51
|
Phosphate-activated cyclin-dependent kinase stabilizes G1 cyclin to trigger cell cycle entry. Mol Cell Biol 2013; 33:1273-84. [PMID: 23339867 DOI: 10.1128/mcb.01556-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
G1 cyclins, in association with a cyclin-dependent kinase (CDK), are universal activators of the transcriptional G1-S machinery during entry into the cell cycle. Regulation of cyclin degradation is crucial for coordinating progression through the cell cycle, but the mechanisms that modulate cyclin stability to control cell cycle entry are still unknown. Here, we show that a lack of phosphate downregulates Cln3 cyclin and leads to G1 arrest in Saccharomyces cerevisiae. The stability of Cln3 protein is diminished in strains with low activity of Pho85, a phosphate-sensing CDK. Cln3 is an in vitro substrate of Pho85, and both proteins interact in vivo. More interestingly, cells that carry a CLN3 allele encoding aspartic acid substitutions at the sites of Pho85 phosphorylation maintain high levels of Cln3 independently of Pho85 activity. Moreover, these cells do not properly arrest in G1 in the absence of phosphate and they die prematurely. Finally, the activity of Pho85 is essential for accumulating Cln3 and for reentering the cell cycle after phosphate refeeding. Taken together, our data indicate that Cln3 is a molecular target of the Pho85 kinase that is required to modulate cell cycle entry in response to environmental changes in nutrient availability.
Collapse
|
52
|
Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 2012; 190:885-929. [PMID: 22419079 DOI: 10.1534/genetics.111.133306] [Citation(s) in RCA: 377] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ever since the beginning of biochemical analysis, yeast has been a pioneering model for studying the regulation of eukaryotic metabolism. During the last three decades, the combination of powerful yeast genetics and genome-wide approaches has led to a more integrated view of metabolic regulation. Multiple layers of regulation, from suprapathway control to individual gene responses, have been discovered. Constitutive and dedicated systems that are critical in sensing of the intra- and extracellular environment have been identified, and there is a growing awareness of their involvement in the highly regulated intracellular compartmentalization of proteins and metabolites. This review focuses on recent developments in the field of amino acid, nucleotide, and phosphate metabolism and provides illustrative examples of how yeast cells combine a variety of mechanisms to achieve coordinated regulation of multiple metabolic pathways. Importantly, common schemes have emerged, which reveal mechanisms conserved among various pathways, such as those involved in metabolite sensing and transcriptional regulation by noncoding RNAs or by metabolic intermediates. Thanks to the remarkable sophistication offered by the yeast experimental system, a picture of the intimate connections between the metabolomic and the transcriptome is becoming clear.
Collapse
|
53
|
Secco D, Wang C, Arpat BA, Wang Z, Poirier Y, Tyerman SD, Wu P, Shou H, Whelan J. The emerging importance of the SPX domain-containing proteins in phosphate homeostasis. THE NEW PHYTOLOGIST 2012; 193:842-51. [PMID: 22403821 DOI: 10.1111/j.1469-8137.2011.04002.x] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant growth and development are strongly influenced by the availability of nutrients in the soil solution. Among them, phosphorus (P) is one of the most essential and most limiting macro-elements for plants. In the environment, plants are often confronted with P starvation as a result of extremely low concentrations of soluble inorganic phosphate (Pi) in the soil. To cope with these conditions, plants have developed a wide spectrum of mechanisms aimed at increasing P use efficiency. At the molecular level, recent studies have shown that several proteins carrying the SPX domain are essential for maintaining Pi homeostasis in plants. The SPX domain is found in numerous eukaryotic proteins, including several proteins from the yeast PHO regulon, involved in maintaining Pi homeostasis. In plants, proteins harboring the SPX domain are classified into four families based on the presence of additional domains in their structure, namely the SPX, SPX-EXS, SPX-MFS and SPX-RING families. In this review, we highlight the recent findings regarding the key roles of the proteins containing the SPX domain in phosphate signaling, as well as providing further research directions in order to improve our knowledge on P nutrition in plants, thus enabling the generation of plants with better P use efficiency.
Collapse
Affiliation(s)
- David Secco
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, WA 6009, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Choi HS, Su WM, Han GS, Plote D, Xu Z, Carman GM. Pho85p-Pho80p phosphorylation of yeast Pah1p phosphatidate phosphatase regulates its activity, location, abundance, and function in lipid metabolism. J Biol Chem 2012; 287:11290-301. [PMID: 22334681 DOI: 10.1074/jbc.m112.346023] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast Pah1p phosphatidate phosphatase, which catalyzes the penultimate step in the synthesis of triacylglycerol and plays a role in the transcriptional regulation of phospholipid synthesis genes, is a cytosolic enzyme that associates with the nuclear/endoplasmic reticulum membrane to catalyze the dephosphorylation of phosphatidate to yield diacylglycerol. Pah1p is phosphorylated on seven (Ser-110, Ser-114, Ser-168, Ser-602, Thr-723, Ser-744, and Ser-748) sites that are targets for proline-directed protein kinases. In this work, we showed that the seven sites are phosphorylated by Pho85p-Pho80p, a protein kinase-cyclin complex known to regulate a variety of cellular processes. The phosphorylation of recombinant Pah1p was time- and dose-dependent and dependent on the concentrations of ATP (3.7 μm) and Pah1p (0.25 μm). Phosphorylation reduced (6-fold) the catalytic efficiency (V(max)/K(m)) of Pah1p and reduced (3-fold) its interaction (K(d)) with liposomes. Alanine mutations of the seven sites ablated the inhibitory effect that Pho85p-Pho80p had on Pah1p activity and on the interaction with liposomes. Analysis of pho85Δ mutant cells, phosphate-starved wild type cells, and cells expressing phosphorylation-deficient forms of Pah1p indicated that loss of Pho85p-Pho80p phosphorylation reduced Pah1p abundance. In contrast, lack of Nem1p-Spo7p, the phosphatase complex that dephosphorylates Pah1p at the nuclear/endoplasmic reticulum membrane, stabilized Pah1p abundance. Although loss of phosphorylation caused a decrease in abundance, a greater amount of Pah1p was associated with membranes when compared with phosphorylated enzyme, and the loss of phosphorylation allowed bypass of the Nem1p-Spo7p requirement for Pah1p function in the synthesis of triacylglycerol.
Collapse
Affiliation(s)
- Hyeon-Son Choi
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901, USA
| | | | | | | | | | | |
Collapse
|
55
|
Phosphate homeostasis in the yeast Saccharomyces cerevisiae, the key role of the SPX domain-containing proteins. FEBS Lett 2012; 586:289-95. [PMID: 22285489 DOI: 10.1016/j.febslet.2012.01.036] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/11/2012] [Accepted: 01/16/2012] [Indexed: 12/27/2022]
Abstract
In the yeast Saccharomyces cerevisiae, a working model for nutrient homeostasis in eukaryotes, inorganic phosphate (Pi) homeostasis is regulated by the PHO pathway, a set of phosphate starvation induced genes, acting to optimize Pi uptake and utilization. Among these, a subset of proteins containing the SPX domain has been shown to be key regulators of Pi homeostasis. In this review, we summarize the recent progresses in elucidating the mechanisms controlling Pi homeostasis in yeast, focusing on the key roles of the SPX domain-containing proteins in these processes, as well as describing the future challenges and opportunities in this fast-moving field.
Collapse
|
56
|
He Y, Swaminathan A, Lopes JM. Transcription regulation of the Saccharomyces cerevisiae PHO5 gene by the Ino2p and Ino4p basic helix-loop-helix proteins. Mol Microbiol 2011; 83:395-407. [PMID: 22182244 DOI: 10.1111/j.1365-2958.2011.07941.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Saccharomyces cerevisiae PHO5 gene product accounts for a majority of the acid phosphatase activity. Its expression is induced by the basic helix-loop-helix (bHLH) protein, Pho4p, in response to phosphate depletion. Pho4p binds predominantly to two UAS elements (UASp1 at -356 and UASp2 at -247) in the PHO5 promoter. Previous studies from our lab have shown cross-regulation of different biological processes by bHLH proteins. This study tested the ability of all yeast bHLH proteins to regulate PHO5 expression and identified inositol-mediated regulation via the Ino2p/Ino4p bHLH proteins. Ino2p/Ino4p are known regulators of phospholipid biosynthetic genes. Genetic epistasis experiments showed that regulation by inositol required a third UAS site (UASp3 at -194). ChIP assays showed that Ino2p:Ino4p bind the PHO5 promoter and that this binding is dependent on Pho4p binding. These results demonstrate that phospholipid biosynthesis is co-ordinated with phosphate utilization via the bHLH proteins.
Collapse
Affiliation(s)
- Ying He
- Department of Microbiology, and Molecular Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
57
|
Sambuk EV, Fizikova AY, Savinov VA, Padkina MV. Acid phosphatases of budding yeast as a model of choice for transcription regulation research. Enzyme Res 2011; 2011:356093. [PMID: 21785706 PMCID: PMC3137970 DOI: 10.4061/2011/356093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/26/2011] [Indexed: 11/20/2022] Open
Abstract
Acid phosphatases of budding yeast have been studied for more than forty years. This paper covers biochemical characteristics of acid phosphatases and different aspects in expression regulation of eukaryotic genes, which were researched using acid phosphatases model. A special focus is devoted to cyclin-dependent kinase Pho85p, a negative transcriptional regulator, and its role in maintaining mitochondrial genome stability and to pleiotropic effects of pho85 mutations.
