51
|
Takala H, Edlund P, Ihalainen JA, Westenhoff S. Tips and turns of bacteriophytochrome photoactivation. Photochem Photobiol Sci 2021; 19:1488-1510. [PMID: 33107538 DOI: 10.1039/d0pp00117a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Phytochromes are ubiquitous photosensor proteins, which control the growth, reproduction and movement in plants, fungi and bacteria. Phytochromes switch between two photophysical states depending on the light conditions. In analogy to molecular machines, light absorption induces a series of structural changes that are transduced from the bilin chromophore, through the protein, and to the output domains. Recent progress towards understanding this structural mechanism of signal transduction has been manifold. We describe this progress with a focus on bacteriophytochromes. We describe the mechanism along three structural tiers, which are the chromophore-binding pocket, the photosensory module, and the output domains. We discuss possible interconnections between the tiers and conclude by presenting future directions and open questions. We hope that this review may serve as a compendium to guide future structural and spectroscopic studies designed to understand structural signaling in phytochromes.
Collapse
Affiliation(s)
- Heikki Takala
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Box 35, 40014 Jyvaskyla, Finland. and Department of Anatomy, Faculty of Medicine, University of Helsinki, Box 63, 00014 Helsinki, Finland
| | - Petra Edlund
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| | - Janne A Ihalainen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Box 35, 40014 Jyvaskyla, Finland.
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| |
Collapse
|
52
|
Sensor Domain of Histidine Kinase VxrA of Vibrio cholerae- A Hairpin-swapped Dimer and its Conformational Change. J Bacteriol 2021; 203:JB.00643-20. [PMID: 33753465 PMCID: PMC8117521 DOI: 10.1128/jb.00643-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
VxrA and VxrB are cognate histidine kinase (HK) - response regulator (RR) pairs of a two-component signaling system (TCS) found in Vibrio cholerae, a bacterial pathogen that causes cholera. The VxrAB TCS positively regulates virulence, the Type VI Secretion System, biofilm formation, and cell wall homeostasis in V. cholerae, providing protection from environmental stresses and contributing to the transmission and virulence of the pathogen. The VxrA HK has a unique periplasmic sensor domain (SD) and, remarkably, lacks a cytoplasmic linker domain between the second transmembrane helix and the dimerization and histidine phosphotransfer (DHp) domain, indicating that this system may utilize a potentially unique signal sensing and transmission TCS mechanism. In this study, we have determined several crystal structures of VxrA-SD and its mutants. These structures reveal a novel structural fold forming an unusual β hairpin-swapped dimer. A conformational change caused by relative rotation of the two monomers in a VxrA-SD dimer could potentially change the association of transmembrane helices and, subsequently, the pairing of cytoplasmic DHp domains. Based on the structural observation, we propose a putative scissor-like closing regulation mechanism for the VxrA HK.IMPORTANCE V. cholerae has a dynamic life cycle, which requires rapid adaptation to changing external conditions. Two-component signal transduction (TCS) systems allow V. cholerae to sense and respond to these environmental changes. The VxrAB TCS positively regulates a number of important V. cholerae phenotypes, including virulence, the Type Six Secretion System, biofilm formation, and cell wall homeostasis. Here, we provide the crystal structure of the VxrA sensor histidine kinase sensing domain and propose a mechanism for signal transduction. The cognate signal for VxrAB remains unknown, however, in this work we couple our structural analysis with functional assessments of key residues to further our understanding of this important TCS.
Collapse
|
53
|
Matilla MA, Ortega Á, Krell T. The role of solute binding proteins in signal transduction. Comput Struct Biotechnol J 2021; 19:1786-1805. [PMID: 33897981 PMCID: PMC8050422 DOI: 10.1016/j.csbj.2021.03.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
The solute binding proteins (SBPs) of prokaryotes are present in the extracytosolic space. Although their primary function is providing substrates to transporters, SBPs also stimulate different signaling proteins, including chemoreceptors, sensor kinases, diguanylate cyclases/phosphodiesterases and Ser/Thr kinases, thereby causing a wide range of responses. While relatively few such systems have been identified, several pieces of evidence suggest that SBP-mediated receptor activation is a widespread mechanism. (1) These systems have been identified in Gram-positive and Gram-negative bacteria and archaea. (2) There is a structural diversity in the receptor domains that bind SBPs. (3) SBPs belonging to thirteen different families interact with receptor ligand binding domains (LBDs). (4) For the two most abundant receptor LBD families, dCache and four-helix-bundle, there are different modes of interaction with SBPs. (5) SBP-stimulated receptors carry out many different functions. The advantage of SBP-mediated receptor stimulation is attributed to a strict control of SBP levels, which allows a precise adjustment of the systeḿs sensitivity. We have compiled information on the effect of ligands on the transcript/protein levels of their cognate SBPs. In 87 % of the cases analysed, ligands altered SBP expression levels. The nature of the regulatory effect depended on the ligand family. Whereas inorganic ligands typically downregulate SBP expression, an upregulation was observed in response to most sugars and organic acids. A major unknown is the role that SBPs play in signaling and in receptor stimulation. This review attempts to summarize what is known and to present new information to narrow this gap in knowledge.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, Granada 18008, Spain
| | - Álvaro Ortega
- Department of Biochemistry and Molecular Biology 'B' and Immunology, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, Granada 18008, Spain
| |
Collapse
|
54
|
Carrillo M, Pandey S, Sanchez J, Noda M, Poudyal I, Aldama L, Malla TN, Claesson E, Wahlgren WY, Feliz D, Šrajer V, Maj M, Castillon L, Iwata S, Nango E, Tanaka R, Tanaka T, Fangjia L, Tono K, Owada S, Westenhoff S, Stojković EA, Schmidt M. High-resolution crystal structures of transient intermediates in the phytochrome photocycle. Structure 2021; 29:743-754.e4. [PMID: 33756101 DOI: 10.1016/j.str.2021.03.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/31/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022]
Abstract
Phytochromes are red/far-red light photoreceptors in bacteria to plants, which elicit a variety of important physiological responses. They display a reversible photocycle between the resting Pr state and the light-activated Pfr state. Light signals are transduced as structural change through the entire protein to modulate its activity. It is unknown how the Pr-to-Pfr interconversion occurs, as the structure of intermediates remains notoriously elusive. Here, we present short-lived crystal structures of the photosensory core modules of the bacteriophytochrome from myxobacterium Stigmatella aurantiaca captured by an X-ray free electron laser 5 ns and 33 ms after light illumination of the Pr state. We observe large structural displacements of the covalently bound bilin chromophore, which trigger a bifurcated signaling pathway that extends through the entire protein. The snapshots show with atomic precision how the signal progresses from the chromophore, explaining how plants, bacteria, and fungi sense red light.
