used in a range of research fields such as neurobiology, body development, and molecular biology. The scientific progress obtained by employing C. elegans as a model in these areas has encouraged its use in new fields. One of the new potential applications concerns the biological responses to hyperacceleration stress (g-force), but only a few studies have evaluated the response of multicellular organisms to extreme hypergravity conditions at the order of magnitude 105 x g, which is the theorized force experienced by rocks ejected from Mars (or similar planets). Therefore, we subjected the nematode C. elegans to 400,000 x g (equivalent to that force) and evaluated viability, general morphology, and behavior of C. elegans after exposure to this stress. The metabolic activity of this nematode in response to the gravitational spectrum of 50-400,000 x g was also evaluated by means of the MTT assay. Surprisingly, we found that this organism showed no decrease in viability, no changes in behavior and development, and no drastic metabolic depression after hyperacceleration. Thus, we demonstrated for the first time that this multicellular research model can withstand extremely high g-forces, which prompts the use of C. elegans as a new model for extreme hypergravity. Key Words: Caenorhabditis elegans-Hypergravity-Ultracentrifugation-Acceleration-Panspermia-Astrobiology. Astrobiology 18, 825-833.
Collapse
Affiliation(s)
- Tiago Alves Jorge de Souza
- 1 Department of Genetics, Graduate Program in Genetics, FMRP, University of São Paulo , Ribeirao Preto, Brazil
- 2 Department of Biology, FFCLRP, University of São Paulo , Ribeirao Preto, Brazil
| | - Tiago Campos Pereira
- 1 Department of Genetics, Graduate Program in Genetics, FMRP, University of São Paulo , Ribeirao Preto, Brazil
- 2 Department of Biology, FFCLRP, University of São Paulo , Ribeirao Preto, Brazil
| |
Collapse
|
87
|
Kadekar P, Chaouni R, Clark E, Kazanets A, Roy R. Genome-wide surveys reveal polarity and cytoskeletal regulators mediate LKB1-associated germline stem cell quiescence. BMC Genomics 2018; 19:462. [PMID: 29907081 PMCID: PMC6003023 DOI: 10.1186/s12864-018-4847-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/31/2018] [Indexed: 12/22/2022] Open
Abstract
Background Caenorhabditis elegans can endure long periods of environmental stress by altering their development to execute a quiescent state called “dauer”. Previous work has implicated LKB1 - the causative gene in the autosomal dominant, cancer pre-disposing disease called Peutz-Jeghers Syndrome (PJS), and its downstream target AMPK, in the establishment of germline stem cell (GSC) quiescence during the dauer stage. Loss of function mutations in both LKB1/par-4 and AMPK/aak(0) result in untimely GSC proliferation during the onset of the dauer stage, although the molecular mechanism through which these factors regulate quiescence remains unclear. Curiously, the hyperplasia observed in par-4 mutants is more severe than AMPK-compromised dauer larvae, suggesting that par-4 has alternative downstream targets in addition to AMPK to regulate germline quiescence. Results We conducted three genome-wide RNAi screens to identify potential downstream targets of the protein kinases PAR-4 and AMPK that mediate dauer-dependent GSC quiescence. First, we screened to identify genes that phenocopy the par-4-dependent hyperplasia when compromised by RNAi. Two additional RNAi screens were performed to identify genes that suppressed the germline hyperplasia in par-4 and aak(0) dauer larvae, respectively. Interestingly, a subset of the candidates we identified are involved in the regulation of cell polarity and cytoskeletal function downstream of par-4, in an AMPK-independent manner. Moreover, we show that par-4 temporally regulates actin cytoskeletal organization within the dauer germ line at the rachis-adjacent membrane, in an AMPK-independent manner. Conclusion Our data suggest that the regulation of the cytoskeleton and cell polarity may contribute significantly to the tumour suppressor function of LKB1/par-4. Electronic supplementary material The online version of this article (10.1186/s12864-018-4847-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pratik Kadekar
- Department of Biology, McGill University, 1205 avenue Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada
| | - Rita Chaouni
- Department of Biology, McGill University, 1205 avenue Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada
| | - Emily Clark
- Department of Biology, McGill University, 1205 avenue Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada
| | - Anna Kazanets
- Department of Biology, McGill University, 1205 avenue Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada
| | - Richard Roy
- Department of Biology, McGill University, 1205 avenue Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada.