Collapse
Affiliation(s)
- Elena V Sambuk
- Genetics and Breeding Department, Biology and Soil Sciences Faculty, Saint Petersburg State University, Universitetskaya emb. 7-9, Saint Petersburg 199034, Russia
| | | | | | | |
Collapse
|
58
|
Chin JH, Gamuyao R, Dalid C, Bustamam M, Prasetiyono J, Moeljopawiro S, Wissuwa M, Heuer S. Developing rice with high yield under phosphorus deficiency: Pup1 sequence to application. PLANT PHYSIOLOGY 2011; 156:1202-16. [PMID: 21602323 PMCID: PMC3135926 DOI: 10.1104/pp.111.175471] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The major quantitative trait locus (QTL) Phosphorus uptake1 (Pup1) confers tolerance of phosphorus deficiency in soil and is currently one of the most promising QTLs for the development of tolerant rice (Oryza sativa) varieties. To facilitate targeted introgression of Pup1 into intolerant varieties, the gene models predicted in the Pup1 region in the donor variety Kasalath were used to develop gene-based molecular markers that are evenly distributed over the fine-mapped 278-kb QTL region. To validate the gene models and optimize the markers, gene expression analyses and partial allelic sequencing were conducted. The markers were tested in more than 80 diverse rice accessions revealing three main groups with different Pup1 allele constitution. Accessions with tolerant (group I) and intolerant (group III) Pup1 alleles were distinguished from genotypes with Kasalath alleles at some of the analyzed loci (partial Pup1; group II). A germplasm survey additionally confirmed earlier data showing that Pup1 is largely absent from irrigated rice varieties but conserved in varieties and breeding lines adapted to drought-prone environments. A core set of Pup1 markers has been defined, and sequence polymorphisms suitable for single-nucleotide polymorphism marker development for high-throughput genotyping were identified. Following a marker-assisted backcrossing approach, Pup1 was introgressed into two irrigated rice varieties and three Indonesian upland varieties. First phenotypic evaluations of the introgression lines suggest that Pup1 is effective in different genetic backgrounds and environments and that it has the potential to significantly enhance grain yield under field conditions.
Collapse
|
59
|
Dick CF, Dos-Santos ALA, Meyer-Fernandes JR. Inorganic phosphate as an important regulator of phosphatases. Enzyme Res 2011; 2011:103980. [PMID: 21755037 PMCID: PMC3132463 DOI: 10.4061/2011/103980] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 05/03/2011] [Indexed: 11/20/2022] Open
Abstract
Cellular metabolism depends on the appropriate concentration of intracellular inorganic phosphate (Pi). Pi starvation-responsive genes appear to be involved in multiple metabolic pathways, implying a complex Pi regulation system in microorganisms and plants. A group of enzymes is required for absorption and maintenance of adequate phosphate levels, which is released from phosphate esters and anhydrides. The phosphatase system is particularly suited for the study of regulatory mechanisms because phosphatase activity is easily measured using specific methods and the difference between the repressed and derepressed levels of phosphatase activity is easily detected. This paper analyzes the protein phosphatase system induced during phosphate starvation in different organisms.
Collapse
Affiliation(s)
- Claudia Fernanda Dick
- Instituto de Microbiologia Professor Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Medica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
| | - André Luiz Araújo Dos-Santos
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Medica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Medica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
60
|
Zhou X, O’Shea EK. Integrated approaches reveal determinants of genome-wide binding and function of the transcription factor Pho4. Mol Cell 2011; 42:826-36. [PMID: 21700227 PMCID: PMC3127084 DOI: 10.1016/j.molcel.2011.05.025] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 01/08/2011] [Accepted: 05/18/2011] [Indexed: 11/15/2022]
Abstract
DNA sequences with high affinity for transcription factors occur more frequently in the genome than instances of genes bound or regulated by these factors. It is not clear what factors determine the genome-wide pattern of binding or regulation for a given transcription factor. We used an integrated approach to study how trans influences shape the binding and regulatory landscape of Pho4, a budding yeast transcription factor activated in response to phosphate limitation. We find that nucleosomes significantly restrict Pho4 binding. At nucleosome-depleted sites, competition from another transcription factor, Cbf1, determines Pho4 occupancy, raising the threshold for transcriptional activation in phosphate replete conditions and preventing Pho4 activation of genes outside the phosphate regulon during phosphate starvation. Pho4 binding is not sufficient for transcriptional activation-a cooperative interaction between Pho2 and Pho4 specifies genes that are activated. Combining these experimental observations, we are able to globally predict Pho4 binding and its functionality.
Collapse
Affiliation(s)
- Xu Zhou
- Howard Hughes Medical Institute, Harvard University Faculty of Arts and Sciences Center for Systems Biology, Department of Molecular and Cellular Biology, Northwest Labs, 52 Oxford Street, Cambridge, MA, 02138, USA
| | - Erin K. O’Shea
- Howard Hughes Medical Institute, Harvard University Faculty of Arts and Sciences Center for Systems Biology, Department of Molecular and Cellular Biology, Northwest Labs, 52 Oxford Street, Cambridge, MA, 02138, USA
- Department of Chemistry and Chemical Biology
| |
Collapse
|
61
|
Toh-e A, Shimizu K, Li HM, Nishizawa M, Kawamoto S. [Phosphate regulation in Cryptococcus neoformans]. Med Mycol J 2011; 52:19-23. [PMID: 21441709 DOI: 10.3314/jjmm.52.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Affiliation(s)
- Akio Toh-e
- Medical Mycology Research Center, Chiba University
| | | | | | | | | |
Collapse
|
62
|
Osipov SA, Preobrazhenskaya OV, Karpov VL. Chromatin structure and transcription regulation in Saccharomyces cerevisiae. Mol Biol 2010. [DOI: 10.1134/s0026893310060026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
63
|
Chung SC, Kim TI, Ahn CH, Shin J, Oh KB. Candida albicans PHO81 is required for the inhibition of hyphal development by farnesoic acid. FEBS Lett 2010; 584:4639-45. [PMID: 20965180 DOI: 10.1016/j.febslet.2010.10.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 10/12/2010] [Accepted: 10/12/2010] [Indexed: 11/18/2022]
Abstract
Farnesoic acid is a signaling molecule that inhibits the transition from budding yeast to filament formation in Candida albicans, but the molecular mechanism regulated by this substance is unknown. In this study, we analyzed the function of CaPHO81, which is induced by farnesoic acid. The pho81Δ mutant cells existed exclusively as filaments under favorable yeast growth conditions. Furthermore, the inhibition of hyphal growth and repression of CPH1, EFG1, HWP1, and GAP1 mRNA expression in response to farnesoic acid were defective in pho81Δ mutant cells. These data suggest a role for CaPHO81 in the inhibition of hyphal development by farnesoic acid.
Collapse
Affiliation(s)
- Soon-Chun Chung
- Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea
| | | | | | | | | |
Collapse
|
64
|
Discovery of mutations in Saccharomyces cerevisiae by pooled linkage analysis and whole-genome sequencing. Genetics 2010; 186:1127-37. [PMID: 20923977 DOI: 10.1534/genetics.110.123232] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many novel and important mutations arise in model organisms and human patients that can be difficult or impossible to identify using standard genetic approaches, especially for complex traits. Working with a previously uncharacterized dominant Saccharomyces cerevisiae mutant with impaired vacuole inheritance, we developed a pooled linkage strategy based on next-generation DNA sequencing to specifically identify functional mutations from among a large excess of polymorphisms, incidental mutations, and sequencing errors. The VAC6-1 mutation was verified to correspond to PHO81-R701S, the highest priority candidate reported by VAMP, the new software platform developed for these studies. Sequence data further revealed the large extent of strain background polymorphisms and structural alterations present in the host strain, which occurred by several mechanisms including a novel Ty insertion. The results provide a snapshot of the ongoing genomic changes that ultimately result in strain divergence and evolution, as well as a general model for the discovery of functional mutations in many organisms.
Collapse
|
65
|
Novel acid phosphatase in Candida glabrata suggests selective pressure and niche specialization in the phosphate signal transduction pathway. Genetics 2010; 186:885-95. [PMID: 20739710 DOI: 10.1534/genetics.110.120824] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evolution through natural selection suggests unnecessary genes are lost. We observed that the yeast Candida glabrata lost the gene encoding a phosphate-repressible acid phosphatase (PHO5) present in many yeasts including Saccharomyces cerevisiae. However, C. glabrata still had phosphate starvation-inducible phosphatase activity. Screening a C. glabrata genomic library, we identified CgPMU2, a member of a three-gene family that contains a phosphomutase-like domain. This small-scale gene duplication event could allow for sub- or neofunctionalization. On the basis of phylogenetic and biochemical characterizations, CgPMU2 has neofunctionalized to become a broad range, phosphate starvation-regulated acid phosphatase, which functionally replaces PHO5 in this pathogenic yeast. We determined that CgPmu2, unlike ScPho5, is not able to hydrolyze phytic acid (inositol hexakisphosphate). Phytic acid is present in fruits and seeds where S. cerevisiae grows, but is not abundant in mammalian tissues where C. glabrata grows. We demonstrated that C. glabrata is limited from an environment where phytic acid is the only source of phosphate. Our work suggests that during evolutionary time, the selection for the ancestral PHO5 was lost and that C. glabrata neofunctionalized a weak phosphatase to replace PHO5. Convergent evolution of a phosphate starvation-inducible acid phosphatase in C. glabrata relative to most yeast species provides an example of how small changes in signal transduction pathways can mediate genetic isolation and uncovers a potential speciation gene.
