51
|
Tortolero-Langarica JJA, Rodríguez-Troncoso AP, Cupul-Magaña AL, Morales-de-Anda DE, Caselle JE, Carricart-Ganivet JP. Coral calcification and carbonate production in the eastern tropical Pacific: The role of branching and massive corals in the reef maintenance. GEOBIOLOGY 2022; 20:533-545. [PMID: 35359024 DOI: 10.1111/gbi.12491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/25/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Hermatypic corals have the potential to construct calcium carbonate (CaCO3 ) reef-framework, maintain habitats tridimensionality and contribute to both the biogeochemical and the geo-ecological functionality of coral reefs. However, in the past decades, coral reef growth capacity has been affected by multiple and cumulative anthropogenic stressors, threating the reef functionality and their ecosystem goods and services provision to humankind. This study evaluated temporal changes in geobiological growth characteristics as a function of live coral cover, calcification rate (extension rate and skeletal density) and coral carbonate production at Islas Marias archipelago from the eastern tropical Pacific, using historical data obtained in 2007 (López-Pérez et al., 2015, Marine Ecology, 37, 679) and data obtained through field and laboratory research between 2015 and 2018. Overall, live coral cover decreased (82%), where Pocillopora spp. corals reduced from 26% in 2007 to 4% in 2018, in contrast, Pavona spp. declined from 4.1% to 3.7% over the same period. Coral carbonate production ranged between 1.78 and 10.65 kg CaCO3 m-2 yr-1 , with a significant difference (threefold) between reef zones (shallow vs deep), highlighting the higher carbonate production at deep-reef sites. Coral cover, carbonate production and sclerocronological characteristics showed a decrease rate (between 30 and 60%) associated with thermal anomaly events such as La Niña (2010-2011) and El Niño (2014-2016), with positive sights of recovery (twofold) during the following years 2017-2018. This study provides evidence that massive Pavona and branching Pocillopora corals are key reef-building species at Islas Marias archipelago, due to their capability of sustaining live coral coverage and carbonate through thermal disturbance periods. Revealing, that corals at mid-water depths (>10 m) may significantly contribute to the long-term stability of biogenic reef-framework, and geo-ecological functionality of the eastern tropical Pacific reefs.
Collapse
Affiliation(s)
- J J Adolfo Tortolero-Langarica
- Laboratorio de Esclerocronología de Corales Arrecifales, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, México
- Tecnológico Nacional de México / IT Bahía de Banderas, Nayarit, México
| | - Alma P Rodríguez-Troncoso
- Laboratorio de Ecología Marina, Centro de Investigaciones Costeras, Centro Universitario de la Costa, Universidad de Guadalajara, Jalisco, México
| | - Amílcar L Cupul-Magaña
- Laboratorio de Ecología Marina, Centro de Investigaciones Costeras, Centro Universitario de la Costa, Universidad de Guadalajara, Jalisco, México
| | - Diana E Morales-de-Anda
- Laboratorio de Ecología Marina, Centro de Investigaciones Costeras, Centro Universitario de la Costa, Universidad de Guadalajara, Jalisco, México
| | - Jennifer E Caselle
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Juan P Carricart-Ganivet
- Laboratorio de Esclerocronología de Corales Arrecifales, Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, México
| |
Collapse
|
52
|
Bowden CL, Streit RP, Bellwood DR, Tebbett SB. A 3D perspective on sediment turnover and feeding selectivity in blennies. MARINE POLLUTION BULLETIN 2022; 180:113799. [PMID: 35665616 DOI: 10.1016/j.marpolbul.2022.113799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Sediments in algal turfs can modify a wide variety of key ecological processes on coral reefs. While some larger reef fishes can remove these turf-bound sediments, the role of small, yet abundant, cryptobenthic fishes is currently unclear. To address this knowledge gap, we explored the extent to which the blenny, Ecsenius stictus, can shape sediment dynamics on coral reefs by quantifying their sediment ingestion and space use. Per unit body mass, E. stictus process sediments at comparable rates to key parrotfish and surgeonfish species. However, in absolute terms, E. stictus has a negligible influence on net sediment dynamics, despite their abundance. Behavioural observations and 3D photogrammetry reveal that E. stictus preferentially feed and rest on elevated surfaces; potentially because of low sediment loads on these surfaces. Overall, E. stictus may be responding to sediment loads rather than manipulating them; it is a passenger rather than a driver in reef processes.
Collapse
Affiliation(s)
- Casey L Bowden
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia.
| | - Robert P Streit
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | - Sterling B Tebbett
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
53
|
Sailing into the past: Nautical charts reveal changes over 160 years in the largest reef complex in the South Atlantic Ocean. Perspect Ecol Conserv 2022. [DOI: 10.1016/j.pecon.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
54
|
Husson B, Lind S, Fossheim M, Kato‐Solvang H, Skern‐Mauritzen M, Pécuchet L, Ingvaldsen RB, Dolgov AV, Primicerio R. Successive extreme climatic events lead to immediate, large-scale, and diverse responses from fish in the Arctic. GLOBAL CHANGE BIOLOGY 2022; 28:3728-3744. [PMID: 35253321 PMCID: PMC9321067 DOI: 10.1111/gcb.16153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The warming trend of the Arctic is punctuated by several record-breaking warm years with very low sea ice concentrations. The nature and reversibility of marine ecosystem responses to these multiple extreme climatic events (ECEs) are poorly understood. Here, we investigate the ecological signatures of three successive bottom temperature maxima concomitant with surface ECEs between 2004 and 2017 in the Barents Sea across spatial and organizational scales. We observed community-level redistributions of fish concurrent with ECEs at the scale of the whole Barents Sea. Three groups, characterized by different sets of traits describing their capacity to cope with short-term perturbations, reacted with different timing and intensity to each ECE. Arctic species co-occurred more frequently with large predators and incoming boreal taxa during ECEs, potentially affecting food web structures and functional diversity, accelerating the impacts of long-term climate change. On the species level, responses were highly diversified, with different ECEs impacting different species, and species responses (expansion, geographical shift) varying from one ECE to another, despite the environmental perturbations being similar. Past ECEs impacts, with potential legacy effects, lagged responses, thresholds, and interactions with the underlying warming pressure, could constantly set up new initial conditions that drive the unique ecological signature of each ECE. These results highlight the complexity of ecological reactions to multiple ECEs and give prominence to several sources of process uncertainty in the predictions of climate change impact and risk for ecosystem management. Long-term monitoring and studies to characterize the vertical extent of each ECE are necessary to statistically link demersal species and environmental spatial-temporal patterns. In the future, regular monitoring will be crucial to detect early signals of change and understand the determinism of ECEs, but we need to adapt our models and management to better integrate risk and stochasticity from the complex impacts of global change.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andrey V. Dolgov
- Polar Branch of the Federal State Budget Scientific InstitutionRussian Federal Research Institute of Fisheries and Oceanography (“PINRO” named after N.M.Knipovich)MurmanskRussia
- Murmansk State Technical UniversityMurmanskRussia
- Tomsk State UniversityTomskRussia
| | - Raul Primicerio
- Institute of Marine ResearchTromsøNorway
- UiT – The Arctic University of TromsøTromsøNorway
| |
Collapse
|
55
|
Steinberg RK, Ainsworth TD, Moriarty T, Bednarek T, Dafforn KA, Johnston EL. Bleaching Susceptibility and Resistance of Octocorals and Anemones at the World's Southern-Most Coral Reef. Front Physiol 2022; 13:804193. [PMID: 35665222 PMCID: PMC9161773 DOI: 10.3389/fphys.2022.804193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Coral reefs are amongst the most biodiverse ecosystems on earth, and while stony corals create the foundational complexity of these ecosystems, octocorals and anemones contribute significantly to their biodiversity and function. Like stony corals, many octocorals contain Symbiodiniaceae endosymbionts and can bleach when temperatures exceed the species' upper thermal limit. Here, we report octocoral bleaching susceptibility and resistance within the subtropical Lord Howe Island coral reef ecosystem during and after marine heatwaves in 2019. Octocoral and anemone surveys were conducted at multiple reef locations within the Lord Howe Island lagoon during, immediately after, and 7 months after the heatwaves. One octocoral species, Cladiella sp. 1, experienced bleaching and mortality, with some bleached colonies detaching from the reef structure during the heatwave (presumed dead). Those that remained attached to the benthos survived the event and recovered endosymbionts within 7 months of bleaching. Cladiella sp. 1 Symbiodiniaceae density (in cells per µg protein), chlorophyll a and c 2 per µg protein, and photosynthetic efficiency were significantly lower in bleached colonies compared to unbleached colonies, while chlorophyll a and c 2 per symbiont were higher. Interestingly, no other symbiotic octocoral species of the Lord Howe Island lagoonal reef bleached. Unbleached Xenia cf crassa colonies had higher Symbiodiniaceae and chlorophyll densities during the marine heatwave compared to other monitoring intervals, while Cladiella sp. 2 densities did not change substantially through time. Previous work on octocoral bleaching has focused primarily on gorgonian octocorals, while this study provides insight into bleaching variability in other octocoral groups. The study also provides further evidence that octocorals may be generally more resistant to bleaching than stony corals in many, but not all, reef ecosystems. Responses to marine heating events vary and should be assessed on a species by species basis.
Collapse
Affiliation(s)
- Rosemary K Steinberg
- Evolution and Ecology Research Centre and Centre for Marine Science and Innovation, School of Biological, Earth, and Environmental Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
- Sydney Institute of Marine Science, Mosman, NSW, Australia
| | - Tracy D Ainsworth
- Evolution and Ecology Research Centre and Centre for Marine Science and Innovation, School of Biological, Earth, and Environmental Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | - Tess Moriarty
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, Australia
| | - Teresa Bednarek
- Evolution and Ecology Research Centre and Centre for Marine Science and Innovation, School of Biological, Earth, and Environmental Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
- RUHR Universtad Bouchum, Bouchum, Germany
| | | | - Emma L Johnston
- Evolution and Ecology Research Centre and Centre for Marine Science and Innovation, School of Biological, Earth, and Environmental Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
56
|
Li M, Huang W, Wu Q, Feng Y, Chen Y, Yu K, Chen B, Yang E, Meng L, Huang X, Wang X. High genetic differentiation and moderate genetic diversity of the degenerative branching coral Pocillopora verrucosa in the tropical South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153076. [PMID: 35038534 DOI: 10.1016/j.scitotenv.2022.153076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Global warming is causing rapid degradation of coral reefs, among which branching corals are degrading the fastest. An assessment of coral genetic diversity and adaptive potential provides a basis for coral reef protection. In this study, we selected the branching coral Pocillopora verrucosa, a widely distributed species in the tropical South China Sea (SCS), to carry out population genetic studies. To analyze the genetic diversity and structure of 319 P. verrucosa samples from 10 populations in 4 SCS regions, twelve pairs of microsatellite primers and two nuclear markers, ITS and β-tub, were selected. Microsatellite marker results showed moderate genetic diversity for P. verrucosa in the SCS, but relatively low diversity in Dazhou Island and Yongxing Island. The haplotype network showed that P. verrucosa in the SCS was derived from two ancestors, which may be linked to geographical isolation in the Pleistocene glacial period. AMOVA (ΦST = 0.3375) and FST pairwise analysis results based on β-tub showed that the populations were highly differentiated, with most FST values (21/45) > 0.25. Yongxing and Qilianyu Islands populations were significantly different from those in the Xisha area. Mantel test results showed that genetic differentiation among P. verrucosa populations was significantly and positively correlated with both mean sea surface temperature (SST) and SST variance, and was not correlated with distance, chlorophyll-a, or turbidity. The reproductive mode of brooding planulae was an important factor contributing to high genetic differentiation among populations. The moderate genetic diversity of SCS P. verrucosa indicates that this population has a certain genetic potential in the context of global changes, but the high genetic differentiation between populations increases the risk of local degradation or extinction. This study provides a theoretical basis for the protection and restoration of SCS coral reefs.
Collapse
Affiliation(s)
- Ming Li
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Forestry College, Guangxi University, Nanning 530004, China
| | - Wen Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Qian Wu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yi Feng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yinmin Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519080, China.
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Enguang Yang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Linqing Meng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xueyong Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xin Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Gunagxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Beihai 536000, China
| |
Collapse
|
57
|
Quigley KM, van Oppen MJH. Predictive models for the selection of thermally tolerant corals based on offspring survival. Nat Commun 2022; 13:1543. [PMID: 35351901 PMCID: PMC8964693 DOI: 10.1038/s41467-022-28956-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/21/2022] [Indexed: 01/04/2023] Open
Abstract
Finding coral reefs resilient to climate warming is challenging given the large spatial scale of reef ecosystems. Methods are needed to predict the location of corals with heritable tolerance to high temperatures. Here, we combine Great Barrier Reef-scale remote sensing with breeding experiments that estimate larval and juvenile coral survival under exposure to high temperatures. Using reproductive corals collected from the northern and central Great Barrier Reef, we develop forecasting models to locate reefs harbouring corals capable of producing offspring with increased heat tolerance of an additional 3.4° heating weeks (~3 °C). Our findings predict hundreds of reefs (~7.5%) may be home to corals that have high and heritable heat-tolerance in habitats with high daily and annual temperature ranges and historically variable heat stress. The locations identified represent targets for protection and consideration as a source of corals for use in restoration of degraded reefs given their potential to resist climate change impacts and repopulate reefs with tolerant offspring.