Collapse
Affiliation(s)
- Melissa Carrillo
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA
| | - Suraj Pandey
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - Juan Sanchez
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA
| | - Moraima Noda
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA
| | - Ishwor Poudyal
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - Luis Aldama
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA
| | - Tek Narsingh Malla
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - Elin Claesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Weixiao Yuan Wahlgren
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Denisse Feliz
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA
| | - Vukica Šrajer
- The University of Chicago, Center for Advanced Radiation Sources, 9700 South Cass Avenue, Bldg 434B, Argonne, IL 60439, USA
| | - Michał Maj
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Leticia Castillon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Rie Tanaka
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tomoyuki Tanaka
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Luo Fangjia
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| | - Emina A Stojković
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA.
| | - Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA.
| |
Collapse
|
55
|
de Pina LC, da Silva FSH, Galvão TC, Pauer H, Ferreira RBR, Antunes LCM. The role of two-component regulatory systems in environmental sensing and virulence in Salmonella. Crit Rev Microbiol 2021; 47:397-434. [PMID: 33751923 DOI: 10.1080/1040841x.2021.1895067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adaptation to environments with constant fluctuations imposes challenges that are only overcome with sophisticated strategies that allow bacteria to perceive environmental conditions and develop an appropriate response. The gastrointestinal environment is a complex ecosystem that is home to trillions of microorganisms. Termed microbiota, this microbial ensemble plays important roles in host health and provides colonization resistance against pathogens, although pathogens have evolved strategies to circumvent this barrier. Among the strategies used by bacteria to monitor their environment, one of the most important are the sensing and signalling machineries of two-component systems (TCSs), which play relevant roles in the behaviour of all bacteria. Salmonella enterica is no exception, and here we present our current understanding of how this important human pathogen uses TCSs as an integral part of its lifestyle. We describe important aspects of these systems, such as the stimuli and responses involved, the processes regulated, and their roles in virulence. We also dissect the genomic organization of histidine kinases and response regulators, as well as the input and output domains for each TCS. Lastly, we explore how these systems may be promising targets for the development of antivirulence therapeutics to combat antibiotic-resistant infections.
Collapse
Affiliation(s)
- Lucindo Cardoso de Pina
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Biociências, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Ciência para o Desenvolvimento, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Teca Calcagno Galvão
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Heidi Pauer
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Rio de Janeiro, Brazil
| | | | - L Caetano M Antunes
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Rio de Janeiro, Brazil.,Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
56
|
Meng F, Lu F, Du H, Nie T, Zhu X, Connerton IF, Zhao H, Bie X, Zhang C, Lu Z, Lu Y. Acetate and auto-inducing peptide are independent triggers of quorum sensing in Lactobacillus plantarum. Mol Microbiol 2021; 116:298-310. [PMID: 33660340 DOI: 10.1111/mmi.14709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/12/2021] [Accepted: 02/27/2021] [Indexed: 01/26/2023]
Abstract
The synthesis of plantaricin in Lactobacillus plantarum is regulated by quorum sensing. However, the nature of the extra-cytoplasmic (EC) sensing domain of the histidine kinase (PlnB1) and the ability to recognize the auto-inducing peptide PlnA1 is not known. We demonstrate the key motif Ile-Ser-Met-Leu of auto-inducing peptide PlnA1 binds to the hydrophobic region Phe-Ala-Ser-Gln-Phe of EC loop 2 of PlnB1 via hydrophobic interactions and hydrogen bonding. Moreover, we identify a new inducer, acetate, that regulates the synthesis of plantaricin by binding to a positively charged region (Arg-Arg-Tyr-Ser-His-Lys) in loop 4 of PlnB1 via electrostatic interaction. The side chain of Phe143 on loop 4 determined the specificity and affinity of PlnB1 to recognize acetate. PlnA1 activates quorum sensing in log phase growth and acetate in stationary phase to maintain the synthesis of plantaricin under conditions of reduced growth. Acetate activation of PlnB was also evident in four types of PlnB present in different Lb. plantarum strains. Finally, we proposed a model to explain the developmental regulation of plantaricin synthesis by PlnA and acetate. These results have potential applications in improving food fermentation and bacteriocin production.
Collapse
Affiliation(s)
- Fanqiang Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hechao Du
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ting Nie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyu Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ian F Connerton
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Loughborough, UK
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chong Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| |
Collapse
|
57
|
Pseudomonas aeruginosa as a Model To Study Chemosensory Pathway Signaling. Microbiol Mol Biol Rev 2021; 85:85/1/e00151-20. [PMID: 33441490 DOI: 10.1128/mmbr.00151-20] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria have evolved a variety of signal transduction mechanisms that generate different outputs in response to external stimuli. Chemosensory pathways are widespread in bacteria and are among the most complex signaling mechanisms, requiring the participation of at least six proteins. These pathways mediate flagellar chemotaxis, in addition to controlling alternative functions such as second messenger levels or twitching motility. The human pathogen Pseudomonas aeruginosa has four different chemosensory pathways that carry out different functions and are stimulated by signal binding to 26 chemoreceptors. Recent research employing a diverse range of experimental approaches has advanced enormously our knowledge on these four pathways, establishing P. aeruginosa as a primary model organism in this field. In the first part of this article, we review data on the function and physiological relevance of chemosensory pathways as well as their involvement in virulence, whereas the different transcriptional and posttranscriptional regulatory mechanisms that govern pathway function are summarized in the second part. The information presented will be of help to advance the understanding of pathway function in other organisms.
Collapse
|
58
|
Kermani AA. A guide to membrane protein X‐ray crystallography. FEBS J 2020; 288:5788-5804. [DOI: 10.1111/febs.15676] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Ali A. Kermani
- Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor MI USA
| |
Collapse
|
59
|
Maliar N, Okhrimenko IS, Petrovskaya LE, Alekseev AA, Kovalev KV, Soloviov DV, Popov PA, Rokitskaya TI, Antonenko YN, Zabelskii DV, Dolgikh DA, Kirpichnikov MP, Gordeliy VI. Novel pH-Sensitive Microbial Rhodopsin from Sphingomonas paucimobilis. DOKL BIOCHEM BIOPHYS 2020; 495:342-346. [PMID: 33368048 DOI: 10.1134/s1607672920060162] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 11/23/2022]
Abstract
This work provides the first characteristics of the rhodopsin SpaR from Sphingomonas paucimobilis, aerobic bacteria associated with opportunistic infections. The sequence analysis of SpaR has shown that this protein has unusual DTS motif which has never reported in rhodopsins from Proteobacteria. We report that SpaR operates as an outward proton pump at low pH; however, proton pumping is almost absent at neutral and alkaline pH. The photocycle of this rhodopsin in detergent micelles slows down with an increase in pH because of longer Schiff base reprotonation. Our results show that the novel microbial ion transporter SpaR of interest both as an object for basic research of membrane proteins and as a promising optogenetic tool.