Collapse
|
66
|
Monserrate JP, York JD. Inositol phosphate synthesis and the nuclear processes they affect. Curr Opin Cell Biol 2010; 22:365-73. [DOI: 10.1016/j.ceb.2010.03.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/03/2010] [Accepted: 03/04/2010] [Indexed: 01/30/2023]
|
67
|
Zhou Y, Ni M. SHORT HYPOCOTYL UNDER BLUE1 truncations and mutations alter its association with a signaling protein complex in Arabidopsis. THE PLANT CELL 2010; 22:703-15. [PMID: 20354198 PMCID: PMC2861450 DOI: 10.1105/tpc.109.071407] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 02/25/2010] [Accepted: 03/17/2010] [Indexed: 05/20/2023]
Abstract
Higher plants monitor their ambient light signals through red/far-red absorbing phytochromes and blue/UV-A light absorbing cryptochromes. Subsequent signaling cascades alter gene expression and initiate morphogenic responses. We previously isolated SHORT HYPOCOTYL UNDER BLUE1 (SHB1), a putative transcriptional coactivator in light signaling. SHB1 is homologous to the SYG1 protein family and contains an N-terminal SPX domain and a C-terminal EXS domain. Overaccumulation of the SPX domain caused a long hypocotyl phenotype similar to that of shb1-D under red, far-red, or blue light. By contrast, overaccumulation of the C-terminal EXS domain led to a short hypocotyl phenotype similar to that of shb1 under blue light. The N-terminal SPX domain was associated with a smaller protein complex than the native protein complex associated with endogenous SHB1. By contrast, the EXS domain was associated with a slightly smaller protein complex than the native protein complex, but it largely displaced endogenous SHB1 from its native protein complex. In addition, all six missense mutations that we identified from a suppressor screen were clustered within or close to the SPX domain, and these mutations impaired the assembly of the SHB1-containing protein complex. We propose that both SPX and EXS domains likely anchor SHB1 to a protein complex, and the SPX domain is critical for SHB1 signaling.
Collapse
Affiliation(s)
| | - Min Ni
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
68
|
Coupling phosphate homeostasis to cell cycle-specific transcription: mitotic activation of Saccharomyces cerevisiae PHO5 by Mcm1 and Forkhead proteins. Mol Cell Biol 2009; 29:4891-905. [PMID: 19596791 DOI: 10.1128/mcb.00222-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cells devote considerable resources to nutrient homeostasis, involving nutrient surveillance, acquisition, and storage at physiologically relevant concentrations. Many Saccharomyces cerevisiae transcripts coding for proteins with nutrient uptake functions exhibit peak periodic accumulation during M phase, indicating that an important aspect of nutrient homeostasis involves transcriptional regulation. Inorganic phosphate is a central macronutrient that we have previously shown oscillates inversely with mitotic activation of PHO5. The mechanism of this periodic cell cycle expression remains unknown. To date, only two sequence-specific activators, Pho4 and Pho2, were known to induce PHO5 transcription. We provide here evidence that Mcm1, a MADS-box protein, is essential for PHO5 mitotic activation. In addition, we found that cells simultaneously lacking the forkhead proteins, Fkh1 and Fkh2, exhibited a 2.5-fold decrease in PHO5 expression. The Mcm1-Fkh2 complex, first shown to transactivate genes within the CLB2 cluster that drive G(2)/M progression, also associated directly at the PHO5 promoter in a cell cycle-dependent manner in chromatin immunoprecipitation assays. Sds3, a component specific to the Rpd3L histone deacetylase complex, was also recruited to PHO5 in G(1). These findings provide (i) further mechanistic insight into PHO5 mitotic activation, (ii) demonstrate that Mcm1-Fkh2 can function combinatorially with other activators to yield late M/G(1) induction, and (iii) couple the mitotic cell cycle progression machinery to cellular phosphate homeostasis.
Collapse
|
69
|
Candida glabrata PHO4 is necessary and sufficient for Pho2-independent transcription of phosphate starvation genes. Genetics 2009; 182:471-9. [PMID: 19332882 DOI: 10.1534/genetics.109.101063] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Comparative genomic analyses of Candida glabrata and Saccharomyces cerevisiae suggest many signal transduction pathways are highly conserved. Focusing on the phosphate signal transduction (PHO) pathway of C. glabrata, we demonstrate that components of the pathway are conserved and confirm the role of CgPHO81, CgPHO80, CgPHO4, and CgMSN5 in the PHO pathway through deletion analysis. Unlike S. cerevisiae, C. glabrata shows little dependence on the transcription factor, Pho2, for induction of phosphate-regulated genes during phosphate limitation. We show that the CgPho4 protein is necessary and sufficient for Pho2-independent gene expression; CgPho4 is capable of driving expression of PHO promoters in S. cerevisiae in the absence of ScPHO2. On the basis of the sequences of PHO4 in the hemiascomycetes and complementation analysis, we suggest that Pho2 dependence is a trait only observed in species closely related to S. cerevisiae. Our data are consistent with trans-regulatory changes in the PHO pathway via the transcription factor Pho4 as opposed to cis-regulatory changes (the promoter).
Collapse
|
70
|
Nishizawa M, Komai T, Katou Y, Shirahige K, Ito T, Toh-E A. Nutrient-regulated antisense and intragenic RNAs modulate a signal transduction pathway in yeast. PLoS Biol 2009; 6:2817-30. [PMID: 19108609 PMCID: PMC2605928 DOI: 10.1371/journal.pbio.0060326] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 11/11/2008] [Indexed: 11/19/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae alters its gene expression profile in response to a change in nutrient availability. The PHO system is a well-studied case in the transcriptional regulation responding to nutritional changes in which a set of genes (PHO genes) is expressed to activate inorganic phosphate (Pi) metabolism for adaptation to Pi starvation. Pi starvation triggers an inhibition of Pho85 kinase, leading to migration of unphosphorylated Pho4 transcriptional activator into the nucleus and enabling expression of PHO genes. When Pi is sufficient, the Pho85 kinase phosphorylates Pho4, thereby excluding it from the nucleus and resulting in repression (i.e., lack of transcription) of PHO genes. The Pho85 kinase has a role in various cellular functions other than regulation of the PHO system in that Pho85 monitors whether environmental conditions are adequate for cell growth and represses inadequate (untimely) responses in these cellular processes. In contrast, Pho4 appears to activate some genes involved in stress response and is required for G1 arrest caused by DNA damage. These facts suggest the antagonistic function of these two players on a more general scale when yeast cells must cope with stress conditions. To explore general involvement of Pho4 in stress response, we tried to identify Pho4-dependent genes by a genome-wide mapping of Pho4 and Rpo21 binding (Rpo21 being the largest subunit of RNA polymerase II) using a yeast tiling array. In the course of this study, we found Pi- and Pho4-regulated intragenic and antisense RNAs that could modulate the Pi signal transduction pathway. Low-Pi signal is transmitted via certain inositol polyphosphate (IP) species (IP7) that are synthesized by Vip1 IP6 kinase. We have shown that Pho4 activates the transcription of antisense and intragenic RNAs in the KCS1 locus to down-regulate the Kcs1 activity, another IP6 kinase, by producing truncated Kcs1 protein via hybrid formation with the KCS1 mRNA and translation of the intragenic RNA, thereby enabling Vip1 to utilize more IP6 to synthesize IP7 functioning in low-Pi signaling. Because Kcs1 also can phosphorylate these IP7 species to synthesize IP8, reduction in Kcs1 activity can ensure accumulation of the IP7 species, leading to further stimulation of low-Pi signaling (i.e., forming a positive feedback loop). We also report that genes apparently not involved in the PHO system are regulated by Pho4 either dependent upon or independent of the Pi conditions, and many of the latter genes are involved in stress response. In S. cerevisiae, a large-scale cDNA analysis and mapping of RNA polymerase II binding using a high-resolution tiling array have identified a large number of antisense RNA species whose functions are yet to be clarified. Here we have shown that nutrient-regulated antisense and intragenic RNAs as well as direct regulation of structural gene transcription function in the response to nutrient availability. Our findings also imply that Pho4 is present in the nucleus even under high-Pi conditions to activate or repress transcription, which challenges our current understanding of Pho4 regulation.
Collapse
Affiliation(s)
- Masafumi Nishizawa
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
71
|
Gauthier S, Coulpier F, Jourdren L, Merle M, Beck S, Konrad M, Daignan-Fornier B, Pinson B. Co-regulation of yeast purine and phosphate pathways in response to adenylic nucleotide variations. Mol Microbiol 2008; 68:1583-94. [PMID: 18433446 DOI: 10.1111/j.1365-2958.2008.06261.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenylate kinase (Adk1p) is a pivotal enzyme in both energetic and adenylic nucleotide metabolisms. In this paper, using a transcriptomic analysis, we show that the lack of Adk1p strongly induced expression of the PHO and ADE genes involved in phosphate utilization and AMP de novo biosynthesis respectively. Isolation and characterization of adk1 point mutants affecting PHO5 expression revealed that all these mutations also severely affected Adk1p catalytic activity, as well as PHO84 and ADE1 transcription. Furthermore, overexpression of distantly related enzymes such as human adenylate kinase or yeast UMP kinase was sufficient to restore regulation. These results demonstrate that adenylate kinase catalytic activity is critical for proper regulation of the PHO and ADE pathways. We also establish that adk1 deletion and purine limitation have similar effects on both adenylic nucleotide pool and PHO84 or ADE17 expression. Finally, we show that, in the adk1 mutant, upregulation of ADE1 depends on synthesis of the previously described effector(s) (S)AICAR ((N-succinyl)-5-aminoimidazol-4-carboxamide ribotide), while upregulation of PHO84 necessitates the Spl2p positive regulator. This work reveals that adenylic nucleotide availability is a key signal used by yeast to co-ordinate phosphate utilization and purine synthesis.