Collapse
Affiliation(s)
- K M Quigley
- Australian Institute of Marine Science, Townsville, QLD, Australia.
| | - M J H van Oppen
- Australian Institute of Marine Science, Townsville, QLD, Australia
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
58
|
Henley EM, Bouwmeester J, Jury CP, Toonen RJ, Quinn M, Lager CV, Hagedorn M. Growth and survival among Hawaiian corals outplanted from tanks to an ocean nursery are driven by individual genotype and species differences rather than preconditioning to thermal stress. PeerJ 2022; 10:e13112. [PMID: 35345587 PMCID: PMC8957268 DOI: 10.7717/peerj.13112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/22/2022] [Indexed: 01/12/2023] Open
Abstract
The drastic decline in coral coverage has stimulated an interest in reef restoration, and various iterations of coral nurseries have been used to augment restoration strategies. Here we examine the growth of two species of Hawaiian Montipora that were maintained in mesocosms under either ambient or warmed annual bleaching conditions for two consecutive years prior to outplanting to determine whether preconditioning aided coral restoration efforts. Using coral trees to create a nearby ocean nursery, we examined whether: (1) previous ex situ mesocosm growth would mirror in situ coral tree nursery growth; and (2) thermal ex situ stress-hardening would predict future success during natural warming events in situ for corals moved from tanks to trees. For Montipora capitata, we found that variation in growth was explained primarily by genotype; growth rates in the mesocosms were similar to those in situ, irrespective of preconditioning. Variation in M. flabellata growth, however, was explained by both genotype and culture method such that an individual M. flabellata colony that grew well in the tanks did not necessarily perform as well on the coral trees. For both species, previous exposure to elevated temperatures in the mesocosms provided no benefit to either growth or survival during a warming event in the coral tree nursery compared to those grown in ambient temperatures. Overall, M. capitata performed better in the tree nursery with higher net growth, lower mortality, and was subject to less predation than M. flabellata. Our results show little benefit of the additional cost and time of stress-hardening these corals prior to outplanting because it is unlikely to aid resilience to future warming events. These results also suggest that selecting corals for restoration based on long-term genotype growth performance may be more effective for optimal outcomes but should be weighed against other factors, such as coral morphology, in situ nursery method, location, and other characteristics.
Collapse
Affiliation(s)
- E. Michael Henley
- Smithsonian Conservation Biology Institute, Smithsonian Institution, Front Royal, Virginia, United States,Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, Hawai‘i, United States
| | - Jessica Bouwmeester
- Smithsonian Conservation Biology Institute, Smithsonian Institution, Front Royal, Virginia, United States,Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, Hawai‘i, United States
| | - Christopher P. Jury
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, Hawai‘i, United States
| | - Robert J. Toonen
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, Hawai‘i, United States
| | - Mariko Quinn
- Smithsonian Conservation Biology Institute, Smithsonian Institution, Front Royal, Virginia, United States,Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, Hawai‘i, United States
| | - Claire V.A. Lager
- Smithsonian Conservation Biology Institute, Smithsonian Institution, Front Royal, Virginia, United States,Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, Hawai‘i, United States
| | - Mary Hagedorn
- Smithsonian Conservation Biology Institute, Smithsonian Institution, Front Royal, Virginia, United States,Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, Hawai‘i, United States
| |
Collapse
|
59
|
Hakkinen H, Petrovan SO, Sutherland WJ, Dias MP, Ameca EI, Oppel S, Ramírez I, Lawson B, Lehikoinen A, Bowgen KM, Taylor N, Pettorelli N. Linking climate change vulnerability research and evidence on conservation action effectiveness to safeguard European seabird populations. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Henry Hakkinen
- Institute of Zoology, Zoological Society of London London UK
| | - Silviu O. Petrovan
- Department of Zoology Cambridge University, The David Attenborough Building Cambridge UK
| | - William J. Sutherland
- Department of Zoology Cambridge University, The David Attenborough Building Cambridge UK
- Biosecurity Research Initiative at St Catharine's (BioRISC), St Catharine's College University of Cambridge Cambridge UK
| | - Maria P. Dias
- BirdLife International The David Attenborough Building Cambridge UK
- Centre for Ecology, Evolution and Environmental Changes (cE3c) Faculdade de Ciências da Universidade de Lisboa Lisboa Portugal
| | - Eric I. Ameca
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering Beijing Normal University Beijing China
- Climate Change Specialist Group Species Survival Commission, International Union for Conservation of Nature Gland Switzerland
| | - Steffen Oppel
- RSPB Centre of Conservation Science David Attenborough Building Cambridge, Cambridgeshire UK
| | - Iván Ramírez
- Convention on Migratory Species United Campus in Bonn Bonn Germany
| | - Becki Lawson
- Institute of Zoology, Zoological Society of London London UK
| | | | | | - Nigel G. Taylor
- Department of Zoology Cambridge University, The David Attenborough Building Cambridge UK
- Ecological Consultant Cambridge UK
| | | |
Collapse
|
60
|
Madeira C, Dias M, Ferreira A, Gouveia R, Cabral H, Diniz MS, Vinagre C. Does Predation Exacerbate the Risk of Endosymbiont Loss in Heat Stressed Hermatypic Corals? Molecular Cues Provide Insights Into Species-Specific Health Outcomes in a Multi-Stressor Ocean. Front Physiol 2022; 13:801672. [PMID: 35299660 PMCID: PMC8922028 DOI: 10.3389/fphys.2022.801672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/31/2022] [Indexed: 11/30/2022] Open
Abstract
Ocean warming has been a major driver of coral reef bleaching and mass mortality. Coupled to other biotic pressures, corals’ ability for acclimatization and adaptation may become compromised. Here, we tested the combined effects of warming scenarios (26, 30, and 32°C) and predation (wound vs. no wound) in coral health condition (paleness, bleaching, and mortality), cellular stress responses (heat shock protein 70 kDa Hsp70, total ubiquitin Ub, and total antioxidant capacity TAC), and physiological state (integrated biomarker response index, IBR) of seven Scleractinian coral species, after being exposed for 60 days. Results show that although temperature was the main factor driving coral health condition, thermotolerant species (Galaxea fascicularis, Psammocora contigua, and Turbinaria reniformis) displayed increased paleness, bleaching, and mortality in predation treatments at high temperature, whereas thermosensitive species (Acropora tenuis, Echinopora lamellosa, and Montipora capricornis brown and green morphotypes) all died at 32°C, regardless of predation condition. At the molecular level, results show that there were significant main and interactive effects of species, temperature, and predation in the biomarkers assessed. Temperature affected Hsp70, Ub, and TAC, evidencing the role of protein folding and turnover, as well as reactive oxygen species scavenging in heat stress management. Predation increased Hsp70 and Ub, suggesting the activation of the pro-phenoloxidase system and cytokine activity, whereas the combination of both stressors mainly affected TAC during moderate stress and Ub under severe stress, suggesting that redox balance and defense of homeostasis are crucial in tissue repair at high temperature. IBR levels showed an increasing trend at 32°C in predated coral fragments (although non-significant). We conclude that coral responses to the combination of high temperature and predation pressure display high inter-species variability, but these stressors may pose a higher risk of endosymbiont loss, depending on species physiology and stress intensity.
Collapse
Affiliation(s)
- Carolina Madeira
- i4HB – Associate Laboratory Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
- MARE – Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- *Correspondence: Carolina Madeira, , orcid.org/0000-0003-1632-634X
| | - Marta Dias
- MARE – Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- Marta Dias, , orcid.org/0000-0003-0447-6009
| | - Ana Ferreira
- Biology Department, Oceanário de Lisboa, Lisbon, Portugal
| | - Raúl Gouveia
- Biology Department, Oceanário de Lisboa, Lisbon, Portugal
| | - Henrique Cabral
- MARE – Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- INRAE – National Research Institute for Agriculture, Food and Environment, UR EABX, Cestas, France
| | - Mário S. Diniz
- i4HB – Associate Laboratory Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
| | - Catarina Vinagre
- MARE – Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- CCMAR – Centre of Marine Sciences, University of Algarve, Faro, Portugal
| |
Collapse
|
61
|
Estimating the Evaporative Cooling Effect of Irrigation within and above Soybean Canopy. WATER 2022. [DOI: 10.3390/w14030319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Vegetation with an adequate supply of water might contribute to cooling the land surface around it through the latent heat flux of transpiration. This study investigates the potential estimation of evaporative cooling at plot scale, using soybean as example. Some of the plants’ physiological parameters were monitored and sampled at weekly intervals. A physics-based model was then applied to estimate the irrigation-induced cooling effect within and above the canopy during the middle and late season of the soybean growth period. We then examined the results of the temperature changes at a temporal resolution of ten minutes between every two irrigation rounds. During the middle and late season of growth, the cooling effects caused by evapotranspiration within and above the canopy were, on average, 4.4 K and 2.9 K, respectively. We used quality indicators such as R-squared (R2) and mean absolute error (MAE) to evaluate the performance of the model simulation. The performance of the model in this study was better above the canopy (R2 = 0.98, MAE = 0.3 K) than below (R2 = 0.87, MAE = 0.9 K) due to the predefined thermodynamic condition used to estimate evaporative cooling. Moreover, the study revealed that canopy cooling contributes to mitigating heat stress conditions during the middle and late seasons of crop growth.
Collapse
|
62
|
Chen Z, Grossfurthner L, Loxterman JL, Masingale J, Richardson BA, Seaborn T, Smith B, Waits LP, Narum SR. Applying genomics in assisted migration under climate change: Framework, empirical applications, and case studies. Evol Appl 2022; 15:3-21. [PMID: 35126645 PMCID: PMC8792483 DOI: 10.1111/eva.13335] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 12/01/2022] Open
Abstract
The rate of global climate change is projected to outpace the ability of many natural populations and species to adapt. Assisted migration (AM), which is defined as the managed movement of climate-adapted individuals within or outside the species ranges, is a conservation option to improve species' adaptive capacity and facilitate persistence. Although conservation biologists have long been using genetic tools to increase or maintain diversity of natural populations, genomic techniques could add extra benefit in AM that include selectively neutral and adaptive regions of the genome. In this review, we first propose a framework along with detailed procedures to aid collaboration among scientists, agencies, and local and regional managers during the decision-making process of genomics-guided AM. We then summarize the genomic approaches for applying AM, followed by a literature search of existing incorporation of genomics in AM across taxa. Our literature search initially identified 729 publications, but after filtering returned only 50 empirical studies that were either directly applied or considered genomics in AM related to climate change across taxa of plants, terrestrial animals, and aquatic animals; 42 studies were in plants. This demonstrated limited application of genomic methods in AM in organisms other than plants, so we provide further case studies as two examples to demonstrate the negative impact of climate change on non-model species and how genomics could be applied in AM. With the rapidly developing sequencing technology and accumulating genomic data, we expect to see more successful applications of genomics in AM, and more broadly, in the conservation of biodiversity.
Collapse
Affiliation(s)
- Zhongqi Chen
- Aquaculture Research InstituteUniversity of IdahoHagermanIdahoUSA
| | - Lukas Grossfurthner
- Bioinformatics and Computational Biology Graduate ProgramUniversity of IdahoHagermanIdahoUSA
| | - Janet L. Loxterman
- Department of Biological SciencesIdaho State UniversityPocatelloIdahoUSA
| | | | | | - Travis Seaborn
- Department of Fish and Wildlife ResourcesUniversity of IdahoMoscowIdahoUSA
| | - Brandy Smith
- Department of Biological SciencesIdaho State UniversityPocatelloIdahoUSA
| | - Lisette P. Waits
- Department of Fish and Wildlife ResourcesUniversity of IdahoMoscowIdahoUSA
| | - Shawn R. Narum
- Columbia River Inter‐Tribal Fish CommissionHagermanIdahoUSA
| |
Collapse
|
63
|
Leggat W, Heron SF, Fordyce A, Suggett DJ, Ainsworth TD. Experiment Degree Heating Week (eDHW) as a novel metric to reconcile and validate past and future global coral bleaching studies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113919. [PMID: 34731944 DOI: 10.1016/j.jenvman.2021.113919] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Coral bleaching has increasingly impacted reefs worldwide over the past four decades. Despite almost 40 years of research into the mechanistic, physiological, ecological, biophysical and climatic drivers of coral bleaching, metrics to allow comparison between ecological observations and experimental simulations still do not exist. Here we describe a novel metric - experimental Degree Heating Week (eDHW) - with which to standardise the persistently variable thermal conditions employed across experimental studies of coral bleaching by modify the widely used Degree Heating Week (DHW) metric used in ecological studies to standardise cumulative heat loading.