Collapse
Affiliation(s)
- N Maliar
- Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow oblast, Russia
| | - I S Okhrimenko
- Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow oblast, Russia
| | - L E Petrovskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - A A Alekseev
- Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow oblast, Russia.,Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Institute of Crystallography, University of Aachen (RWTH), Aachen, Germany
| | - K V Kovalev
- Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow oblast, Russia.,Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France.,Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Institute of Crystallography, University of Aachen (RWTH), Aachen, Germany
| | - D V Soloviov
- Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow oblast, Russia.,Institute for Safety Problems of Nuclear Power Plants, National Academy of Sciences of Ukraine, Kyiv, Ukraine.,Joint Institute for Nuclear Research, Dubna, Russia
| | - P A Popov
- Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow oblast, Russia.,Skolkovo Institute of Science and Technology, Moscow, Russia
| | - T I Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Y N Antonenko
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - D V Zabelskii
- Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow oblast, Russia.,Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - D A Dolgikh
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Biological Faculty, Moscow State University, Moscow, Russia
| | - M P Kirpichnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Biological Faculty, Moscow State University, Moscow, Russia
| | - V I Gordeliy
- Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow oblast, Russia. .,Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France. .,Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany. .,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany.
| |
Collapse
|
60
|
Pi H, Chu ML, Ivan SJ, Latario CJ, Toth AM, Carlin SM, Hillebrand GH, Lin HK, Reppart JD, Stauff DL, Skaar EP. Directed evolution reveals the mechanism of HitRS signaling transduction in Bacillus anthracis. PLoS Pathog 2020; 16:e1009148. [PMID: 33362282 PMCID: PMC7790381 DOI: 10.1371/journal.ppat.1009148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/07/2021] [Accepted: 11/11/2020] [Indexed: 12/03/2022] Open
Abstract
Two component systems (TCSs) are a primary mechanism of signal sensing and response in bacteria. Systematic characterization of an entire TCS could provide a mechanistic understanding of these important signal transduction systems. Here, genetic selections were employed to dissect the molecular basis of signal transduction by the HitRS system that detects cell envelope stress in the pathogen Bacillus anthracis. Numerous point mutations were isolated within HitRS, 17 of which were in a 50-residue HAMP domain. Mutational analysis revealed the importance of hydrophobic interactions within the HAMP domain and highlighted its essentiality in TCS signaling. In addition, these data defined residues critical for activities intrinsic to HitRS, uncovered specific interactions among individual domains and between the two signaling proteins, and revealed that phosphotransfer is the rate-limiting step for signal transduction. Furthermore, this study establishes the use of unbiased genetic selections to study TCS signaling and provides a comprehensive mechanistic understanding of an entire TCS. Bacterial TCSs are a primary strategy for stress sensing and niche adaptation. Although individual domains and proteins of these systems have been extensively studied, systematic characterization of an entire TCS is rare. In this study, through unbiased genetic selections and rigorous biochemical analysis, we provide a detailed characterization and structure-function analysis of an entire TCS and extend our understanding of the molecular basis of signal transduction through TCSs. Moreover, this study provides a comprehensive map of point-mutations in these well-conserved signaling proteins, which will be broadly useful for studying other TCSs. The described genetic selection strategies are applicable to any TCS, providing a powerful tool for researchers interested in microbial signal transduction.
Collapse
Affiliation(s)
- Hualiang Pi
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, & Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Michelle L. Chu
- Department of Biology, Grove City College, Grove City, Pennsylvania, United States of America
| | - Samuel J. Ivan
- Department of Biology, Grove City College, Grove City, Pennsylvania, United States of America
| | - Casey J. Latario
- Department of Biology, Grove City College, Grove City, Pennsylvania, United States of America
| | - Allen M. Toth
- Department of Biology, Grove City College, Grove City, Pennsylvania, United States of America
| | - Sophia M. Carlin
- Department of Biology, Grove City College, Grove City, Pennsylvania, United States of America
| | - Gideon H. Hillebrand
- Department of Biology, Grove City College, Grove City, Pennsylvania, United States of America
| | - Hannah K. Lin
- Department of Biology, Grove City College, Grove City, Pennsylvania, United States of America
| | - Jared D. Reppart
- Department of Biology, Grove City College, Grove City, Pennsylvania, United States of America
| | - Devin L. Stauff
- Department of Biology, Grove City College, Grove City, Pennsylvania, United States of America
| | - Eric P. Skaar
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, & Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
61
|
Taher R, de Rosny E. A structure-function study of ZraP and ZraS provides new insights into the two-component system Zra. Biochim Biophys Acta Gen Subj 2020; 1865:129810. [PMID: 33309686 DOI: 10.1016/j.bbagen.2020.129810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/16/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Zra belongs to the envelope stress response (ESR) two-component systems (TCS). It is atypical because of its third periplasmic repressor partner (ZraP), in addition to its histidine kinase sensor protein (ZraS) and its response regulator (ZraR) components. Furthermore, although it is activated by Zn2+, it is not involved in zinc homeostasis or protection against zinc toxicity. Here, we mainly focus on ZraS but also provide information on ZraP. METHODS The purified periplasmic domain of ZraS and ZraP were characterized using biophysical and biochemical technics: multi-angle laser light scattering (MALLS), circular dichroism (CD), differential scanning fluorescence (DSF), inductively coupled plasma atomic emission spectroscopy (ICP-AES), cross-linking and small-angle X-ray scattering (SAXS). In-vivo experiments were carried out to determine the redox state of the cysteine residue in ZraP and the consequences for the cell of an over-activation of the Zra system. RESULTS We show that ZraS binds one Zn2+ molecule with high affinity resulting in conformational changes of the periplasmic domain, consistent with a triggering function of the metal ion. We also demonstrate that, in the periplasm, the only cysteine residue of ZraP is at least partially reduced. Using SAXS, we conclude that the previously determined X-ray structure is different from the structure in solution. CONCLUSION Our results allow us to propose a general mechanism for the Zra system activation and to compare it to the homologous Cpx system. GENERAL SIGNIFICANCE We bring new input on the so far poorly described Zra system and notably on ZraS.
