51
|
Chenet SM, Oyarce A, Fernandez J, Tapia-Limonchi R, Weitzel T, Tejedo JR, Udhayakumar V, Jercic MI, Lucchi NW. Atovaquone/Proguanil Resistance in an Imported Malaria Case in Chile. Am J Trop Med Hyg 2021; 104:1811-1813. [PMID: 33782210 PMCID: PMC8103435 DOI: 10.4269/ajtmh.20-1095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/22/2021] [Indexed: 11/07/2022] Open
Abstract
In November 2018, we diagnosed a cluster of falciparum malaria cases in three Chilean travelers returning from Nigeria. Two patients were treated with sequential intravenous artesunate plus oral atovaquone/proguanil (AP) and one with oral AP. The third patient, a 23-year-old man, presented with fever on day 29 after oral AP treatment and was diagnosed with recrudescent falciparum malaria. The patient was then treated with oral mefloquine, followed by clinical recovery and resolution of parasitemia. Analysis of day 0 and follow-up blood samples, collected on days 9, 29, 34, 64, and 83, revealed that parasitemia had initially decreased but then increased on day 29. Sequencing confirmed Tyr268Cys mutation in the cytochrome b gene, associated with atovaquone resistance, in isolates collected on days 29 and 34 and P. falciparum dihydrofolate reductase mutation Asn51Ile, associated with proguanil resistance in all successfully sequenced samples. Molecular characterization of imported malaria contributes to clinical management in non-endemic countries, helps ascertain the appropriateness of antimalarial treatment policies, and contributes to the reporting of drug resistance patterns from endemic regions.
Collapse
Affiliation(s)
- Stella M. Chenet
- Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Chachapoyas, Perú;,Instituto de Salud Pública de Chile (ISP), Santiago, Chile;,Address correspondence to Stella M. Chenet, Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodriguez de Mendoza de Amazonas, Chachapoyas, Peru. E-mail:
| | - Alan Oyarce
- Instituto de Salud Pública de Chile (ISP), Santiago, Chile
| | | | - Rafael Tapia-Limonchi
- Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Chachapoyas, Perú
| | - Thomas Weitzel
- Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Juan R. Tejedo
- Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Chachapoyas, Perú;,Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide (UPO), Seville, Spain;,Diabetes and Associated Metabolic Diseases Networking Biomedical Research Centre (CIBERDEM), Madrid, Spain
| | - Venkatachalam Udhayakumar
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Naomi W. Lucchi
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
52
|
Ippolito MM, Moser KA, Kabuya JBB, Cunningham C, Juliano JJ. Antimalarial Drug Resistance and Implications for the WHO Global Technical Strategy. CURR EPIDEMIOL REP 2021; 8:46-62. [PMID: 33747712 PMCID: PMC7955901 DOI: 10.1007/s40471-021-00266-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Five years have passed since the World Health Organization released its Global Technical Strategy for Malaria (GTS). In that time, progress against malaria has plateaued. This review focuses on the implications of antimalarial drug resistance for the GTS and how interim progress in parasite genomics and antimalarial pharmacology offer a bulwark against it. RECENT FINDINGS For the first time, drug resistance-conferring genes have been identified and validated before their global expansion in malaria parasite populations. More efficient methods for their detection and elaboration have been developed, although low-density infections and polyclonality remain a nuisance to be solved. Clinical trials of alternative regimens for multidrug-resistant malaria have delivered promising results. New agents continue down the development pipeline, while a nascent infrastructure in sub-Saharan Africa for conducting phase I trials and trials of transmission-blocking agents has come to fruition after years of preparation. SUMMARY These and other developments can help inform the GTS as the world looks ahead to the next two decades of its implementation. To remain ahead of the threat that drug resistance poses, wider application of genomic-based surveillance and optimization of existing and forthcoming antimalarial drugs are essential.
Collapse
Affiliation(s)
- Matthew M. Ippolito
- Divisions of Clinical Pharmacology and Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
- The Johns Hopkins Malaria Research Institute, Johns Hopkins University School of Public Health, Baltimore, MD USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Kara A. Moser
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, NC USA
| | | | - Clark Cunningham
- School of Medicine, University of North Carolina, Chapel Hill, NC USA
| | - Jonathan J. Juliano
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina, CB#7030, 130 Mason Farm Rd, Chapel Hill, NC 27599 USA
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina, Chapel Hill, NC USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
53
|
Atypical Molecular Basis for Drug Resistance to Mitochondrial Function Inhibitors in Plasmodium falciparum. Antimicrob Agents Chemother 2021; 65:AAC.02143-20. [PMID: 33361312 DOI: 10.1128/aac.02143-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022] Open
Abstract
The continued emergence of drug-resistant Plasmodium falciparum parasites hinders global attempts to eradicate malaria, emphasizing the need to identify new antimalarial drugs. Attractive targets for chemotherapeutic intervention are the cytochrome (cyt) bc 1 complex, which is an essential component of the mitochondrial electron transport chain (mtETC) required for ubiquinone recycling and mitochondrially localized dihydroorotate dehydrogenase (DHODH) critical for de novo pyrimidine synthesis. Despite the essentiality of this complex, resistance to a novel acridone class of compounds targeting cyt bc 1 was readily attained, resulting in a parasite strain (SB1-A6) that was panresistant to both mtETC and DHODH inhibitors. Here, we describe the molecular mechanism behind the resistance of the SB1-A6 parasite line, which lacks the common cyt bc 1 point mutations characteristic of resistance to mtETC inhibitors. Using Illumina whole-genome sequencing, we have identified both a copy number variation (∼2×) and a single-nucleotide polymorphism (C276F) associated with pfdhodh in SB1-A6. We have characterized the role of both genetic lesions by mimicking the copy number variation via episomal expression of pfdhodh and introducing the identified single nucleotide polymorphism (SNP) using CRISPR-Cas9 and assessed their contributions to drug resistance. Although both of these genetic polymorphisms have been previously identified as contributing to both DSM-1 and atovaquone resistance, SB1-A6 represents a unique genotype in which both alterations are present in a single line, suggesting that the combination contributes to the panresistant phenotype. This novel mechanism of resistance to mtETC inhibition has critical implications for the development of future drugs targeting the bc 1 complex or de novo pyrimidine synthesis that could help guide future antimalarial combination therapies and reduce the rapid development of drug resistance in the field.
Collapse
|
54
|
Selection of Cytochrome b Mutants Is Rare among Plasmodium falciparum Patients Failing Treatment with Atovaquone-Proguanil in Cambodia. Antimicrob Agents Chemother 2021; 65:AAC.01249-20. [PMID: 33361308 DOI: 10.1128/aac.01249-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/18/2020] [Indexed: 11/20/2022] Open
Abstract
Atovaquone-proguanil remains effective against multidrug-resistant Plasmodium falciparum in Southeast Asia, but resistance is mediated by a single point mutation in cytochrome b (cytb) that can arise during treatment. Among 14 atovaquone-proguanil treatment failures in a clinical trial in Cambodia, only one recrudescence harbored the cytb mutation Y268C. Deep sequencing did not detect the mutation at baseline or in the first 3 days of treatment, suggesting that it arose de novo Further sequencing across cytb similarly found no low-frequency cytb mutations that were up-selected from baseline to recrudescence. Copy number amplification in dihydroorotate dehydrogenase (DHODH) and cytb as markers of atovaquone tolerance was also absent. Cytb mutation played a minor role in atovaquone-proguanil treatment failures in an active comparator clinical trial.
Collapse
|
55
|
Chemoprotective antimalarials identified through quantitative high-throughput screening of Plasmodium blood and liver stage parasites. Sci Rep 2021; 11:2121. [PMID: 33483532 PMCID: PMC7822874 DOI: 10.1038/s41598-021-81486-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/05/2021] [Indexed: 12/20/2022] Open
Abstract
The spread of Plasmodium falciparum parasites resistant to most first-line antimalarials creates an imperative to enrich the drug discovery pipeline, preferably with curative compounds that can also act prophylactically. We report a phenotypic quantitative high-throughput screen (qHTS), based on concentration–response curves, which was designed to identify compounds active against Plasmodium liver and asexual blood stage parasites. Our qHTS screened over 450,000 compounds, tested across a range of 5 to 11 concentrations, for activity against Plasmodium falciparum asexual blood stages. Active compounds were then filtered for unique structures and drug-like properties and subsequently screened in a P. berghei liver stage assay to identify novel dual-active antiplasmodial chemotypes. Hits from thiadiazine and pyrimidine azepine chemotypes were subsequently prioritized for resistance selection studies, yielding distinct mutations in P. falciparum cytochrome b, a validated antimalarial drug target. The thiadiazine chemotype was subjected to an initial medicinal chemistry campaign, yielding a metabolically stable analog with sub-micromolar potency. Our qHTS methodology and resulting dataset provides a large-scale resource to investigate Plasmodium liver and asexual blood stage parasite biology and inform further research to develop novel chemotypes as causal prophylactic antimalarials.
Collapse
|
56
|
Abstract
BACKGROUND The World Health Organization (WHO) in 2015 stated atovaquone-proguanil can be used in travellers, and is an option in malaria-endemic areas in combination with artesunate, as an alternative treatment where first-line artemisinin-based combination therapy (ACT) is not available or effective. This review is an update of a Cochrane Review undertaken in 2005. OBJECTIVES To assess the efficacy and safety of atovaquone-proguanil (alone and in combination with artemisinin drugs) versus other antimalarial drugs for treating uncomplicated Plasmodium falciparum malaria in adults and children. SEARCH METHODS The date of the last trial search was 30 January 2020. Search locations for published trials included the Cochrane Infectious Diseases Group Specialized Register, CENTRAL, MEDLINE, Embase, and LILACS. To include recently published and unpublished trials, we also searched ClinicalTrials.gov, the metaRegister of Controlled Trials and the WHO International Clinical Trials Registry Platform Search Portal. SELECTION CRITERIA Randomized controlled trials (RCTs) reporting efficacy and safety data for atovaquone-proguanil or atovaquone-proguanil with a partner drug compared with at least one other antimalarial drug for treating uncomplicated Plasmodium falciparum infection. DATA COLLECTION AND ANALYSIS For this update, two review authors re-extracted data and assessed certainty of evidence. We meta-analyzed data to calculate risk ratios (RRs) with 95% confidence intervals (CI) for treatment failures between comparisons, and for safety outcomes between and across comparisons. Outcome measures include unadjusted treatment failures and polymerase chain reaction (PCR)-adjusted treatment failures. PCR adjustment differentiates new infection from recrudescent infection. MAIN RESULTS Seventeen RCTs met our inclusion criteria providing 4763 adults and children from Africa, South-America, and South-East Asia. Eight trials reported PCR-adjusted data to distinguish between new and recrudescent infection during the follow-up period. In this abstract, we report only the comparisons against the three WHO-recommended antimalarials which were included within these trials. There were two comparisons with artemether-lumefantrine, one trial from 2008 in Ethiopia with 60 participants had two failures with atovaquone-proguanil compared to none with artemether-lumefantrine (PCR-adjusted treatment failures at day 28). A second trial from 2012 in Colombia with 208 participants had one failure in each arm (PCR-adjusted treatment failures at day 42). There was only one comparison with artesunate-amodiaquine from a 2014 trial conducted in Cameroon. There were six failures with atovaquone-proguanil at day 28 and two with artesunate-amodiaquine (PCR-adjusted treatment failures at day 28: 9.4% with atovaquone-proguanil compared to 2.9% with artesunate-amodiaquine; RR 3.19, 95% CI 0.67 to 15.22; 1 RCT, 132 participants; low-certainty evidence), although there was a similar number of PCR-unadjusted treatment failures (9 (14.1%) with atovaquone-proguanil and 8 (11.8%) with artesunate-amodiaquine; RR 1.20, 95% CI 0.49 to 2.91; 1 RCT, 132 participants; low-certainty evidence). There were two comparisons with artesunate-mefloquine from a 2012 trial in Colombia and a 2002 trial in Thailand where there are high levels of multi-resistant malaria. There were similar numbers of PCR-adjusted treatment failures between groups at day 42 (2.7% with atovaquone-proguanil compared to 2.4% with artesunate-mefloquine; RR 1.15, 95% CI 0.57 to 2.34; 2 RCTs, 1168 participants; high-certainty evidence). There were also similar PCR-unadjusted treatment failures between groups (5.3% with atovaquone-proguanil compared to 6.6% with artesunate-mefloquine; RR 0.8, 95% CI 0.5 to 1.3; 1 RCT, 1063 participants; low-certainty evidence). When atovaquone-proguanil was combined with artesunate, there were fewer treatment failures with and without PCR-adjustment at day 28 (PCR-adjusted treatment failures at day 28: 2.16% with atovaquone-proguanil compared to no failures with artesunate-atovaquone-proguanil; RR 5.14, 95% CI 0.61 to 43.52; 2 RCTs, 375 participants, low-certainty evidence) and day 42 (PCR-adjusted treatment failures at day 42: 3.82% with atovaquone-proguanil compared to 2.05% with artesunate-atovaquone-proguanil (RR 1.84, 95% CI 0.95 to 3.56; 2 RCTs, 1258 participants, moderate-certainty evidence). In the 2002 trial in Thailand, there were fewer treatment failures in the artesunate-atovaquone-proguanil group compared to the atovaquone-proguanil group at day 42 with PCR-adjustment. Whilst there were some small differences in which adverse events were more frequent in the atovaquone-proguanil groups compared to comparator drugs, there were no recurrent associations to suggest that atovaquone-proguanil is strongly associated with any specific adverse event. AUTHORS' CONCLUSIONS Atovaquone-proguanil was effective against uncomplicated P falciparum malaria, although in some instances treatment failure rates were between 5% and 10%. The addition of artesunate to atovaquone-proguanil may reduce treatment failure rates. Artesunate-atovaquone-proguanil and the development of parasite resistance may represent an area for further research.