Collapse
Affiliation(s)
- William Leggat
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, Australia.
| | - Scott F Heron
- Physics and Marine Geophysical Laboratory, College of Science and Engineering, James Cook University, Townsville, Australia
| | - Alexander Fordyce
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, Australia
| | - David J Suggett
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Sydney, Australia
| | - Tracy D Ainsworth
- Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
64
|
Banc-Prandi G, Evensen NR, Barshis DJ, Perna G, Moussa Omar Y, Fine M. Assessment of temperature optimum signatures of corals at both latitudinal extremes of the Red Sea. CONSERVATION PHYSIOLOGY 2022; 10:coac002. [PMID: 35492414 PMCID: PMC9040280 DOI: 10.1093/conphys/coac002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/11/2021] [Accepted: 02/16/2022] [Indexed: 05/11/2023]
Abstract
Rising ocean temperatures are pushing reef-building corals beyond their temperature optima (Topt ), resulting in reduced physiological performances and increased risk of bleaching. Identifying refugia with thermally resistant corals and understanding their thermal adaptation strategy is therefore urgent to guide conservation actions. The Gulf of Aqaba (GoA, northern Red Sea) is considered a climate refuge, hosting corals that may originate from populations selected for thermal resistance in the warmer waters of the Gulf of Tadjoura (GoT, entrance to the Red Sea and 2000 km south of the GoA). To better understand the thermal adaptation strategy of GoA corals, we compared the temperature optima (Topt ) of six common reef-building coral species from the GoA and the GoT by measuring oxygen production and consumption rates as well as photophysiological performance (i.e. chlorophyll fluorescence) in response to a short heat stress. Most species displayed similar Topt between the two locations, highlighting an exceptional continuity in their respective physiological performances across such a large latitudinal range, supporting the GoA refuge theory. Stylophora pistillata showed a significantly lower Topt in the GoA, which may suggest an ongoing population-level selection (i.e. adaptation) to the cooler waters of the GoA and subsequent loss of thermal resistance. Interestingly, all Topt were significantly above the local maximum monthly mean seawater temperatures in the GoA (27.1°C) and close or below in the GoT (30.9°C), indicating that GoA corals, unlike those in the GoT, may survive ocean warming in the next few decades. Finally, Acropora muricata and Porites lobata displayed higher photophysiological performance than most species, which may translate to dominance in local reef communities under future thermal scenarios. Overall, this study is the first to compare the Topt of common reef-building coral species over such a latitudinal range and provides insights into their thermal adaptation in the Red Sea.
Collapse
Affiliation(s)
- Guilhem Banc-Prandi
- Corresponding author: The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel. Tel: +33 7 86 94 72 76.
| | - Nicolas R Evensen
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Daniel J Barshis
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Gabriela Perna
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Youssouf Moussa Omar
- Center for Studies and Scientific Research of Djibouti, Route de l’Aéroport, BP 1000, Djibouti
| | - Maoz Fine
- The Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
- The Interuniversity Institute for Marine Sciences, Eilat, 88103, Israel
| |
Collapse
|
65
|
Reichert J, Tirpitz V, Anand R, Bach K, Knopp J, Schubert P, Wilke T, Ziegler M. Interactive effects of microplastic pollution and heat stress on reef-building corals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118010. [PMID: 34488160 DOI: 10.1016/j.envpol.2021.118010] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/30/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Plastic pollution is an emerging stressor that increases pressure on ecosystems such as coral reefs that are already challenged by climate change. However, the effects of plastic pollution in combination with global warming are largely unknown. Thus, the goal of this study was to determine the cumulative effects of microplastic pollution with that of global warming on reef-building coral species and to compare the severity of both stressors. For this, we conducted a series of three controlled laboratory experiments and exposed a broad range of coral species (Acropora muricata, Montipora digitata, Porites lutea, Pocillopora verrucosa, and Stylophora pistillata) to microplastic particles in a range of concentrations (2.5-2500 particles L-1) and mixtures (from different industrial sectors) at ambient temperatures and in combination with heat stress. We show that microplastic can occasionally have both aggravating or mitigating effects on the corals' thermal tolerance. In comparison to heat stress, however, microplastic constitutes a minor stressor. While heat stress led to decreased photosynthetic efficiency of algal symbionts, and increased bleaching, tissue necrosis, and mortality, treatment with microplastic particles had only minor effects on the physiology and health of the tested coral species at ambient temperatures. These findings underline that while efforts to reduce plastic pollution should continue, they should not replace more urgent efforts to halt global warming, which are immediately needed to preserve remaining coral reef ecosystems.
Collapse
Affiliation(s)
- Jessica Reichert
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Vanessa Tirpitz
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Rajshree Anand
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Katharina Bach
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Jonas Knopp
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Patrick Schubert
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Thomas Wilke
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Maren Ziegler
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
66
|
Ziegler M, Anton A, Klein SG, Rädecker N, Geraldi NR, Schmidt-Roach S, Saderne V, Mumby PJ, Cziesielski MJ, Martin C, Frölicher TL, Pandolfi JM, Suggett DJ, Aranda M, Duarte CM, Voolstra CR. Integrating environmental variability to broaden the research on coral responses to future ocean conditions. GLOBAL CHANGE BIOLOGY 2021; 27:5532-5546. [PMID: 34391212 DOI: 10.1111/gcb.15840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Our understanding of the response of reef-building corals to changes in their physical environment is largely based on laboratory experiments, analysis of long-term field data, and model projections. Experimental data provide unique insights into how organisms respond to variation of environmental drivers. However, an assessment of how well experimental conditions cover the breadth of environmental conditions and variability where corals live successfully is missing. Here, we compiled and analyzed a globally distributed dataset of in-situ seasonal and diurnal variability of key environmental drivers (temperature, pCO2 , and O2 ) critical for the growth and livelihood of reef-building corals. Using a meta-analysis approach, we compared the variability of environmental conditions assayed in coral experimental studies to current and projected conditions in their natural habitats. We found that annual temperature profiles projected for the end of the 21st century were characterized by distributional shifts in temperatures with warmer winters and longer warm periods in the summer, not just peak temperatures. Furthermore, short-term hourly fluctuations of temperature and pCO2 may regularly expose corals to conditions beyond the projected average increases for the end of the 21st century. Coral reef sites varied in the degree of coupling between temperature, pCO2 , and dissolved O2 , which warrants site-specific, differentiated experimental approaches depending on the local hydrography and influence of biological processes on the carbonate system and O2 availability. Our analysis highlights that a large portion of the natural environmental variability at short and long timescales is underexplored in experimental designs, which may provide a path to extend our understanding on the response of corals to global climate change.
Collapse
Affiliation(s)
- Maren Ziegler
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Giessen, Germany
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Andrea Anton
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- Global Change Research Group, IMEDEA (CSIC-UIB), Mediterranean Institute for Advanced Studies, Esporles (Illes Balears), Spain
| | - Shannon G Klein
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Nils Rädecker
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- Department of Biology, University of Konstanz, Konstanz, Germany
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nathan R Geraldi
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Sebastian Schmidt-Roach
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Vincent Saderne
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Peter J Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, St. Lucia, Qld, Australia
| | - Maha J Cziesielski
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Cecilia Martin
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Thomas L Frölicher
- Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - John M Pandolfi
- Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, Brisbane, Qld, Australia
| | - David J Suggett
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Manuel Aranda
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Christian R Voolstra
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
67
|
Multi-trophic markers illuminate the understanding of the functioning of a remote, low coral cover Marquesan coral reef food web. Sci Rep 2021; 11:20950. [PMID: 34697332 PMCID: PMC8545934 DOI: 10.1038/s41598-021-00348-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 10/11/2021] [Indexed: 11/08/2022] Open
Abstract
We studied the food web structure and functioning of a coral reef ecosystem in the Marquesas Islands, French Polynesia, characterized by low coral cover, high sea surface temperature and meso- to eutrophic waters. The Marquesas constitute a relevant ecosystem to understand the functioning of low diversity reefs that are also subject to global change. A multi-tracer assessment of organic matter pathways was run to delineate ecosystem functioning, using analysis of fatty acids, bulk and compound specific stable isotope analysis and stable isotopes mixing models. Macroalgae and phytoplankton were the two major food sources fueling this food web with, however, some marked seasonal variations. Specifically, zooplankton relied on phytoplankton-derived organic matter and herbivorous fishes on macroalgae-derived organic matter to a much higher extent in summer than in winter (~ 75% vs. ~ 15%, and ~ 70 to 75% vs. ~ 5 to 15%, respectively) . Despite remarkably high δ15N values for all trophic compartments, likely due to local dynamics in the nitrogen stock, trophic levels of consumers were similar to those of other coral reef ecosystems. These findings shed light on the functioning of low coral cover systems, which are expected to expand worldwide under global change.
Collapse
|
68
|
Ainsworth TD, Leggat W, Silliman BR, Lantz CA, Bergman JL, Fordyce AJ, Page CE, Renzi JJ, Morton J, Eakin CM, Heron SF. Rebuilding relationships on coral reefs: Coral bleaching knowledge-sharing to aid adaptation planning for reef users: Bleaching emergence on reefs demonstrates the need to consider reef scale and accessibility when preparing for, and responding to, coral bleaching. Bioessays 2021; 43:e2100048. [PMID: 34351637 DOI: 10.1002/bies.202100048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 11/07/2022]
Abstract
Coral bleaching has impacted reefs worldwide and the predictions of near-annual bleaching from over two decades ago have now been realized. While technology currently provides the means to predict large-scale bleaching, predicting reef-scale and within-reef patterns in real-time for all reef users is limited. In 2020, heat stress across the Great Barrier Reef underpinned the region's third bleaching event in 5 years. Here we review the heterogeneous emergence of bleaching across Heron Island reef habitats and discuss the oceanographic drivers that underpinned variable bleaching emergence. We do so as a case study to highlight how reef end-user groups who engage with coral reefs in different ways require targeted guidance for how, and when, to alter their use of coral reefs in response to bleaching events. Our case study of coral bleaching emergence demonstrates how within-reef scale nowcasting of coral bleaching could aid the development of accessible and equitable bleaching response strategies on coral reefs.
Collapse
Affiliation(s)
- Tracy D Ainsworth
- Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - William Leggat
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, Australia
| | - Brian R Silliman
- Nicholas School of the Environment, Duke University, Beaufort, North Carolina, USA
| | - Coulson A Lantz
- Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, Australia
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, Australia
| | - Jessica L Bergman
- Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Alexander J Fordyce
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, Australia
| | - Charlotte E Page
- Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Juliana J Renzi
- Nicholas School of the Environment, Duke University, Beaufort, North Carolina, USA
| | - Joseph Morton
- Nicholas School of the Environment, Duke University, Beaufort, North Carolina, USA
| | - C Mark Eakin
- NOAA Coral Reef Watch, College Park, Maryland, USA
- Global Science and Technology, Greenbelt, Maryland, USA
| | - Scott F Heron
- Physical Sciences and Marine Geophysics Laboratory, James Cook University, Townsville, Australia
| |
Collapse
|
69
|
Hill CEL, Lymperaki MM, Hoeksema BW. A centuries-old manmade reef in the Caribbean does not substitute natural reefs in terms of species assemblages and interspecific competition. MARINE POLLUTION BULLETIN 2021; 169:112576. [PMID: 34119961 DOI: 10.1016/j.marpolbul.2021.112576] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
With increasing maritime activities in the proximity of coral reefs, a growing number of manmade structures are becoming available for coral colonisation. Yet, little is known about the sessile community composition of such artificial reefs in comparison with that of natural coral reefs. Here, we compared the diversity of corals and their competitors for substrate space between a centuries-old manmade structure and the nearest natural reef at St. Eustatius, eastern Caribbean. The artificial reef had a significantly lower species richness and fewer competitive interactions than the natural reef. The artificial reef was dominated by a cover of crustose coralline algae and zoantharians, instead of turf algae and fire corals on the natural reef. Significant differences in species composition were also found between exposed and sheltered sites on both reefs. Our study indicates that even a centuries-old manmade reef cannot serve as a surrogate for natural reefs.
Collapse
Affiliation(s)
- Claudia E L Hill
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands; Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC Groningen, the Netherlands
| | - Myrsini M Lymperaki
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands; Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, the Netherlands
| | - Bert W Hoeksema
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands; Groningen Institute for Evolutionary Life Sciences, University of Groningen, P.O. Box 11103, 9700 CC Groningen, the Netherlands.
| |
Collapse
|
70
|
Hackerott S, Martell HA, Eirin-Lopez JM. Coral environmental memory: causes, mechanisms, and consequences for future reefs. Trends Ecol Evol 2021; 36:1011-1023. [PMID: 34366170 DOI: 10.1016/j.tree.2021.06.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022]
Abstract
The apparent ability of corals to acquire and maintain enhanced stress tolerance through a dose-dependent environmental memory, which may persist for multiple years, has critical implications for coral reef conservation research. Such responses are variable across coral species and environmental stressors, with primed corals exhibiting a modified response to secondary stress exposures. While the mechanisms underlying coral memory responses are poorly understood, they likely involve both the coral host and microbiome. With advances in molecular technologies, it is now possible to investigate potential memory mechanisms in non-model organisms, including transcriptional regulation through epigenetic modifications. We integrate evidence of coral environmental memory and suggest future research directions to evaluate the potential for this process to enhance coral resilience under climate change.