Collapse
Affiliation(s)
- Sébastien Gauthier
- Université Victor Segalen/Bordeaux 2, Institut de Biochimie et Génétique Cellulaires, Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Lee YS, Huang K, Quiocho FA, O'Shea EK. Molecular basis of cyclin-CDK-CKI regulation by reversible binding of an inositol pyrophosphate. Nat Chem Biol 2008; 4:25-32. [PMID: 18059263 PMCID: PMC2367112 DOI: 10.1038/nchembio.2007.52] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 10/11/2007] [Indexed: 12/22/2022]
Abstract
When Saccharomyces cerevisiae cells are starved of inorganic phosphate, the Pho80-Pho85 cyclin-cyclin-dependent kinase (CDK) is inactivated by the Pho81 CDK inhibitor (CKI). The regulation of Pho80-Pho85 is distinct from previously characterized mechanisms of CDK regulation: the Pho81 CKI is constitutively associated with Pho80-Pho85, and a small-molecule ligand, inositol heptakisphosphate (IP7), is required for kinase inactivation. We investigated the molecular basis of the IP7- and Pho81-dependent Pho80-Pho85 inactivation using electrophoretic mobility shift assays, enzyme kinetics and fluorescence spectroscopy. We found that IP7 interacts noncovalently with Pho80-Pho85-Pho81 and induces additional interactions between Pho81 and Pho80-Pho85 that prevent substrates from accessing the kinase active site. Using synthetic peptides corresponding to Pho81, we define regions of Pho81 responsible for constitutive Pho80-Pho85 binding and IP7-regulated interaction and inhibition. These findings expand our understanding of the mechanisms of cyclin-CDK regulation and of the biochemical mechanisms of IP7 action.
Collapse
Affiliation(s)
- Young-Sam Lee
- Howard Hughes Medical Institute, Harvard University, Department of Molecular and Cellular Biology, Faculty of Arts and Sciences Center for Systems Biology, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
73
|
Huang K, Ferrin-O’Connell I, Zhang W, Leonard GA, O’Shea EK, Quiocho FA. Structure of the Pho85-Pho80 CDK-cyclin complex of the phosphate-responsive signal transduction pathway. Mol Cell 2007; 28:614-23. [PMID: 18042456 PMCID: PMC2175173 DOI: 10.1016/j.molcel.2007.09.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 08/06/2007] [Accepted: 09/25/2007] [Indexed: 11/20/2022]
Abstract
The ability to sense and respond appropriately to environmental changes is a primary requirement of all living organisms. In response to phosphate limitation, Saccharomyces cerevisiae induces transcription of a set of genes involved in the regulation of phosphate acquisition from the ambient environment. A signal transduction pathway (the PHO pathway) mediates this response, with Pho85-Pho80 playing a vital role. Here we report the X-ray structure of Pho85-Pho80, a prototypic structure of a CDK-cyclin complex functioning in transcriptional regulation in response to environmental changes. The structure revealed a specific salt link between a Pho85 arginine and a Pho80 aspartate that makes phosphorylation of the Pho85 activation loop dispensable and that maintains a Pho80 loop conformation for possible substrate recognition. It further showed two sites on the Pho80 cyclin for high-affinity binding of the transcription factor substrate (Pho4) and the CDK inhibitor (Pho81) that are markedly distant to each other and the active site.
Collapse
Affiliation(s)
- Kexin Huang
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Ian Ferrin-O’Connell
- Howard Hughes Medical Institute, Faculty of Arts and Sciences Center for Systems Biology, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Wei Zhang
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Gordon A. Leonard
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, BP 220, 38043 Grenoble Cedex, France
| | - Erin K. O’Shea
- Howard Hughes Medical Institute, Faculty of Arts and Sciences Center for Systems Biology, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Florante A. Quiocho
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
74
|
Auesukaree C, Fuchigami I, Homma T, Kaneko Y, Harashima S. Ddi1p and Rad23p play a cooperative role as negative regulators in the PHO pathway in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2007; 365:821-5. [PMID: 18035052 DOI: 10.1016/j.bbrc.2007.11.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2007] [Accepted: 11/13/2007] [Indexed: 11/27/2022]
Abstract
In Saccharomyces cerevisiae, the PHO pathway regulates expression of phosphate-responsive genes such as PHO5, which encodes repressible acid phosphatase (rAPase). In this pathway, Pho81p functions as an inhibitor of the cyclin-cyclin-dependent kinase (CDK) complex Pho80p-Pho85p. However, the mechanism regulating the inhibitory activity of Pho81p is poorly understood. Through use of the yeast two-hybrid system, we identified the UbL-UbA protein Ddi1p as a Pho81p-binding protein. Further, Pho81p levels were found to be low under high-phosphate condition and high during phosphate starvation, indicating that Pho81p is regulated by phosphate concentration. However, our results revealed that Ddi1p and its associated protein Rad23p are not involved in the decrease in Pho81p level under high-phosphate condition. Significantly, the Deltaddi1Deltarad23 strain exhibited a remarkable increase in rAPase activity at an intermediate-phosphate concentration of 0.4mM, suggesting that Ddi1p and Rad23p play a cooperative role as negative regulators in the PHO pathway.
Collapse
Affiliation(s)
- Choowong Auesukaree
- Department of Biology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | | | | | | | | |
Collapse
|
75
|
Patwardhan P, Miller WT. Processive phosphorylation: mechanism and biological importance. Cell Signal 2007; 19:2218-26. [PMID: 17644338 PMCID: PMC2034209 DOI: 10.1016/j.cellsig.2007.06.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 05/31/2007] [Accepted: 06/12/2007] [Indexed: 01/13/2023]
Abstract
Recent proteomic data indicate that a majority of the phosphorylated proteins in a eucaryotic cell contain multiple sites of phosphorylation. In many signaling events, a single kinase phosphorylates multiple sites on a target protein. Processive phosphorylation occurs when a protein kinase binds once to a substrate and phosphorylates all of the available sites before dissociating. In this review, we discuss examples of processive phosphorylation by serine/threonine kinases and tyrosine kinases. We describe current experimental approaches for distinguishing processive from non-processive phosphorylation. Finally, we contrast the biological situations that are suited to regulation by processive and non-processive phosphorylation.
Collapse
Affiliation(s)
- Parag Patwardhan
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | | |
Collapse
|
76
|
Wykoff DD, Rizvi AH, Raser JM, Margolin B, O’Shea EK. Positive feedback regulates switching of phosphate transporters in S. cerevisiae. Mol Cell 2007; 27:1005-13. [PMID: 17889672 PMCID: PMC2034509 DOI: 10.1016/j.molcel.2007.07.022] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 06/10/2007] [Accepted: 07/18/2007] [Indexed: 11/30/2022]
Abstract
The regulation of transporters by nutrient-responsive signaling pathways allows cells to tailor nutrient uptake to environmental conditions. We investigated the role of feedback generated by transporter regulation in the budding yeast phosphate-responsive signal transduction (PHO) pathway. Cells starved for phosphate activate feedback loops that regulate high- and low-affinity phosphate transport. We determined that positive feedback is generated by PHO pathway-dependent upregulation of Spl2, a negative regulator of low-affinity phosphate uptake. The interplay of positive and negative feedback loops leads to bistability in phosphate transporter usage--individual cells express predominantly either low- or high-affinity transporters, both of which can yield similar phosphate uptake capacity. Cells lacking the high-affinity transporter, and associated negative feedback, exhibit phenotypes that arise from hysteresis due to unopposed positive feedback. In wild-type cells, population heterogeneity generated by feedback loops may provide a strategy for anticipating changes in environmental phosphate levels.
Collapse
Affiliation(s)
| | - Abbas H. Rizvi
- Howard Hughes Medical Institute, Department of Molecular & Cellular Biology, FAS Center for Systems Biology, Harvard University, 7 Divinity Avenue, Bauer, 307 Cambridge, MA 02138
| | - Jonathan M. Raser
- Howard Hughes Medical Institute, Department of Molecular & Cellular Biology, FAS Center for Systems Biology, Harvard University, 7 Divinity Avenue, Bauer, 307 Cambridge, MA 02138
| | - Brian Margolin
- Howard Hughes Medical Institute, Department of Molecular & Cellular Biology, FAS Center for Systems Biology, Harvard University, 7 Divinity Avenue, Bauer, 307 Cambridge, MA 02138
| | - Erin K. O’Shea
- Howard Hughes Medical Institute, Department of Molecular & Cellular Biology, FAS Center for Systems Biology, Harvard University, 7 Divinity Avenue, Bauer, 307 Cambridge, MA 02138
| |
Collapse
|
77
|
Adkins MW, Williams SK, Linger J, Tyler JK. Chromatin disassembly from the PHO5 promoter is essential for the recruitment of the general transcription machinery and coactivators. Mol Cell Biol 2007; 27:6372-82. [PMID: 17620413 PMCID: PMC2099613 DOI: 10.1128/mcb.00981-07] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The disassembly of promoter nucleosomes appears to be a general property of highly transcribed eukaryotic genes. We have previously shown that the disassembly of chromatin from the promoters of the Saccharomyces cerevisiae PHO5 and PHO8 genes, mediated by the histone chaperone anti-silencing function 1 (Asf1), is essential for transcriptional activation upon phosphate depletion. This mechanism of transcriptional regulation is shared with the ADY2 and ADH2 genes upon glucose removal. Promoter chromatin disassembly by Asf1 is required for recruitment of TBP and RNA polymerase II, but not the Pho4 and Pho2 activators. Furthermore, accumulation of SWI/SNF and SAGA at the PHO5 promoter requires promoter chromatin disassembly. By contrast, the requirement for SWI/SNF and SAGA to facilitate Pho4 activator recruitment to the nucleosome-buried binding site in the PHO5 promoter occurs prior to chromatin disassembly and is distinct from the stable recruitment of SWI/SNF and SAGA that occurs after chromatin disassembly.