Collapse
Affiliation(s)
- Andrew Blanshard
- Department of Medicine, Norfolk and Norwich University Hospital, Norwich, UK
| | - Paul Hine
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
57
|
Oberstaller J, Otto TD, Rayner JC, Adams JH. Essential Genes of the Parasitic Apicomplexa. Trends Parasitol 2021; 37:304-316. [PMID: 33419671 DOI: 10.1016/j.pt.2020.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 12/29/2022]
Abstract
Genome-scale mutagenesis screens for genes essential for apicomplexan parasite survival have been completed in three species: Plasmodium falciparum, the major human malaria parasite, Plasmodium berghei, a model rodent malaria parasite, and the more distantly related Toxoplasma gondii, the causative agent of toxoplasmosis. These three species share 2606 single-copy orthologs, 1500 of which have essentiality data in all three screens. In this review, we explore the overlap between these datasets to define the core essential genes of the phylum Apicomplexa. We further discuss the implications of these groundbreaking studies for understanding apicomplexan parasite biology, and we identify promising areas of focus for developing new pan-apicomplexan parasite interventions.
Collapse
Affiliation(s)
- Jenna Oberstaller
- Center for Global Health and Infectious Diseases and USF Genomics Program, College of Public Health, University of South Florida, 3720 Spectrum Boulevard, Suite 404, Tampa, FL 33612, USA
| | - Thomas D Otto
- Centre of Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, Cambridgeshire, CB2 0XY, UK
| | - John H Adams
- Center for Global Health and Infectious Diseases and USF Genomics Program, College of Public Health, University of South Florida, 3720 Spectrum Boulevard, Suite 404, Tampa, FL 33612, USA.
| |
Collapse
|
58
|
Schreiber SJ, Ke R, Loverdo C, Park M, Ahsan P, Lloyd-Smith JO. Cross-scale dynamics and the evolutionary emergence of infectious diseases. Virus Evol 2021; 7:veaa105. [PMID: 35186322 PMCID: PMC8087961 DOI: 10.1093/ve/veaa105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
When emerging pathogens encounter new host species for which they are poorly adapted, they must evolve to escape extinction. Pathogens experience selection on traits at multiple scales, including replication rates within host individuals and transmissibility between hosts. We analyze a stochastic model linking pathogen growth and competition within individuals to transmission between individuals. Our analysis reveals a new factor, the cross-scale reproductive number of a mutant virion, that quantifies how quickly mutant strains increase in frequency when they initially appear in the infected host population. This cross-scale reproductive number combines with viral mutation rates, single-strain reproductive numbers, and transmission bottleneck width to determine the likelihood of evolutionary emergence, and whether evolution occurs swiftly or gradually within chains of transmission. We find that wider transmission bottlenecks facilitate emergence of pathogens with short-term infections, but hinder emergence of pathogens exhibiting cross-scale selective conflict and long-term infections. Our results provide a framework to advance the integration of laboratory, clinical, and field data in the context of evolutionary theory, laying the foundation for a new generation of evidence-based risk assessment of emergence threats.
Collapse
Affiliation(s)
| | - Ruian Ke
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Claude Loverdo
- Laboratoire Jean Perrin, Sorbonne Université, CNRS, Paris 75005, France
| | - Miran Park
- Department of Ecology & Evolution, University of California, Los Angeles, CA 90095, USA
| | - Prianna Ahsan
- Department of Ecology & Evolution, University of California, Los Angeles, CA 90095, USA
| | - James O Lloyd-Smith
- Department of Ecology & Evolution, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
59
|
Neff E, Evans CC, Jimenez Castro PD, Kaplan RM, Dharmarajan G. Drug Resistance in Filarial Parasites Does Not Affect Mosquito Vectorial Capacity. Pathogens 2020; 10:2. [PMID: 33375024 PMCID: PMC7822010 DOI: 10.3390/pathogens10010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Parasite drug resistance presents a major obstacle to controlling and eliminating vector-borne diseases affecting humans and animals. While vector-borne disease dynamics are affected by factors related to parasite, vertebrate host and vector, research on drug resistance in filarial parasites has primarily focused on the parasite and vertebrate host, rather than the mosquito. However, we expect that the physiological costs associated with drug resistance would reduce the fitness of drug-resistant vs. drug-susceptible parasites in the mosquito wherein parasites are not exposed to drugs. Here we test this hypothesis using four isolates of the dog heartworm (Dirofilaria immitis)-two drug susceptible and two drug resistant-and two vectors-the yellow fever mosquito (Aedes aegypti) and the Asian tiger mosquito (Ae. albopictus)-as our model system. Our data indicated that while vector species had a significant effect on vectorial capacity, there was no significant difference in the vectorial capacity of mosquitoes infected with drug-resistant vs. drug-susceptible parasites. Consequently, contrary to expectations, our data indicate that drug resistance in D. immitis does not appear to reduce the transmission efficiency of these parasites, and thus the spread of drug-resistant parasites in the vertebrate population is unlikely to be mitigated by reduced fitness in the mosquito vector.
Collapse
Affiliation(s)
- Erik Neff
- Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC 29802, USA
| | - Christopher C. Evans
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (C.C.E.); (P.D.J.C.); (R.M.K.)
| | - Pablo D. Jimenez Castro
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (C.C.E.); (P.D.J.C.); (R.M.K.)
- Grupo de Parasitología Veterinaria, Universidad Nacional de Colombia, Bogotá 11001000, Colombia
| | - Ray M. Kaplan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (C.C.E.); (P.D.J.C.); (R.M.K.)
| | - Guha Dharmarajan
- Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC 29802, USA
| |
Collapse
|
60
|
Sato D, Hartuti ED, Inaoka DK, Sakura T, Amalia E, Nagahama M, Yoshioka Y, Tsuji N, Nozaki T, Kita K, Harada S, Matsubayashi M, Shiba T. Structural and Biochemical Features of Eimeria tenella Dihydroorotate Dehydrogenase, a Potential Drug Target. Genes (Basel) 2020; 11:genes11121468. [PMID: 33297567 PMCID: PMC7762340 DOI: 10.3390/genes11121468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/23/2022] Open
Abstract
Dihydroorotate dehydrogenase (DHODH) is a mitochondrial monotopic membrane protein that plays an essential role in the pyrimidine de novo biosynthesis and electron transport chain pathways. In Eimeria tenella, an intracellular apicomplexan parasite that causes the most severe form of chicken coccidiosis, the activity of pyrimidine salvage pathway at the intracellular stage is negligible and it relies on the pyrimidine de novo biosynthesis pathway. Therefore, the enzymes of the de novo pathway are considered potential drug target candidates for the design of compounds with activity against this parasite. Although, DHODHs from E. tenella (EtDHODH), Plasmodium falciparum (PfDHODH), and human (HsDHODH) show distinct sensitivities to classical DHODH inhibitors, in this paper, we identify ferulenol as a potent inhibitor of both EtDHODH and HsDHODH. Additionally, we report the crystal structures of EtDHODH and HsDHODH in the absence and presence of ferulenol. Comparison of these enzymes showed that despite similar overall structures, the EtDHODH has a long insertion in the N-terminal helix region that assumes a disordered configuration. In addition, the crystal structures revealed that the ferulenol binding pocket of EtDHODH is larger than that of HsDHODH. These differences can be explored to accelerate structure-based design of inhibitors specifically targeting EtDHODH.
Collapse
Affiliation(s)
- Dan Sato
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (D.S.); (M.N.); (Y.Y.); (S.H.)
| | - Endah Dwi Hartuti
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
| | - Daniel Ken Inaoka
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (E.A.); (T.N.)
- Correspondence: (D.K.I.); (T.S.); Tel.: +81-95-819-7230 (D.K.I.); Tel./Fax: +81-75-724-7541 (T.S.)
| | - Takaya Sakura
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
| | - Eri Amalia
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (E.A.); (T.N.)
| | - Madoka Nagahama
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (D.S.); (M.N.); (Y.Y.); (S.H.)
| | - Yukina Yoshioka
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (D.S.); (M.N.); (Y.Y.); (S.H.)
| | - Naotoshi Tsuji
- Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan;
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (E.A.); (T.N.)
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (E.A.); (T.N.)
- Department of Host-Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (D.S.); (M.N.); (Y.Y.); (S.H.)
| | - Makoto Matsubayashi
- Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Orai Kita, Izumisano, Osaka 598-8531, Japan;
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (D.S.); (M.N.); (Y.Y.); (S.H.)
- Correspondence: (D.K.I.); (T.S.); Tel.: +81-95-819-7230 (D.K.I.); Tel./Fax: +81-75-724-7541 (T.S.)
| |
Collapse
|
61
|
Gupta H, Galatas B, Chidimatembue A, Huijben S, Cisteró P, Matambisso G, Nhamussua L, Simone W, Bassat Q, Ménard D, Ringwald P, Rabinovich NR, Alonso PL, Saúte F, Aide P, Mayor A. Effect of mass dihydroartemisinin-piperaquine administration in southern Mozambique on the carriage of molecular markers of antimalarial resistance. PLoS One 2020; 15:e0240174. [PMID: 33075062 PMCID: PMC7571678 DOI: 10.1371/journal.pone.0240174] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mass drug administration (MDA) can rapidly reduce the burden of Plasmodium falciparum (Pf). However, concerns remain about its contribution to select for antimalarial drug resistance. METHODS We used Sanger sequencing and real-time PCR to determine the proportion of molecular markers associated with antimalarial resistance (k13, pfpm2, pfmdr1 and pfcrt) in Pf isolates collected before (n = 99) and after (n = 112) the implementation of two monthly MDA rounds with dihydroartemisinin-piperaquine (DHAp) for two consecutive years in Magude district of Southern Mozambique. RESULTS None of the k13 polymorphisms associated with artemisinin resistance were observed in the Pf isolates analyzed. The proportion of Pf isolates with multiple copies of pfpm2, an amplification associated with piperaquine resistance, was similar in pre- (4.9%) and post-MDA groups (3.4%; p = 1.000). No statistically significant differences were observed between pre- and post-MDA groups in the proportion of Pf isolates neither with mutations in pfcrt and pfmdr1 genes, nor with the carriage of pfmdr1 multiple copies (p>0.05). CONCLUSIONS This study does not show any evidence of increased frequency of molecular makers of antimalarial resistance after MDA with DHAp in southern Mozambique where markers of antimalarial resistance were absent or low at the beginning of the intervention.
Collapse
Affiliation(s)
- Himanshu Gupta
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| | - Beatriz Galatas
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
| | | | - Silvie Huijben
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| | - Pau Cisteró
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| | | | - Lidia Nhamussua
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
| | - Wilson Simone
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
| | - Quique Bassat
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
- ICREA, Pg. Lluís Companys, Barcelona, Spain
- Spanish Consortium for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain
| | - Didier Ménard
- Institut Pasteur, Paris, France
- INSERM U1201, Paris, France
- CNRS ERL9195, Paris, France
| | - Pascal Ringwald
- World Health Organization (WHO), Global Malaria Programme, Geneva, Switzerland
| | - N. Regina Rabinovich
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Pedro L. Alonso
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
| | - Francisco Saúte
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
- National Institute of Health, Ministry of Health, Manhica, Mozambique
| | - Alfredo Mayor
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça, Manhica, Mozambique
- ICREA, Pg. Lluís Companys, Barcelona, Spain
| |
Collapse
|
62
|
Fisher N, Meunier B, Biagini GA. The cytochrome bc 1 complex as an antipathogenic target. FEBS Lett 2020; 594:2935-2952. [PMID: 32573760 DOI: 10.1002/1873-3468.13868] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/31/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
The cytochrome bc1 complex is a key component of the mitochondrial respiratory chains of many eukaryotic microorganisms that are pathogenic for plants or humans, such as fungi responsible for crop diseases and Plasmodium falciparum, which causes human malaria. Cytochrome bc1 is an enzyme that contains two (ubi)quinone/quinol-binding sites, which can be exploited for the development of fungicidal and chemotherapeutic agents. Here, we review recent progress in determination of the structure and mechanism of action of cytochrome bc1 , and the associated development of antimicrobial agents (and associated resistance mechanisms) targeting its activity.
Collapse
Affiliation(s)
- Nicholas Fisher
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Brigitte Meunier
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Giancarlo A Biagini
- Parasitology Department, Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
63
|
Nozawa A, Ito D, Ibrahim M, Santos HJ, Tsuboi T, Tozawa Y. Characterization of mitochondrial carrier proteins of malaria parasite Plasmodium falciparum based on in vitro translation and reconstitution. Parasitol Int 2020; 79:102160. [PMID: 32574727 DOI: 10.1016/j.parint.2020.102160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023]
Abstract
Members of the mitochondrial carrier (MC) family of membrane transporters play important roles in cellular metabolism. We previously established an in vitro reconstitution system for membrane transporters based on wheat germ cell-free translation system. We have now applied this reconstitution system to the comparative analysis of MC proteins from the malaria parasite Plasmodium falciparum and Saccharomyces cerevisiae. We synthesized twelve putative P. falciparum MCs and determined the transport activities of four of these proteins including PF3D7_1037300 protein (ADP/ATP translocator), PF3D7_1004800 protein (ADP/ATP translocator), PF3D7_1202200 protein (phosphate carrier), and PF3D7_1241600 protein (S-adenosylmethionine transporter). In addition, we tested the effect of cardiolipin on the activity of MC proteins. The transport activities of the yeast MCs, ScAac2p, ScGgc1p, ScDic1p, ScPic1p, and ScSam5p, which localize to the mitochondrial inner membrane, were increased by cardiolipin supplementation, whereas that of ScAnt1p, which localizes to the peroxisome membrane, was not significantly affected. Together, this indicates that the functional properties of the reconstituted MCs reflect the lipid content of their native membranes. Except for PF3D7_1241600 protein, these P. falciparum proteins manifested cardiolipin-dependent transport activities. Immunofluorescence analysis showed that PF3D7_1241600 protein is not mainly localized to the mitochondria of P. falciparum cells. We thus revealed the functions of four MC proteins of the malaria parasite and the effects of cardiolipin on their activities.