Collapse
Affiliation(s)
- Serena Hackerott
- Environmental Epigenetics Laboratory, Institute of Environment, Biological Sciences Department, Florida International University, North Miami, FL, 33181, USA
| | - Harmony A Martell
- Climate and Coastal Ecosystem Laboratory, Department of Geography & Institute of Oceans and Fisheries, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jose M Eirin-Lopez
- Environmental Epigenetics Laboratory, Institute of Environment, Biological Sciences Department, Florida International University, North Miami, FL, 33181, USA.
| |
Collapse
|
71
|
Gouezo M, Fabricius K, Harrison P, Golbuu Y, Doropoulos C. Optimizing coral reef recovery with context-specific management actions at prioritized reefs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113209. [PMID: 34346392 DOI: 10.1016/j.jenvman.2021.113209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/06/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Assisting the natural recovery of coral reefs through local management actions is needed in response to increasing ecosystem disturbances in the Anthropocene. There is growing evidence that commonly used resilience-based passive management approaches may not be sufficient to maintain coral reef key functions. We synthesize and discuss advances in coral reef recovery research, and its application to coral reef conservation and restoration practices. We then present a framework to guide the decision-making of reef managers, scientists and other stakeholders, to best support reef recovery after a disturbance. The overall aim of this management framework is to catalyse reef recovery, to minimize recovery times, and to limit the need for ongoing management interventions into the future. Our framework includes two main stages: first, a prioritization method for assessment following a large-scale disturbance, which is based on a reef's social-ecological values, and on a classification of the likelihood of recovery or succession resulting in degraded, novel, hybrid or historical states. Second, a flow chart to assist with determining management actions for highly valued reefs. Potential actions are chosen based on the ecological attributes of the disturbed reef, defined during ecological assessments. Depending on the context, management actions may include (1) substrata rehabilitation actions to facilitate natural coral recruitment, (2) repopulating actions using active restoration techniques, (3) resilience-based management actions and (4) monitoring coral recruitment and growth to assess the effectiveness of management interventions. We illustrate the proposed decision framework with a case study of typhoon-damaged eastern outer reefs in Palau, Micronesia. The decisions made following this framework lead to the conclusion that some reefs may not return to their historical state for many decades. However, if motivation and funds are available, new management approaches can be explored to assist coral reefs at valued locations to return to a functional state providing key ecosystem services.
Collapse
Affiliation(s)
- Marine Gouezo
- Palau International Coral Reef Center, PO Box 7086, Koror, Palau; Marine Ecology Research Centre, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia.
| | - Katharina Fabricius
- Australian Institute of Marine Science, PMB 3, Townsville, QLD 4810, Australia.
| | - Peter Harrison
- Marine Ecology Research Centre, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia.
| | - Yimnang Golbuu
- Palau International Coral Reef Center, PO Box 7086, Koror, Palau.
| | | |
Collapse
|
72
|
Wong KH, Goodbody-Gringley G, de Putron SJ, Becker DM, Chequer A, Putnam HM. Brooded coral offspring physiology depends on the combined effects of parental press and pulse thermal history. GLOBAL CHANGE BIOLOGY 2021; 27:3179-3195. [PMID: 33914388 DOI: 10.1111/gcb.15629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Reef-building corals respond to the temporal integration of both pulse events (i.e., heat waves) and press thermal history (i.e., local environment) via physiological changes, with ecological consequences. We used a "press-pulse-press" experimental framework to expose the brooding coral Porites astreoides to various thermal histories to understand the physiological response of temporal dynamics within and across generations. We collected adult colonies from two reefs (outer Rim reef and inner Patch reef) in Bermuda with naturally contrasting thermal regimes as our initial "press" scenario, followed by a 21-day ex situ "pulse" thermal stress of 30.4°C during larval brooding, and a "press" year-long adult reciprocal transplant between the original sites. Higher endosymbiont density and holobiont protein was found in corals originating from the lower thermal variability site (Rim) compared to the higher thermal variability site (Patch). The thermal pulse event drove significant declines in photosynthesis, endosymbiont density, and chlorophyll a, with bleaching phenotype convergence for adults from both histories. Following the reciprocal transplant, photosynthesis was higher in previously heated corals, indicating recovery from the thermal pulse. The effect of origin (initial press) modulated the response to transplant site for endosymbiont density and chlorophyll a, suggesting contrasting acclimation strategies. Higher respiration and photosynthetic rates were found in corals originating from the Rim site, indicating greater energy available for reproduction, supported by larger larvae released from Rim corals post-transplantation. Notably, parental exposure to the pulse thermal event resulted in increased offspring plasticity when parents were transplanted to foreign sites, highlighting the legacy of the pulse event and the importance of the environment during recovery in contributing to cross-generational or developmental plasticity. Together, these findings provide novel insight into the role of historical disturbance events in driving differential outcomes within and across generations, which is of critical importance in forecasting reef futures.
Collapse
Affiliation(s)
- Kevin H Wong
- Department of Biology, University of Rhode Island, Kingston, RI, USA
| | - Gretchen Goodbody-Gringley
- Bermuda Institute of Ocean Sciences, St. George's, Bermuda
- Central Caribbean Marine Institute, Little Cayman Island, Cayman Islands
| | | | - Danielle M Becker
- Department of Biology, University of Rhode Island, Kingston, RI, USA
| | - Alex Chequer
- Bermuda Institute of Ocean Sciences, St. George's, Bermuda
| | - Hollie M Putnam
- Department of Biology, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
73
|
Ranjbar Jafarabadi A, Dashtbozorg M, Raudonytė-Svirbutavičienė E, Riyahi Bakhtiari A. A potential threat to the coral reef environments: Polybrominated diphenyl ethers and phthalate esters in the corals and their ambient environment (Persian Gulf, Iran). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145822. [PMID: 33631596 DOI: 10.1016/j.scitotenv.2021.145822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Pollution of the surrounding habitat poses one of the biggest threats to the coral health and even survival. This study focuses on the occurrence, distribution, bioaccumulation and bioconcentration of polybrominated diphenyl ethers (PBDEs) and phthalate esters (PAEs) in corals, their zooxanthellae and mucus, as well as in their ambient environment in Larak coral reef (Persian Gulf) for the first time. The highest concentrations of the pollutants were recorded in mucus, followed by zooxanthellae, tissue and skeleton. Soft corals with higher lipid content contained more PBDEs and PAEs. Pollutants were both efficiently bioconcentrated from water and bioaccumulated from the ambient sediment, albeit bioconcentration played the most prominent role. Elevated PBDEs and especially PAEs concentrations were detected in the skeletons of the bleached corals if compared to the skeleton samples of the non-bleached individuals.
Collapse
Affiliation(s)
- Ali Ranjbar Jafarabadi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| | - Mehdi Dashtbozorg
- Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| |
Collapse
|
74
|
Page CE, Leggat W, Heron SF, Fordyce AJ, Ainsworth TD. High flow conditions mediate damaging impacts of sub-lethal thermal stress on corals' endosymbiotic algae. CONSERVATION PHYSIOLOGY 2021; 9:coab046. [PMID: 34188937 PMCID: PMC8226191 DOI: 10.1093/conphys/coab046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/24/2021] [Accepted: 06/16/2021] [Indexed: 05/31/2023]
Abstract
The effects of thermal anomalies on tropical coral endosymbiosis can be mediated by a range of environmental factors, which in turn ultimately influence coral health and survival. One such factor is the water flow conditions over coral reefs and corals. Although the physiological benefits of living under high water flow are well known, there remains a lack of conclusive experimental evidence characterizing how flow mitigates thermal stress responses in corals. Here we use in situ measurements of flow in a variety of reef habitats to constrain the importance of flow speeds on the endosymbiosis of an important reef building species under different thermal regimes. Under high flow speeds (0.15 m s-1) and thermal stress, coral endosymbionts retained photosynthetic function and recovery capacity for longer compared to low flow conditions (0.03 m s-1). We hypothesize that this may be due to increased rates of mass transfer of key metabolites under higher flow, putatively allowing corals to maintain photosynthetic efficiency for longer. We also identified a positive interactive effect between high flow and a pre-stress, sub-lethal pulse in temperature. While higher flow may delay the onset of photosynthetic stress, it does not appear to confer long-term protection; sustained exposure to thermal stress (eDHW accumulation equivalent to 4.9°C weeks) eventually overwhelmed the coral meta-organism as evidenced by eventual declines in photo-physiological function and endosymbiont densities. Investigating flow patterns at the scale of metres within the context of these physiological impacts can reveal interesting avenues for coral reef management. This study increases our understanding of the effects of water flow on coral reef health in an era of climate change and highlights the potential to learn from existing beneficial bio-physical interactions for the effective preservation of coral reefs into the future.
Collapse
Affiliation(s)
- C E Page
- Life Sciences, Imperial College, Exhibition Road, London SW7 2AZ, UK
- School of Biological, Earth and Environmental Sciences, UNSW, Kensington, High St, New South Wales 2033, Australia
- School of Environmental and Life Sciences, University of Newcastle, University Dr, Callaghan, New South Wales 2308, Australia
| | - W Leggat
- School of Environmental and Life Sciences, University of Newcastle, University Dr, Callaghan, New South Wales 2308, Australia
| | - S F Heron
- Physics and Marine Geophysical Laboratory, College of Science and Engineering, James Cook University, James Cook Dr, Townsville, Queensland 4811, Australia
- NOAA Coral Reef Watch, College Park, MD 20740, USA
| | - A J Fordyce
- School of Environmental and Life Sciences, University of Newcastle, University Dr, Callaghan, New South Wales 2308, Australia
| | - T D Ainsworth
- School of Biological, Earth and Environmental Sciences, UNSW, Kensington, High St, New South Wales 2033, Australia
| |
Collapse
|
75
|
Henley EM, Quinn M, Bouwmeester J, Daly J, Zuchowicz N, Lager C, Bailey DW, Hagedorn M. Reproductive plasticity of Hawaiian Montipora corals following thermal stress. Sci Rep 2021; 11:12525. [PMID: 34108494 PMCID: PMC8190081 DOI: 10.1038/s41598-021-91030-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/09/2021] [Indexed: 11/08/2022] Open
Abstract
Ocean warming, fueled by climate change, is the primary cause of coral bleaching events which are predicted to increase in frequency. Bleaching is generally damaging to coral reproduction, can be exacerbated by concomitant stressors like ultraviolet radiation (UVR), and can have lasting impacts to successful reproduction and potential adaptation. We compared morphological and physiological reproductive metrics (e.g., sperm motility, mitochondrial membrane integrity, egg volume, gametes per bundle, and fertilization and settlement success) of two Hawaiian Montipora corals after consecutive bleaching events in 2014 and 2015. Between the species, sperm motility and mitochondrial membrane potential had the most disparate results. Percent sperm motility in M. capitata, which declined to ~ 40% during bleaching from a normal range of 70-90%, was still less than 50% motile in 2017 and 2018 and had not fully recovered in 2019 (63% motile). By contrast, percent sperm motility in Montipora spp. was 86% and 74% in 2018 and 2019, respectively. This reduction in motility was correlated with damage to mitochondria in M. capitata but not Montipora spp. A major difference between these species is the physiological foundation of their UVR protection, and we hypothesize that UVR protective mechanisms inherent in Montipora spp. mitigate this reproductive damage.
Collapse
Affiliation(s)
- E Michael Henley
- Smithsonian Conservation Biology Institute, Front Royal, VA, USA.
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA.
| | - Mariko Quinn
- Smithsonian Conservation Biology Institute, Front Royal, VA, USA
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| | - Jessica Bouwmeester
- Smithsonian Conservation Biology Institute, Front Royal, VA, USA
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| | - Jonathan Daly
- Smithsonian Conservation Biology Institute, Front Royal, VA, USA
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| | - Nikolas Zuchowicz
- Smithsonian Conservation Biology Institute, Front Royal, VA, USA
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| | - Claire Lager
- Smithsonian Conservation Biology Institute, Front Royal, VA, USA
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| | - Daniel W Bailey
- Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| | - Mary Hagedorn
- Smithsonian Conservation Biology Institute, Front Royal, VA, USA
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| |
Collapse
|
76
|
Majerova E, Carey FC, Drury C, Gates RD. Preconditioning improves bleaching tolerance in the reef-building coral Pocillopora acuta through modulations in the programmed cell death pathways. Mol Ecol 2021; 30:3560-3574. [PMID: 34008873 DOI: 10.1111/mec.15988] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/25/2022]
Abstract
Reef-building corals rely on intracellular algal symbionts to meet energetic demands. Increasing extreme weather driven by climate change often leads to disruption of this symbiosis and to coral death. Corals can better withstand stress after previous exposure to sublethal conditions, but the mechanisms for this resilience remain unclear. Here, we show that a three-day thermal preconditioning increases tolerance of acute heat stress through modulations in cell death pathways in the stony coral Pocillopora acuta. In preconditioned corals, the ratio of pro-survival (pa-Bcl-2 and pa-BI-1) to pro-death (pa-BAK and pa-BAX) gene expression increased and the corals underwent significantly less bleaching. When treated with Bcl-2 inhibitor, corals lost the improved thermal tolerance, suggesting an important role of programmed cell death in coral bleaching and acclimatization. During heat stress, the activity of acid phosphatase increased but caspase-3 did not, suggesting the involvement of autophagy/symbiophagy rather than apoptosis in this process. A similar shift in gene expression also occurs in thermally stressed corals that have been exposed to naturally higher temperatures during summer thermal maxima in Kāne'ohe Bay, Hawai'i, suggesting that corals can increase their resilience to realistic warming events during high-risk periods through alterations in cell signalling. These data suggest that programmed cell death pathways underly coral acclimatization and resilience and may be important for coral reef conservation and management.