| |
Collapse
|
88
|
Zhou Y, Wang Y, Zhang X, Bhar S, Jones Lipinski RA, Han J, Feng L, Butcher RA. Biosynthetic tailoring of existing ascaroside pheromones alters their biological function in C. elegans. eLife 2018; 7:33286. [PMID: 29863473 PMCID: PMC5986272 DOI: 10.7554/elife.33286] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/26/2018] [Indexed: 11/13/2022] Open
Abstract
Caenorhabditis elegans produces ascaroside pheromones to control its development and behavior. Even minor structural differences in the ascarosides have dramatic consequences for their biological activities. Here, we identify a mechanism that enables C. elegans to dynamically tailor the fatty-acid side chains of the indole-3-carbonyl (IC)-modified ascarosides it has produced. In response to starvation, C. elegans uses the peroxisomal acyl-CoA synthetase ACS-7 to activate the side chains of medium-chain IC-ascarosides for β-oxidation involving the acyl-CoA oxidases ACOX-1.1 and ACOX-3. This pathway rapidly converts a favorable ascaroside pheromone that induces aggregation to an unfavorable one that induces the stress-resistant dauer larval stage. Thus, the pathway allows the worm to respond to changing environmental conditions and alter its chemical message without having to synthesize new ascarosides de novo. We establish a new model for biosynthesis of the IC-ascarosides in which side-chain β-oxidation is critical for controlling the type of IC-ascarosides produced. Small roundworms such as Caenorhabditis elegans release chemical signals called ascarosides in order to communicate with other worms of the same species. Using the ascarosides, the worm can tell its friends, for example, how crowded the neighborhood is and whether there is enough food. The ascarosides thus help the worms in the population decide whether the neighborhood is good – meaning they should hang around, eat, and make babies – or whether the neighborhood is bad. If so, the worms should develop into a larval stage specialized for dispersal that will allow them to find a better neighborhood. Roundworms make the ascarosides by attaching a long chemical ‘side chain’ to an ascarylose sugar. Further chemical modifications allow the worms to produce different signals. In general, to signal a good neighborhood, worms attach a structure called an indole group to the ascarosides. To signal a bad neighborhood, worms make the side chain very short. But how does a worm control which ascarosides it makes? Zhou, Wang et al. now show that C. elegans can change the meaning of its chemical message by modifying the ascarosides that it has already produced instead of making new ones from scratch. Specifically, as their neighborhood runs out of food, C. elegans can use an enzyme called ACS-7 to initiate the shortening of the side chains of indole-ascarosides. The worm can thus change a favorable ascaroside signal that causes the worms to group together into an unfavorable ascaroside signal that causes the worms to enter their dispersal stage. Although Zhou, Wang et al. have focused on chemical communication in C. elegans, the findings could easily apply to the many other species of roundworm that produce ascarosides. Knowing how worms communicate will help us to understand how worms respond to their environment. This knowledge could potentially be used to interfere with the lifecycles and survival of parasitic worm species that harm health and crops.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Chemistry, University of Florida, Gainesville, United States
| | - Yuting Wang
- Department of Chemistry, University of Florida, Gainesville, United States
| | - Xinxing Zhang
- Department of Chemistry, University of Florida, Gainesville, United States
| | - Subhradeep Bhar
- Department of Chemistry, University of Florida, Gainesville, United States
| | | | - Jungsoo Han
- Department of Chemistry, University of Florida, Gainesville, United States
| | - Likui Feng
- Department of Chemistry, University of Florida, Gainesville, United States
| | - Rebecca A Butcher
- Department of Chemistry, University of Florida, Gainesville, United States
| |
Collapse
|
89
|
Roder AC, Stock SP. Influence of Xenorhabdus (Gamma-Proteobacteria: Enterobacteriaceae) symbionts on gonad postembryonic development in Steinernema (Nematoda: Steinernematidae) nematodes. J Invertebr Pathol 2018; 153:65-74. [DOI: 10.1016/j.jip.2018.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/06/2018] [Accepted: 02/14/2018] [Indexed: 10/18/2022]
|
90
|
O’Donnell MP, Chao PH, Kammenga JE, Sengupta P. Rictor/TORC2 mediates gut-to-brain signaling in the regulation of phenotypic plasticity in C. elegans. PLoS Genet 2018; 14:e1007213. [PMID: 29415022 PMCID: PMC5819832 DOI: 10.1371/journal.pgen.1007213] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/20/2018] [Accepted: 01/22/2018] [Indexed: 01/03/2023] Open
Abstract