Collapse
Affiliation(s)
- Akira Nozawa
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| | - Daisuke Ito
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan; Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan.
| | - Mohamed Ibrahim
- Faculty of Science, Ain Shams University, Cairo 11566, Egypt.
| | - Herbert J Santos
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Takafumi Tsuboi
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| | - Yuzuru Tozawa
- Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan; Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, Saitama 338-8570, Japan.
| |
Collapse
|
64
|
Wall RJ, Carvalho S, Milne R, Bueren-Calabuig JA, Moniz S, Cantizani-Perez J, MacLean L, Kessler A, Cotillo I, Sastry L, Manthri S, Patterson S, Zuccotto F, Thompson S, Martin J, Marco M, Miles TJ, De Rycker M, Thomas MG, Fairlamb AH, Gilbert IH, Wyllie S. The Q i Site of Cytochrome b is a Promiscuous Drug Target in Trypanosoma cruzi and Leishmania donovani. ACS Infect Dis 2020; 6:515-528. [PMID: 31967783 PMCID: PMC7076694 DOI: 10.1021/acsinfecdis.9b00426] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Indexed: 01/29/2023]
Abstract
Available treatments for Chagas' disease and visceral leishmaniasis are inadequate, and there is a pressing need for new therapeutics. Drug discovery efforts for both diseases principally rely upon phenotypic screening. However, the optimization of phenotypically active compounds is hindered by a lack of information regarding their molecular target(s). To combat this issue we initiate target deconvolution studies at an early stage. Here, we describe comprehensive genetic and biochemical studies to determine the targets of three unrelated phenotypically active compounds. All three structurally diverse compounds target the Qi active-site of cytochrome b, part of the cytochrome bc1 complex of the electron transport chain. Our studies go on to identify the Qi site as a promiscuous drug target in Leishmania donovani and Trypanosoma cruzi with a propensity to rapidly mutate. Strategies to rapidly identify compounds acting via this mechanism are discussed to ensure that drug discovery portfolios are not overwhelmed with inhibitors of a single target.
Collapse
Affiliation(s)
- Richard J. Wall
- Division of Biological
Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives
Research, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Sandra Carvalho
- Division of Biological
Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives
Research, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Rachel Milne
- Division of Biological
Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives
Research, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Juan A. Bueren-Calabuig
- Drug Discovery Unit,
Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Sonia Moniz
- Division of Biological
Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives
Research, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | | | - Lorna MacLean
- Drug Discovery Unit,
Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Albane Kessler
- Global Health R&D, GlaxoSmithKline, Tres Cantos 28760, Spain
| | - Ignacio Cotillo
- Global Health R&D, GlaxoSmithKline, Tres Cantos 28760, Spain
| | - Lalitha Sastry
- Drug Discovery Unit,
Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Sujatha Manthri
- Drug Discovery Unit,
Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Stephen Patterson
- Division of Biological
Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives
Research, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Fabio Zuccotto
- Drug Discovery Unit,
Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Stephen Thompson
- Drug Discovery Unit,
Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Julio Martin
- Global Health R&D, GlaxoSmithKline, Tres Cantos 28760, Spain
| | - Maria Marco
- Global Health R&D, GlaxoSmithKline, Tres Cantos 28760, Spain
| | | | - Manu De Rycker
- Drug Discovery Unit,
Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Michael G. Thomas
- Drug Discovery Unit,
Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Alan H. Fairlamb
- Division of Biological
Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives
Research, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Ian H. Gilbert
- Drug Discovery Unit,
Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Susan Wyllie
- Division of Biological
Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives
Research, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| |
Collapse
|
65
|
Massamba L, Madamet M, Benoit N, Chevalier A, Fonta I, Mondain V, Jeandel PY, Amalvict R, Delaunay P, Mosnier J, Marty P, Pomares C, Pradines B. Late clinical failure associated with cytochrome b codon 268 mutation during treatment of falciparum malaria with atovaquone-proguanil in traveller returning from Congo. Malar J 2020; 19:37. [PMID: 31964401 PMCID: PMC6975030 DOI: 10.1186/s12936-020-3126-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/16/2020] [Indexed: 12/17/2022] Open
Abstract
Background The drug combination atovaquone–proguanil, is recommended for treatment of uncomplicated falciparum malaria in France. Despite high efficacy, atovaquone–proguanil treatment failures have been reported. Resistance to cycloguanil, the active metabolite of proguanil, is conferred by multiple mutations in the Plasmodium falciparum dihydrofolate reductase (pfdhfr) and resistance to atovaquone by single mutation on codon 268 of the cytochrome b gene (pfcytb). Case presentation A 47-year-old female, native from Congo and resident in France, was admitted in hospital for uncomplicated falciparum malaria with parasitaemia of 0.5%, after travelling in Congo (Brazzaville and Pointe Noire). She was treated with atovaquone–proguanil (250 mg/100 mg) 4 tablets daily for 3 consecutive days. On day 5 after admission she was released home. However, many weeks after this episode, without having left France, she again experienced fever and intense weakness. On day 39 after the beginning of treatment, she consulted for fever, arthralgia, myalgia, photophobia, and blurred vision. She was hospitalized for uncomplicated falciparum malaria with a parasitaemia of 0.375% and treated effectively by piperaquine–artenimol (320 mg/40 mg) 3 tablets daily for 3 consecutive days. Resistance to atovaquone–proguanil was suspected. The Y268C mutation was detected in all of the isolates tested (D39, D42, D47). The genotyping of the pfdhfr gene showed a triple mutation (N51I, C59R, S108N) involved in cycloguanil resistance. Conclusion This is the first observation of a late clinical failure of atovaquone–proguanil treatment of P. falciparum uncomplicated malaria associated with pfcytb 268 mutation in a traveller returning from Congo. These data confirm that the Y268C mutation is associated with delayed recrudescence 4 weeks or more after initial treatment. Although atovaquone–proguanil treatment failures remain rare, an increased surveillance is required. It is essential to declare and publish all well-documented cases of treatment failures because it is the only way to evaluate the level of resistance to atovaquone.
Collapse
Affiliation(s)
- Laurencie Massamba
- Parasitologie Mycologie, Centre Hospitalo-Universitaire de Nice, Université de la Côte d'Azur, Nice, France
| | - Marylin Madamet
- Unité Parasitologie et entomologie, Département de Microbiologie et de maladies infectieuses, Institut de recherche biomédicale des armées, Marseille, France.,Aix Marseille Université, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre national de référence du Paludisme, Marseille, France
| | - Nicolas Benoit
- Unité Parasitologie et entomologie, Département de Microbiologie et de maladies infectieuses, Institut de recherche biomédicale des armées, Marseille, France.,Aix Marseille Université, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre national de référence du Paludisme, Marseille, France
| | - Alicia Chevalier
- Parasitologie Mycologie, Centre Hospitalo-Universitaire de Nice, Université de la Côte d'Azur, Nice, France
| | - Isabelle Fonta
- Unité Parasitologie et entomologie, Département de Microbiologie et de maladies infectieuses, Institut de recherche biomédicale des armées, Marseille, France.,Aix Marseille Université, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre national de référence du Paludisme, Marseille, France
| | - Véronique Mondain
- Infectiologie, Centre Hospitalo-Universitaire de Nice, Université de la Côte d'Azur, Nice, France
| | - Pierre-Yves Jeandel
- Service de Médecine Interne, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Rémy Amalvict
- Unité Parasitologie et entomologie, Département de Microbiologie et de maladies infectieuses, Institut de recherche biomédicale des armées, Marseille, France.,Aix Marseille Université, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre national de référence du Paludisme, Marseille, France
| | - Pascal Delaunay
- Parasitologie Mycologie, Centre Hospitalo-Universitaire de Nice, Université de la Côte d'Azur, Nice, France.,MIVEGEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Joel Mosnier
- Unité Parasitologie et entomologie, Département de Microbiologie et de maladies infectieuses, Institut de recherche biomédicale des armées, Marseille, France.,Aix Marseille Université, IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Centre national de référence du Paludisme, Marseille, France
| | - Pierre Marty
- Parasitologie Mycologie, Centre Hospitalo-Universitaire de Nice, Université de la Côte d'Azur, Nice, France.,INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire, Faculté de Médecine, Virulence microbienne et signalisation inflammatoire, Nice, France
| | - Christelle Pomares
- Parasitologie Mycologie, Centre Hospitalo-Universitaire de Nice, Université de la Côte d'Azur, Nice, France.,INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire, Faculté de Médecine, Virulence microbienne et signalisation inflammatoire, Nice, France
| | - Bruno Pradines
- Unité Parasitologie et entomologie, Département de Microbiologie et de maladies infectieuses, Institut de recherche biomédicale des armées, Marseille, France. .,Aix Marseille Université, IRD, SSA, AP-HM, VITROME, Marseille, France. .,IHU Méditerranée Infection, Marseille, France. .,Centre national de référence du Paludisme, Marseille, France.
| |
Collapse
|
66
|
Balasubramanian S, Rahman RS, Lon C, Parobek C, Ubalee R, Hathaway N, Kuntawunginn W, My M, Vy D, Saxe J, Lanteri C, Lin FC, Spring M, Meshnick SR, Juliano JJ, Saunders DL, Lin JT. Efficient Transmission of Mixed Plasmodium falciparum/vivax Infections From Humans to Mosquitoes. J Infect Dis 2020; 221:428-437. [PMID: 31549156 PMCID: PMC7184918 DOI: 10.1093/infdis/jiz388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/23/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND In Southeast Asia, people are often coinfected with different species of malaria (Plasmodium falciparum [Pf] and Plasmodium vivax [Pv]) as well as with multiple clones of the same species. Whether particular species or clones within mixed infections are more readily transmitted to mosquitoes remains unknown. METHODS Laboratory-reared Anopheles dirus were fed on blood from 119 Pf-infected Cambodian adults, with 5950 dissected to evaluate for transmitted infection. Among 12 persons who infected mosquitoes, polymerase chain reaction and amplicon deep sequencing were used to track species and clone-specific transmission to mosquitoes. RESULTS Seven of 12 persons that infected mosquitoes harbored mixed Pf/Pv infection. Among these 7 persons, all transmitted Pv with 2 transmitting both Pf and Pv, leading to Pf/Pv coinfection in 21% of infected mosquitoes. Up to 4 clones of each species were detected within persons. Shifts in clone frequency were detected during transmission. However, in general, all parasite clones in humans were transmitted to mosquitoes, with individual mosquitoes frequently carrying multiple transmitted clones. CONCLUSIONS Malaria diversity in human hosts was maintained in the parasite populations recovered from mosquitoes fed on their blood. However, in persons with mixed Pf/Pv malaria, Pv appears to be transmitted more readily, in association with more prevalent patent gametocytemia.
Collapse
Affiliation(s)
- Sujata Balasubramanian
- Institute of Global Health and Infectious Diseases, University of North Carolina, Chapel Hill
| | - Rifat S Rahman
- Institute of Global Health and Infectious Diseases, University of North Carolina, Chapel Hill
| | - Chanthap Lon
- Armed Forces Research Institute of Medical Sciences, Phnom Penh, Cambodia
| | - Christian Parobek
- Institute of Global Health and Infectious Diseases, University of North Carolina, Chapel Hill
| | - Ratawan Ubalee
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Nicholas Hathaway
- Department of Bioinformatics and Integrated Biology, University of Massachusetts, Worcester
| | - Worachet Kuntawunginn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Mok My
- Royal Cambodian Armed Forces, Phnom Penh, Cambodia
| | - Dav Vy
- Royal Cambodian Armed Forces, Phnom Penh, Cambodia
| | - Jeremy Saxe
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
| | - Charlotte Lanteri
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Feng-Chang Lin
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
| | - Michele Spring
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Steven R Meshnick
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
| | - Jonathan J Juliano
- Institute of Global Health and Infectious Diseases, University of North Carolina, Chapel Hill
| | - David L Saunders
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- US Army Medical Materiel Development Activity, Fort Detrick, Maryland
| | - Jessica T Lin
- Institute of Global Health and Infectious Diseases, University of North Carolina, Chapel Hill
| |
Collapse
|
67
|
Abstract
Intensified treatment and control efforts since the early 2000s have dramatically reduced the burden of Plasmodium falciparum malaria. However, drug resistance threatens to derail this progress. In this review, we present four antimalarial resistance case studies that differ in timeline, technical approaches, mechanisms of action, and categories of resistance: chloroquine, sulfadoxine-pyrimethamine, artemisinin, and piperaquine. Lessons learned from prior losses of treatment efficacy, drug combinations, and control strategies will help advance mechanistic research into how P. falciparum parasites acquire resistance to current first-line artemisinin-based combination therapies. Understanding resistance in the clinic and laboratory is essential to prolong the effectiveness of current antimalarial drugs and to optimize the pipeline of future medicines.
Collapse
Affiliation(s)
- Leila S Ross
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David A Fidock
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
68
|
Abstract
The shape and number of mitochondria respond to the metabolic needs during the cell cycle of the eukaryotic cell. In the best-studied model systems of animals and fungi, the cells contain many mitochondria, each carrying its own nucleoid. The organelles, however, mostly exist as a dynamic network, which undergoes constant cycles of division and fusion. These mitochondrial dynamics are driven by intricate protein machineries centered around dynamin-related proteins (DRPs). Here, we review recent advances on the dynamics of mitochondria and mitochondrion-related organelles (MROs) of parasitic protists. In contrast to animals and fungi, many parasitic protists from groups of Apicomplexa or Kinetoplastida carry only a single mitochondrion with a single nucleoid. In these groups, mitochondrial division is strictly coupled to the cell cycle, and the morphology of the organelle responds to the cell differentiation during the parasite life cycle. On the other hand, anaerobic parasitic protists such as Giardia, Entamoeba, and Trichomonas contain multiple MROs that have lost their organellar genomes. We discuss the function of DRPs, the occurrence of mitochondrial fusion, and mitophagy in the parasitic protists from the perspective of eukaryote evolution.