Collapse
Affiliation(s)
- Eva Majerova
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| | - Fiona C Carey
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| | - Crawford Drury
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| | - Ruth D Gates
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| |
Collapse
|
77
|
Grottoli AG, Toonen RJ, Woesik R, Vega Thurber R, Warner ME, McLachlan RH, Price JT, Bahr KD, Baums IB, Castillo KD, Coffroth MA, Cunning R, Dobson KL, Donahue MJ, Hench JL, Iglesias‐Prieto R, Kemp DW, Kenkel CD, Kline DI, Kuffner IB, Matthews JL, Mayfield AB, Padilla‐Gamiño JL, Palumbi S, Voolstra CR, Weis VM, Wu HC. Increasing comparability among coral bleaching experiments. ECOLOGICAL APPLICATIONS 2021; 31:e02262. [PMID: 33222325 PMCID: PMC8243963 DOI: 10.1002/eap.2262] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/09/2020] [Indexed: 05/14/2023]
Affiliation(s)
- A. G. Grottoli
- School of Earth Sciences The Ohio State University Columbus Ohio43210USA
| | - R. J. Toonen
- Hawaiʻi Institute of Marine Biology University of Hawaiʻi at Mānoa Kāneʻohe Hawaii96744USA
| | - R. Woesik
- Department of Ocean Engineering and Marine Sciences Florida Institute of Technology Melbourne Florida32901USA
| | - R. Vega Thurber
- Department of Microbiology Oregon State University Corvallis Oregon97331USA
| | - M. E. Warner
- School of Marine Science and Policy University of Delaware Lewes Delaware19958USA
| | - R. H. McLachlan
- School of Earth Sciences The Ohio State University Columbus Ohio43210USA
| | - J. T. Price
- School of Earth Sciences The Ohio State University Columbus Ohio43210USA
| | - K. D. Bahr
- Department of Life Sciences Texas A&M University–Corpus Christi Corpus Christi Texas78412USA
| | - I. B. Baums
- Department of Biology Pennsylvania State University University Park Pennsylvania16802USA
| | - K. D. Castillo
- Department of Marine Sciences University of North Carolina at Chapel Hill Chapel Hill North Carolina27599USA
| | - M. A. Coffroth
- Department of Geology State University of New York at Buffalo Buffalo New York14260USA
| | - R. Cunning
- Daniel P. Hearther Center for Conservation and Research John G. Shedd Aquarium Chicago Illinois60605USA
| | - K. L. Dobson
- School of Earth Sciences The Ohio State University Columbus Ohio43210USA
| | - M. J. Donahue
- Hawaiʻi Institute of Marine Biology University of Hawaiʻi at Mānoa Kāneʻohe Hawaii96744USA
| | - J. L. Hench
- Nicholas School of the Environment Duke University Beaufort North Carolina28516USA
| | - R. Iglesias‐Prieto
- Department of Biology Pennsylvania State University University Park Pennsylvania16802USA
| | - D. W. Kemp
- Department of Biology University of Alabama at Birmingham Birmingham Alabama35233USA
| | - C. D. Kenkel
- Department of Biological Sciences University of Southern California Los Angeles California90089USA
| | - D. I. Kline
- Smithsonian Tropical Research Institute Washington D.C.20013USA
| | - I. B. Kuffner
- St Petersburg Coastal & Marine Science Center United States Geological Survey St Petersburg Florida33701USA
| | - J. L. Matthews
- Faculty of Science Climate Change Cluster University of Technology Sydney Broadway, Sydney New South Wales2007Australia
| | - A. B. Mayfield
- Oceanographic and Meteorological Laboratory Atlantic National Oceanic and Atmospheric Administration Miami Florida33149USA
- Cooperative Institute for Marine & Atmospheric Studies University of Miami Miami Florida33149USA
| | - J. L. Padilla‐Gamiño
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington98117USA
| | - S. Palumbi
- Hopkins Marine Station Stanford University Pacific Grove California93950USA
| | - C. R. Voolstra
- Department of Biology University of Konstanz Konstanz78457Germany
| | - V. M. Weis
- Department of Integrative Biology Oregon State University Corvallis Oregon97331USA
| | - H. C. Wu
- Leibniz Centre for Tropical Marine Research Bremen28359Germany
| |
Collapse
|
78
|
Muñiz-Castillo AI, Arias-González JE. Drivers of coral bleaching in a Marine Protected Area of the Southern Gulf of Mexico during the 2015 event. MARINE POLLUTION BULLETIN 2021; 166:112256. [PMID: 33735706 DOI: 10.1016/j.marpolbul.2021.112256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Here we report the bleached coral cover and its drivers observed at Alacranes Reef in 2015. Our results show that 2015 was an unprecedented heat stress event. However, we observed low coral bleaching, with the most substantial impact on sites with a 10-20% of coral cover with bleaching. Depth was the most relevant variable related to coral bleaching and the bleaching severity index, with deeper reefs being most affected. Further, our results show that reefs with higher structural complexity based on species composition were among the most affected. We identified that accumulated heat stress and thermal variation in the last 28 days were relevant drivers of coral bleaching. This work highlights the importance of multidimensional frameworks in assessing the spatial variation of coral bleaching, demonstrating the importance of structural habitat variables such as depth in high heat stress events and at a reef scale.
Collapse
Affiliation(s)
- Aarón Israel Muñiz-Castillo
- Laboratorio de Ecología de Ecosistemas de Arrecifes Coralinos, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del I.P.N., Mérida 97310, Yucatán, Mexico.
| | - Jesús Ernesto Arias-González
- Laboratorio de Ecología de Ecosistemas de Arrecifes Coralinos, Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del I.P.N., Mérida 97310, Yucatán, Mexico.
| |
Collapse
|
79
|
Wall CB, Ricci CA, Wen AD, Ledbetter BE, Klinger DE, Mydlarz LD, Gates RD, Putnam HM. Shifting baselines: Physiological legacies contribute to the response of reef corals to frequent heatwaves. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13795] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher B. Wall
- Hawai'i Institute of Marine Biology University of Hawai'i at Mānoa Kāne'ohe HI USA
- Pacific Biosciences Research Center University of Hawai'i at Mānoa Honolulu HI USA
| | - Contessa A. Ricci
- Department of Biology University of Texas at Arlington Arlington TX USA
| | - Alexandra D. Wen
- Hawai'i Institute of Marine Biology University of Hawai'i at Mānoa Kāne'ohe HI USA
- Rosenstiel School of Marine and Atmospheric Science University of Miami Miami FL USA
| | - Bren E. Ledbetter
- Department of Biology University of Texas at Arlington Arlington TX USA
| | | | - Laura D. Mydlarz
- Department of Biology University of Texas at Arlington Arlington TX USA
| | - Ruth D. Gates
- Hawai'i Institute of Marine Biology University of Hawai'i at Mānoa Kāne'ohe HI USA
| | - Hollie M. Putnam
- Department of Biological Sciences University of Rhode Island Kingston RI USA
| |
Collapse
|
80
|
Shlesinger T, van Woesik R. Different population trajectories of two reef-building corals with similar life-history traits. J Anim Ecol 2021; 90:1379-1389. [PMID: 33666226 PMCID: PMC8252767 DOI: 10.1111/1365-2656.13463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/26/2021] [Indexed: 01/01/2023]
Abstract
Increases in the frequency and intensity of acute and chronic disturbances are causing declines of coral reefs world‐wide. Although quantifying the responses of corals to acute disturbances is well documented, detecting subtle responses of coral populations to chronic disturbances is less common, but can also result in altered population and community structures. We investigated the population dynamics of two key reef‐building Merulinid coral species, Dipsastraea favus and Platygyra lamellina, with similar life‐history traits, in the Gulf of Eilat and Aqaba, Red Sea from 2015 to 2018, to assess potential differences in their population trajectories. Demographic processes, which included rates of survival, growth, reproduction and recruitment were used to parametrize integral projection models and estimate population growth rates and the likely population trajectories of both coral species. The survival and reproduction rates of both D. favus and P. lamellina were positively related to coral colony size, and elasticity analyses showed that large colonies most influenced population dynamics. Although both species have similar life‐history traits and growth morphologies and are generally regarded as ‘stress‐tolerant’, the populations showed contrasting trajectories—D. favus appears to be increasing whereas P. lamellina appears to be decreasing. As many corals have long‐life expectancies, the process of local and regional decline might be subtle and slow. Ecological assessments based on total living coral coverage, morphological groups or functional traits might overlook subtle, species‐specific trends. However, demographic approaches capable of detecting subtle species‐specific population changes can augment ecological studies and provide valuable early warning signs of decline before major coral loss becomes evident.
Collapse
Affiliation(s)
- Tom Shlesinger
- Institute for Global Ecology, Florida Institute of Technology, Melbourne, FL, USA
| | - Robert van Woesik
- Institute for Global Ecology, Florida Institute of Technology, Melbourne, FL, USA
| |
Collapse
|
81
|
Putnam HM. Avenues of reef-building coral acclimatization in response to rapid environmental change. J Exp Biol 2021; 224:224/Suppl_1/jeb239319. [DOI: 10.1242/jeb.239319] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABSTRACT
The swiftly changing climate presents a challenge to organismal fitness by creating a mismatch between the current environment and phenotypes adapted to historic conditions. Acclimatory mechanisms may be especially crucial for sessile benthic marine taxa, such as reef-building corals, where climate change factors including ocean acidification and increasing temperature elicit strong negative physiological responses such as bleaching, disease and mortality. Here, within the context of multiple stressors threatening marine organisms, I describe the wealth of metaorganism response mechanisms to rapid ocean change and the ontogenetic shifts in organism interactions with the environment that can generate plasticity. I then highlight the need to consider the interactions of rapid and evolutionary responses in an adaptive (epi)genetic continuum. Building on the definitions of these mechanisms and continuum, I also present how the interplay of the microbiome, epigenetics and parental effects creates additional avenues for rapid acclimatization. To consider under what conditions epigenetic inheritance has a more substantial role, I propose investigation into the offset of timing of gametogenesis leading to different environmental integration times between eggs and sperm and the consequences of this for gamete epigenetic compatibility. Collectively, non-genetic, yet heritable phenotypic plasticity will have significant ecological and evolutionary implications for sessile marine organism persistence under rapid climate change. As such, reef-building corals present ideal and time-sensitive models for further development of our understanding of adaptive feedback loops in a multi-player (epi)genetic continuum.
Collapse
Affiliation(s)
- Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
82
|
Marangoni LFDB, Rottier C, Ferrier-Pagès C. Symbiont regulation in Stylophora pistillata during cold stress: an acclimation mechanism against oxidative stress and severe bleaching. J Exp Biol 2021; 224:jeb.235275. [PMID: 33431596 DOI: 10.1242/jeb.235275] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/06/2021] [Indexed: 01/25/2023]
Abstract
Widespread coral bleaching and mortality, leading to coral reef decline, have been mainly associated with climate-change-driven increases in sea surface temperature. However, bleaching and mortality events have also been related to decreases in sea surface temperature, with cold stress events (e.g. La Niña events) being expected to increase in frequency or intensity as a result of a changing climate. Cold stress creates physiological symptoms in symbiotic reef-building corals similar to those observed when they are heat stressed, and the biochemical mechanisms underpinning cold stress in corals have been suggested to be related to an oxidative stress condition. However, up to now, this hypothesis had not been tested. This study assessed how short and long cold excursions in seawater temperature affect the physiology and biochemical processes related to oxidative stress in the reef-building coral Stylophora pistillata We provide, for the first time, direct evidence that the mechanisms underpinning cold stress and bleaching are related to the production of reactive oxygen species, and that rapid expulsion of a significant proportion of the symbiont population by the host during cooling conditions is an acclimation mechanism to avoid oxidative stress and, ultimately, severe bleaching. Furthermore, this study is one of the first to show that upwelling conditions (short-term cold stress+nutrient enrichment) can provoke a more severe oxidative stress condition in corals than cold stress alone.