Collapse
Affiliation(s)
- Raleb Taher
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France; University of California, Irvine, Medical Science Building B, CA 92697, United States of America
| | - Eve de Rosny
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France.
| |
Collapse
|
62
|
Stopp M, Steinmetz PA, Schubert C, Griesinger C, Schneider D, Unden G. Transmembrane signaling and cytoplasmic signal conversion by dimeric transmembrane helix 2 and a linker domain of the DcuS sensor kinase. J Biol Chem 2020; 296:100148. [PMID: 33277358 PMCID: PMC7857512 DOI: 10.1074/jbc.ra120.015999] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 01/16/2023] Open
Abstract
Transmembrane (TM) signaling is a key process of membrane-bound sensor kinases. The C4-dicarboxylate (fumarate) responsive sensor kinase DcuS of Escherichia coli is anchored by TM helices TM1 and TM2 in the membrane. Signal transmission across the membrane relies on the piston-type movement of the periplasmic part of TM2. To define the role of TM2 in TM signaling, we use oxidative Cys cross-linking to demonstrate that TM2 extends over the full distance of the membrane and forms a stable TM homodimer in both the inactive and fumarate-activated state of DcuS. An S186xxxGxxxG194 motif is required for the stability and function of the TM2 homodimer. The TM2 helix further extends on the periplasmic side into the α6-helix of the sensory PASP domain and on the cytoplasmic side into the α1-helix of PASC. PASC has to transmit the signal to the C-terminal kinase domain. A helical linker on the cytoplasmic side connecting TM2 with PASC contains an LxxxLxxxL sequence. The dimeric state of the linker was relieved during fumarate activation of DcuS, indicating structural rearrangements in the linker. Thus, DcuS contains a long α-helical structure reaching from the sensory PASP (α6) domain across the membrane to α1(PASC). Taken together, the results suggest piston-type TM signaling by the TM2 homodimer from PASP across the full TM region, whereas the fumarate-destabilized linker dimer converts the signal on the cytoplasmic side for PASC and kinase regulation.
Collapse
Affiliation(s)
- Marius Stopp
- Microbiology and Wine Research, Institute for Molecular Physiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Philipp Aloysius Steinmetz
- Microbiology and Wine Research, Institute for Molecular Physiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christopher Schubert
- Microbiology and Wine Research, Institute for Molecular Physiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christian Griesinger
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Gottingen, Germany
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Gottfried Unden
- Microbiology and Wine Research, Institute for Molecular Physiology, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
63
|
Interface switch mediates signal transmission in a two-component system. Proc Natl Acad Sci U S A 2020; 117:30433-30440. [PMID: 33199635 DOI: 10.1073/pnas.1912080117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two-component systems (TCS), which typically consist of a membrane-embedded histidine kinase and a cytoplasmic response regulator, are the dominant signaling proteins for transduction of environmental stimuli into cellular response pathways in prokaryotic cells. HptRSA is a recently identified TCS consisting of the G6P-associated sensor protein (HptA), transmembrane histidine kinase (HptS), and cytoplasmic effector (HptR). HptRSA mediates glucose-6-phosphate (G6P) uptake to support Staphylococcus aureus growth and multiplication within various host cells. How the mechanism by which HptRSA perceives G6P and triggers a downstream response has remained elusive. Here, we solved the HptA structures in apo and G6P-bound states. G6P binding in the cleft between two HptA domains caused a conformational closing movement. The solved structures of HptA in complex with the periplasmic domain of HptS showed that HptA interacts with HptS through both constitutive and switchable interfaces. The G6P-free form of HptA binds to the membrane-distal side of the HptS periplasmic domain (HptSp), resulting in a parallel conformation of the HptSp protomer pair. However, once HptA associates with G6P, its intramolecular domain closure switches the HptA-HptSp contact region into the membrane-proximal domain, which causes rotation and closure of the C termini of each HptSp protomer. Through biochemical and growth assays of HptA and HptS mutant variants, we proposed a distinct mechanism of interface switch-mediated signaling transduction. Our results provide mechanistic insights into bacterial nutrient sensing and expand our understanding of the activation modes by which TCS communicates external signals.
Collapse
|
64
|
S-nitrosylation-mediated activation of a histidine kinase represses the type 3 secretion system and promotes virulence of an enteric pathogen. Nat Commun 2020; 11:5777. [PMID: 33188170 PMCID: PMC7666205 DOI: 10.1038/s41467-020-19506-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Vibrio parahaemolyticus is the leading cause of seafood-borne diarrheal diseases. Experimental overproduction of a type 3 secretion system (T3SS1) in this pathogen leads to decreased intestinal colonization, which suggests that T3SS1 repression is required for maximal virulence. However, the mechanisms by which T3SS1 is repressed in vivo are unclear. Here, we show that host-derived nitrite modifies the activity of a bacterial histidine kinase and mediates T3SS1 repression. More specifically, nitrite activates histidine kinase sensor VbrK through S-nitrosylation on cysteine 86, which results in downregulation of the entire T3SS1 operon through repression of its positive regulator exsC. Replacement of cysteine 86 with a serine (VbrK C86S mutant) leads to increased expression of inflammatory cytokines in infected Caco-2 cells. In an infant rabbit model of infection, the VbrK C86S mutant induces a stronger inflammatory response at the early stage of infection, and displays reduced intestinal colonization and virulence at the later stage of infection, in comparison with the parent strain. Our results indicate that the pathogen V. parahaemolyticus perceives nitrite as a host-derived signal and responds by downregulating a proinflammatory factor (T3SS1), thus enhancing intestinal colonization and virulence. Vibrio parahaemolyticus causes seafood-borne diarrheal diseases. Here, the authors show that the pathogen uses a histidine kinase to sense host-derived nitrite and downregulate a proinflammatory type 3 secretion system, thus enhancing intestinal colonization and virulence.
Collapse
|
65
|
Unden G, Klein R. Sensing of O 2 and nitrate by bacteria: alternative strategies for transcriptional regulation of nitrate respiration by O 2 and nitrate. Environ Microbiol 2020; 23:5-14. [PMID: 33089915 DOI: 10.1111/1462-2920.15293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/28/2022]
Abstract
Many bacteria are able to use O2 and nitrate as alternative electron acceptors for respiration. Strategies for regulation in response to O2 and nitrate can vary considerably. In the paradigmatic system of E. coli (and γ-proteobacteria), regulation by O2 and nitrate is established by the O2 -sensor FNR and the two-component system NarX-NarL (for nitrate regulation). Expression of narGHJI is regulated by the binding of FNR and NarL to the promoter. A similar strategy by individual regulation in response to O2 and nitrate is verified in many genera by the use of various types of regulators. Otherwise, in the soil bacteria Bacillus subtilis (Firmicutes) and Streptomyces (Actinobacteria), nitrate respiration is subject to anaerobic induction, without direct nitrate induction. In contrast, the NreA-NreB-NreC two-component system of Staphylococcus (Firmicutes) performs joint sensing of O2 and nitrate by interacting O2 and nitrate sensors. The O2 -sensor NreB phosphorylates the response regulator NreC to activate narGHJI expression. NreC-P transmits the signal for anaerobiosis to the promoter. The nitrate sensor NreA modulates NreB function by converting NreB in the absence of nitrate from the kinase to a phosphatase that dephosphorylates NreC-P. Thus, widely different strategies for coordinating the response to O2 and nitrate have evolved in bacteria.