Collapse
Affiliation(s)
- Luboš Voleman
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
| | - Pavel Doležal
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
69
|
Conrad MD, Rosenthal PJ. Antimalarial drug resistance in Africa: the calm before the storm? THE LANCET. INFECTIOUS DISEASES 2019; 19:e338-e351. [DOI: 10.1016/s1473-3099(19)30261-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/09/2019] [Accepted: 05/09/2019] [Indexed: 11/26/2022]
|
70
|
Cowell AN, Winzeler EA. The genomic architecture of antimalarial drug resistance. Brief Funct Genomics 2019; 18:314-328. [PMID: 31119263 PMCID: PMC6859814 DOI: 10.1093/bfgp/elz008] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/19/2019] [Accepted: 04/09/2019] [Indexed: 11/15/2022] Open
Abstract
Plasmodium falciparum and Plasmodium vivax, the two protozoan parasite species that cause the majority of cases of human malaria, have developed resistance to nearly all known antimalarials. The ability of malaria parasites to develop resistance is primarily due to the high numbers of parasites in the infected person's bloodstream during the asexual blood stage of infection in conjunction with the mutability of their genomes. Identifying the genetic mutations that mediate antimalarial resistance has deepened our understanding of how the parasites evade our treatments and reveals molecular markers that can be used to track the emergence of resistance in clinical samples. In this review, we examine known genetic mutations that lead to resistance to the major classes of antimalarial medications: the 4-aminoquinolines (chloroquine, amodiaquine and piperaquine), antifolate drugs, aryl amino-alcohols (quinine, lumefantrine and mefloquine), artemisinin compounds, antibiotics (clindamycin and doxycycline) and a napthoquinone (atovaquone). We discuss how the evolution of antimalarial resistance informs strategies to design the next generation of antimalarial therapies.
Collapse
Affiliation(s)
- Annie N Cowell
- Division of Infectious Diseases and Global Health, Department of Medicine, University of California, San Diego, Gilman Dr., La Jolla, CA, USA
| | - Elizabeth A Winzeler
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, Gilman Dr., La Jolla, CA, USA
| |
Collapse
|
71
|
Delves M, Lafuente-Monasterio MJ, Upton L, Ruecker A, Leroy D, Gamo FJ, Sinden R. Fueling Open Innovation for Malaria Transmission-Blocking Drugs: Hundreds of Molecules Targeting Early Parasite Mosquito Stages. Front Microbiol 2019; 10:2134. [PMID: 31572339 PMCID: PMC6753678 DOI: 10.3389/fmicb.2019.02134] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/30/2019] [Indexed: 11/13/2022] Open
Abstract
Background Despite recent successes at controlling malaria, progress has stalled with an estimated 219 million cases and 435,000 deaths in 2017 alone. Combined with emerging resistance to front line antimalarial therapies in Southeast Asia, there is an urgent need for new treatment options and novel approaches to halt the spread of malaria. Plasmodium, the parasite responsible for malaria propagates through mosquito transmission. This imposes an acute bottleneck on the parasite population and transmission-blocking interventions exploiting this vulnerability are recognized as vital for malaria elimination. Methods 13,533 small molecules with known activity against Plasmodium falciparum asexual parasites were screened for additional transmission-blocking activity in an ex vivo Plasmodium berghei ookinete development assay. Active molecules were then counterscreened in dose response against HepG2 cells to determine their activity/cytotoxicity window and selected non-toxic representative molecules were fully profiled in a range of transmission and mosquito infection assays. Furthermore, the entire dataset was compared to other published screens of the same molecules against P. falciparum gametocytes and female gametogenesis. Results 437 molecules inhibited P. berghei ookinete formation with an IC50 < 10 μM. of which 273 showed >10-fold parasite selectivity compared to activity against HepG2 cells. Active molecules grouped into 49 chemical clusters of three or more molecules, with 25 doublets and 94 singletons. Six molecules representing six major chemical scaffolds confirmed their transmission-blocking activity against P. falciparum male and female gametocytes and inhibited P. berghei oocyst formation in the standard membrane feeding assay at 1 μM. When screening data in the P. berghei development ookinete assay was compared to published screens of the same library in assays against P. falciparum gametocytes and female gametogenesis, it was established that each assay identified distinct, but partially overlapping subsets of transmission-blocking molecules. However, selected molecules unique to each assay show transmission-blocking activity in mosquito transmission assays. Conclusion The P. berghei ookinete development assay is an excellent high throughput assay for efficiently identifying antimalarial molecules targeting early mosquito stage parasite development. Currently no high throughput transmission-blocking assay is capable of identifying all transmission-blocking molecules.
Collapse
Affiliation(s)
- Michael Delves
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom.,Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Leanna Upton
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Andrea Ruecker
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | | | - Robert Sinden
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
72
|
Wojnarski M, Lon C, Vanachayangkul P, Gosi P, Sok S, Rachmat A, Harrison D, Berjohn CM, Spring M, Chaoratanakawee S, Ittiverakul M, Buathong N, Chann S, Wongarunkochakorn S, Waltmann A, Kuntawunginn W, Fukuda MM, Burkly H, Heang V, Heng TK, Kong N, Boonchan T, Chum B, Smith P, Vaughn A, Prom S, Lin J, Lek D, Saunders D. Atovaquone-Proguanil in Combination With Artesunate to Treat Multidrug-Resistant P. falciparum Malaria in Cambodia: An Open-Label Randomized Trial. Open Forum Infect Dis 2019; 6:ofz314. [PMID: 31660398 DOI: 10.1093/ofid/ofz314] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/28/2019] [Indexed: 12/16/2022] Open
Abstract
Background Recent artemisinin-combination therapy failures in Cambodia prompted a search for alternatives. Atovaquone-proguanil (AP), a safe, effective treatment for multidrug-resistant Plasmodium falciparum (P.f.), previously demonstrated additive effects in combination with artesunate (AS). Methods Patients with P.f. or mixed-species infection (n = 205) in Anlong Veng (AV; n = 157) and Kratie (KT; n = 48), Cambodia, were randomized open-label 1:1 to a fixed-dose 3-day AP regimen +/-3 days of co-administered artesunate (ASAP). Single low-dose primaquine (PQ, 15 mg) was given on day 1 to prevent gametocyte-mediated transmission. Results Polymerase chain reaction-adjusted adequate clinical and parasitological response at 42 days was 90% for AP (95% confidence interval [CI], 82%-95%) and 92% for ASAP (95% CI, 83%-96%; P = .73). The median parasite clearance time was 72 hours for ASAP in AV vs 56 hours in KT (P < .001) and was no different than AP alone. At 1 week postprimaquine, 7% of the ASAP group carried microscopic gametocytes vs 29% for AP alone (P = .0001). Nearly all P.f. isolates had C580Y K13 propeller artemisinin resistance mutations (AV 99%; KT 88%). Only 1 of 14 treatment failures carried the cytochrome bc1 (Pfcytb) atovaquone resistance mutation, which was not present at baseline. P.f. isolates remained atovaquone sensitive in vitro but cycloguanil resistant, with a triple P.f. dihydrofolate reductase mutation. Conclusions Atovaquone-proguanil remained marginally effective in Cambodia (≥90%) with minimal Pfcytb mutations observed. Treatment failures in the presence of ex vivo atovaquone sensitivity and adequate plasma levels may be attributable to cycloguanil and/or artemisinin resistance. Artesunate co-administration provided little additional blood-stage efficacy but reduced post-treatment gametocyte carriage in combination with AP beyond single low-dose primaquine.
Collapse
Affiliation(s)
- Mariusz Wojnarski
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chanthap Lon
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | - Panita Gosi
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Somethy Sok
- Department of Health, Ministry of National Defense, Phnom Penh, Cambodia
| | - Agus Rachmat
- Naval Medical Research Unit-2, Phnom Penh, Cambodia
| | | | | | - Michele Spring
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.,Henry M. Jackson Foundation, Bethesda, Maryland
| | - Suwanna Chaoratanakawee
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.,Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mali Ittiverakul
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Nillawan Buathong
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Soklyda Chann
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | | | | | - Mark M Fukuda
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Hana Burkly
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Vireak Heang
- Naval Medical Research Unit-2, Phnom Penh, Cambodia
| | - Thay Keang Heng
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Nareth Kong
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Threechada Boonchan
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Bolin Chum
- Naval Medical Research Unit-2, Phnom Penh, Cambodia
| | - Philip Smith
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | - Satharath Prom
- Department of Health, Ministry of National Defense, Phnom Penh, Cambodia
| | - Jessica Lin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina
| | - Dysoley Lek
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - David Saunders
- US Army Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.,US Army Medical Materiel Development Activity, Fort Detrick, Maryland
| |
Collapse
|
73
|
Same same, but different: Uncovering unique features of the mitochondrial respiratory chain of apicomplexans. Mol Biochem Parasitol 2019; 232:111204. [DOI: 10.1016/j.molbiopara.2019.111204] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/19/2019] [Accepted: 08/01/2019] [Indexed: 01/08/2023]
|
74
|
Smilkstein MJ, Pou S, Krollenbrock A, Bleyle LA, Dodean RA, Frueh L, Hinrichs DJ, Li Y, Martinson T, Munar MY, Winter RW, Bruzual I, Whiteside S, Nilsen A, Koop DR, Kelly JX, Kappe SHI, Wilder BK, Riscoe MK. ELQ-331 as a prototype for extremely durable chemoprotection against malaria. Malar J 2019; 18:291. [PMID: 31455339 PMCID: PMC6712883 DOI: 10.1186/s12936-019-2921-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/17/2019] [Indexed: 12/02/2022] Open
Abstract
Background The potential benefits of long-acting injectable chemoprotection (LAI-C) against malaria have been recently recognized, prompting a call for suitable candidate drugs to help meet this need. On the basis of its known pharmacodynamic and pharmacokinetic profiles after oral dosing, ELQ-331, a prodrug of the parasite mitochondrial electron transport inhibitor ELQ-300, was selected for study of pharmacokinetics and efficacy as LAI-C in mice. Methods Four trials were conducted in which mice were injected with a single intramuscular dose of ELQ-331 or other ELQ-300 prodrugs in sesame oil with 1.2% benzyl alcohol; the ELQ-300 content of the doses ranged from 2.5 to 30 mg/kg. Initial blood stage challenges with Plasmodium yoelii were used to establish the model, but the definitive study measure of efficacy was outcome after sporozoite challenge with a luciferase-expressing P. yoelii, assessed by whole-body live animal imaging. Snapshot determinations of plasma ELQ-300 concentration ([ELQ-300]) were made after all prodrug injections; after the highest dose of ELQ-331 (equivalent to 30 mg/kg ELQ-300), both [ELQ-331] and [ELQ-300] were measured at a series of timepoints from 6 h to 5½ months after injection. Results A single intramuscular injection of ELQ-331 outperformed four other ELQ-300 prodrugs and, at a dose equivalent to 30 mg/kg ELQ-300, protected mice against challenge with P. yoelii sporozoites for at least 4½ months. Pharmacokinetic evaluation revealed rapid and essentially complete conversion of ELQ-331 to ELQ-300, a rapidly achieved (< 6 h) and sustained (4–5 months) effective plasma ELQ-300 concentration, maximum ELQ-300 concentrations far below the estimated threshold for toxicity, and a distinctive ELQ-300 concentration versus time profile. Pharmacokinetic modeling indicates a high-capacity, slow-exchange tissue compartment which serves to accumulate and then slowly redistribute ELQ-300 into blood, and this property facilitates an extremely long period during which ELQ-300 concentration is sustained above a minimum fully-protective threshold (60–80 nM). Conclusions Extrapolation of these results to humans predicts that ELQ-331 should be capable of meeting and far-exceeding currently published duration-of-effect goals for anti-malarial LAI-C. Furthermore, the distinctive pharmacokinetic profile of ELQ-300 after treatment with ELQ-331 may facilitate durable protection and enable protection for far longer than 3 months. These findings suggest that ELQ-331 warrants consideration as a leading prototype for LAI-C.