Collapse
Affiliation(s)
| | - Cecile Rottier
- Marine Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco MC-98000, Principality of Monaco
| | - Christine Ferrier-Pagès
- Marine Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco MC-98000, Principality of Monaco
| |
Collapse
|
83
|
Johansen JL, Nadler LE, Habary A, Bowden AJ, Rummer J. Thermal acclimation of tropical coral reef fishes to global heat waves. eLife 2021; 10:59162. [PMID: 33496262 PMCID: PMC7837695 DOI: 10.7554/elife.59162] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
As climate-driven heat waves become more frequent and intense, there is increasing urgency to understand how thermally sensitive species are responding. Acute heating events lasting days to months may elicit acclimation responses to improve performance and survival. However, the coordination of acclimation responses remains largely unknown for most stenothermal species. We documented the chronology of 18 metabolic and cardiorespiratory changes that occur in the gills, blood, spleen, and muscles when tropical coral reef fishes are thermally stressed (+3.0°C above ambient). Using representative coral reef fishes (Caesio cuning and Cheilodipterus quinquelineatus) separated by >100 million years of evolution and with stark differences in major life-history characteristics (i.e. lifespan, habitat use, mobility, etc.), we show that exposure duration illicited coordinated responses in 13 tissue and organ systems over 5 weeks. The onset and duration of biomarker responses differed between species, with C. cuning – an active, mobile species – initiating acclimation responses to unavoidable thermal stress within the first week of heat exposure; conversely, C. quinquelineatus – a sessile, territorial species – exhibited comparatively reduced acclimation responses that were delayed through time. Seven biomarkers, including red muscle citrate synthase and lactate dehydrogenase activities, blood glucose and hemoglobin concentrations, spleen somatic index, and gill lamellar perimeter and width, proved critical in evaluating acclimation progression and completion, as these provided consistent evaluation of thermal responses across species.
Collapse
Affiliation(s)
- Jacob L Johansen
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, United States.,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | - Lauren E Nadler
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia.,Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, United States.,College of Science and Engineering, James Cook University, Townsville, Australia
| | - Adam Habary
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | - Alyssa J Bowden
- CSIRO, Hobart, Australia.,Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Jodie Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia.,College of Science and Engineering, James Cook University, Townsville, Australia
| |
Collapse
|
84
|
Puisay A, Elleaume N, Fouqueau L, Lacube Y, Goiran C, Sidobre C, Metian M, Hédouin L. Parental bleaching susceptibility leads to differences in larval fluorescence and dispersal potential in Pocillopora acuta corals. MARINE ENVIRONMENTAL RESEARCH 2021; 163:105200. [PMID: 33248410 DOI: 10.1016/j.marenvres.2020.105200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 06/12/2023]
Abstract
Coral reef ecosystems are declining at an alarming rate. Increasing seawater temperatures and occurrence of extreme warming events can impair sexual reproduction in reef-building corals and inhibit the ability for coral communities to replenish and persist. Here, we investigated the role of photophysiology on the reproductive ecology of Pocillopora acuta coral colonies by focusing on the impacts of bleaching susceptibility of parents on reproduction and larval performance, during an El Niño Southern Oscillation event in Mo'orea, French Polynesia. Elevated temperature conditions at that time induced bleaching phenotypic differences among P. acuta individuals: certain colonies became pale (from the loss of pigments and/or decline in symbiont cell density), while others remained pigmented (normal/high symbiont cell density). More specifically, we studied the impact of parental phenotypes on offspring's fluorescence by counting released larvae and sorting them by fluorescence types, we assessed survival to thermal stress, recruitment success and post-recruitment survival of released larvae from each fluorescent phenotype, during summer months (February to April 2016). Our results showed that red and green fluorescent larvae released by P. acuta had distinct physiological performances: red fluorescent larvae exhibited a higher survival into the pelagic phase regardless temperature conditions, with lower capacity to settle and survive post-recruitment, compared to green larvae that settle within a short period. Interestingly, pale colonies released two-to seven-fold more red fluorescent larvae than pigmented colonies did. In the light of our results, photophysiological profiles of the brooding P. acuta parental colonies may modulate the fluorescence features of released larvae, and thus influence the dispersal strategy of their offspring, the green fluorescent larval phenotypes being more performant in the benthic than pelagic phase.
Collapse
Affiliation(s)
- Antoine Puisay
- PSL Research University, USR 3278 CNRS EPHE UPVD CRIOBE, BP1013, Papetoai, French Polynesia; Laboratoire d'Excellence "CORAIL", B1013, 98,729 Papetoai, Mo'orea, French Polynesia
| | - Nicolas Elleaume
- PSL Research University, USR 3278 CNRS EPHE UPVD CRIOBE, BP1013, Papetoai, French Polynesia; Laboratoire d'Excellence "CORAIL", B1013, 98,729 Papetoai, Mo'orea, French Polynesia
| | - Louise Fouqueau
- PSL Research University, USR 3278 CNRS EPHE UPVD CRIOBE, BP1013, Papetoai, French Polynesia; Laboratoire d'Excellence "CORAIL", B1013, 98,729 Papetoai, Mo'orea, French Polynesia; CNRS, UMI 3614, Evolutionary Biology and Ecology of Algae, Roscoff, France
| | - Yann Lacube
- PSL Research University, USR 3278 CNRS EPHE UPVD CRIOBE, BP1013, Papetoai, French Polynesia; Laboratoire d'Excellence "CORAIL", B1013, 98,729 Papetoai, Mo'orea, French Polynesia
| | - Claire Goiran
- Laboratoire d'Excellence "CORAIL", B1013, 98,729 Papetoai, Mo'orea, French Polynesia; ISEA Institut de Sciences Exactes et Appliquées, Université de la Nouvelle-Calédonie, France
| | - Christine Sidobre
- PSL Research University, USR 3278 CNRS EPHE UPVD CRIOBE, BP1013, Papetoai, French Polynesia; Laboratoire d'Excellence "CORAIL", B1013, 98,729 Papetoai, Mo'orea, French Polynesia
| | - Marc Metian
- International Atomic Energy Agency, Environment Laboratories, 4a, Quai Antoine 1er, MC-98,000, Principality of Monaco, Monaco
| | - Laetitia Hédouin
- PSL Research University, USR 3278 CNRS EPHE UPVD CRIOBE, BP1013, Papetoai, French Polynesia; Laboratoire d'Excellence "CORAIL", B1013, 98,729 Papetoai, Mo'orea, French Polynesia.
| |
Collapse
|
85
|
Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves. Nat Commun 2020; 11:6097. [PMID: 33293528 PMCID: PMC7723047 DOI: 10.1038/s41467-020-19169-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/17/2020] [Indexed: 11/08/2022] Open
Abstract
Prospects for coral persistence through increasingly frequent and extended heatwaves seem bleak. Coral recovery from bleaching is only known to occur after temperatures return to normal, and mitigation of local stressors does not appear to augment coral survival. Capitalizing on a natural experiment in the equatorial Pacific, we track individual coral colonies at sites spanning a gradient of local anthropogenic disturbance through a tropical heatwave of unprecedented duration. Unexpectedly, some corals survived the event by recovering from bleaching while still at elevated temperatures. These corals initially had heat-sensitive algal symbiont communities, endured bleaching, and then recovered through proliferation of heat-tolerant symbionts. This pathway to survival only occurred in the absence of strong local stressors. In contrast, corals in highly disturbed areas were already dominated by heat-tolerant symbionts, and despite initially resisting bleaching, these corals had no survival advantage in one species and 3.3 times lower survival in the other. These unanticipated connections between disturbance, coral symbioses and heat stress resilience reveal multiple pathways to coral survival through future prolonged heatwaves.
Collapse
|
86
|
Santos‐Fernandez E, Peterson EE, Vercelloni J, Rushworth E, Mengersen K. Correcting misclassification errors in crowdsourced ecological data: A Bayesian perspective. J R Stat Soc Ser C Appl Stat 2020. [DOI: 10.1111/rssc.12453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Edgar Santos‐Fernandez
- School of Mathematical Sciences Queensland University of Technology Brisbane Australia
- Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS) Australia
| | - Erin E. Peterson
- School of Mathematical Sciences Queensland University of Technology Brisbane Australia
- Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS) Australia
| | - Julie Vercelloni
- School of Mathematical Sciences Queensland University of Technology Brisbane Australia
- Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS) Australia
| | - Em Rushworth
- School of Mathematical Sciences Queensland University of Technology Brisbane Australia
- Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS) Australia
| | - Kerrie Mengersen
- School of Mathematical Sciences Queensland University of Technology Brisbane Australia
- Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS) Australia
| |
Collapse
|
87
|
Quimpo TJR, Requilme JNC, Gomez EJ, Sayco SLG, Tolentino MPS, Cabaitan PC. Low coral bleaching prevalence at the Bolinao-Anda Reef Complex, northwestern Philippines during the 2016 thermal stress event. MARINE POLLUTION BULLETIN 2020; 160:111567. [PMID: 32891963 DOI: 10.1016/j.marpolbul.2020.111567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Here, we examined the coral bleaching responses during the 2016 thermal stress event and post-bleaching changes in coral communities in the heavily disturbed reefs of the Bolinao-Anda Reef Complex (BARC), northwestern Philippines. Less than 25% of colonies bleached, with 77% attributed to five genera (Dipsastrea, Porites, Fungia, Seriatopora, and Montipora). Coral bleaching prevalence was associated with site location, coral composition, and coral abundance, suggesting that small-scale variation (<20 km) in coral communities (taxa and density) influences spatial variation in coral bleaching prevalence. There was no noticeable change in coral composition and cover two years after the bleaching event as exposure to chronic disturbance likely selected for the dominance of stress tolerant coral taxa and communities. Results show that the 2016 thermal stress event caused coral bleaching but with low prevalence at the BARC, which suggests that disturbed reefs may provide spatial refuge to coral communities from thermal stress.
Collapse
Affiliation(s)
- Timothy Joseph R Quimpo
- The Marine Science Institute, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Jeremiah Noelle C Requilme
- The Marine Science Institute, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Elizabeth J Gomez
- The Marine Science Institute, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Sherry Lyn G Sayco
- The Marine Science Institute, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Mark Paulo S Tolentino
- The Marine Science Institute, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Patrick C Cabaitan
- The Marine Science Institute, College of Science, University of the Philippines, Diliman, Quezon City 1101, Philippines.
| |
Collapse
|
88
|
Boilard A, Dubé CE, Gruet C, Mercière A, Hernandez-Agreda A, Derome N. Defining Coral Bleaching as a Microbial Dysbiosis within the Coral Holobiont. Microorganisms 2020; 8:microorganisms8111682. [PMID: 33138319 PMCID: PMC7692791 DOI: 10.3390/microorganisms8111682] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
Coral microbiomes are critical to holobiont health and functioning, but the stability of host–microbial interactions is fragile, easily shifting from eubiosis to dysbiosis. The heat-induced breakdown of the symbiosis between the host and its dinoflagellate algae (that is, “bleaching”), is one of the most devastating outcomes for reef ecosystems. Yet, bleaching tolerance has been observed in some coral species. This review provides an overview of the holobiont’s diversity, explores coral thermal tolerance in relation to their associated microorganisms, discusses the hypothesis of adaptive dysbiosis as a mechanism of environmental adaptation, mentions potential solutions to mitigate bleaching, and suggests new research avenues. More specifically, we define coral bleaching as the succession of three holobiont stages, where the microbiota can (i) maintain essential functions for holobiont homeostasis during stress and/or (ii) act as a buffer to mitigate bleaching by favoring the recruitment of thermally tolerant Symbiodiniaceae species (adaptive dysbiosis), and where (iii) environmental stressors exceed the buffering capacity of both microbial and dinoflagellate partners leading to coral death.
Collapse
Affiliation(s)
- Aurélie Boilard
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.B.); (C.G.)
| | - Caroline E. Dubé
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.B.); (C.G.)
- California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA;
- Correspondence: (C.E.D.); (N.D.)
| | - Cécile Gruet
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.B.); (C.G.)
| | - Alexandre Mercière
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 66860 Perpignan CEDEX, France;
- Laboratoire d’Excellence “CORAIL”, 98729 Papetoai, Moorea, French Polynesia
| | | | - Nicolas Derome
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.B.); (C.G.)