Collapse
Affiliation(s)
- Melissa W Adkins
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | | | | | |
Collapse
|
78
|
Abstract
In budding yeast, phosphate starvation triggers inhibition of the Pho80-Pho85 cyclin-cyclin-dependent kinase (CDK) complex by the CDK inhibitor Pho81, leading to expression of genes involved in nutrient homeostasis. We isolated myo-d-inositol heptakisphosphate (IP7) as a cellular component that stimulates Pho81-dependent inhibition of Pho80-Pho85. IP7 is necessary for Pho81-dependent inhibition of Pho80-Pho85 in vitro. Moreover, intracellular concentrations of IP7 increased upon phosphate starvation, and yeast mutants defective in IP7 production failed to inhibit Pho80-Pho85 in response to phosphate starvation. These observations reveal regulation of a cyclin-CDK complex by a metabolite and suggest that a complex metabolic network mediates signaling of phosphate availability.
Collapse
Affiliation(s)
- Young-Sam Lee
- Howard Hughes Medical Institute, Faculty of Arts and Sciences Center for Systems Biology, Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Sashidhar Mulugu
- Howard Hughes Medical Institute, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - John D. York
- Howard Hughes Medical Institute, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Erin K. O’Shea
- Howard Hughes Medical Institute, Faculty of Arts and Sciences Center for Systems Biology, Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
79
|
Rubenstein EM, Schmidt MC. Mechanisms regulating the protein kinases of Saccharomyces cerevisiae. EUKARYOTIC CELL 2007; 6:571-83. [PMID: 17337635 PMCID: PMC1865659 DOI: 10.1128/ec.00026-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Eric M Rubenstein
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, W1247 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
80
|
Jiao W, Datta J, Lin HM, Dundr M, Rane SG. Nucleocytoplasmic shuttling of the retinoblastoma tumor suppressor protein via Cdk phosphorylation-dependent nuclear export. J Biol Chem 2006; 281:38098-108. [PMID: 17043357 DOI: 10.1074/jbc.m605271200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The retinoblastoma (RB) tumor suppressor protein is a negative regulator of cell proliferation that is functionally inactivated in the majority of human tumors. Elevated Cdk activity via RB pathway mutations is observed in virtually every human cancer. Thus, Cdk inhibitors have tremendous promise as anticancer agents although detailed mechanistic knowledge of their effects on RB function is needed to harness their full potential. Here, we illustrate a novel function for Cdks in regulating the subcellular localization of RB. We present evidence of significant cytoplasmic mislocalization of ordinarily nuclear RB in cells harboring Cdk4 mutations. Our findings uncover a novel mechanism to circumvent RB-mediated growth suppression by altered nucleocytoplasmic trafficking via the Exportin1 pathway. Cytoplasmically mislocalized RB could be efficiently confined to the nucleus by inhibiting the Exportin1 pathway, reducing Cdk activity, or mutating the Cdk-dependent phosphorylation sites in RB that result in loss of RB-Exportin1 association. Thus RB-mediated tumor suppression can be subverted by phosphorylation-dependent enhancement of nuclear export. These results support the notion that tumor cells can modulate the protein transport machinery thereby making the protein transport process a viable therapeutic target.
Collapse
Affiliation(s)
- Wan Jiao
- Cell Cycle and Human Diseases Group, Diabetes Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
81
|
De Clercq A, Inzé D. Cyclin-dependent kinase inhibitors in yeast, animals, and plants: a functional comparison. Crit Rev Biochem Mol Biol 2006; 41:293-313. [PMID: 16911957 DOI: 10.1080/10409230600856685] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cell cycle is remarkably conserved in yeast, animals, and plants and is controlled by cyclin-dependent kinases (CDKs). CDK activity can be inhibited by binding of CDK inhibitory proteins, designated CKIs. Numerous studies show that CKIs are essential in orchestrating eukaryotic cell proliferation and differentiation. In yeast, animals, and plants, CKIs act as regulators of the G1 checkpoint in response to environmental and developmental cues and assist during mitotic cell cycles by inhibiting CDK activity required to arrest mitosis. Furthermore, CKIs play an important role in regulating cell cycle exit that precedes differentiation and in promoting differentiation in cooperation with transcription factors. Moreover, CKIs are essential to control CDK activity in endocycling cells. So, in yeast, animals, and plants, CKIs share many functional similarities, but their functions are adapted toward the specific needs of the eukaryote.
Collapse
Affiliation(s)
- Annelies De Clercq
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, Ghent, Belgium
| | | |
Collapse
|
82
|
Bömeke K, Pries R, Korte V, Scholz E, Herzog B, Schulze F, Braus GH. Yeast Gcn4p stabilization is initiated by the dissociation of the nuclear Pho85p/Pcl5p complex. Mol Biol Cell 2006; 17:2952-62. [PMID: 16611745 PMCID: PMC1483032 DOI: 10.1091/mbc.e05-10-0975] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 04/04/2006] [Accepted: 04/05/2006] [Indexed: 11/11/2022] Open
Abstract
Protein stability of the c-jun-like yeast bZIP transcriptional activator Gcn4p is exclusively controlled in the yeast nucleus. Phosphorylation by the nuclear Pho85p cyclin-dependent protein kinase, a functional homolog of mammalian Cdk5, initiates the Gcn4p degradation pathway in complex with the cyclin Pcl5p. We show that the initial step in Gcn4p stabilization is the dissociation of the Pho85p/Pcl5p complex. Pcl7p, another nuclear and constantly present cyclin, is required for Gcn4p stabilization and is able to associate to Pho85p independently of the activity of the Gcn4p degradation pathway. In addition, the nuclear cyclin-dependent Pho85p kinase inhibitor Pho81p is required for Gcn4p stabilization. Pho81p only interacts with Pcl5p when Gcn4p is rapidly degraded but constitutively interacts with Pcl7p. Our data suggest that Pcl7p and Pho81p are antagonists of the Pho85p/Pcl5p complex formation in a yet unknown way, which are specifically required for Gcn4p stabilization. We suggest that dissociation of the Pho85p/Pcl5p complex as initial step in Gcn4p stabilization is a prerequisite for a shift of equilibrium to an increased amount of the Pho85p/Pcl7p complexes and subsequently results in decreased Gcn4p phosphorylation and therefore increased stability of the transcription factor.
Collapse
Affiliation(s)
- Katrin Bömeke
- Institute of Microbiology and Genetics, Georg August University, D-37077 Göttingen, Germany
| | - Ralph Pries
- Institute of Microbiology and Genetics, Georg August University, D-37077 Göttingen, Germany
| | - Virginia Korte
- Institute of Microbiology and Genetics, Georg August University, D-37077 Göttingen, Germany
| | - Eva Scholz
- Institute of Microbiology and Genetics, Georg August University, D-37077 Göttingen, Germany
| | - Britta Herzog
- Institute of Microbiology and Genetics, Georg August University, D-37077 Göttingen, Germany
| | - Florian Schulze
- Institute of Microbiology and Genetics, Georg August University, D-37077 Göttingen, Germany
| | - Gerhard H. Braus
- Institute of Microbiology and Genetics, Georg August University, D-37077 Göttingen, Germany
| |
Collapse
|
83
|
Jessen WJ, Hoose SA, Kilgore JA, Kladde MP. Active PHO5 chromatin encompasses variable numbers of nucleosomes at individual promoters. Nat Struct Mol Biol 2006; 13:256-63. [PMID: 16491089 DOI: 10.1038/nsmb1062] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Accepted: 12/29/2005] [Indexed: 01/08/2023]
Abstract
Transcriptional activation is often associated with chromatin remodeling. However, little is known about the dynamics of remodeling of nucleosome arrays in vivo. Upon induction of Saccharomyces cerevisiae PHO5, a novel kinetic assay of DNA methyltransferase accessibility showed that nucleosomes adjacent to the histone-free upstream activating sequence (UASp1) are disrupted earlier and at higher frequency in the cell population than are those more distal. Individually cloned molecules, each representing the chromatin state of a full promoter from a single cell, revealed multiple promoter classes with either no remodeling or variable numbers of disrupted nucleosomes. Individual promoters in the remodeled fraction were highly enriched for contiguous blocks of disrupted nucleosomes, the majority of which overlapped the UAS region. These results support a probabilistic model in which chromatin remodeling at PHO5 spreads from sites of transactivator association with DNA and attenuates with distance.