Collapse
Affiliation(s)
- Martin J Smilkstein
- VA Portland Health Care System Research and Development Service, 3710 SW US Veterans Hospital Road, RD-33, Portland, OR, 97239, USA.
| | - Sovitj Pou
- VA Portland Health Care System Research and Development Service, 3710 SW US Veterans Hospital Road, RD-33, Portland, OR, 97239, USA
| | - Alina Krollenbrock
- Department of Physiology and Pharmacology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Lisa A Bleyle
- Bioanalytical Shared Resource Core Pharmacokinetics, Department of Physiology and Pharmacology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, L334, Portland, OR, 97239, USA
| | - Rozalia A Dodean
- VA Portland Health Care System Research and Development Service, 3710 SW US Veterans Hospital Road, RD-33, Portland, OR, 97239, USA.,Department of Chemistry, Portland State University, PO Box 751, Portland, OR, 97207, USA
| | - Lisa Frueh
- VA Portland Health Care System Research and Development Service, 3710 SW US Veterans Hospital Road, RD-33, Portland, OR, 97239, USA
| | - David J Hinrichs
- VA Portland Health Care System Research and Development Service, 3710 SW US Veterans Hospital Road, RD-33, Portland, OR, 97239, USA
| | - Yuexin Li
- VA Portland Health Care System Research and Development Service, 3710 SW US Veterans Hospital Road, RD-33, Portland, OR, 97239, USA
| | - Thomas Martinson
- Vaccine & Gene Therapy Institute (VGTI), Oregon Health and Science University (West Campus), 505 NW 185th Avenue, #1, Beaverton, OR, 97006, USA
| | - Myrna Y Munar
- Oregon State University/Oregon Health and Science University College of Pharmacy, 2730 SW Moody Avenue, CL5CP, Portland, OR, 97201, USA
| | - Rolf W Winter
- VA Portland Health Care System Research and Development Service, 3710 SW US Veterans Hospital Road, RD-33, Portland, OR, 97239, USA.,Department of Chemistry, Portland State University, PO Box 751, Portland, OR, 97207, USA
| | - Igor Bruzual
- VA Portland Health Care System Research and Development Service, 3710 SW US Veterans Hospital Road, RD-33, Portland, OR, 97239, USA
| | - Samantha Whiteside
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Ave N., Suite 500, Seattle, WA, USA
| | - Aaron Nilsen
- VA Portland Health Care System Research and Development Service, 3710 SW US Veterans Hospital Road, RD-33, Portland, OR, 97239, USA
| | - Dennis R Koop
- Bioanalytical Shared Resource Core Pharmacokinetics, Department of Physiology and Pharmacology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, L334, Portland, OR, 97239, USA
| | - Jane X Kelly
- VA Portland Health Care System Research and Development Service, 3710 SW US Veterans Hospital Road, RD-33, Portland, OR, 97239, USA.,Department of Chemistry, Portland State University, PO Box 751, Portland, OR, 97207, USA
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Ave N., Suite 500, Seattle, WA, USA
| | - Brandon K Wilder
- Vaccine & Gene Therapy Institute (VGTI), Oregon Health and Science University (West Campus), 505 NW 185th Avenue, #1, Beaverton, OR, 97006, USA
| | - Michael K Riscoe
- VA Portland Health Care System Research and Development Service, 3710 SW US Veterans Hospital Road, RD-33, Portland, OR, 97239, USA.,Department of Molecular Microbiology and Immunology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| |
Collapse
|
75
|
Lacombe A, Maclean AE, Ovciarikova J, Tottey J, Mühleip A, Fernandes P, Sheiner L. Identification of the
Toxoplasma gondii
mitochondrial ribosome, and characterisation of a protein essential for mitochondrial translation. Mol Microbiol 2019; 112:1235-1252. [PMID: 31339607 PMCID: PMC6851545 DOI: 10.1111/mmi.14357] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2019] [Indexed: 01/20/2023]
Abstract
Apicomplexan parasites cause diseases such as malaria and toxoplasmosis. The apicomplexan mitochondrion shows striking differences from common model organisms, including fundamental processes such as mitochondrial translation. Despite evidence that mitochondrial translation is essential for parasite survival, it is largely understudied. Progress has been restricted by the absence of functional assays to detect apicomplexan mitochondrial translation, a lack of knowledge of proteins involved in the process and the inability to identify and detect mitoribosomes. We report the localization of 12 new mitochondrial proteins, including 6 putative mitoribosomal proteins. We demonstrate the integration of three mitoribosomal proteins in macromolecular complexes, and provide evidence suggesting these are apicomplexan mitoribosomal subunits, detected here for the first time. Finally, a new analytical pipeline detected defects in mitochondrial translation upon depletion of the small subunit protein 35 (TgmS35), while other mitochondrial functions remain unaffected. Our work lays a foundation for the study of apicomplexan mitochondrial translation.
Collapse
Affiliation(s)
- Alice Lacombe
- Wellcome Centre for Integrative Parasitology University of Glasgow 120 University Place GlasgowG12 8TAUK
| | - Andrew E. Maclean
- Wellcome Centre for Integrative Parasitology University of Glasgow 120 University Place GlasgowG12 8TAUK
| | - Jana Ovciarikova
- Wellcome Centre for Integrative Parasitology University of Glasgow 120 University Place GlasgowG12 8TAUK
| | - Julie Tottey
- Wellcome Centre for Integrative Parasitology University of Glasgow 120 University Place GlasgowG12 8TAUK
- UMR 1282 ISP INRA‐Université François Rabelais de Tours Nouzilly France
| | - Alexander Mühleip
- Department of Biochemistry and Biophysics Stockholm University Stockholm Sweden
| | - Paula Fernandes
- Wellcome Centre for Integrative Parasitology University of Glasgow 120 University Place GlasgowG12 8TAUK
| | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology University of Glasgow 120 University Place GlasgowG12 8TAUK
| |
Collapse
|
76
|
Alternative splicing is required for stage differentiation in malaria parasites. Genome Biol 2019; 20:151. [PMID: 31370870 PMCID: PMC6669979 DOI: 10.1186/s13059-019-1756-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 07/08/2019] [Indexed: 11/10/2022] Open
Abstract
Background In multicellular organisms, alternative splicing is central to tissue differentiation and identity. Unicellular protists lack multicellular tissue but differentiate into variable cell types during their life cycles. The role of alternative splicing in transitions between cell types and establishing cellular identity is currently unknown in any unicellular organism. Results To test whether alternative splicing in unicellular protists plays a role in cellular differentiation, we conduct RNA-seq to compare splicing in female and male sexual stages to asexual intraerythrocytic stages in the rodent malaria parasite Plasmodium berghei. We find extensive changes in alternative splicing between stages and a role for alternative splicing in sexual differentiation. Previously, general gametocyte differentiation was shown to be modulated by specific transcription factors. Here, we show that alternative splicing establishes a subsequent layer of regulation, controlling genes relating to consequent sex-specific differentiation of gametocytes. Conclusions We demonstrate that alternative splicing is reprogrammed during cellular differentiation of a unicellular protist. Disruption of an alternative splicing factor, PbSR-MG, perturbs sex-specific alternative splicing and decreases the ability of the parasites to differentiate into male gametes and oocysts, thereby reducing transmission between vertebrate and insect hosts. Our results reveal alternative splicing as an integral, stage-specific phenomenon in these protists and as a regulator of cellular differentiation that arose early in eukaryotic evolution. Electronic supplementary material The online version of this article (10.1186/s13059-019-1756-6) contains supplementary material, which is available to authorized users.
Collapse
|
77
|
Bed Nets, Insecticides, and Antimalarials: Where to Next? Trends Parasitol 2019; 35:668-670. [PMID: 31303446 DOI: 10.1016/j.pt.2019.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 11/22/2022]
Abstract
Insecticide-impregnated bed nets have saved millions from fatal malaria, but their effectiveness is waning due to mosquito insecticide resistance. A new strategy (Paton et al., Nature, 2019) to deliver parasiticidal compounds into mosquitoes to kill transmission-stage parasites could enhance the effectiveness of bed nets and get around the perennial problems of resistance.
Collapse
|
78
|
Tougan T, Takahashi K, Ikegami-Kawai M, Horiuchi M, Mori S, Hosoi M, Horii T, Ihara M, Tsubuki M. In vitro and in vivo characterization of anti-malarial acylphenoxazine derivatives prepared from basic blue 3. Malar J 2019; 18:237. [PMID: 31307493 PMCID: PMC6631887 DOI: 10.1186/s12936-019-2873-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/07/2019] [Indexed: 11/12/2022] Open
Abstract
Background Basic blue 3 is a promising anti-malarial lead compound based on the π-delocalized lipophilic cation hypothesis. Its derivatives with nitrogen atoms bonded to carbon atoms at the 3- and 7-positions on the phenoxazine ring were previously shown to exert potent antiprotozoal activity against Plasmodium falciparum, Trypanosoma cruzi, Trypanosoma brucei rhodesiense, and Leishmania donovani parasites in vitro. However, compounds with nitrogen modification at the 10-position on the phenoxazine ring were not evaluated. Methods Six acylphenoxazine derivatives (ITT-001 to 006) with nitrogen modification at the 10-position on the phenoxazine ring, which were synthesized from basic blue 3, were characterized and evaluated for anti-malarial activity in vitro with an automated haematology analyzer (XN-30) and light microscopy. Intensity of self-fluorescence was measured using a fluorometer. Localization of basic blue 3 was observed by fluorescence microscopy. Cytotoxicity was evaluated using human cell lines, HEK293T and HepG2 cells. Finally, anti-malarial activity was evaluated in a rodent malaria model. Results All the six derivatives showed anti-malarial efficacy even against chloroquine-, pyrimethamine-, and artemisinin-resistant field isolates similar to the sensitive strains and isolates in vitro. The efficacy of basic blue 3 was the strongest, followed by that of ITT-001 to 004 and 006, while that of ITT-005 was the weakest. Basic blue 3 showed strong self-fluorescence, whereas ITT derivatives had five- to tenfold lower intensity than that of basic blue 3, which was shown by fluorescence microscopy to be selectively accumulated in the plasmodial cytoplasm. In contrast, ITT-003, 004, and 006 exhibited the lowest cytotoxicity in HEK293T and HepG2 cells in vitro and the highest selectivity between anti-malarial activity and cytotoxicity. The in vivo anti-malarial assay indicated that oral administration of ITT-004 was the most effective against the rodent malaria parasite, Plasmodium berghei NK65 strain. Conclusions The six ITT derivatives were effective against chloroquine- and pyrimethamine-resistant strains and artemisinin-resistant field isolates as well as the sensitive ones. Among them, ITT-004, which had high anti-malarial activity and low cytotoxicity in vitro and in vivo, is a promising anti-malarial lead compound. Electronic supplementary material The online version of this article (10.1186/s12936-019-2873-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Takahiro Tougan
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Kazunori Takahashi
- Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo, 142-8501, Japan
| | - Mayumi Ikegami-Kawai
- Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo, 142-8501, Japan
| | - Masako Horiuchi
- Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo, 142-8501, Japan
| | - Shiho Mori
- Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo, 142-8501, Japan
| | - Maiko Hosoi
- Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo, 142-8501, Japan
| | - Toshihiro Horii
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masataka Ihara
- Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo, 142-8501, Japan
| | - Masayoshi Tsubuki
- Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa, Tokyo, 142-8501, Japan
| |
Collapse
|
79
|
Wang X, Miyazaki Y, Inaoka DK, Hartuti ED, Watanabe YI, Shiba T, Harada S, Saimoto H, Burrows JN, Benito FJG, Nozaki T, Kita K. Identification of Plasmodium falciparum Mitochondrial Malate: Quinone Oxidoreductase Inhibitors from the Pathogen Box. Genes (Basel) 2019; 10:genes10060471. [PMID: 31234346 PMCID: PMC6627850 DOI: 10.3390/genes10060471] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022] Open
Abstract
Malaria is one of the three major global health threats. Drug development for malaria, especially for its most dangerous form caused by Plasmodium falciparum, remains an urgent task due to the emerging drug-resistant parasites. Exploration of novel antimalarial drug targets identified a trifunctional enzyme, malate quinone oxidoreductase (MQO), located in the mitochondrial inner membrane of P. falciparum (PfMQO). PfMQO is involved in the pathways of mitochondrial electron transport chain, tricarboxylic acid cycle, and fumarate cycle. Recent studies have shown that MQO is essential for P. falciparum survival in asexual stage and for the development of experiment cerebral malaria in the murine parasite P. berghei, providing genetic validation of MQO as a drug target. However, chemical validation of MQO, as a target, remains unexplored. In this study, we used active recombinant protein rPfMQO overexpressed in bacterial membrane fractions to screen a total of 400 compounds from the Pathogen Box, released by Medicines for Malaria Venture. The screening identified seven hit compounds targeting rPfMQO with an IC50 of under 5 μM. We tested the activity of hit compounds against the growth of 3D7 wildtype strain of P. falciparum, among which four compounds showed an IC50 from low to sub-micromolar concentrations, suggesting that PfMQO is indeed a potential antimalarial drug target.
Collapse
Affiliation(s)
- Xinying Wang
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan.
| | - Yukiko Miyazaki
- Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan.
| | - Daniel Ken Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan.
- Department of Molecular Infection Dynamics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan.
| | - Endah Dwi Hartuti
- Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan.
| | - Yoh-Ichi Watanabe
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Matsugasaki, Hashikamicho, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Matsugasaki, Hashikamicho, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Hiroyuki Saimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8550, Japan.
| | | | | | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan.
- Department of Host-Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan.
| |
Collapse
|
80
|
Staines HM, Burrow R, Teo BHY, Chis Ster I, Kremsner PG, Krishna S. Clinical implications of Plasmodium resistance to atovaquone/proguanil: a systematic review and meta-analysis. J Antimicrob Chemother 2019; 73:581-595. [PMID: 29237012 PMCID: PMC5890752 DOI: 10.1093/jac/dkx431] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 10/23/2017] [Indexed: 11/26/2022] Open
Abstract
Background Atovaquone/proguanil, registered as Malarone®, is a fixed-dose combination recommended for first-line treatment of uncomplicated Plasmodium falciparum malaria in non-endemic countries and its prevention in travellers. Mutations in the cytochrome bc1 complex are causally associated with atovaquone resistance. Methods This systematic review assesses the clinical efficacy of atovaquone/proguanil treatment of uncomplicated malaria and examines the extent to which codon 268 mutation in cytochrome b influences treatment failure and recrudescence based on published information. Results Data suggest that atovaquone/proguanil treatment efficacy is 89%–98% for P. falciparum malaria (from 27 studies including between 18 and 253 patients in each case) and 20%–26% for Plasmodium vivax malaria (from 1 study including 25 patients). The in vitro P. falciparum phenotype of atovaquone resistance is an IC50 value >28 nM. Case report analyses predict that recrudescence in a patient presenting with parasites carrying cytochrome b codon 268 mutation will occur on average at day 29 (95% CI: 22, 35), 19 (95% CI: 7, 30) days longer than if the mutation is absent. Conclusions Evidence suggests atovaquone/proguanil treatment for P. falciparum malaria is effective. Late treatment failure is likely to be associated with a codon 268 mutation in cytochrome b, though recent evidence from animal models suggests these mutations may not spread within the population. However, early treatment failure is likely to arise through alternative mechanisms, requiring further investigation.