Animals integrate external cues with information about internal conditions such as metabolic state to execute the appropriate behavioral and developmental decisions. Information about food quality and quantity is assessed by the intestine and transmitted to modulate neuronal functions via mechanisms that are not fully understood. The conserved Target of Rapamycin complex 2 (TORC2) controls multiple processes in response to cellular stressors and growth factors. Here we show that TORC2 coordinates larval development and adult behaviors in response to environmental cues and feeding state in the bacterivorous nematode C. elegans. During development, pheromone, bacterial food, and temperature regulate expression of the daf-7 TGF-β and daf-28 insulin-like peptide in sensory neurons to promote a binary decision between reproductive growth and entry into the alternate dauer larval stage. We find that TORC2 acts in the intestine to regulate neuronal expression of both daf-7 and daf-28, which together reflect bacterial-diet dependent feeding status, thus providing a mechanism for integration of food signals with external cues in the regulation of neuroendocrine gene expression. In the adult, TORC2 similarly acts in the intestine to modulate food-regulated foraging behaviors via a PDF-2/PDFR-1 neuropeptide signaling-dependent pathway. We also demonstrate that genetic variation affects food-dependent larval and adult phenotypes, and identify quantitative trait loci (QTL) associated with these traits. Together, these results suggest that TORC2 acts as a hub for communication of feeding state information from the gut to the brain, thereby contributing to modulation of neuronal function by internal state. Decision-making in all animals, including humans, involves weighing available information about the external environment as well as the animals’ internal conditions. Information about the environment is obtained via the sensory nervous system, whereas internal state can be assessed via cues such as levels of hormones or nutrients. How multiple external and internal inputs are processed in the nervous system to drive behavior or development is not fully understood. In this study, we examine how the nematode C. elegans integrates dietary information received by the gut with environmental signals to alter nervous system function. We have found that a signaling complex, called TORC2, acts in the gut to relay nutrition signals to alter hormonal signaling by the nervous system in C. elegans. Altered neuronal signaling in turn affects a food-dependent binary developmental decision in larvae, as well as food-dependent foraging behaviors in adults. Our results provide a mechanism by which animals prioritize specific signals such as feeding status to appropriately alter their development and/or behavior.
Collapse
Affiliation(s)
- Michael P. O’Donnell
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, United States of America
- * E-mail: (MPO); (PS)
| | - Pin-Hao Chao
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, United States of America
| | - Jan E. Kammenga
- Laboratory of Nematology, Wageningen University and Research, Wageningen, The Netherlands
| | - Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA, United States of America
- * E-mail: (MPO); (PS)
| |
Collapse
|
91
|
Abstract
In Caenorhabditis elegans, there is a single FOXO transcription factor homolog, encoded by the gene, daf-16. As a central regulator for multiple signaling pathways, DAF-16 integrates these signals which results in modulation of several biological processes including longevity, development, fat storage, stress resistance, innate immunity, and reproduction. Using C. elegans allows for studies of FOXO in the context of the whole animal. Therefore, manipulating levels or the activity of daf-16 results in phenotypic changes. Genetic and molecular analysis revealed that similar to other systems, DAF-16 is the downstream target of the conserved insulin/IGF-1 signaling (IIS) pathway; a PI 3-kinase/AKT signaling cascade that ultimately controls the regulation of DAF-16 nuclear localization. In this chapter, I will focus on understanding how a single gene daf-16 can incorporate signals from multiple upstream pathways and in turn modulate different phenotypes as well as the study of FOXO in the context of a whole organism.
Collapse
Affiliation(s)
- Heidi A Tissenbaum
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, United States.
| |
Collapse
|
92
|
Jin Y, Qi YB. Building stereotypic connectivity: mechanistic insights into structural plasticity from C. elegans. Curr Opin Neurobiol 2017; 48:97-105. [PMID: 29182952 DOI: 10.1016/j.conb.2017.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 01/10/2023]
Abstract
The ability of neurons to modify or remodel their synaptic connectivity is critical for the function of neural circuitry throughout the life of an animal. Understanding the mechanisms underlying neuronal structural changes is central to our knowledge of how the nervous system is shaped for complex behaviors and how it further adapts to developmental and environmental demands. Caenorhabditis elegans provides a powerful model for examining developmental processes and for discovering mechanisms controlling neural plasticity. Recent findings have identified conserved themes underlying neural plasticity in development and under environmental stress.