Collapse
Affiliation(s)
- Walter J Jessen
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, USA
| | | | | | | |
Collapse
|
84
|
Veide J, Andlid T. Improved extracellular phytase activity in Saccharomyces cerevisiae by modifications in the PHO system. Int J Food Microbiol 2006; 108:60-7. [PMID: 16476497 DOI: 10.1016/j.ijfoodmicro.2005.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 10/28/2005] [Accepted: 10/30/2005] [Indexed: 11/16/2022]
Abstract
Myo-inositol hexaphosphate (IP6, phytate) is a potent anti-nutritional compound occurring in many plant-based staple foods, limiting the bioavailability of important nutrients such as iron and zinc. The objective of the present study was to investigate different strategies to achieve high and constitutive extracellular IP6 degradation by Baker's yeast, Saccharomyces cerevisiae. By deleting either of the genes PHO80 and PHO85, encoding negative regulators of the transcription of the repressible acid phosphatases (rAPs), the IP6 degradation became constitutive, and the biomass specific IP6 degradation was increased manyfold. In addition, the genes encoding the transcriptional activator Pho4p and the major rAP Pho5p were overexpressed in both a wild-type and a pho80delta strain, yielding an additional increase in IP6 degradation. It has previously been proved possible to increase human iron bioavailability by degradation of IP6 using microbial phytase. A high-phytase S. cerevisiae strain, without the use of any heterologous DNA, may be a suitable organism for the production of food-grade phytase and for the direct use in food production.
Collapse
Affiliation(s)
- Jenny Veide
- Chalmers University of Technology, Department of Chemical and Biological Engineering/Food Science, Box 5401, SE-402 29 Göteborg, Sweden.
| | | |
Collapse
|
85
|
Swinnen E, Rosseels J, Winderickx J. The minimum domain of Pho81 is not sufficient to control the Pho85-Rim15 effector branch involved in phosphate starvation-induced stress responses. Curr Genet 2005; 48:18-33. [PMID: 15926040 DOI: 10.1007/s00294-005-0583-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 04/14/2005] [Accepted: 04/19/2005] [Indexed: 10/25/2022]
Abstract
The phosphate regulatory mechanism in yeast, known as the PHO pathway, is regulated by inorganic phosphate to control the expression of genes involved in the acquisition of phosphate from the medium. This pathway is also reported to contribute to other nutritional responses and as such it affects several phenotypic characteristics known also to be regulated by protein kinase A, including the transcription of genes involved in the general stress response and trehalose metabolism. We now demonstrate that transcription of post-diauxic shift (PDS)-controlled stress-responsive genes is solely regulated by the Pho85-Pho80 complex, whereas regulation of trehalose metabolism apparently involves several Pho85 cyclins. Interestingly, both read-outs depend on Pho81 but, while the previously described minimum domain of Pho81 is sufficient to sustain phosphate-regulated transcription of PHO genes, full-length Pho81 is required to control trehalose metabolism and the PDS targets. Consistently, neither the expression control of stress-regulated genes nor the trehalose metabolism relies directly on Pho4. Finally, we present data supporting that the PHO pathway functions in parallel to the fermentable growth medium- or Sch9-controlled pathway and that both pathways may share the protein kinase Rim15, which was previously reported to play a central role in the integration of glucose, nitrogen and amino acid availability.
Collapse
Affiliation(s)
- Erwin Swinnen
- Functional Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | | | | |
Collapse
|
86
|
Auesukaree C, Tochio H, Shirakawa M, Kaneko Y, Harashima S. Plc1p, Arg82p, and Kcs1p, enzymes involved in inositol pyrophosphate synthesis, are essential for phosphate regulation and polyphosphate accumulation in Saccharomyces cerevisiae. J Biol Chem 2005; 280:25127-33. [PMID: 15866881 DOI: 10.1074/jbc.m414579200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Saccharomyces cerevisiae, the phosphate signal transduction PHO pathway is involved in regulating several phosphate-responsive genes such as PHO5, which encodes repressible acid phosphatase. In this pathway, a cyclin-dependent kinase inhibitor (Pho81p) regulates the kinase activity of the cyclin-cyclin-dependent kinase complex Pho80p-Pho85p, which phosphorylates the transcription factor Pho4p in response to intracellular phosphate levels. However, how cells sense phosphate availability and transduce the phosphate signal to Pho81p remains unknown. To identify additional components of the PHO pathway, we have screened a collection of yeast deletion strains. We found that disruptants of PLC1, ARG82, and KCS1, which are involved in the synthesis of inositol polyphosphate, and ADK1, which encodes adenylate kinase, constitutively express PHO5. Each of these factors functions upstream of Pho81p and negatively regulates the PHO pathway independently of intracellular orthophosphate levels. Overexpression of KCS1, but not of the other genes, suppressed PHO5 expression in the wild-type strain under low phosphate conditions. These results raise the possibility that diphosphoinositol tetrakisphosphate and/or bisdiphosphoinositol triphosphate may be essential for regulation of the PHO pathway. Furthermore, the Deltaplc1, Deltaarg82, and Deltakcs1 deletion strains, but not the Deltaipk1 deletion strain, had significantly reduced intracellular polyphosphate levels, suggesting that enzymes involved in inositol pyrophosphate synthesis are also required for polyphosphate accumulation.
Collapse
Affiliation(s)
- Choowong Auesukaree
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
87
|
Huang S, O'Shea EK. A systematic high-throughput screen of a yeast deletion collection for mutants defective in PHO5 regulation. Genetics 2005; 169:1859-71. [PMID: 15695358 PMCID: PMC1360160 DOI: 10.1534/genetics.104.038695] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In response to phosphate limitation, Saccharomyces cerevisiae induces transcription of a set of genes important for survival. One of these genes is PHO5, which encodes a secreted acid phosphatase. A phosphate-responsive signal transduction pathway (the PHO pathway) mediates this response through three central components: a cyclin-dependent kinase (CDK), Pho85; a cyclin, Pho80; and a CDK inhibitor (CKI), Pho81. While signaling downstream of the Pho81/Pho80/Pho85 complex to PHO5 expression has been well characterized, little is known about factors acting upstream of these components. To identify missing factors involved in the PHO pathway, we carried out a high-throughput, quantitative enzymatic screen of a yeast deletion collection, searching for novel mutants defective in expression of PHO5. As a result of this study, we have identified at least nine genes that were previously not known to regulate PHO5 expression. The functional diversity of these genes suggests that the PHO pathway is networked with other important cellular signaling pathways. Among these genes, ADK1 and ADO1, encoding an adenylate kinase and an adenosine kinase, respectively, negatively regulate PHO5 expression and appear to function upstream of PHO81.
Collapse
Affiliation(s)
- Sidong Huang
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, 94143-2240, USA
| | | |
Collapse
|
88
|
Jesch SA, Zhao X, Wells MT, Henry SA. Genome-wide analysis reveals inositol, not choline, as the major effector of Ino2p-Ino4p and unfolded protein response target gene expression in yeast. J Biol Chem 2004; 280:9106-18. [PMID: 15611057 PMCID: PMC1352320 DOI: 10.1074/jbc.m411770200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, the transcription of many genes encoding enzymes of phospholipid biosynthesis are repressed in cells grown in the presence of the phospholipid precursors inositol and choline. A genome-wide approach using cDNA microarray technology was used to profile the changes in the expression of all genes in yeast that respond to the exogenous presence of inositol and choline. We report that the global response to inositol is completely distinct from the effect of choline. Whereas the effect of inositol on gene expression was primarily repressing, the effect of choline on gene expression was activating. Moreover, the combination of inositol and choline increased the number of repressed genes compared with inositol alone and enhanced the repression levels of a subset of genes that responded to inositol. In all, 110 genes were repressed in the presence of inositol and choline. Two distinct sets of genes exhibited differential expression in response to inositol or the combination of inositol and choline in wild-type cells. One set of genes contained the UASINO sequence and were bound by Ino2p and Ino4p. Many of these genes were also negatively regulated by OPI1, suggesting a common regulatory mechanism for Ino2p, Ino4p, and Opi1p. Another nonoverlapping set of genes was coregulated by the unfolded protein response pathway, an ER-localized stress response pathway, but was not dependent on OPI1 and did not show further repression when choline was present together with inositol. These results suggest that inositol is the major effector of target gene expression, whereas choline plays a minor role.
Collapse
Affiliation(s)
| | - Xin Zhao
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14853
| | - Martin T. Wells
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14853
| | - Susan A. Henry
- Department of Molecular Biology and Genetics
- *To whom all correspondence should be addressed: Susan A. Henry, Ph.D. College of Agriculture and Life Sciences, Cornell University, 260 Roberts Hall, Ithaca, NY 14853, 607-255-2241 (TEL), 607-255-3803 (FAX), E-mail:
| |
Collapse
|
89
|
Marino M. Biography of Erin K. O'Shea. Proc Natl Acad Sci U S A 2004; 101:14312-4. [PMID: 15454611 PMCID: PMC521978 DOI: 10.1073/pnas.0406675101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
90
|
Ramsey KL, Smith JJ, Dasgupta A, Maqani N, Grant P, Auble DT. The NEF4 complex regulates Rad4 levels and utilizes Snf2/Swi2-related ATPase activity for nucleotide excision repair. Mol Cell Biol 2004; 24:6362-78. [PMID: 15226437 PMCID: PMC434245 DOI: 10.1128/mcb.24.14.6362-6378.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleotide excision repair factor 4 (NEF4) is required for repair of nontranscribed DNA in Saccharomyces cerevisiae. Rad7 and the Snf2/Swi2-related ATPase Rad16 are NEF4 subunits. We report previously unrecognized similarity between Rad7 and F-box proteins. Rad16 contains a RING domain embedded within its ATPase domain, and the presence of these motifs in NEF4 suggested that NEF4 functions as both an ATPase and an E3 ubiquitin ligase. Mutational analysis provides strong support for this model. The Rad16 ATPase is important for NEF4 function in vivo, and genetic analysis uncovered new interactions between NEF4 and Rad23, a repair factor that links repair to proteasome function. Elc1 is the yeast homologue of a mammalian E3 subunit, and it is a novel component of NEF4. Moreover, the E2s Ubc9 and Ubc13 were linked to the NEF4 repair pathway by genetic criteria. Mutations in NEF4 or Ubc13 result in elevated levels of the DNA damage recognition protein Rad4 and an increase in ubiquitylated species of Rad23. As Rad23 also controls Rad4 levels, these results suggest a complex system for globally regulating repair activity in vivo by controlling turnover of Rad4.