Collapse
Affiliation(s)
- Gottfried Unden
- Microbiology and Wine Research, Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, 55099, Germany
| | - Robin Klein
- Microbiology and Wine Research, Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, 55099, Germany
| |
Collapse
|
66
|
Gavira JA, Matilla MA, Fernández M, Krell T. The structural basis for signal promiscuity in a bacterial chemoreceptor. FEBS J 2020; 288:2294-2310. [PMID: 33021055 DOI: 10.1111/febs.15580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 01/05/2023]
Abstract
Signalling through chemosensory pathways is typically initiated by the binding of signal molecules to the chemoreceptor ligand binding domain (LBD). The PcaY_PP chemoreceptor from Pseudomonas putida KT2440 is characterized by an unusually broad signal range, and minimal requisites for signal binding are the presence of a C6-membered ring and that of a carboxyl group. Previous studies have shown that only some of the multiple signals recognized by this chemoreceptor are of apparent metabolic value. We report here high-resolution structures of PcaY_PP-LBD in the absence and presence of four cognate chemoeffectors and glycerol. The domain formed a four-helix bundle (4HB), and both ligand binding sites of the dimer were occupied with the high-affinity ligands protocatechuate and quinate, whereas the lower-affinity ligands benzoate and salicylate were present in only one site. Ligand binding was verified by microcalorimetric titration of site-directed mutants revealing important roles of an arginine and number of polar residues that establish an extensive hydrogen bonding network with bound ligands. The comparison of the apo and holo structures did not provide evidence for this receptor employing a transmembrane signalling mechanism that involves piston-like shifts of the final helix. Instead, ligand binding caused rigid-body scissoring movements of both monomers of the dimer. Comparisons with the 4HB domains of the Tar and Tsr chemoreceptors revealed significant structural differences. Importantly, the ligand binding site in PcaY_PP-LBD is approximately 8 Å removed from that of the Tar and Tsr receptors. Data indicate a significant amount of structural and functional diversity among 4HB domains. DATABASES: The coordinates and structure factors have been deposited in the protein data band with the following IDs: 6S1A (apo form), 6S18 (bound glycerol), 6S33 (bound protocatechuate), 6S38 (bound quinate), 6S3B (bound benzoate) and 6S37 (bound salicylate).
Collapse
Affiliation(s)
| | - Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Matilde Fernández
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
67
|
Koh A, Gibbon MJ, Van der Kamp MW, Pudney CR, Gebhard S. Conformation control of the histidine kinase BceS of Bacillus subtilis by its cognate ABC-transporter facilitates need-based activation of antibiotic resistance. Mol Microbiol 2020; 115:157-174. [PMID: 32955745 DOI: 10.1111/mmi.14607] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022]
Abstract
Bacteria closely control gene expression to ensure optimal physiological responses to their environment. Such careful gene expression can minimize the fitness cost associated with antibiotic resistance. We previously described a novel regulatory logic in Bacillus subtilis enabling the cell to directly monitor its need for detoxification. This cost-effective strategy is achieved via a two-component regulatory system (BceRS) working in a sensory complex with an ABC-transporter (BceAB), together acting as a flux-sensor where signaling is proportional to transport activity. How this is realized at the molecular level has remained unknown. Using experimentation and computation we here show that the histidine kinase is activated by piston-like displacements in the membrane, which are converted to helical rotations in the catalytic core via an intervening HAMP-like domain. Intriguingly, the transporter was not only required for kinase activation, but also to actively maintain the kinase in its inactive state in the absence of antibiotics. Such coupling of kinase activity to that of the transporter ensures the complete control required for transport flux-dependent signaling. Moreover, we show that the transporter likely conserves energy by signaling with sub-maximal sensitivity. These results provide the first mechanistic insights into transport flux-dependent signaling, a unique strategy for energy-efficient decision making.
Collapse
Affiliation(s)
- Alan Koh
- Department of Biology and Biochemistry, University of Bath, Bath, UK.,Milner Centre for Evolution, University of Bath, Bath, UK
| | - Marjorie J Gibbon
- Department of Biology and Biochemistry, University of Bath, Bath, UK.,Milner Centre for Evolution, University of Bath, Bath, UK
| | | | | | - Susanne Gebhard
- Department of Biology and Biochemistry, University of Bath, Bath, UK.,Milner Centre for Evolution, University of Bath, Bath, UK
| |
Collapse
|
68
|
Isaksson L, Gustavsson E, Persson C, Brath U, Vrhovac L, Karlsson G, Orekhov V, Westenhoff S. Signaling Mechanism of Phytochromes in Solution. Structure 2020; 29:151-160.e3. [PMID: 32916102 DOI: 10.1016/j.str.2020.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/19/2020] [Accepted: 08/21/2020] [Indexed: 12/31/2022]
Abstract
Phytochrome proteins guide the red/far-red photoresponse of plants, fungi, and bacteria. Crystal structures suggest that the mechanism of signal transduction from the chromophore to the output domains involves refolding of the so-called PHY tongue. It is currently not clear how the two other notable structural features of the phytochrome superfamily, the so-called helical spine and a knot in the peptide chain, are involved in photoconversion. Here, we present solution NMR data of the complete photosensory core module from Deinococcus radiodurans. Photoswitching between the resting and the active states induces changes in amide chemical shifts, residual dipolar couplings, and relaxation dynamics. All observables indicate a photoinduced structural change in the knot region and lower part of the helical spine. This implies that a conformational signal is transduced from the chromophore to the helical spine through the PAS and GAF domains. The discovered pathway underpins functional studies of plant phytochromes and may explain photosensing by phytochromes under biological conditions.
Collapse
Affiliation(s)
- Linnéa Isaksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Emil Gustavsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden; Swedish NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Cecilia Persson
- Swedish NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Ulrika Brath
- Swedish NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Lidija Vrhovac
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Göran Karlsson
- Swedish NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Vladislav Orekhov
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden; Swedish NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden.
| |
Collapse
|
69
|
Zhao Y, Shen Y, Wen Y, Campbell RE. High-Performance Intensiometric Direct- and Inverse-Response Genetically Encoded Biosensors for Citrate. ACS CENTRAL SCIENCE 2020; 6:1441-1450. [PMID: 32875085 PMCID: PMC7453566 DOI: 10.1021/acscentsci.0c00518] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Indexed: 05/02/2023]
Abstract
Motivated by the growing recognition of citrate as a central metabolite in a variety of biological processes associated with healthy and diseased cellular states, we have developed a series of high-performance genetically encoded citrate biosensors suitable for imaging of citrate concentrations in mammalian cells. The design of these biosensors was guided by structural studies of the citrate-responsive sensor histidine kinase and took advantage of the same conformational changes proposed to propagate from the binding domain to the catalytic domain. Following extensive engineering based on a combination of structure guided mutagenesis and directed evolution, we produced an inverse-response biosensor (ΔF/F min ≈ 18) designated Citroff1 and a direct-response biosensor (ΔF/F min ≈ 9) designated Citron1. We report the X-ray crystal structure of Citron1 and demonstrate the utility of both biosensors for qualitative and quantitative imaging of steady-state and pharmacologically perturbed citrate concentrations in live cells.