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec City, QC G1V 0A6, Canada
- Correspondence: (C.E.D.); (N.D.)
| |
Collapse
|
89
|
McClanahan TR. Coral community life histories and population dynamics driven by seascape bathymetry and temperature variability. ADVANCES IN MARINE BIOLOGY 2020; 87:291-330. [PMID: 33293014 DOI: 10.1016/bs.amb.2020.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Temperature variability, habitat, coral communities, and fishing intensity are important factors influencing coral responses to climate change. Consequently, chronic and acute sea-surface temperatures (SSTs) and their interactions with habitat and fishing were studied along the East African coast (~400km) by evaluating changes over a ~25-year period in two major reef habitats-island and fringing reefs. These habitats had similar mean and standard deviation temperature measurements but differed in that islands had lower ocean heights and flatter and less right-skewed temperature distributions than fringing reefs. These patterns arise because islands are exposed to deep offshore water passing through deep channels while being protected from the open ocean storms and the strong inter-annual current temperature variability. Within these two seascapes, coral communities are shaped by population responses to the variable temperature distributions as determined by the taxa's associations with the competitive-stress-ruderal (CSR) life history groups. For example, competitive taxa were more abundant where temperature distributions were flat and lacked frequent warm water anomalies. In contrast, ruderal, weedy, and generalist taxa were more common where temperature distributions were centralized, standard deviations high, and warm water anomalies more frequent. Finally, stress-resistant taxa were more common in reefs with high temperature skew but flatter temperature distributions. The rare 1998 thermal anomaly impacted and disturbed the ruderal and stressed reef more than the competitive communities. Ruderal became more similar to stressed communities while the stressed community moved further from the mean before recovering towards the competitive community. Competitive taxa were more common on islands and the deeper fringing reef sites while ruderal were dominant in shallow fringing reef lagoons. Over time, islands were less disturbed than fringing reefs and maintained the highest coral cover, numbers of taxa, and most competitive or space-occupying taxa. However, some island reefs with a history of dynamite fishing aligned with the stress-resistant communities over the full study period. Compared to the in situ SST gauges at the study site, temperature proxies with global coverage were often good at estimating mean and standard deviations of the SSTs but much poorer at estimating the shape of the temperature distributions that reflect chronic and acute stress, as reflected by kurtosis and skewness metrics. Given that these stress variables were critical for understanding the impacts of rare climate disturbances, global climate models that use mean conditions are likely to be poor predictors of future impacts on corals, particularly their species and life history composition. Better predictions should be possible if appropriate chronic and acute stress metrics and their proxies are identified and used.
Collapse
Affiliation(s)
- Tim R McClanahan
- Wildlife Conservation Society, Marine Programs, Bronx, NY, United States.
| |
Collapse
|
90
|
Yang F, Long C, Wei Z, Long L. Optimization of medium using response surface methodology to enhance the growth of Effrenium voratum (Symbiodiniaceae, Dinophyceae). JOURNAL OF PHYCOLOGY 2020; 56:1208-1215. [PMID: 32306387 DOI: 10.1111/jpy.13007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Survival of coral reef-associated Symbiodiniaceae is vital to maintain the healthy coral community in coral reefs. However, knowledge about cultivation of free-living or symbiotic Symbiodiniaceae has been limited. In this study, the response surface methodology was applied to optimize the medium for Effrenium voratum. The results showed that the impacts of nutrient components on algal growth were: FeCl3 > NaH2 PO4 >MnSO4 > MgSO4 /CoSO4 > KCl>ZnSO4 > CaCl2 /NaNO3 , among which NaH2 PO4 and FeCl3 significantly affected algal growth. The optimal medium was: natural seawater supplemented with NaH2 PO4 ·2H2 O 0.25 mM,FeCl3 ·6H2 O 14.24 μM, NaNO3 0.94 mM, MgSO4 ·7H2 O 40.63 mM, KCl 5.37 mM, CaCl2 ·2H2 O 4.08 mM, ZnSO4 ·7H2 O 0.35 μM, MnSO4 9.93 μM, and CoSO4 0.36 μM. The use of the optimized medium resulted in an increase of biomass yield (0.76 g dry weight · L-1 ) by 46% over that using the initial medium, which agreed with the predicted value (0.71 g · L-1 ). Additionally, fatty acids, mainly consisting of palmitic acid (C16:0) and ethyl carbonate (C20:0), accounted for approximately 50% of the total fatty acids in E. voratum. Interestingly, docosahexaenoic acid (DHA) accounted for 6% of total fatty acids, a high proportion that makes E. voratum a potential candidate feedstock in aquaculture for DHA production.
Collapse
Affiliation(s)
- Fangfang Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Chao Long
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Zhangliang Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Lijuan Long
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| |
Collapse
|
91
|
Jackson RL, Gabric AJ, Cropp R. Coral reefs as a source of climate-active aerosols. PeerJ 2020; 8:e10023. [PMID: 33062438 PMCID: PMC7531332 DOI: 10.7717/peerj.10023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 09/02/2020] [Indexed: 01/17/2023] Open
Abstract
We review the evidence for bio-regulation by coral reefs of local climate through stress-induced emissions of aerosol precursors, such as dimethylsulfide. This is an issue that goes to the core of the coral ecosystem’s ability to maintain homeostasis in the face of increasing climate change impacts and other anthropogenic pressures. We examine this through an analysis of data on aerosol emissions by corals of the Great Barrier Reef, Australia. We focus on the relationship with local stressors, such as surface irradiance levels and sea surface temperature, both before and after notable coral bleaching events. We conclude that coral reefs may be able to regulate their exposure to environmental stressors through modification of the optical properties of the atmosphere, however this ability may be impaired as climate change intensifies.
Collapse
Affiliation(s)
- Rebecca L Jackson
- School of Environment and Science, Griffith University, Gold Coast, QLD, Australia
| | - Albert J Gabric
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - Roger Cropp
- School of Environment and Science, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
92
|
Anthony KRN, Helmstedt KJ, Bay LK, Fidelman P, Hussey KE, Lundgren P, Mead D, McLeod IM, Mumby PJ, Newlands M, Schaffelke B, Wilson KA, Hardisty PE. Interventions to help coral reefs under global change-A complex decision challenge. PLoS One 2020; 15:e0236399. [PMID: 32845878 PMCID: PMC7449401 DOI: 10.1371/journal.pone.0236399] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Climate change is impacting coral reefs now. Recent pan-tropical bleaching events driven by unprecedented global heat waves have shifted the playing field for coral reef management and policy. While best-practice conventional management remains essential, it may no longer be enough to sustain coral reefs under continued climate change. Nor will climate change mitigation be sufficient on its own. Committed warming and projected reef decline means solutions must involve a portfolio of mitigation, best-practice conventional management and coordinated restoration and adaptation measures involving new and perhaps radical interventions, including local and regional cooling and shading, assisted coral evolution, assisted gene flow, and measures to support and enhance coral recruitment. We propose that proactive research and development to expand the reef management toolbox fast but safely, combined with expedient trialling of promising interventions is now urgently needed, whatever emissions trajectory the world follows. We discuss the challenges and opportunities of embracing new interventions in a race against time, including their risks and uncertainties. Ultimately, solutions to the climate challenge for coral reefs will require consideration of what society wants, what can be achieved technically and economically, and what opportunities we have for action in a rapidly closing window. Finding solutions that work for coral reefs and people will require exceptional levels of coordination of science, management and policy, and open engagement with society. It will also require compromise, because reefs will change under climate change despite our best interventions. We argue that being clear about society's priorities, and understanding both the opportunities and risks that come with an expanded toolset, can help us make the most of a challenging situation. We offer a conceptual model to help reef managers frame decision problems and objectives, and to guide effective strategy choices in the face of complexity and uncertainty.
Collapse
Affiliation(s)
- Kenneth R. N. Anthony
- Australian Institute of Marine Science, QLD, Australia
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Kate J. Helmstedt
- ARC Centre of Excellence in Mathematical and Statistical Frontiers, School of Mathematical Sciences, Queensland University of Technology, QLD, Australia
| | - Line K. Bay
- Australian Institute of Marine Science, QLD, Australia
| | - Pedro Fidelman
- Centre for Policy Futures, The University of Queensland, QLD, Australia
| | - Karen E. Hussey
- Centre for Policy Futures, The University of Queensland, QLD, Australia
| | | | - David Mead
- Australian Institute of Marine Science, QLD, Australia
| | | | - Peter J. Mumby
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | | | | | - Kerrie A. Wilson
- ARC Centre of Excellence for Environmental Decisions, The University of Queensland, QLD, Australia
| | | |
Collapse
|
93
|
Johnston NK, Campbell JE, Paul VJ, Hay ME. Effects of future climate on coral-coral competition. PLoS One 2020; 15:e0235465. [PMID: 32790686 PMCID: PMC7425956 DOI: 10.1371/journal.pone.0235465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 06/16/2020] [Indexed: 11/23/2022] Open
Abstract
As carbon dioxide (CO2) levels increase, coral reefs and other marine systems will be affected by the joint stressors of ocean acidification (OA) and warming. The effects of these two stressors on coral physiology are relatively well studied, but their impact on biotic interactions between corals are poorly understood. While coral-coral interactions are less common on modern reefs, it is important to document the nature of these interactions to better inform restoration strategies in the face of climate change. Using a mesocosm study, we evaluated whether the combined effects of ocean acidification and warming alter the competitive interactions between the common coral Porites astreoides and two other mounding corals (Montastraea cavernosa or Orbicella faveolata) common in the Caribbean. After 7 days of direct contact, P. astreoides suppressed the photosynthetic potential of M. cavernosa by 100% in areas of contact under both present (~28.5°C and ~400 μatm pCO2) and predicted future (~30.0°C and ~1000 μatm pCO2) conditions. In contrast, under present conditions M. cavernosa reduced the photosynthetic potential of P. astreoides by only 38% in areas of contact, while under future conditions reduction was 100%. A similar pattern occurred between P. astreoides and O. faveolata at day 7 post contact, but by day 14, each coral had reduced the photosynthetic potential of the other by 100% at the point of contact, and O. faveolata was generating larger lesions on P. astreoides than the reverse. In the absence of competition, OA and warming did not affect the photosynthetic potential of any coral. These results suggest that OA and warming can alter the severity of initial coral-coral interactions, with potential cascading effects due to corals serving as foundation species on coral reefs.
Collapse
Affiliation(s)
- Nicole K. Johnston
- School of Biological Sciences and Aquatic Chemical Ecology Center, Georgia Institute of Technology, Atlanta, GA, United States of America
- * E-mail:
| | - Justin E. Campbell
- Department of Biological Sciences, Institute of Environment, Florida International University, North Miami, FL, United States of America
- Smithsonian Marine Station, Ft. Pierce, FL, United States of America
| | - Valerie J. Paul
- Smithsonian Marine Station, Ft. Pierce, FL, United States of America
| | - Mark E. Hay
- School of Biological Sciences and Aquatic Chemical Ecology Center, Georgia Institute of Technology, Atlanta, GA, United States of America
| |
Collapse
|
94
|
Putnam HM, Ritson-Williams R, Cruz JA, Davidson JM, Gates RD. Environmentally-induced parental or developmental conditioning influences coral offspring ecological performance. Sci Rep 2020; 10:13664. [PMID: 32788607 PMCID: PMC7423898 DOI: 10.1038/s41598-020-70605-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/23/2020] [Indexed: 01/22/2023] Open
Abstract
The persistence of reef building corals is threatened by human-induced environmental change. Maintaining coral reefs into the future requires not only the survival of adults, but also the influx of recruits to promote genetic diversity and retain cover following adult mortality. Few studies examine the linkages among multiple life stages of corals, despite a growing knowledge of carryover effects in other systems. We provide a novel test of coral parental conditioning to ocean acidification (OA) and tracking of offspring for 6 months post-release to better understand parental or developmental priming impacts on the processes of offspring recruitment and growth. Coral planulation was tracked for 3 months following adult exposure to high pCO2 and offspring from the second month were reciprocally exposed to ambient and high pCO2 for an additional 6 months. Offspring of parents exposed to high pCO2 had greater settlement and survivorship immediately following release, retained survivorship benefits during 1 and 6 months of continued exposure, and further displayed growth benefits to at least 1 month post release. Enhanced performance of offspring from parents exposed to high conditions was maintained despite the survivorship in both treatments declining in continued exposure to OA. Conditioning of the adults while they brood their larvae, or developmental acclimation of the larvae inside the adult polyps, may provide a form of hormetic conditioning, or environmental priming that elicits stimulatory effects. Defining mechanisms of positive acclimatization, with potential implications for carry over effects, cross-generational plasticity, and multi-generational plasticity, is critical to better understanding ecological and evolutionary dynamics of corals under regimes of increasing environmental disturbance. Considering environmentally-induced parental or developmental legacies in ecological and evolutionary projections may better account for coral reef response to the chronic stress regimes characteristic of climate change.