Collapse
Affiliation(s)
- Kerrington L Ramsey
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908-0733, USA
| | | | | | | | | | | |
Collapse
|
91
|
Saldanha AJ, Brauer MJ, Botstein D. Nutritional homeostasis in batch and steady-state culture of yeast. Mol Biol Cell 2004; 15:4089-104. [PMID: 15240820 PMCID: PMC515343 DOI: 10.1091/mbc.e04-04-0306] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We studied the physiological response to limitation by diverse nutrients in batch and steady-state (chemostat) cultures of S. cerevisiae. We found that the global pattern of transcription in steady-state cultures in limiting phosphate or sulfate is essentially identical to that of batch cultures growing in the same medium just before the limiting nutrient is completely exhausted. The massive stress response and complete arrest of the cell cycle that occurs when nutrients are fully exhausted in batch cultures is not observed in the chemostat, indicating that the cells in the chemostat are "poor, not starving." Similar comparisons using leucine or uracil auxotrophs limited on leucine or uracil again showed patterns of gene expression in steady-state closely resembling those of corresponding batch cultures just before they exhaust the nutrient. Although there is also a strong stress response in the auxotrophic batch cultures, cell cycle arrest, if it occurs at all, is much less uniform. Many of the differences among the patterns of gene expression between the four nutrient limitations are interpretable in light of known involvement of the genes in stress responses or in the regulation or execution of particular metabolic pathways appropriate to the limiting nutrient. We conclude that cells adjust their growth rate to nutrient availability and maintain homeostasis in the same way in batch and steady state conditions; cells in steady-state cultures are in a physiological condition normally encountered in batch cultures.
Collapse
Affiliation(s)
- Alok J Saldanha
- Department of Genetics, Stanford University Medical School, Stanford, CA 94305, USA
| | | | | |
Collapse
|
92
|
Pinson B, Merle M, Franconi JM, Daignan-Fornier B. Low affinity orthophosphate carriers regulate PHO gene expression independently of internal orthophosphate concentration in Saccharomyces cerevisiae. J Biol Chem 2004; 279:35273-80. [PMID: 15194704 DOI: 10.1074/jbc.m405398200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphate is an essential nutrient that must be taken up from the growth medium through specific transporters. In Saccharomyces cerevisiae, both high and low affinity orthophosphate carriers allow this micro-organism to cope with environmental variations. Intriguingly, in this study we found a tight correlation between selenite resistance and expression of the high affinity orthophosphate carrier Pho84p. Our work further revealed that mutations in the low affinity orthophosphate carrier genes (PHO87, PHO90, and PHO91) cause deregulation of phosphate-repressed genes. Strikingly, the deregulation due to pho87Delta, pho90Delta, or pho91Delta mutations was neither correlated to impaired orthophosphate uptake capacity nor to a decrease of the intracellular orthophosphate or polyphosphate pools, as shown by (31)P NMR spectroscopy. Thus, our data clearly establish that the low affinity orthophosphate carriers affect phosphate regulation independently of intracellular orthophosphate concentration through a new signaling pathway that was found to strictly require the cyclin-dependent kinase inhibitor Pho81p. We propose that phosphate-regulated gene expression is under the control of two different regulatory signals as follows: the sensing of internal orthophosphate by a yet unidentified protein and the sensing of external orthophosphate by low affinity orthophosphate transporters; the former would be required to maintain phosphate homeostasis, and the latter would keep the cell informed on the medium phosphate richness.
Collapse
Affiliation(s)
- Benoît Pinson
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS-Université Victor Segalen Bordeaux 2, 33077 Bordeaux Cedex, France.
| | | | | | | |
Collapse
|
93
|
Abstract
Mutations in Sir Antagonist 1 (SAN1) suppress defects in SIR4 and SPT16 in Saccharomyces cerevisiae. San1 contains a RING domain, suggesting that it functions by targeting mutant sir4 and spt16 proteins for degradation by a ubiquitin-mediated pathway. Consistent with this idea, mutant sir4 and spt16 proteins are unstable in SAN1 cells but are stabilized in san1Delta cells. We demonstrate that San1 possesses ubiquitin-protein isopeptide ligase activity in vitro, and the ubiquitin-protein isopeptide ligase activity of San1 is required for its function in vivo. Wild-type Sir4 has a half-life of about 21 min, and san1Delta increased Sir4 half-life to >90 min. In contrast, san1Delta did not affect the stability of wild-type Spt16, Sir3, Sir2, or the Spt16-associated proteins Pob3 and Nhp6. Loss of SAN1 also did not affect the stability of Ste6-166, a highly unstable protein in yeast. These results support the idea that San1 controls the turnover of a specific class of unstable nuclear proteins. Sir4 nucleates the assembly of silent chromatin at telomeres and the silent mating-type loci (HM) in S. cerevisiae. Sir4 can also affect silencing in the rDNA indirectly by sequestering limiting Sir2. Increasing the stability of wild-type Sir4 by deleting SAN1 had only subtle effects on silencing, suggesting that silent chromatin in yeast is robustly buffered against changes in Sir4 stability. Consistent with the idea that San1 participates as an accessory factor to regulate silent chromatin, including the silent mating-type loci, microarray analysis defined a small but statistically significant role for San1 in transcription of several mating pheromone-responsive genes.
Collapse
Affiliation(s)
- Arindam Dasgupta
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908-0733, USA
| | | | | | | |
Collapse
|
94
|
Auesukaree C, Homma T, Tochio H, Shirakawa M, Kaneko Y, Harashima S. Intracellular phosphate serves as a signal for the regulation of the PHO pathway in Saccharomyces cerevisiae. J Biol Chem 2004; 279:17289-94. [PMID: 14966138 DOI: 10.1074/jbc.m312202200] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Saccharomyces cerevisiae, the phosphate signal transduction pathway (PHO pathway) is known to regulate the expression of several phosphate-responsive genes, such as PHO5 and PHO84. However, the fundamental issue of whether cells sense intracellular or extracellular phosphate remains unresolved. To address this issue, we have directly measured intracellular phosphate concentrations by (31)P NMR spectroscopy. We find that PHO5 expression is strongly correlated with the levels of both intracellular orthophosphate and intracellular polyphosphate and that the signaling defect in the Deltapho84 strain is likely to result from insufficient intracellular phosphate caused by a defect in phosphate uptake. Furthermore, the Deltaphm1Deltaphm2, Deltaphm3, and Deltaphm4 strains, which lack intracellular polyphosphate, have higher intracellular orthophosphate levels and lower expression of PHO5 than the wild-type strain. By contrast, the Deltaphm5 strain, which has lower intracellular orthophosphate and higher polyphosphate levels than the wild-type strain, shows repressed expression of PHO5, similar to the wild-type strain. These observations suggest that PHO5 expression is under the regulation of intracellular orthophosphate, although orthophosphate is not the sole signaling molecule. Moreover, the disruption of PHM3, PHM4, or of both PHM1 and PHM2 in the Deltapho84 strain suppresses, although not completely, the PHO5 constitutive phenotype by increasing intracellular orthophosphate, suggesting that Pho84p affects phosphate signaling largely by functioning as a transporter.
Collapse
Affiliation(s)
- Choowong Auesukaree
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871
| | | | | | | | | | | |
Collapse
|
95
|
Byrne M, Miller N, Springer M, O'Shea EK. A distal, high-affinity binding site on the cyclin-CDK substrate Pho4 is important for its phosphorylation and regulation. J Mol Biol 2004; 335:57-70. [PMID: 14659740 DOI: 10.1016/j.jmb.2003.10.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cyclins and cyclin-dependent kinases (CDKs) are key components of signaling pathways essential for cell growth and survival. The cyclin-CDK Pho80-Pho85 inactivates the transcription factor Pho4 in budding yeast by phosphorylating it on five sites. We isolated seven single amino acid substitutions outside of the phosphorylation sites that cause Pho4 to be constitutively active. The substitutions decrease the amount of Pho4 phosphorylation in vivo, and they increase the apparent K(M) of the in vitro phosphorylation reaction by an order of magnitude but do not alter k(cat) substantially. These data suggest that the substituted residues are part of a cyclin-CDK-binding site that is distal to the phosphorylation sites. Further analysis revealed that all of Pho4 variants were phosphorylated by Pho80-Pho85 in a more distributive manner than the wild-type protein, further supporting the idea that binding at a distal, high-affinity binding site is important in determining the processivity of Pho4 phosphorylation. In addition, computational modeling of the Pho4 phosphorylation reactions shows that the K(D) of binding between the Pho4 mutants and Pho80-Pho85 increases, confirming that the mutations are located in a relatively high-affinity "docking site" for the kinase. Interestingly, the K(D) derived from the in vitro data correlates well with the strength of the in vivo phenotypes, demonstrating that the in vitro data are relevant to the in vivo regulation of Pho4.