Collapse
Affiliation(s)
- Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Yingchuan B Qi
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
93
|
Tanaka SE, Aikawa T, Takeuchi-Kaneko Y, Fukuda K, Kanzaki N. Artificial induction of third-stage dispersal juveniles of Bursaphelenchus xylophilus using newly established inbred lines. PLoS One 2017; 12:e0187127. [PMID: 29073232 PMCID: PMC5658132 DOI: 10.1371/journal.pone.0187127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 10/13/2017] [Indexed: 11/18/2022] Open
Abstract
The pine wood nematode, Bursaphelenchus xylophilus, is the causal agent of pine wilt disease. This nematode has two developmental forms in its life cycle; i.e., the propagative and dispersal forms. The former is the form that builds up its population inside the host pine. The latter is specialized for transport by the vector. This form is separated into two dispersal stages (third and fourth); the third-stage dispersal juvenile (JIII) is specialized for survival under unfavorable conditions, whereas the fourth-stage juvenile (JIV), which is induced by a chemical signal from the carrier Monochamus beetle, is transported to new host pines and invades them. Because of its importance in the disease cycle, molecular and chemical aspects of the JIV have been investigated, while the mechanism of JIII induction has not been sufficiently investigated. In an effort to clarify the JIII induction process, we established inbred lines of B. xylophilus and compared their biological features. We found that the total number of nematodes (propagation proportion) was negatively correlated with the JIII emergence proportion, likely because nematode development was arrested at JIII; i.e., they could not develop to adults via the reproductive stage. In addition, JIII induction seemed to be regulated by a small number of genes because the JIII induction proportion varied among inbred lines despite the high homozygosity of the parental line. We also demonstrated that JIII can be artificially induced by the nematode's secreted substances. This is the first report of artificial induction of JIII in B. xylophilus. The dauer (dispersal) juvenile of the model organism Caenorhabditis elegans corresponds functionally to JIII of B. xylophilus, and this stage is known to be induced by a chemical signal referred to as daumone, derived from the nematodes' secretion. The artificial induction of JIII suggests the presence of daumone-like material in B. xylophilus.
Collapse
Affiliation(s)
- Suguru E. Tanaka
- Laboratory of Forest Botany, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takuya Aikawa
- Tohoku Research Center, Forestry and Forest Products Research Institute (FFPRI), Morioka, Iwate, Japan
| | - Yuko Takeuchi-Kaneko
- Laboratory of Terrestrial Microbial Ecology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kenji Fukuda
- Laboratory of Forest Botany, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Natsumi Kanzaki
- Kansai Research Center, FFPRI, Fushimi, Kyoto, Japan
- * E-mail:
| |
Collapse
|
94
|
Abstract
Exposure to distinct stimuli during critical periods of development can affect behavior long-term. A new study in Caenorhabditis elegans demonstrates that changes in neuronal activity of one synaptic connection following early-life pheromone exposure are sufficient to permanently enhance specific avoidance responses.
Collapse
Affiliation(s)
- Merly C Vogt
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA.
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
95
|
Early Pheromone Experience Modifies a Synaptic Activity to Influence Adult Pheromone Responses of C. elegans. Curr Biol 2017; 27:3168-3177.e3. [PMID: 28988862 DOI: 10.1016/j.cub.2017.08.068] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/07/2017] [Accepted: 08/29/2017] [Indexed: 11/21/2022]
Abstract
Experiences during early development can influence neuronal functions and modulate adult behaviors [1, 2]. However, the molecular mechanisms underlying the long-term behavioral effects of these early experiences are not fully understood. The C. elegans ascr#3 (asc-ΔC9; C9) pheromone triggers avoidance behavior in adult hermaphrodites [3-7]. Here, we show that hermaphrodites that are briefly exposed to ascr#3 immediately after birth exhibit increased ascr#3-specific avoidance as adults, indicating that ascr#3-experienced animals form a long-lasting memory or imprint of this early ascr#3 exposure [8]. ascr#3 imprinting is mediated by increased synaptic activity between the ascr#3-sensing ADL neurons and their post-synaptic SMB motor neuron partners via increased expression of the odr-2 glycosylated phosphatidylinositol (GPI)-linked signaling gene in the SMB neurons. Our study suggests that the memory for early ascr#3 experience is imprinted via alteration of activity of a single synaptic connection, which in turn shapes experience-dependent plasticity in adult ascr#3 responses.