Collapse
Affiliation(s)
- Yufeng Zhao
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Yi Shen
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Yurong Wen
- Department
of Talent Highland, The First Affiliated
Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- . (Y.W.; regarding x-ray crystallography)
| | - Robert E. Campbell
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- . (R.E.C.)
| |
Collapse
|
70
|
Kowallis KA, Silfani EM, Kasumu AP, Rong G, So V, Childers WS. Synthetic Control of Signal Flow Within a Bacterial Multi-Kinase Network. ACS Synth Biol 2020; 9:1705-1713. [PMID: 32559383 DOI: 10.1021/acssynbio.0c00043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The signal processing capabilities of bacterial signaling networks offer immense potential for advanced phospho-signaling systems for synthetic biology. Emerging models suggest that complex development may require interconnections between what were once thought to be isolated signaling arrays. For example, Caulobacter crescentus achieves the feat of asymmetric division by utilizing a novel pseudokinase DivL, which senses the output of one signaling pathway to modulate a second pathway. It has been proposed that DivL reverses signal flow by exploiting conserved kinase conformational changes and protein-protein interactions. We engineered a series of DivL-based modulators to synthetically stimulate reverse signaling of the network in vivo. Stimulation of conformational changes through the DivL signal transmission helix resulted in changes to hallmark features of the network: C. crescentus motility and DivL accumulation at the cell poles. Additionally, mutations to a conserved PAS sensor transmission motif disrupted reverse signaling flow in vivo. We propose that synthetic stimulation and sensor disruption provide strategies to define signaling circuit organization principles for the rational design and validation of synthetic pathways.
Collapse
Affiliation(s)
- Kimberly A. Kowallis
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Elayna M. Silfani
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Amanda P. Kasumu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Grace Rong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Victor So
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - W. Seth Childers
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
71
|
Park KH, Kim S, Lee SJ, Cho JE, Patil VV, Dumbrepatil AB, Song HN, Ahn WC, Joo C, Lee SG, Shingler V, Woo EJ. Tetrameric architecture of an active phenol-bound form of the AAA + transcriptional regulator DmpR. Nat Commun 2020; 11:2728. [PMID: 32483114 PMCID: PMC7264223 DOI: 10.1038/s41467-020-16562-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 05/11/2020] [Indexed: 01/07/2023] Open
Abstract
The Pseudomonas putida phenol-responsive regulator DmpR is a bacterial enhancer binding protein (bEBP) from the AAA+ ATPase family. Even though it was discovered more than two decades ago and has been widely used for aromatic hydrocarbon sensing, the activation mechanism of DmpR has remained elusive. Here, we show that phenol-bound DmpR forms a tetramer composed of two head-to-head dimers in a head-to-tail arrangement. The DmpR-phenol complex exhibits altered conformations within the C-termini of the sensory domains and shows an asymmetric orientation and angle in its coiled-coil linkers. The structural changes within the phenol binding sites and the downstream ATPase domains suggest that the effector binding signal is propagated through the coiled-coil helixes. The tetrameric DmpR-phenol complex interacts with the σ54 subunit of RNA polymerase in presence of an ATP analogue, indicating that DmpR-like bEBPs tetramers utilize a mechanistic mode distinct from that of hexameric AAA+ ATPases to activate σ54-dependent transcription.
Collapse
Affiliation(s)
- Kwang-Hyun Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea
| | - Sungchul Kim
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - Su-Jin Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea.,Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 305-333, Republic of Korea
| | - Jee-Eun Cho
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea
| | - Vinod Vikas Patil
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea.,Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 305-333, Republic of Korea
| | - Arti Baban Dumbrepatil
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea
| | - Hyung-Nam Song
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea
| | - Woo-Chan Ahn
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea
| | - Chirlmin Joo
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, 2629 HZ, Delft, The Netherlands.
| | - Seung-Goo Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea
| | - Victoria Shingler
- Department of Molecular Biology, Umeå University, 90187, Umeå, SE, Sweden
| | - Eui-Jeon Woo
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea. .,Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 305-333, Republic of Korea.
| |
Collapse
|
72
|
Seraj Z, Ahmadian S, Groves MR, Seyedarabi A. The aroma of TEMED as an activation and stabilizing signal for the antibacterial enzyme HEWL. PLoS One 2020; 15:e0232953. [PMID: 32428017 PMCID: PMC7236982 DOI: 10.1371/journal.pone.0232953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/25/2020] [Indexed: 11/18/2022] Open
Abstract
The unpleasant smell released from dead bodies, may serve as an alarm for avoiding certain behaviour or as feeding or oviposition attractants for animals. However, little is known about their effect on the structure and function of proteins. Previously, we reported that using the aroma form of TEMED (a diamine), representative of the "smell of death", could completely inhibit the fibril formation of HEWL, as an antibacterial enzyme, and a model protein for fibrillation studies. To take this further, in this study we investigated the kinetics of TEMED using a number of techniques and in particular X-ray crystallography to identify the binding site(s) of TEMED and search for hotspot(s) necessary to inhibit fibril formation of HEWL. Structural data, coupled with other experimental data reported in this study, revealed that TEMED completely inhibited fibril formation and stabilized the structure of HEWL through enhancement of the CH-Π interaction and binding to an inhibitor hotspot comprised of residues Lys33, Phe34, Glu35 and Asn37 of HEWL. Additionally, results from this study showed that the binding of TEMED increased the activity and thermal stability of HEWL, helping to improve the function of this antibacterial enzyme. In conclusion, the role of the "smell of death”, as an important signal molecule affecting the activity and stability of HEWL was greatly highlighted, suggesting that aroma producing small molecules can be signals for structural and functional changes in proteins.