Collapse
Affiliation(s)
- Henry M Staines
- Centre for Diagnostics and Antimicrobial Resistance, Institute for Infection & Immunity, St George's University of London, London, UK.,Institute for Infection & Immunity, St George's University of London, London, UK
| | - Rebekah Burrow
- Institute for Infection & Immunity, St George's University of London, London, UK
| | - Beatrix Huei-Yi Teo
- Institute for Infection & Immunity, St George's University of London, London, UK
| | - Irina Chis Ster
- Institute for Infection & Immunity, St George's University of London, London, UK
| | - Peter G Kremsner
- Institut für Tropenmedizin Universitätsklinikum Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Sanjeev Krishna
- Centre for Diagnostics and Antimicrobial Resistance, Institute for Infection & Immunity, St George's University of London, London, UK.,Institute for Infection & Immunity, St George's University of London, London, UK.,Institut für Tropenmedizin Universitätsklinikum Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.,St George's University Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
81
|
Ke H, Ganesan SM, Dass S, Morrisey JM, Pou S, Nilsen A, Riscoe MK, Mather MW, Vaidya AB. Mitochondrial type II NADH dehydrogenase of Plasmodium falciparum (PfNDH2) is dispensable in the asexual blood stages. PLoS One 2019; 14:e0214023. [PMID: 30964863 PMCID: PMC6456166 DOI: 10.1371/journal.pone.0214023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/05/2019] [Indexed: 11/23/2022] Open
Abstract
The battle against malaria has been substantially impeded by the recurrence of drug resistance in Plasmodium falciparum, the deadliest human malaria parasite. To counter the problem, novel antimalarial drugs are urgently needed, especially those that target unique pathways of the parasite, since they are less likely to have side effects. The mitochondrial type II NADH dehydrogenase (NDH2) of P. falciparum, PfNDH2 (PF3D7_0915000), has been considered a good prospective antimalarial drug target for over a decade, since malaria parasites lack the conventional multi-subunit NADH dehydrogenase, or Complex I, present in the mammalian mitochondrial electron transport chain (mtETC). Instead, Plasmodium parasites contain a single subunit NDH2, which lacks proton pumping activity and is absent in humans. A significant amount of effort has been expended to develop PfNDH2 specific inhibitors, yet the essentiality of PfNDH2 has not been convincingly verified. Herein, we knocked out PfNDH2 in P. falciparum via a CRISPR/Cas9 mediated approach. Deletion of PfNDH2 does not alter the parasite’s susceptibility to multiple mtETC inhibitors, including atovaquone and ELQ-300. We also show that the antimalarial activity of the fungal NDH2 inhibitor HDQ and its new derivative CK-2-68 is due to inhibition of the parasite cytochrome bc1 complex rather than PfNDH2. These compounds directly inhibit the ubiquinol-cytochrome c reductase activity of the malarial bc1 complex. Our results suggest that PfNDH2 is not likely a good antimalarial drug target.
Collapse
Affiliation(s)
- Hangjun Ke
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Suresh M. Ganesan
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Swati Dass
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joanne M. Morrisey
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Sovitj Pou
- Portland VA Medical Center, Portland, Oregon, United States of America
| | - Aaron Nilsen
- Portland VA Medical Center, Portland, Oregon, United States of America
| | - Michael K. Riscoe
- Portland VA Medical Center, Portland, Oregon, United States of America
| | - Michael W. Mather
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Akhil B. Vaidya
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
82
|
Method for the separation of mitochondria and apicoplast from the malaria parasite Plasmodium falciparum. Parasitol Int 2019; 69:99-102. [DOI: 10.1016/j.parint.2018.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 11/21/2022]
|
83
|
Dodean RA, Kancharla P, Li Y, Melendez V, Read L, Bane CE, Vesely B, Kreishman-Deitrick M, Black C, Li Q, Sciotti RJ, Olmeda R, Luong TL, Gaona H, Potter B, Sousa J, Marcsisin S, Caridha D, Xie L, Vuong C, Zeng Q, Zhang J, Zhang P, Lin H, Butler K, Roncal N, Gaynor-Ohnstad L, Leed SE, Nolan C, Huezo SJ, Rasmussen SA, Stephens MT, Tan JC, Cooper RA, Smilkstein MJ, Pou S, Winter RW, Riscoe MK, Kelly JX. Discovery and Structural Optimization of Acridones as Broad-Spectrum Antimalarials. J Med Chem 2019; 62:3475-3502. [PMID: 30852885 DOI: 10.1021/acs.jmedchem.8b01961] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Malaria remains one of the deadliest diseases in the world today. Novel chemoprophylactic and chemotherapeutic antimalarials are needed to support the renewed eradication agenda. We have discovered a novel antimalarial acridone chemotype with dual-stage activity against both liver-stage and blood-stage malaria. Several lead compounds generated from structural optimization of a large library of novel acridones exhibit efficacy in the following systems: (1) picomolar inhibition of in vitro Plasmodium falciparum blood-stage growth against multidrug-resistant parasites; (2) curative efficacy after oral administration in an erythrocytic Plasmodium yoelii murine malaria model; (3) prevention of in vitro Plasmodium berghei sporozoite-induced development in human hepatocytes; and (4) protection of in vivo P. berghei sporozoite-induced infection in mice. This study offers the first account of liver-stage antimalarial activity in an acridone chemotype. Details of the design, chemistry, structure-activity relationships, safety, metabolic/pharmacokinetic studies, and mechanistic investigation are presented herein.
Collapse
Affiliation(s)
- Rozalia A Dodean
- Department of Chemistry , Portland State University , Portland , Oregon 97201 , United States.,Department of Veterans Affairs Medical Center , Portland , Oregon 97239 , United States
| | - Papireddy Kancharla
- Department of Chemistry , Portland State University , Portland , Oregon 97201 , United States
| | - Yuexin Li
- Department of Chemistry , Portland State University , Portland , Oregon 97201 , United States.,Department of Veterans Affairs Medical Center , Portland , Oregon 97239 , United States
| | - Victor Melendez
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Lisa Read
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Charles E Bane
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Brian Vesely
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Mara Kreishman-Deitrick
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Chad Black
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Qigui Li
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Richard J Sciotti
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Raul Olmeda
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Thu-Lan Luong
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Heather Gaona
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Brittney Potter
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Jason Sousa
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Sean Marcsisin
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Diana Caridha
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Lisa Xie
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Chau Vuong
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Qiang Zeng
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Jing Zhang
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Ping Zhang
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Hsiuling Lin
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Kirk Butler
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Norma Roncal
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Lacy Gaynor-Ohnstad
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Susan E Leed
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Christina Nolan
- Division of Experimental Therapeutics , Walter Reed Army Institute of Research , Silver Spring , Maryland 20910 , United States
| | - Stephanie J Huezo
- Department of Natural Sciences and Mathematics , Dominican University of California , San Rafael , California 94901 , United States
| | - Stephanie A Rasmussen
- Department of Natural Sciences and Mathematics , Dominican University of California , San Rafael , California 94901 , United States
| | | | | | - Roland A Cooper
- Department of Natural Sciences and Mathematics , Dominican University of California , San Rafael , California 94901 , United States
| | - Martin J Smilkstein
- Department of Veterans Affairs Medical Center , Portland , Oregon 97239 , United States
| | - Sovitj Pou
- Department of Veterans Affairs Medical Center , Portland , Oregon 97239 , United States
| | - Rolf W Winter
- Department of Chemistry , Portland State University , Portland , Oregon 97201 , United States.,Department of Veterans Affairs Medical Center , Portland , Oregon 97239 , United States
| | - Michael K Riscoe
- Department of Chemistry , Portland State University , Portland , Oregon 97201 , United States.,Department of Veterans Affairs Medical Center , Portland , Oregon 97239 , United States
| | - Jane X Kelly
- Department of Chemistry , Portland State University , Portland , Oregon 97201 , United States.,Department of Veterans Affairs Medical Center , Portland , Oregon 97239 , United States
| |
Collapse
|
84
|
Scarpelli PH, Tessarin‐Almeida G, Viçoso KL, Lima WR, Borges‐Pereira L, Meissner KA, Wrenger C, Rafaello A, Rizzuto R, Pozzan T, Garcia CRS. Melatonin activates FIS1, DYN1, and DYN2 Plasmodium falciparum related-genes for mitochondria fission: Mitoemerald-GFP as a tool to visualize mitochondria structure. J Pineal Res 2019; 66:e12484. [PMID: 29480948 PMCID: PMC6585791 DOI: 10.1111/jpi.12484] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/01/2018] [Indexed: 02/06/2023]
Abstract
Malaria causes millions of deaths worldwide and is considered a huge burden to underdeveloped countries. The number of cases with resistance to all antimalarials is continuously increasing, making the identification of novel drugs a very urgent necessity. A potentially very interesting target for novel therapeutic intervention is the parasite mitochondrion. In this work, we studied in Plasmodium falciparum 3 genes coding for proteins homologues of the mammalian FIS1 (Mitochondrial Fission Protein 1) and DRP1 (Dynamin Related Protein 1) involved in mitochondrial fission. We studied the expression of P. falciparum genes that show ample sequence and structural homologies with the mammalian counterparts, namely FIS1, DYN1, and DYN2. The encoded proteins are characterized by a distinct pattern of expression throughout the erythrocytic cycle of P. falciparum, and their mRNAs are modulated by treating the parasite with the host hormone melatonin. We have previously reported that the knockout of the Plasmodium gene that codes for protein kinase 7 is essential for melatonin sensing. We here show that PfPk7 knockout results in major alterations of mitochondrial fission genes expression when compared to wild-type parasites, and no change in fission proteins expression upon treatment with the host hormone. Finally, we have compared the morphological characteristics (using MitoTracker Red CMX Ros) and oxygen consumption properties of P. falciparum mitochondria in wild-type parasites and PfPk7 Knockout strains. A novel GFP construct targeted to the mitochondrial matrix to wild-type parasites was also developed to visualize P. falciparum mitochondria. We here show that, the functional characteristics of P. falciparum are profoundly altered in cells lacking protein kinase 7, suggesting that this enzyme plays a major role in the control of mitochondrial morphogenesis and maturation during the intra-erythrocyte cell cycle progression.
Collapse
Affiliation(s)
- Pedro H. Scarpelli
- Departamento de ParasitologiaInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloBrazil
- Departamento de FisiologiaInstituto de BiociênciasUniversidade de São PauloSão PauloBrazil
| | | | - Kênia Lopes Viçoso
- Departamento de FisiologiaInstituto de BiociênciasUniversidade de São PauloSão PauloBrazil
| | - Wania Rezende Lima
- Instituto de Ciências Exatas e Naturais‐MedicinaUniversidade Federal de Mato Grosso‐Campus RondonópolisMato GrossoBrazil
| | - Lucas Borges‐Pereira
- Departamento de FisiologiaInstituto de BiociênciasUniversidade de São PauloSão PauloBrazil
| | - Kamila Anna Meissner
- Departamento de ParasitologiaInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloBrazil
| | - Carsten Wrenger
- Departamento de ParasitologiaInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloBrazil
| | - Anna Rafaello
- CNR Neurosciences InstituteUniversity of PadovaPadovaItaly
| | | | - Tullio Pozzan
- CNR Neurosciences InstituteUniversity of PadovaPadovaItaly
| | - Celia R. S. Garcia
- Departamento de FisiologiaInstituto de BiociênciasUniversidade de São PauloSão PauloBrazil
- Departamento de Fisiologia, Instituto de BiociênciasUniversidade de São PauloSão PauloBrazil
| |
Collapse
|
85
|
Exposing Anopheles mosquitoes to antimalarials blocks Plasmodium parasite transmission. Nature 2019; 567:239-243. [PMID: 30814727 PMCID: PMC6438179 DOI: 10.1038/s41586-019-0973-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/29/2019] [Indexed: 02/03/2023]
Abstract
Every year the bites of Anopheles mosquitoes kill
hundreds of thousands of people, mostly young African children, by transmitting
deadly Plasmodium falciparum malaria parasites. Since the turn
of the century, efforts to prevent transmission of these parasites via the mass
distribution of insecticide-treated bed nets have been extremely successful,
causing an unprecedented reduction in malaria deaths1. However, resistance to insecticides has
become widespread in Anopheles populations2–4, threatening a global resurgence of the disease and making
the generation of effective new malaria control tools an urgent public health
priority. Here, we show that development of P. falciparum can
be rapidly and completely blocked when Anopheles gambiae
females uptake low concentrations of specific antimalarials from treated
surfaces, simulating contact with a bed net. Mosquito exposure to atovaquone
prior to or shortly after P. falciparum infection causes full
parasite arrest in the female midgut, preventing transmission of infection.
Similar transmission-blocking effects are achieved with other cytochrome B
inhibitors, demonstrating that parasite mitochondrial function is a good target
for parasite killing. Incorporating these effects into a model of malaria
transmission dynamics predicts that the inclusion of Plasmodium
inhibitors on mosquito nets would significantly mitigate the global health
impact of insecticide resistance. This study identifies a powerful new strategy
for blocking Plasmodium transmission by
Anopheles females, with promising implications for malaria
eradication efforts.
Collapse
|
86
|
Garrido-Cardenas JA, González-Cerón L, Manzano-Agugliaro F, Mesa-Valle C. Plasmodium genomics: an approach for learning about and ending human malaria. Parasitol Res 2019; 118:1-27. [PMID: 30402656 DOI: 10.1007/s00436-018-6127-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
Abstract
Malaria causes high levels of morbidity and mortality in human beings worldwide. According to the World Health Organization (WHO), about half a million people die of this disease each year. Malaria is caused by six species of parasites belonging to the Plasmodium genus: P. falciparum, P. knowlesi, P. vivax, P. malariae, P. ovale curtisi, and P. ovale wallikeri. Currently, malaria is being kept under control with varying levels of elimination success in different countries. The development of new molecular tools as well as the use of next-generation sequencing (NGS) technologies and novel bioinformatic approaches has improved our knowledge of malarial epidemiology, diagnosis, treatment, vaccine development, and surveillance strategies. In this work, the genetics and genomics of human malarias have been analyzed. Since the first P. falciparum genome was sequenced in 2002, various population-level genetic and genomic surveys, together with transcriptomic and proteomic studies, have shown the importance of molecular approaches in supporting malaria elimination.