Collapse
Affiliation(s)
- Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA.
| | | | - Jolly Ann Cruz
- Micronesia Islands Nature Alliance, Garapan, Saipan, CNMI, 96950, USA
| | - Jennifer M Davidson
- Hawai'i Institute of Marine Biology, University of Hawai'i, Mānoa, Honolulu, HI, USA
| | - Ruth D Gates
- Hawai'i Institute of Marine Biology, University of Hawai'i, Mānoa, Honolulu, HI, USA
| |
Collapse
|
95
|
DeCarlo TM. Treating coral bleaching as weather: a framework to validate and optimize prediction skill. PeerJ 2020; 8:e9449. [PMID: 32685288 PMCID: PMC7337031 DOI: 10.7717/peerj.9449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022] Open
Abstract
Few coral reefs remain unscathed by mass bleaching over the past several decades, and much of the coral reef science conducted today relates in some way to the causes, consequences, or recovery pathways of bleaching events. Most studies portray a simple cause and effect relationship between anomalously high summer temperatures and bleaching, which is understandable given that bleaching rarely occurs outside these unusually warm times. However, the statistical skill with which temperature captures bleaching is hampered by many “false alarms”, times when temperatures reached nominal bleaching levels, but bleaching did not occur. While these false alarms are often not included in global bleaching assessments, they offer valuable opportunities to improve predictive skill, and therefore understanding, of coral bleaching events. Here, I show how a statistical framework adopted from weather forecasting can optimize bleaching predictions and validate which environmental factors play a role in bleaching susceptibility. Removing the 1 °C above the maximum monthly mean cutoff in the typical degree heating weeks (DHW) definition, adjusting the DHW window from 12 to 9 weeks, using regional-specific DHW thresholds, and including an El Niño threshold already improves the model skill by 45%. Most importantly, this framework enables hypothesis testing of other factors or metrics that may improve our ability to forecast coral bleaching events.
Collapse
Affiliation(s)
- Thomas M DeCarlo
- Hawaii Pacific University, Honolulu, HI, United States of America.,Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
96
|
Atmospheric Forcing of the High and Low Extremes in the Sea Surface Temperature over the Red Sea and Associated Chlorophyll-a Concentration. REMOTE SENSING 2020. [DOI: 10.3390/rs12142227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Taking advantage of 37-year-long (1982–2018) of high-quality satellite datasets, we examined the role of direct atmospheric forcing on the high and low sea surface temperature (SST) extremes over the Red Sea (RS). Considering the importance of SST in regulating ocean physics and biology, the associated impacts on chlorophyll (Chl-a) concentration were also explored, since a small change in SST can cause a significant impact in the ocean. After describing the climate features, we classified the top 5% of SST values (≥31.5 °C) as extreme high events (EHEs) during the boreal summer period and the lowest SST values (≤22.8 °C) as extreme low events (ELEs) during the boreal winter period. The spatiotemporal analysis showed that the EHEs (ELEs) were observed over the southern (northern) basin, with a significant warming trend of 0.027 (0.021) °C year−1, respectively. The EHEs were observed when there was widespread less than average sea level pressure (SLP) over southern Europe, northeast Africa, and Middle East, including in the RS, leading to the cold wind stress from Europe being relatively less than usual and the intrusion of stronger than usual relatively warm air mass from central Sudan throughout the Tokar Gap. Conversely, EHEs were observed when above average SLP prevailed over southern Europe and the Mediterranean Sea as a result of the Azores high and westward extension of the Siberian anticyclone, which led to above average transfer of cold and dry wind stress from higher latitudes. At the same time, notably less wind stress due to southerlies that transfer warm and humid air masses northward was observed. Furthermore, physical and biological responses related to extreme stress showed distinct ocean patterns associated with each event. It was found that the Chl-a concentration anomalies over the northern basin caused by vertical nutrient transport through deep upwelling processes are the manifestation of the superimposition of ELEs. The situation was the opposite for EHEs due to the stably stratified ocean boundary layer, which is a well-known consequence of global warming.
Collapse
|
97
|
Claar DC, McDevitt-Irwin JM, Garren M, Vega Thurber R, Gates RD, Baum JK. Increased diversity and concordant shifts in community structure of coral-associated Symbiodiniaceae and bacteria subjected to chronic human disturbance. Mol Ecol 2020; 29:2477-2491. [PMID: 32495958 DOI: 10.1111/mec.15494] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/16/2020] [Accepted: 05/28/2020] [Indexed: 12/27/2022]
Abstract
Both coral-associated bacteria and endosymbiotic algae (Symbiodiniaceae spp.) are vitally important for the biological function of corals. Yet little is known about their co-occurrence within corals, how their diversity varies across coral species, or how they are impacted by anthropogenic disturbances. Here, we sampled coral colonies (n = 472) from seven species, encompassing a range of life history traits, across a gradient of chronic human disturbance (n = 11 sites on Kiritimati [Christmas] atoll) in the central equatorial Pacific, and quantified the sequence assemblages and community structure of their associated Symbiodiniaceae and bacterial communities. Although Symbiodiniaceae alpha diversity did not vary with chronic human disturbance, disturbance was consistently associated with higher bacterial Shannon diversity and richness, with bacterial richness by sample almost doubling from sites with low to very high disturbance. Chronic disturbance was also associated with altered microbial beta diversity for Symbiodiniaceae and bacteria, including changes in community structure for both and increased variation (dispersion) of the Symbiodiniaceae communities. We also found concordance between Symbiodiniaceae and bacterial community structure, when all corals were considered together, and individually for two massive species, Hydnophora microconos and Porites lobata, implying that symbionts and bacteria respond similarly to human disturbance in these species. Finally, we found that the dominant Symbiodiniaceae ancestral lineage in a coral colony was associated with differential abundances of several distinct bacterial taxa. These results suggest that increased beta diversity of Symbiodiniaceae and bacterial communities may be a reliable indicator of stress in the coral microbiome, and that there may be concordant responses to chronic disturbance between these communities at the whole-ecosystem scale.
Collapse
Affiliation(s)
- Danielle C Claar
- Department of Biology, University of Victoria, Victoria, BC, Canada.,School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Jamie M McDevitt-Irwin
- Department of Biology, University of Victoria, Victoria, BC, Canada.,Department of Biology, Stanford University, Stanford, CA, USA
| | - Melissa Garren
- School of Natural Sciences, California State University Monterey Bay, Seaside, CA, USA
| | | | - Ruth D Gates
- Hawai`i Institute of Marine Biology, University of Hawai`i, Honolulu, HI, USA
| | - Julia K Baum
- Department of Biology, University of Victoria, Victoria, BC, Canada.,Hawai`i Institute of Marine Biology, University of Hawai`i, Honolulu, HI, USA
| |
Collapse
|
98
|
Strydom S, Murray K, Wilson S, Huntley B, Rule M, Heithaus M, Bessey C, Kendrick GA, Burkholder D, Fraser MW, Zdunic K. Too hot to handle: Unprecedented seagrass death driven by marine heatwave in a World Heritage Area. GLOBAL CHANGE BIOLOGY 2020; 26:3525-3538. [PMID: 32129909 DOI: 10.1111/gcb.15065] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/12/2020] [Accepted: 02/23/2020] [Indexed: 05/12/2023]
Abstract
The increased occurrence of extreme climate events, such as marine heatwaves (MHWs), has resulted in substantial ecological impacts worldwide. To date, metrics of thermal stress within marine systems have focussed on coral communities, and less is known about measuring stress relevant to other primary producers, such as seagrasses. An extreme MHW occurred across the Western Australian coastline in the austral summer of 2010-2011, exposing marine communities to summer seawater temperatures 2-5°C warmer than average. Using a combination of satellite imagery and in situ assessments, we provide detailed maps of seagrass coverage across the entire Shark Bay World Heritage Area (ca. 13,000 km2 ) before (2002 and 2010) and after the MHW (2014 and 2016). Our temporal analysis of these maps documents the single largest loss in dense seagrass extent globally (1,310 km2 ) following an acute disturbance. Total change in seagrass extent was spatially heterogeneous, with the most extensive declines occurring in the Western Gulf, Wooramel Bank and Faure Sill. Spatial variation in seagrass loss was best explained by a model that included an interaction between two heat stress metrics, the most substantial loss occurring when degree heating weeks (DHWm) was ≥10 and the number of days exposed to extreme sea surface temperature during the MHW (DaysOver) was ≥94. Ground truthing at 622 points indicated that change in seagrass cover was predominantly due to loss of Amphibolis antarctica rather than Posidonia australis, the other prominent seagrass at Shark Bay. As seawater temperatures continue to rise and the incidence of MHWs increase globally, this work will provide a basis for identifying areas of meadow degradation, or stability and recovery, and potential areas of resilience.
Collapse
Affiliation(s)
- Simone Strydom
- Marine Science Program, Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA, Australia
- Centre for Marine Ecosystems Research and School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Kathy Murray
- Remote Sensing and Spatial Analysis Program, Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA, Australia
| | - Shaun Wilson
- Marine Science Program, Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA, Australia
- School of Biological Sciences and the Oceans Institute, The University of Western Australia, Crawley, WA, Australia
| | - Bart Huntley
- Remote Sensing and Spatial Analysis Program, Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA, Australia
| | - Michael Rule
- Marine Science Program, Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA, Australia
| | - Michael Heithaus
- Center for Coastal Oceans Research, Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Cindy Bessey
- CSIRO, Oceans and Atmosphere, Indian Ocean Marine Research Centre, Crawley, WA, Australia
| | - Gary A Kendrick
- School of Biological Sciences and the Oceans Institute, The University of Western Australia, Crawley, WA, Australia
| | - Derek Burkholder
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL, USA
| | - Matthew W Fraser
- School of Biological Sciences and the Oceans Institute, The University of Western Australia, Crawley, WA, Australia
| | - Katherine Zdunic
- Remote Sensing and Spatial Analysis Program, Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA, Australia
| |
Collapse
|
99
|
Abstract
A major research question concerning global pelagic biodiversity remains unanswered: when did the apparent tropical biodiversity depression (i.e., bimodality of latitudinal diversity gradient [LDG]) begin? The bimodal LDG may be a consequence of recent ocean warming or of deep-time evolutionary speciation and extinction processes. Using rich fossil datasets of planktonic foraminifers, we show here that a unimodal (or only weakly bimodal) diversity gradient, with a plateau in the tropics, occurred during the last ice age and has since then developed into a bimodal gradient through species distribution shifts driven by postglacial ocean warming. The bimodal LDG likely emerged before the Anthropocene and industrialization, and perhaps ∼15,000 y ago, indicating a strong environmental control of tropical diversity even before the start of anthropogenic warming. However, our model projections suggest that future anthropogenic warming further diminishes tropical pelagic diversity to a level not seen in millions of years.
Collapse
|
100
|
Newkirk CR, Frazer TK, Martindale MQ, Schnitzler CE. Adaptation to Bleaching: Are Thermotolerant Symbiodiniaceae Strains More Successful Than Other Strains Under Elevated Temperatures in a Model Symbiotic Cnidarian? Front Microbiol 2020; 11:822. [PMID: 32431680 PMCID: PMC7214872 DOI: 10.3389/fmicb.2020.00822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/06/2020] [Indexed: 01/01/2023] Open
Abstract
The ability of some symbiotic cnidarians to resist and better withstand stress factors that cause bleaching is a trait that is receiving increased attention. The adaptive bleaching hypothesis postulates that cnidarians that can form a stable symbiosis with thermotolerant Symbiodiniaceae strains may cope better with increasing seawater temperatures. We used polyps of the scyphozoan, Cassiopea xamachana, as a model system to test symbiosis success under heat stress. We sought to determine: (1) if aposymbiotic C. xamachana polyps could establish and maintain a symbiosis with both native and non-native strains of Symbiodiniaceae that all exhibit different tolerances to heat, (2) whether polyps with these newly acquired Symbiodiniaceae strains would strobilate (produce ephyra), and (3) if thermally tolerant Symbiodiniaceae strains that established and maintained a symbiosis exhibited greater success in response to heat stress (even if they are not naturally occurring in Cassiopea). Following recolonization of aposymbiotic C. xamachana polyps with different strains, we found that: (1) strains Smic, Stri, Slin, and Spil all established a stable symbiosis that promoted strobilation and (2) strains Bmin1 and Bmin2 did not establish a stable symbiosis and strobilation did not occur. Strains Smic, Stri, Slin, and Spil were used in a subsequent bleaching experiment; each of the strains was introduced to a subset of aposymbiotic polyps and once polyp tissues were saturated with symbionts they were subjected to elevated temperatures - 32°C and 34°C - for 2 weeks. Our findings indicate that, in general, pairings of polyps with Symbiodiniaceae strains that are native to Cassiopea (Stri and Smic) performed better than a non-native strain (Slin) even though this strain has a high thermotolerance. This suggests a degree of partner specificity that may limit the adaptive potential of certain cnidarians to increased ocean warming. We also observed that the free-living, non-native thermotolerant strain Spil was relatively successful in resisting bleaching during experimental trials. This suggests that free-living Symbiodiniaceae may provide a supply of potentially "new" thermotolerant strains to cnidarians following a bleaching event.
Collapse
Affiliation(s)
- Casandra R. Newkirk
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, United States
- Fisheries and Aquatic Sciences Program, School of Forest Resources and Conservation, University of Florida, Gainesville, FL, United States
| | - Thomas K. Frazer
- Fisheries and Aquatic Sciences Program, School of Forest Resources and Conservation, University of Florida, Gainesville, FL, United States
- School of Natural Resources and Environment, University of Florida, Gainesville, FL, United States
| | - Mark Q. Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, United States
| | - Christine E. Schnitzler
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, United States
| |
Collapse
|