Collapse
Affiliation(s)
- Meghan Byrne
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, 600 16th Street, Genentech Hall Room S472D, San Francisco, CA 94143-2240, USA
| | | | | | | |
Collapse
|
96
|
Almaguer C, Mantella D, Perez E, Patton-Vogt J. Inositol and phosphate regulate GIT1 transcription and glycerophosphoinositol incorporation in Saccharomyces cerevisiae. EUKARYOTIC CELL 2003; 2:729-36. [PMID: 12912892 PMCID: PMC178388 DOI: 10.1128/ec.2.4.729-736.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glycerophosphoinositol is produced through deacylation of the essential phospholipid phosphatidylinositol. In Saccharomyces cerevisiae, the glycerophosphoinositol produced is excreted from the cell but is recycled for phosphatidylinositol synthesis when inositol is limiting. To be recycled, glycerophosphoinositol enters the cell through the permease encoded by GIT1. The transport of exogenous glycerophosphoinositol through Git1p is sufficiently robust to support the growth of an inositol auxotroph (ino1Delta). We now report that S. cerevisiae also uses exogenous phosphatidylinositol as an inositol source. Evidence suggests that phosphatidylinositol is deacylated to glycerophosphoinositol extracellularly before being transported across the plasma membrane by Git1p. A genetic screen identified Pho86p, which is required for targeting of the major phosphate transporter (Pho84p) to the plasma membrane, as affecting the utilization of phosphatidylinositol and glycerophosphoinositol. Deletion of PHO86 in an ino1Delta strain resulted in faster growth when either phosphatidylinositol or glycerophosphoinositol was supplied as the sole inositol source. The incorporation of radiolabeled glycerophosphoinositol into an ino1Delta pho86Delta mutant was higher than that into wild-type, ino1Delta, and pho86Delta strains. All strains accumulated the most GIT1 transcript when incubated in media limited for inositol and phosphate in combination. However, the ino1Delta pho86Delta mutant accumulated approximately threefold more GIT1 transcript than did the other strains when incubated in inositol-free media containing either high or low concentrations of P(i). Deletion of PHO4 abolished GIT1 transcription in a wild-type strain. These results indicate that the transport of glycerophosphoinositol by Git1p is regulated by factors affecting both inositol and phosphate availabilities and suggest a regulatory connection between phosphate metabolism and phospholipid metabolism.
Collapse
Affiliation(s)
- C Almaguer
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | | | | | | |
Collapse
|
97
|
Irniger S, Braus GH. Controlling transcription by destruction: the regulation of yeast Gcn4p stability. Curr Genet 2003; 44:8-18. [PMID: 14508604 DOI: 10.1007/s00294-003-0422-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2003] [Revised: 06/17/2003] [Accepted: 06/18/2003] [Indexed: 11/30/2022]
Abstract
The Gcn4 protein, a member of the AP-1 family of transcription factors, is involved in the expression of more than 500 genes in the budding yeast Saccharomyces cerevisiae. A key role of Gcn4p is the increased expression of many amino acid biosynthesis genes in response to amino acid starvation. The accumulation of this transcription activator is mainly induced by efficient translation of the GCN4 ORF and by stabilisation of the Gcn4 protein. Under normal growth conditions, Gcn4p is a highly unstable protein, thereby resembling many eukaryotic transcription factors, including mammalian Jun and Myc proteins. Gcn4p is degraded by ubiquitin-dependent proteolysis mediated by the Skp1/cullin/F-box (SCF) ubiquitin ligase, which recognises specifically phosphorylated substrates. Two cyclin-dependent protein kinases, Pho85p and Srb10p, have crucial functions in regulating Gcn4p phosphorylation and degradation. The past few years have revealed many novel insights into these regulatory processes. Here, we summarise current knowledge about the factors and mechanisms regulating Gcn4p stability.
Collapse
Affiliation(s)
- Stefan Irniger
- Institute of Microbiology and Genetics, Georg-August-University, Grisebachstrasse 8, 37077 Göttingen, Germany
| | | |
Collapse
|
98
|
Persson BL, Lagerstedt JO, Pratt JR, Pattison-Granberg J, Lundh K, Shokrollahzadeh S, Lundh F. Regulation of phosphate acquisition in Saccharomyces cerevisiae. Curr Genet 2003; 43:225-44. [PMID: 12740714 DOI: 10.1007/s00294-003-0400-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2003] [Revised: 04/05/2003] [Accepted: 04/08/2003] [Indexed: 01/08/2023]
Abstract
Membrane transport systems active in cellular inorganic phosphate (P(i)) acquisition play a key role in maintaining cellular P(i) homeostasis, independent of whether the cell is a unicellular microorganism or is contained in the tissue of a higher eukaryotic organism. Since unicellular eukaryotes such as yeast interact directly with the nutritious environment, regulation of P(i) transport is maintained solely by transduction of nutrient signals across the plasma membrane. The individual yeast cell thus recognizes nutrients that can act as both signals and sustenance. The present review provides an overview of P(i) acquisition via the plasma membrane P(i) transporters of Saccharomyces cerevisiae and the regulation of internal P(i) stores under the prevailing P(i) status.
Collapse
Affiliation(s)
- Bengt L Persson
- Department of Chemistry and Biomedical Science, Kalmar University, P.O. Box 905, 39182, Kalmar, Sweden.
| | | | | | | | | | | | | |
Collapse
|
99
|
El Alami M, Messenguy F, Scherens B, Dubois E. Arg82p is a bifunctional protein whose inositol polyphosphate kinase activity is essential for nitrogen and PHO gene expression but not for Mcm1p chaperoning in yeast. Mol Microbiol 2003; 49:457-68. [PMID: 12828642 DOI: 10.1046/j.1365-2958.2003.03562.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae, the synthesis of inositol pyrophosphates is essential for vacuole biogenesis and the cell's response to certain environmental stresses. The kinase activity of Arg82p and Kcs1p is required for the production of soluble inositol phosphates. To define physiologically relevant targets of the catalytic products of Arg82p and Kcs1p, we used DNA microarray technology. In arg82delta or kcs1delta cells, we observed a derepressed expression of genes regulated by phosphate (PHO) on high phosphate medium and a strong decrease in the expression of genes regulated by the quality of nitrogen source (NCR). Arg82p and Kcs1p are required for activation of NCR-regulated genes in response to nitrogen availability, mainly through Nil1p, and for repression of PHO genes by phosphate. Only the catalytic activity of both kinases was required for PHO gene repression by phosphate and for NCR gene activation in response to nitrogen availability, indicating a role for inositol pyrophosphates in these controls. Arg82p also controls expression of arginine-responsive genes by interacting with Arg80p and Mcm1p, and expression of Mcm1-dependent genes by interacting with Mcm1p. We show here that Mcm1p and Arg80p chaperoning by Arg82p does not involve the inositol polyphosphate kinase activity of Arg82p, but requires its polyaspartate domain. Our results indicate that Arg82p is a bifunctional protein whose inositol kinase activity plays a role in multiple signalling cascades, and whose acidic domain protects two MADS-box proteins against degradation.
Collapse
Affiliation(s)
- Mohamed El Alami
- Institut de Recherches Microbiologiques J-M Wiame, Laboratoire de Microbiologie de l'Université Libre de Bruxelles, 1 avenue Emile Gryzon, 1070 Bruxelles, Belgium
| | | | | | | |
Collapse
|
100
|
Neef DW, Kladde MP. Polyphosphate loss promotes SNF/SWI- and Gcn5-dependent mitotic induction of PHO5. Mol Cell Biol 2003; 23:3788-97. [PMID: 12748282 PMCID: PMC155216 DOI: 10.1128/mcb.23.11.3788-3797.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Approximately 800 transcripts in Saccharomyces cerevisiae are cell cycle regulated. The oscillation of approximately 40% of these genes, including a prominent subclass involved in nutrient acquisition, is not understood. To address this problem, we focus on the mitosis-specific activation of the phosphate-responsive promoter, PHO5. We show that the unexpected mitotic induction of the PHO5 acid phosphatase in rich medium requires the transcriptional activators Pho4 and Pho2, the cyclin-dependent kinase inhibitor Pho81, and the chromatin-associated enzymes Gcn5 and Snf2/Swi2. PHO5 mitotic activation is repressed by addition of orthophosphate, which significantly increases cellular polyphosphate. Polyphosphate levels also fluctuate inversely with PHO5 mRNA during the cell cycle, further substantiating an antagonistic link between this phosphate polymer and PHO5 mitotic regulation. Moreover, deletion of PHM3, required for polyphosphate accumulation, leads to premature onset of PHO5 expression, as well as an increased rate, magnitude, and duration of PHO5 activation. Orthophosphate addition, however, represses mitotic PHO5 expression in a phm3delta strain. Thus, polyphosphate per se is not necessary to repress PHO transcription but, when present, replenishes cellular phosphate during nutrient depletion. These results demonstrate a dynamic mechanism of mitotic transcriptional regulation that operates mostly independently of factors that drive progression through the cell cycle.
Collapse
Affiliation(s)
- Daniel W Neef
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, USA
| | | |
Collapse
|