Collapse
|
96
|
Androwski RJ, Flatt KM, Schroeder NE. Phenotypic plasticity and remodeling in the stress-induced Caenorhabditis elegans dauer. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2017; 6:10.1002/wdev.278. [PMID: 28544390 PMCID: PMC5626018 DOI: 10.1002/wdev.278] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/23/2017] [Accepted: 04/14/2017] [Indexed: 12/22/2022]
Abstract
Organisms are often capable of modifying their development to better suit their environment. Under adverse conditions, the nematode Caenorhabditis elegans develops into a stress-resistant alternative larval stage called dauer. The dauer stage is the primary survival stage for C. elegans in nature. Large-scale tissue remodeling during dauer conveys resistance to harsh environments. The environmental and genetic regulation of the decision to enter dauer has been extensively studied. However, less is known about the mechanisms regulating tissue remodeling. Changes to the cuticle and suppression of feeding in dauers lead to an increased resistance to external stressors. Meanwhile reproductive development arrests during dauer while preserving the ability to reproduce once favorable environmental conditions return. Dramatic remodeling of neurons, glia, and muscles during dauer likely facilitate dauer-specific behaviors. Dauer-specific pulsation of the excretory duct likely mediates a response to osmotic stress. The power of C. elegans genetics has uncovered some of the molecular pathways regulating dauer tissue remodeling. In addition to genes that regulate single remodeling events, several mutants result in pleiotropic defects in dauer remodeling. This review details the individual aspects of morphological changes that occur during dauer formation and discusses molecular mechanisms regulating these processes. The dauer stage provides us with an excellent model for understanding phenotypic plasticity and remodeling from the individual cell to an entire animal. WIREs Dev Biol 2017, 6:e278. doi: 10.1002/wdev.278 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Rebecca J Androwski
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Kristen M Flatt
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Nathan E Schroeder
- Neuroscience Program and Department of Crop Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
97
|
Projecto-Garcia J, Biddle JF, Ragsdale EJ. Decoding the architecture and origins of mechanisms for developmental polyphenism. Curr Opin Genet Dev 2017; 47:1-8. [PMID: 28810163 DOI: 10.1016/j.gde.2017.07.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/27/2017] [Accepted: 07/28/2017] [Indexed: 01/09/2023]
Abstract
Developmental polyphenism affords a single genotype multiple solutions to match an organism to its environment. Because polyphenism is the extreme example of how development deviates from a linear genetic blueprint, it demands a genetic explanation for how environmental cues shunt development to hypothetically alternative modules. We highlight several recent advances that have begun to illuminate genetic mechanisms for polyphenism and how this recurring developmental novelty may arise. An emerging genetic knowledge of polyphenism is providing precise targets for testing hypotheses of how switch mechanisms are built-out of olfactory, nutrient-sensing, hormone-reception, and developmental and genetic buffering systems-to accommodate plasticity. Moreover, classic and new model systems are testing the genetic basis of polyphenism's proposed causal roles in evolutionary change.
Collapse
Affiliation(s)
- Joana Projecto-Garcia
- Department of Biology, Indiana University, 915 E. 3rd St., Bloomington, IN 47405, United States
| | - Joseph F Biddle
- Department of Biology, Indiana University, 915 E. 3rd St., Bloomington, IN 47405, United States
| | - Erik J Ragsdale
- Department of Biology, Indiana University, 915 E. 3rd St., Bloomington, IN 47405, United States.
| |
Collapse
|
98
|
A conserved neuronal DAF-16/FoxO plays an important role in conveying pheromone signals to elicit repulsion behavior in Caenorhabditis elegans. Sci Rep 2017; 7:7260. [PMID: 28775361 PMCID: PMC5543152 DOI: 10.1038/s41598-017-07313-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/27/2017] [Indexed: 01/09/2023] Open
Abstract
Animals use pheromones as a conspecific chemical language to respond appropriately to environmental changes. The soil nematode Caenorhabditis elegans secretes ascaroside pheromones throughout the lifecycle, which influences entry into dauer phase in early larvae, in addition to sexual attraction and aggregation. In adult hermaphrodites, pheromone sensory signals perceived by worms usually elicit repulsion as an initial behavioral signature. However, the molecular mechanisms underlying neuronal pheromone sensory process from perception to repulsion in adult hermaphrodites remain poorly understood. Here, we show that pheromone signals perceived by GPA-3 is conveyed through glutamatergic neurotransmission in which neuronal DAF-16/FoxO plays an important modulatory role by controlling glutaminase gene expression. We further provide evidence that this modulatory role for DAF-16/FoxO seems to be conserved evolutionarily by electro-physiological study in mouse primary hippocampal neurons that are responsible for glutamatergic neurotransmission. These findings provide the basis for understanding the nematode pheromone signaling, which seems crucial for adaptation of adult hermaphrodites to changes in environmental condition for survival.