Collapse
Affiliation(s)
| | - Lilia González-Cerón
- Regional Center for Public Health Research, National Institute of Public Health, Tapachula, Chiapas, Mexico
| | | | | |
Collapse
|
87
|
Macintyre F, Ramachandruni H, Burrows JN, Holm R, Thomas A, Möhrle JJ, Duparc S, Hooft van Huijsduijnen R, Greenwood B, Gutteridge WE, Wells TNC, Kaszubska W. Injectable anti-malarials revisited: discovery and development of new agents to protect against malaria. Malar J 2018; 17:402. [PMID: 30384848 PMCID: PMC6211409 DOI: 10.1186/s12936-018-2549-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022] Open
Abstract
Over the last 15 years, the majority of malaria drug discovery and development efforts have focused on new molecules and regimens to treat patients with uncomplicated or severe disease. In addition, a number of new molecular scaffolds have been discovered which block the replication of the parasite in the liver, offering the possibility of new tools for oral prophylaxis or chemoprotection, potentially with once-weekly dosing. However, an intervention which requires less frequent administration than this would be a key tool for the control and elimination of malaria. Recent progress in HIV drug discovery has shown that small molecules can be formulated for injections as native molecules or pro-drugs which provide protection for at least 2 months. Advances in antibody engineering offer an alternative approach whereby a single injection could potentially provide protection for several months. Building on earlier profiles for uncomplicated and severe malaria, a target product profile is proposed here for an injectable medicine providing long-term protection from this disease. As with all of such profiles, factors such as efficacy, cost, safety and tolerability are key, but with the changing disease landscape in Africa, new clinical and regulatory approaches are required to develop prophylactic/chemoprotective medicines. An overall framework for these approaches is suggested here.
Collapse
Affiliation(s)
- Fiona Macintyre
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland
| | - Hanu Ramachandruni
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland
| | - Jeremy N Burrows
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland
| | - René Holm
- Drug Product Development, Janssen R&D, Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium.,Department of Science and Environment, Roskilde University, 4000, Roskilde, Denmark
| | - Anna Thomas
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland
| | - Jörg J Möhrle
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland
| | - Stephan Duparc
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland
| | | | - Brian Greenwood
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Timothy N C Wells
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland.
| | - Wiweka Kaszubska
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland
| |
Collapse
|
88
|
Saito M, Gilder ME, McGready R, Nosten F. Antimalarial drugs for treating and preventing malaria in pregnant and lactating women. Expert Opin Drug Saf 2018; 17:1129-1144. [PMID: 30351243 DOI: 10.1080/14740338.2018.1535593] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Malaria in pregnancy and postpartum cause maternal mortality and adverse fetal outcomes. Efficacious and safe antimalarials are needed to treat and prevent such serious consequences. However, because of the lack of evidence on fetal safety, quinine, an old and less efficacious drug has long been recommended for pregnant women. Uncertainty about safety in relation to breastfeeding leads to withholding of efficacious treatments postpartum or cessation of breastfeeding. Areas covered: A search identified literature on humans in three databases (MEDLINE, Embase and Global health) using pregnancy or lactation, and the names of antimalarial drugs as search terms. Adverse reactions to the mother, fetus or breastfed infant were summarized together with efficacies. Expert opinion: Artemisinins are more efficacious and well-tolerated than quinine in pregnancy. Furthermore, the risks of miscarriage, stillbirth or congenital abnormality were not higher in pregnancies exposed to artemisinin derivatives for treatment of malaria than in pregnancies exposed to quinine or in the comparable background population unexposed to any antimalarials, and this was true for treatment in any trimester. Assessment of safety and efficacy of antimalarials including dose optimization for pregnant women is incomplete. Resistance to sulfadoxine-pyrimethamine in Plasmodium falciparum and long unprotected intervals between intermittent treatment doses begs reconsideration of current preventative recommendations in pregnancy. Data remain limited on antimalarials during breastfeeding; while most first-line drugs appear safe, further research is needed.
Collapse
Affiliation(s)
- Makoto Saito
- a Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Tak , Thailand.,b Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine , University of Oxford , Oxford , UK.,c WorldWide Antimalarial Resistance Network (WWARN) , Oxford , UK
| | - Mary Ellen Gilder
- a Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Tak , Thailand
| | - Rose McGready
- a Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Tak , Thailand.,b Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine , University of Oxford , Oxford , UK
| | - François Nosten
- a Shoklo Malaria Research Unit (SMRU), Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Tak , Thailand.,b Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine , University of Oxford , Oxford , UK
| |
Collapse
|
89
|
Costa G, Gildenhard M, Eldering M, Lindquist RL, Hauser AE, Sauerwein R, Goosmann C, Brinkmann V, Carrillo-Bustamante P, Levashina EA. Non-competitive resource exploitation within mosquito shapes within-host malaria infectivity and virulence. Nat Commun 2018; 9:3474. [PMID: 30150763 PMCID: PMC6110728 DOI: 10.1038/s41467-018-05893-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 08/01/2018] [Indexed: 11/22/2022] Open
Abstract
Malaria is a fatal human parasitic disease transmitted by a mosquito vector. Although the evolution of within-host malaria virulence has been the focus of many theoretical and empirical studies, the vector’s contribution to this process is not well understood. Here, we explore how within-vector resource exploitation would impact the evolution of within-host Plasmodium virulence. By combining within-vector dynamics and malaria epidemiology, we develop a mathematical model, which predicts that non-competitive parasitic resource exploitation within-vector restricts within-host parasite virulence. To validate our model, we experimentally manipulate mosquito lipid trafficking and gauge within-vector parasite development and within-host infectivity and virulence. We find that mosquito-derived lipids determine within-host parasite virulence by shaping development (quantity) and metabolic activity (quality) of transmissible sporozoites. Our findings uncover the potential impact of within-vector environment and vector control strategies on the evolution of malaria virulence. The evolution of within-host malaria virulence has been studied, but the vector’s contribution isn’t well understood. Here, Costa et al. show that non-competitive parasitic resource exploitation within-vector, in particular lipid trafficking, restricts within-host infectivity and virulence of the parasite.
Collapse
Affiliation(s)
- G Costa
- Vector Biology Unit, Max Planck Institute for Infection Biology (MPIIB), 10117, Berlin, Germany
| | - M Gildenhard
- Vector Biology Unit, Max Planck Institute for Infection Biology (MPIIB), 10117, Berlin, Germany
| | - M Eldering
- Vector Biology Unit, Max Planck Institute for Infection Biology (MPIIB), 10117, Berlin, Germany.,Department of Medical Microbiology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - R L Lindquist
- Immunodynamics, German Rheumatism Research Centre (DRFZ), 10117, Berlin, Germany
| | - A E Hauser
- Immunodynamics, German Rheumatism Research Centre (DRFZ), 10117, Berlin, Germany.,Immune Dynamics and Intravital Microscopy, Charité-Universitätsmedizin, 10117, Berlin, Germany
| | - R Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - C Goosmann
- Microscopy Core Facility, Max Planck Institute for Infection Biology (MPIIB), 10117, Berlin, Germany
| | - V Brinkmann
- Microscopy Core Facility, Max Planck Institute for Infection Biology (MPIIB), 10117, Berlin, Germany
| | - P Carrillo-Bustamante
- Vector Biology Unit, Max Planck Institute for Infection Biology (MPIIB), 10117, Berlin, Germany
| | - E A Levashina
- Vector Biology Unit, Max Planck Institute for Infection Biology (MPIIB), 10117, Berlin, Germany.
| |
Collapse
|
90
|
Antimalarial Transmission-Blocking Interventions: Past, Present, and Future. Trends Parasitol 2018; 34:735-746. [PMID: 30082147 DOI: 10.1016/j.pt.2018.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/14/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022]
Abstract
Malaria remains a major global health challenge. Appropriate use of current antimalarial tools has reduced the disease burden, but morbidity and mortality remain unacceptably high. It is widely accepted that, to achieve long-term control/eradication, it will be necessary to use interventions that inhibit the transmission of parasites to mosquitoes - these tools are termed transmission-blocking interventions (TBIs). This article aims to outline the rationale for the development of TBIs, with a focus on transmission-blocking drugs and (parasite-derived) transmission-blocking vaccines. We describe and summarise the current status of each of these intervention classes and attempt to identify future requirements in development, with a focus on the challenges of establishing each method within an integrated malarial control programme in the future.
Collapse
|
91
|
Runtuwene LR, Tuda JSB, Mongan AE, Makalowski W, Frith MC, Imwong M, Srisutham S, Nguyen Thi LA, Tuan NN, Eshita Y, Maeda R, Yamagishi J, Suzuki Y. Nanopore sequencing of drug-resistance-associated genes in malaria parasites, Plasmodium falciparum. Sci Rep 2018; 8:8286. [PMID: 29844487 PMCID: PMC5974085 DOI: 10.1038/s41598-018-26334-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/10/2018] [Indexed: 11/09/2022] Open
Abstract
Here, we report the application of a portable sequencer, MinION, for genotyping the malaria parasite Plasmodium falciparum. In the present study, an amplicon mixture of nine representative genes causing resistance to anti-malaria drugs is diagnosed. First, we developed the procedure for four laboratory strains (3D7, Dd2, 7G8, and K1), and then applied the developed procedure to ten clinical samples. We sequenced and re-sequenced the samples using the obsolete flow cell R7.3 and the most recent flow cell R9.4. Although the average base-call accuracy of the MinION sequencer was 74.3%, performing >50 reads at a given position improves the accuracy of the SNP call, yielding a precision and recall rate of 0.92 and 0.8, respectively, with flow cell R7.3. These numbers increased significantly with flow cell R9.4, in which the precision and recall are 1 and 0.97, respectively. Based on the SNP information, the drug resistance status in ten clinical samples was inferred. We also analyzed K13 gene mutations from 54 additional clinical samples as a proof of concept. We found that a novel amino-acid changing variation is dominant in this area. In addition, we performed a small population-based analysis using 3 and 5 cases (K13) and 10 and 5 cases (PfCRT) from Thailand and Vietnam, respectively. We identified distinct genotypes from the respective regions. This approach will change the standard methodology for the sequencing diagnosis of malaria parasites, especially in developing countries.
Collapse
Affiliation(s)
- Lucky R Runtuwene
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Josef S B Tuda
- Faculty of Medicine, Sam Ratulangi University, Kampus Unsrat, Bahu Manado, 95115, Indonesia
| | - Arthur E Mongan
- Faculty of Medicine, Sam Ratulangi University, Kampus Unsrat, Bahu Manado, 95115, Indonesia
| | - Wojciech Makalowski
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, Niels-Stensen Strasse 14, Münster, 48149, Germany
| | - Martin C Frith
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.,Artificial Intelligence Research Center, Advanced Industrial Science and Technology, 2-3-26, Aomi, Koto-ku, Tokyo, 135-0064, Japan.,AIST-Waseda CBBD-OIL, 3-4-1 Ookubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Thung Phaya Thai, Ratchathewi, Bangkok, 10400, Thailand
| | - Suttipat Srisutham
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Thung Phaya Thai, Ratchathewi, Bangkok, 10400, Thailand
| | - Lan Anh Nguyen Thi
- National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hanoi, 112800, Vietnam
| | - Nghia Nguyen Tuan
- National Institute of Hygiene and Epidemiology, 1 Yersin Street, Hanoi, 112800, Vietnam
| | - Yuki Eshita
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, North 20, West 10 Kita-ku, Sapporo, Hokkaido, 001-0020, Japan.,Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Thung Phaya Thai, Ratchathewi, Bangkok, 10400, Thailand
| | - Ryuichiro Maeda
- Division of Biomedical Science, Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2 Sen-11 Inadacho, Obihiro, Hokkaido, 080-0834, Japan
| | - Junya Yamagishi
- Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, North 20, West 10 Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.
| |
Collapse
|
92
|
Selection of Plasmodium falciparum cytochrome B mutants by putative PfNDH2 inhibitors. Proc Natl Acad Sci U S A 2018; 115:6285-6290. [PMID: 29844160 DOI: 10.1073/pnas.1804492115] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Malaria control is threatened by a limited pipeline of effective pharmaceuticals against drug-resistant strains of Plasmodium falciparum Components of the mitochondrial electron transport chain (ETC) are attractive targets for drug development, owing to exploitable differences between the parasite and human ETC. Disruption of ETC function interferes with metabolic processes including de novo pyrimidine synthesis, essential for nucleic acid replication. We investigated the effects of ETC inhibitor selection on two distinct P. falciparum clones, Dd2 and 106/1. Compounds CK-2-68 and RYL-552, substituted quinolones reported to block P. falciparum NADH dehydrogenase 2 (PfNDH2; a type II NADH:quinone oxidoreductase), unexpectedly selected mutations at the quinol oxidation (Qo) pocket of P. falciparum cytochrome B (PfCytB). Selection experiments with atovaquone (ATQ) on 106/1 parasites yielded highly resistant PfCytB Y268S mutants seen in clinical infections that fail ATQ-proguanil treatment. In contrast, ATQ pressure on Dd2 yielded moderately resistant parasites carrying a PfCytB M133I or K272R mutation. Strikingly, all ATQ-selected mutants demonstrated little change or slight increase of sensitivity to CK-2-68 or RYL-552. Molecular docking studies demonstrated binding of all three ETC inhibitors to the Qo pocket of PfCytB, where Y268 forms strong van der Waals interactions with the hydroxynaphthoquinone ring of ATQ but not the quinolone ring of CK-2-68 or RYL-552. Our results suggest that combinations of suitable ETC inhibitors may be able to subvert or delay the development of P. falciparum drug resistance.