Collapse
Affiliation(s)
- Zahra Seraj
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Department of Drug Design, University of Groningen, Groningen, The Netherlands
| | - Shahin Ahmadian
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Matthew R. Groves
- Department of Drug Design, University of Groningen, Groningen, The Netherlands
- * E-mail: (AS); (MRG)
| | - Arefeh Seyedarabi
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- * E-mail: (AS); (MRG)
| |
Collapse
|
73
|
Gushchin I, Orekhov P, Melnikov I, Polovinkin V, Yuzhakova A, Gordeliy V. Sensor Histidine Kinase NarQ Activates via Helical Rotation, Diagonal Scissoring, and Eventually Piston-Like Shifts. Int J Mol Sci 2020; 21:E3110. [PMID: 32354084 PMCID: PMC7247690 DOI: 10.3390/ijms21093110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
Membrane-embedded sensor histidine kinases (HKs) and chemoreceptors are used ubiquitously by bacteria and archaea to percept the environment, and are often crucial for their survival and pathogenicity. The proteins can transmit the signal from the sensor domain to the catalytic kinase domain reliably over the span of several hundreds of angstroms, and regulate the activity of the cognate response regulator proteins, with which they form two-component signaling systems (TCSs). Several mechanisms of transmembrane signal transduction in TCS receptors have been proposed, dubbed (swinging) piston, helical rotation, and diagonal scissoring. Yet, despite decades of studies, there is no consensus on whether these mechanisms are common for all TCS receptors. Here, we extend our previous work on Escherichia coli nitrate/nitrite sensor kinase NarQ. We determined a crystallographic structure of the sensor-TM-HAMP fragment of the R50S mutant, which, unexpectedly, was found in a ligand-bound-like conformation, despite an inability to bind nitrate. Subsequently, we reanalyzed the structures of the ligand-free and ligand-bound NarQ and NarX sensor domains, and conducted extensive molecular dynamics simulations of ligand-free and ligand-bound wild type and mutated NarQ. Based on the data, we show that binding of nitrate to NarQ causes, first and foremost, helical rotation and diagonal scissoring of the α-helices at the core of the sensor domain. These conformational changes are accompanied by a subtle piston-like motion, which is amplified by a switch in the secondary structure of the linker between the sensor and TM domains. We conclude that helical rotation, diagonal scissoring, and piston are simply different degrees of freedom in coiled-coil proteins and are not mutually exclusive in NarQ, and likely in other nitrate sensors and TCS proteins as well.
Collapse
Affiliation(s)
- Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Philipp Orekhov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Institute of Personalized Medicine, Sechenov University, 119146 Moscow, Russia
| | - Igor Melnikov
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Vitaly Polovinkin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
| | - Anastasia Yuzhakova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Valentin Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
74
|
Crystal Structure of a Proteolytic Fragment of the Sensor Histidine Kinase NarQ. CRYSTALS 2020. [DOI: 10.3390/cryst10030149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two-component signaling systems (TCSs) are a large and important class of sensory systems in bacteria, archaea, and some eukaryotes, yet their mechanism of action is still not fully understood from the structural point of view. Many TCS receptors are elongated flexible proteins with transmembrane (TM) regions, and are difficult to work with. Consequently, truncated fragments of the receptors are often used in structural studies. However, it is not fully clear whether the structures of the fragments correspond well to their native structures in the context of full-length proteins. Recently, we crystallized a fragment of Escherichia coli nitrate/nitrite sensor histidine kinase, NarQ, encompassing the sensor, TM, and HAMP domains. Here we report that a smaller proteolytic fragment consisting of the sensor and TM domains can also be crystallized using the in meso approach. The structure of the fragment is similar to the previously determined one, with minor differences in the vicinity of the truncation site. The results show that the crystallization of such sensor–TM fragments can be accomplished and can provide information on the packing of transmembrane helices, albeit limited, and that the proteolysis may or may not be a problem during crystallization.
Collapse
|
75
|
Bouillet S, Wu T, Chen S, Stock AM, Gao R. Structural asymmetry does not indicate hemiphosphorylation in the bacterial histidine kinase CpxA. J Biol Chem 2020; 295:8106-8117. [PMID: 32094228 DOI: 10.1074/jbc.ra120.012757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/19/2020] [Indexed: 11/06/2022] Open
Abstract
Histidine protein kinases (HKs) are prevalent prokaryotic sensor kinases that are central to phosphotransfer in two-component signal transduction systems, regulating phosphorylation of response regulator proteins that determine the output responses. HKs typically exist as dimers and can potentially autophosphorylate at each conserved histidine residue in the individual protomers, leading to diphosphorylation. However, analyses of HK phosphorylation in biochemical assays in vitro suggest negative cooperativity, whereby phosphorylation in one protomer of the dimer inhibits phosphorylation in the second protomer, leading to ∼50% phosphorylation of the available sites in dimers. This negative cooperativity is often correlated with an asymmetric domain arrangement, a common structural characteristic of autophosphorylation states in many HK structures. In this study, we engineered covalent dimers of the cytoplasmic domains of Escherichia coli CpxA, enabling us to quantify individual species: unphosphorylated, monophosphorylated, and diphosphorylated dimers. Together with mathematical modeling, we unambiguously demonstrate no cooperativity in autophosphorylation of CpxA despite its asymmetric structures, indicating that these asymmetric domain arrangements are not linked to negative cooperativity and hemiphosphorylation. Furthermore, the modeling indicated that many parameters, most notably minor amounts of ADP generated during autophosphorylation reactions or present in ATP preparations, can produce ∼50% total phosphorylation that may be mistakenly attributed to negative cooperativity. This study also establishes that the engineered covalent heterodimer provides a robust experimental system for investigating cooperativity in HK autophosphorylation and offers a useful tool for testing how symmetric or asymmetric structural features influence HK functions.
Collapse
Affiliation(s)
- Sophie Bouillet
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Ti Wu
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Shaoxing Chen
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Ann M Stock
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Rong Gao
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| |
Collapse
|
76
|
Skalova T, Lengalova A, Dohnalek J, Harlos K, Mihalcin P, Kolenko P, Stranava M, Blaha J, Shimizu T, Martínková M. Disruption of the dimerization interface of the sensing domain in the dimeric heme-based oxygen sensor AfGcHK abolishes bacterial signal transduction. J Biol Chem 2020; 295:1587-1597. [PMID: 31914416 PMCID: PMC7008379 DOI: 10.1074/jbc.ra119.011574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/30/2019] [Indexed: 12/17/2022] Open
Abstract
The heme-based oxygen sensor protein AfGcHK is a globin-coupled histidine kinase in the soil bacterium Anaeromyxobacter sp. Fw109-5. Its C-terminal functional domain exhibits autophosphorylation activity induced by oxygen binding to the heme-Fe(II) complex located in the oxygen-sensing N-terminal globin domain. A detailed understanding of the signal transduction mechanisms in heme-containing sensor proteins remains elusive. Here, we investigated the role of the globin domain's dimerization interface in signal transduction in AfGcHK. We present a crystal structure of a monomeric imidazole-bound AfGcHK globin domain at 1.8 Å resolution, revealing that the helices of the WT globin dimer are under tension and suggesting that Tyr-15 plays a role in both this tension and the globin domain's dimerization. Biophysical experiments revealed that whereas the isolated WT globin domain is dimeric in solution, the Y15A and Y15G variants in which Tyr-15 is replaced with Ala or Gly, respectively, are monomeric. Additionally, we found that although the dimerization of the full-length protein is preserved via the kinase domain dimerization interface in all variants, full-length AfGcHK variants bearing the Y15A or Y15G substitutions lack enzymatic activity. The combined structural and biophysical results presented here indicate that Tyr-15 plays a key role in the dimerization of the globin domain of AfGcHK and that globin domain dimerization is essential for internal signal transduction and autophosphorylation in this protein. These findings provide critical insights into the signal transduction mechanism of the histidine kinase AfGcHK from Anaeromyxobacter.