Collapse
|
99
|
Small-molecule pheromones and hormones controlling nematode development. Nat Chem Biol 2017; 13:577-586. [PMID: 28514418 DOI: 10.1038/nchembio.2356] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/15/2017] [Indexed: 12/21/2022]
Abstract
The existence of small-molecule signals that influence development in Caenorhabditis elegans has been known for several decades, but only in recent years have the chemical structures of several of these signals been established. The identification of these signals has enabled connections to be made between these small molecules and fundamental signaling pathways in C. elegans that influence not only development but also metabolism, fertility, and lifespan. Spurred by these important discoveries and aided by recent advances in comparative metabolomics and NMR spectroscopy, the field of nematode chemistry has the potential to expand dramatically in the coming years. This Perspective will focus on small-molecule pheromones and hormones that influence developmental events in the nematode life cycle (ascarosides, dafachronic acids, and nemamides), will cover more recent work regarding the biosynthesis of these signals, and will explore how the discovery of these signals is transforming our understanding of nematode development and physiology.
Collapse
|
100
|
Hussey R, Stieglitz J, Mesgarzadeh J, Locke TT, Zhang YK, Schroeder FC, Srinivasan S. Pheromone-sensing neurons regulate peripheral lipid metabolism in Caenorhabditis elegans. PLoS Genet 2017; 13:e1006806. [PMID: 28545126 PMCID: PMC5456406 DOI: 10.1371/journal.pgen.1006806] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 06/02/2017] [Accepted: 05/05/2017] [Indexed: 12/03/2022] Open
Abstract
It is now established that the central nervous system plays an important role in regulating whole body metabolism and energy balance. However, the extent to which sensory systems relay environmental information to modulate metabolic events in peripheral tissues has remained poorly understood. In addition, it has been challenging to map the molecular mechanisms underlying discrete sensory modalities with respect to their role in lipid metabolism. In previous work our lab has identified instructive roles for serotonin signaling as a surrogate for food availability, as well as oxygen sensing, in the control of whole body metabolism. In this study, we now identify a role for a pair of pheromone-sensing neurons in regulating fat metabolism in C. elegans, which has emerged as a tractable and highly informative model to study the neurobiology of metabolism. A genetic screen revealed that GPA-3, a member of the Gα family of G proteins, regulates body fat content in the intestine, the major metabolic organ for C. elegans. Genetic and reconstitution studies revealed that the potent body fat phenotype of gpa-3 null mutants is controlled from a pair of neurons called ADL(L/R). We show that cAMP functions as the second messenger in the ADL neurons, and regulates body fat stores via the neurotransmitter acetylcholine, from downstream neurons. We find that the pheromone ascr#3, which is detected by the ADL neurons, regulates body fat stores in a GPA-3-dependent manner. We define here a third sensory modality, pheromone sensing, as a major regulator of body fat metabolism. The pheromone ascr#3 is an indicator of population density, thus we hypothesize that pheromone sensing provides a salient 'denominator' to evaluate the amount of food available within a population and to accordingly adjust metabolic rate and body fat levels. The central nervous system plays a vital role in regulating whole body metabolism and energy balance. However, the precise cellular, genetic and molecular mechanisms underlying these effects remain a major unsolved mystery. C. elegans has emerged as a tractable and highly informative model to study the neurobiology of metabolism. Previously, we have identified instructive roles for serotonin signaling as a surrogate for food availability, as well as oxygen sensing, in the control of whole body metabolism. In our current study we have identified a role for a pair of pheromone-sensing neurons in regulating fat metabolism in C. elegans. cAMP acts as a second messenger in these neurons, and regulates body fat stores via acetylcholine signaling in the nervous system. We find that the population-density-sensing pheromone detected by these neurons regulates body fat stores. Together, we define a third sensory modality, population density sensing, as a major regulator of body fat metabolism.
Collapse
Affiliation(s)
- Rosalind Hussey
- Department of Molecular Medicine and Department of Neuroscience, The Scripps Research Institute, La Jolla, California, United States of America
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jon Stieglitz
- Kellogg School of Science and Technology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jaleh Mesgarzadeh
- Department of Molecular Medicine and Department of Neuroscience, The Scripps Research Institute, La Jolla, California, United States of America
- Department of Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Tiffany T. Locke
- Department of Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Ying K. Zhang
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Frank C. Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Supriya Srinivasan
- Department of Molecular Medicine and Department of Neuroscience, The Scripps Research Institute, La Jolla, California, United States of America
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|