Collapse
|
93
|
Ohm JR, Baldini F, Barreaux P, Lefevre T, Lynch PA, Suh E, Whitehead SA, Thomas MB. Rethinking the extrinsic incubation period of malaria parasites. Parasit Vectors 2018; 11:178. [PMID: 29530073 PMCID: PMC5848458 DOI: 10.1186/s13071-018-2761-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/28/2018] [Indexed: 12/31/2022] Open
Abstract
The time it takes for malaria parasites to develop within a mosquito, and become transmissible, is known as the extrinsic incubation period, or EIP. EIP is a key parameter influencing transmission intensity as it combines with mosquito mortality rate and competence to determine the number of mosquitoes that ultimately become infectious. In spite of its epidemiological significance, data on EIP are scant. Current approaches to estimate EIP are largely based on temperature-dependent models developed from data collected on parasite development within a single mosquito species in the 1930s. These models assume that the only factor affecting EIP is mean environmental temperature. Here, we review evidence to suggest that in addition to mean temperature, EIP is likely influenced by genetic diversity of the vector, diversity of the parasite, and variation in a range of biotic and abiotic factors that affect mosquito condition. We further demonstrate that the classic approach of measuring EIP as the time at which mosquitoes first become infectious likely misrepresents EIP for a mosquito population. We argue for a better understanding of EIP to improve models of transmission, refine predictions of the possible impacts of climate change, and determine the potential evolutionary responses of malaria parasites to current and future mosquito control tools.
Collapse
Affiliation(s)
- Johanna R. Ohm
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA USA
| | - Francesco Baldini
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland UK
| | - Priscille Barreaux
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA USA
| | - Thierry Lefevre
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Penelope A. Lynch
- College of Life and Environmental Sciences, Penryn Campus, University of Exeter, Cornwall, UK
| | - Eunho Suh
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA USA
| | - Shelley A. Whitehead
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA USA
| | - Matthew B. Thomas
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA USA
| |
Collapse
|
94
|
Bakshi RP, Tatham LM, Savage AC, Tripathi AK, Mlambo G, Ippolito MM, Nenortas E, Rannard SP, Owen A, Shapiro TA. Long-acting injectable atovaquone nanomedicines for malaria prophylaxis. Nat Commun 2018; 9:315. [PMID: 29358624 PMCID: PMC5778127 DOI: 10.1038/s41467-017-02603-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 12/12/2017] [Indexed: 12/04/2022] Open
Abstract
Chemoprophylaxis is currently the best available prevention from malaria, but its efficacy is compromised by non-adherence to medication. Here we develop a long-acting injectable formulation of atovaquone solid drug nanoparticles that confers long-lived prophylaxis against Plasmodium berghei ANKA malaria in C57BL/6 mice. Protection is obtained at plasma concentrations above 200 ng ml-1 and is causal, attributable to drug activity against liver stage parasites. Parasites that appear after subtherapeutic doses remain atovaquone-sensitive. Pharmacokinetic-pharmacodynamic analysis indicates protection can translate to humans at clinically achievable and safe drug concentrations, potentially offering protection for at least 1 month after a single administration. These findings support the use of long-acting injectable formulations as a new approach for malaria prophylaxis in travellers and for malaria control in the field.
Collapse
Affiliation(s)
- Rahul P Bakshi
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, 725 North Wolfe Street, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Lee M Tatham
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Block H, 70 Pembroke Place, Liverpool, L69 3GF, UK
| | - Alison C Savage
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Abhai K Tripathi
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Godfree Mlambo
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Matthew M Ippolito
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, 725 North Wolfe Street, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
- Division of Infectious Diseases, Department of Medicine, The Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Elizabeth Nenortas
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, 725 North Wolfe Street, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Steve P Rannard
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Block H, 70 Pembroke Place, Liverpool, L69 3GF, UK.
| | - Theresa A Shapiro
- Division of Clinical Pharmacology, Departments of Medicine and of Pharmacology and Molecular Sciences, The Johns Hopkins University, 725 North Wolfe Street, Baltimore, MD, 21205, USA
- The Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University, Baltimore, MD, 21205, USA
| |
Collapse
|
95
|
Hartuti ED, Inaoka DK, Komatsuya K, Miyazaki Y, Miller RJ, Xinying W, Sadikin M, Prabandari EE, Waluyo D, Kuroda M, Amalia E, Matsuo Y, Nugroho NB, Saimoto H, Pramisandi A, Watanabe YI, Mori M, Shiomi K, Balogun EO, Shiba T, Harada S, Nozaki T, Kita K. Biochemical studies of membrane bound Plasmodium falciparum mitochondrial L-malate:quinone oxidoreductase, a potential drug target. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1859:191-200. [PMID: 29269266 DOI: 10.1016/j.bbabio.2017.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 11/30/2022]
Abstract
Plasmodium falciparum is an apicomplexan parasite that causes the most severe malaria in humans. Due to a lack of effective vaccines and emerging of drug resistance parasites, development of drugs with novel mechanisms of action and few side effects are imperative. To this end, ideal drug targets are those essential to parasite viability as well as absent in their mammalian hosts. The mitochondrial electron transport chain (ETC) of P. falciparum is one source of such potential targets because enzymes, such as L-malate:quinone oxidoreductase (PfMQO), in this pathway are absent humans. PfMQO catalyzes the oxidation of L-malate to oxaloacetate and the simultaneous reduction of ubiquinone to ubiquinol. It is a membrane protein, involved in three pathways (ETC, the tricarboxylic acid cycle and the fumarate cycle) and has been shown to be essential for parasite survival, at least, in the intra-erythrocytic asexual stage. These findings indicate that PfMQO would be a valuable drug target for development of antimalarial with novel mechanism of action. Up to this point in time, difficulty in producing active recombinant mitochondrial MQO has hampered biochemical characterization and targeted drug discovery with MQO. Here we report for the first time recombinant PfMQO overexpressed in bacterial membrane and the first biochemical study. Furthermore, about 113 compounds, consisting of ubiquinone binding site inhibitors and antiparasitic agents, were screened resulting in the discovery of ferulenol as a potent PfMQO inhibitor. Finally, ferulenol was shown to inhibit parasite growth and showed strong synergism in combination with atovaquone, a well-described anti-malarial and bc1 complex inhibitor.
Collapse
Affiliation(s)
- Endah Dwi Hartuti
- Master program of Biomedical Science, Faculty of Medicine, University of Indonesia, Indonesia; Biotech Center, Agency for the Assessment and Application of Technology, Jakarta, Indonesia
| | - Daniel Ken Inaoka
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.
| | - Keisuke Komatsuya
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukiko Miyazaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Russell J Miller
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Wang Xinying
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Mohamad Sadikin
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | | | - Danang Waluyo
- Biotech Center, Agency for the Assessment and Application of Technology, Jakarta, Indonesia
| | - Marie Kuroda
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eri Amalia
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuichi Matsuo
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Nuki B Nugroho
- Biotech Center, Agency for the Assessment and Application of Technology, Jakarta, Indonesia
| | - Hiroyuki Saimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Amila Pramisandi
- Biotech Center, Agency for the Assessment and Application of Technology, Jakarta, Indonesia; Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Yoh-Ichi Watanabe
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mihoko Mori
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Kazuro Shiomi
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Emmanuel Oluwadare Balogun
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Kita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
96
|
Rono MK, Nyonda MA, Simam JJ, Ngoi JM, Mok S, Kortok MM, Abdullah AS, Elfaki MM, Waitumbi JN, El-Hassan IM, Marsh K, Bozdech Z, Mackinnon MJ. Adaptation of Plasmodium falciparum to its transmission environment. Nat Ecol Evol 2017; 2:377-387. [PMID: 29255304 DOI: 10.1038/s41559-017-0419-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/20/2017] [Indexed: 12/19/2022]
Abstract
Success in eliminating malaria will depend on whether parasite evolution outpaces control efforts. Here, we show that Plasmodium falciparum parasites (the deadliest of the species causing human malaria) found in low-transmission-intensity areas have evolved to invest more in transmission to new hosts (reproduction) and less in within-host replication (growth) than parasites found in high-transmission areas. At the cellular level, this adaptation manifests as increased production of reproductive forms (gametocytes) early in the infection at the expense of processes associated with multiplication inside red blood cells, especially membrane transport and protein trafficking. At the molecular level, this manifests as changes in the expression levels of genes encoding epigenetic and translational machinery. Specifically, expression levels of the gene encoding AP2-G-the transcription factor that initiates reproduction-increase as transmission intensity decreases. This is accompanied by downregulation and upregulation of genes encoding HDAC1 and HDA1-two histone deacetylases that epigenetically regulate the parasite's replicative and reproductive life-stage programmes, respectively. Parasites in reproductive mode show increased reliance on the prokaryotic translation machinery found inside the plastid-derived organelles. Thus, our dissection of the parasite's adaptive regulatory architecture has identified new potential molecular targets for malaria control.
Collapse
Affiliation(s)
- Martin K Rono
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya.,Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Mary A Nyonda
- Department of Microbiology and Molecular Medicine, Medical Faculty, University of Geneva, Geneva, Switzerland
| | | | - Joyce M Ngoi
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Sachel Mok
- Columbia University Medical Center, New York, NY, USA
| | - Moses M Kortok
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Mohammed M Elfaki
- Department of Microbiology and Parasitology, Faculty of Medicine, Jazan University, Gizan, Jazan, Saudi Arabia
| | - John N Waitumbi
- Walter Reed Army Institute of Research/Kenya Medical Research Institute, Kisumu, Kenya
| | - Ibrahim M El-Hassan
- Faculty of Public Health and Tropical Medicine, Jazan University, Gizan, Jazan, Saudi Arabia
| | - Kevin Marsh
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | |
Collapse
|
97
|
|
98
|
+Targeting Mitochondrial Functions as Antimalarial Regime, What Is Next? CURRENT CLINICAL MICROBIOLOGY REPORTS 2017. [DOI: 10.1007/s40588-017-0075-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
99
|
Blasco B, Leroy D, Fidock DA. Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat Med 2017; 23:917-928. [PMID: 28777791 DOI: 10.1038/nm.4381] [Citation(s) in RCA: 361] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 06/30/2017] [Indexed: 02/08/2023]
Abstract
The global adoption of artemisinin-based combination therapies (ACTs) in the early 2000s heralded a new era in effectively treating drug-resistant Plasmodium falciparum malaria. However, several Southeast Asian countries have now reported the emergence of parasites that have decreased susceptibility to artemisinin (ART) derivatives and ACT partner drugs, resulting in increasing rates of treatment failures. Here we review recent advances in understanding how antimalarials act and how resistance develops, and discuss new strategies for effectively combatting resistance, optimizing treatment and advancing the global campaign to eliminate malaria.
Collapse
Affiliation(s)
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, USA.,Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
100
|
Zhang J, Huang J, Zhu F, Zhang J. Differential gene expression in Anopheles stephensi following infection with drug-resistant Plasmodium yoelii. Parasit Vectors 2017; 10:401. [PMID: 28851458 PMCID: PMC5576267 DOI: 10.1186/s13071-017-2326-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/08/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The transmission of drug-resistant parasites by the mosquito may be influenced by the altered biological fitness of drug-resistant parasites and different immune reactions or metabolic change in the mosquito. At this point, little is known about the variations in mosquito immunity and metabolism when mosquitoes are infected with drug-resistant parasites. To understand the differential gene expression in Anopheles following infection with drug-resistant Plasmodium, we conducted a genome-wide transcriptomic profiling analysis of Anopheles stephensi following feeding on mice with drug-resistant or drug-sensitive P. yoelii, observed changes in gene expression profiles and identified transcripts affected by the drug-resistant parasite. RESULTS To study the impact of drug-resistant Plasmodium infections on An. stephensi gene transcription, we analyzed the three major transition stages of Plasmodium infections: at 24 h and 13 and 19 days after blood-feeding. Six cDNA libraries (R-As24h, R-As13d, R-As19d,S-As24h, S-As13dand S-As19d) were constructed, and RNA sequencing was subsequently performed. In total, approximately 50.1 million raw reads, 47.9 million clean reads and 7.18G clean bases were obtained. Following differentially expressed gene (DEG) analysis, GO enrichment analysis of DEGs, and functional classification by KEGG, we showed that the variations in gene expression in An. stephensi infected by the drug-resistant P. yoelii NSM occurred mainly at 13 days after blood meal during sporozoite migration through the hemolymph. The differentially expressed genes included those functioning in some important immune reaction and iron metabolism pathways, such as pattern recognition receptors, regulators of the JNK pathway, components of the phagosome pathway, regulators of the melanization response, activators of complement reactions, insulin signaling cascade members, oxidative stress and detoxification proteins. CONCLUSIONS Our study shows that drug-resistant P. yoelii NSM has an impact on the transcript abundance levels of An.stephensi mostly at 13 days after blood meal during sporozoite migration through the hemolymph and that most differentially expressed genes were downregulated. Our results highlight the need for a better understanding of selective pressures from these differentially expressed genes of the drug-resistant Plasmodium in the mosquito and the different transmission patterns of drug-resistant Plasmodium by Anopheles.
Collapse
Affiliation(s)
- Jingru Zhang
- Department of Pathobiology, the Third Military Medical University, Chongqing, People's Republic of China
| | - Jiacheng Huang
- Students brigade 5, The Third Military Medical University, Chongqing, People's Republic of China
| | - Feng Zhu
- Department of Pathobiology, the Third Military Medical University, Chongqing, People's Republic of China
| | - Jian Zhang
- Department of Pathobiology, the Third Military Medical University, Chongqing, People's Republic of China.
| |
Collapse
|