Collapse
Affiliation(s)
- Tereza Skalova
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Biocev, Vestec, 252 50 Czech Republic
| | - Alzbeta Lengalova
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, 128 43 Czech Republic
| | - Jan Dohnalek
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Biocev, Vestec, 252 50 Czech Republic
| | - Karl Harlos
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, OX3 7BN Oxford, United Kingdom
| | - Peter Mihalcin
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, 128 43 Czech Republic
| | - Petr Kolenko
- Institute of Biotechnology of the Czech Academy of Sciences, v.v.i., Biocev, Vestec, 252 50 Czech Republic; FNSPE, Czech Technical University in Prague, Brehova 7, Prague 1, 115 19 Czech Republic
| | - Martin Stranava
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, 128 43 Czech Republic
| | - Jan Blaha
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, 128 43 Czech Republic
| | - Toru Shimizu
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, 128 43 Czech Republic
| | - Markéta Martínková
- Department of Biochemistry, Faculty of Science, Charles University, Prague 2, 128 43 Czech Republic.
| |
Collapse
|
77
|
Trajtenberg F, Buschiazzo A. Protein Dynamics in Phosphoryl-Transfer Signaling Mediated by Two-Component Systems. Methods Mol Biol 2020; 2077:1-18. [PMID: 31707648 DOI: 10.1007/978-1-4939-9884-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ability to perceive the environment, an essential attribute in living organisms, is linked to the evolution of signaling proteins that recognize specific signals and execute predetermined responses. Such proteins constitute concerted systems that can be as simple as a unique protein, able to recognize a ligand and exert a phenotypic change, or extremely complex pathways engaging dozens of different proteins which act in coordination with feedback loops and signal modulation. To understand how cells sense their surroundings and mount specific adaptive responses, we need to decipher the molecular workings of signal recognition, internalization, transfer, and conversion into chemical changes inside the cell. Protein allostery and dynamics play a central role. Here, we review recent progress on the study of two-component systems, important signaling machineries of prokaryotes and lower eukaryotes. Such systems implicate a sensory histidine kinase and a separate response regulator protein. Both components exploit protein flexibility to effect specific conformational rearrangements, modulating protein-protein interactions, and ultimately transmitting information accurately. Recent work has revealed how histidine kinases switch between discrete functional states according to the presence or absence of the signal, shifting key amino acid positions that define their catalytic activity. In concert with the cognate response regulator's allosteric changes, the phosphoryl-transfer flow during the signaling process is exquisitely fine-tuned for proper specificity, efficiency and directionality.
Collapse
Affiliation(s)
- Felipe Trajtenberg
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Alejandro Buschiazzo
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay.
- Département de Microbiologie, Institut Pasteur, Paris, France.
| |
Collapse
|
78
|
Abstract
Vibrio cholerae, the causative agent of the diarrheal disease cholera, benefits from a sessile biofilm lifestyle that enhances survival outside the host but also contributes to host colonization and infectivity. The bacterial second messenger c-di-GMP has been identified as a central regulator of biofilm formation, including in V. cholerae; however, our understanding of the pathways that contribute to this process is incomplete. Here, we define a conserved signaling system that controls the stability of large adhesion proteins at the cell surface of V. cholerae, which are important for cell attachment and biofilm formation. Insight into the regulatory circuit underlying biofilm formation may inform targeted strategies to interfere with a process that renders this bacterium remarkably adaptable to changing environments. The dinucleotide second messenger c-di-GMP has emerged as a central regulator of reversible cell attachment during bacterial biofilm formation. A prominent cell adhesion mechanism first identified in pseudomonads combines two c-di-GMP-mediated processes: transcription of a large adhesin and its cell surface display via posttranslational proteolytic control. Here, we characterize an orthologous c-di-GMP effector system and show that it is operational in Vibrio cholerae, where it regulates two distinct classes of adhesins. Through structural analyses, we reveal a conserved autoinhibition mechanism of the c-di-GMP receptor that controls adhesin proteolysis and present a structure of a c-di-GMP-bound receptor module. We further establish functionality of the periplasmic protease controlled by the receptor against the two adhesins. Finally, transcription and functional assays identify physiological roles of both c-di-GMP-regulated adhesins in surface attachment and biofilm formation. Together, our studies highlight the conservation of a highly efficient signaling effector circuit for the control of cell surface adhesin expression and its versatility by revealing strain-specific variations.
Collapse
|
79
|
Transmembrane Prolines Mediate Signal Sensing and Decoding in Bacillus subtilis DesK Histidine Kinase. mBio 2019; 10:mBio.02564-19. [PMID: 31772055 PMCID: PMC6879721 DOI: 10.1128/mbio.02564-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signal sensing and transduction is an essential biological process for cell adaptation and survival. Histidine kinases (HK) are the sensory proteins of two-component systems that control many bacterial responses to different stimuli, like environmental changes. Here, we focused on the HK DesK from Bacillus subtilis, a paradigmatic example of a transmembrane thermosensor suited to remodel membrane fluidity when the temperature drops below 30°C. DesK provides a tractable system for investigating the mechanism of transmembrane signaling, one of the majors interrogates in biology to date. Our studies demonstrate that transmembrane proline residues modulate the conformational switch of a 2-helix coiled-coil (2-HCC) structural motif that controls input-output in a variety of HK. Our results highlight the relevance of proline residues within sensor domains and could inspire investigations of their role in different signaling proteins. Environmental awareness is an essential attribute of all organisms. The homeoviscous adaptation system of Bacillus subtilis provides a powerful experimental model for the investigation of stimulus detection and signaling mechanisms at the molecular level. These bacteria sense the order of membrane lipids with the transmembrane (TM) protein DesK, which has an N-terminal sensor domain and an intracellular catalytic effector domain. DesK exhibits autokinase activity as well as phosphotransferase and phosphatase activities toward a cognate response regulator, DesR, that controls the expression of an enzyme that remodels membrane fluidity when the temperature drops below ∼30°C. Membrane fluidity signals are transmitted from the DesK sensor domain to the effector domain via rotational movements of a connecting 2-helix coiled coil (2-HCC). Previous molecular dynamic simulations suggested important roles for TM prolines in transducing the initial signals of membrane fluidity status to the 2-HCC. Here, we report that individual replacement of prolines in DesKs TM1 and TM5 helices by alanine (DesKPA) locked DesK in a phosphatase-ON state, abrogating membrane fluidity responses. An unbiased mutagenic screen identified the L174P replacement in the internal side of the repeated heptad of the 2-HCC structure that alleviated the signaling defects of every transmembrane DesKPA substitution. Moreover, substitutions by proline in other internal positions of the 2-HCC reestablished the kinase-ON state of the DesKPA mutants. These results imply that TM prolines are essential for finely tuned signal generation by the N-terminal sensor helices, facilitating a conformational control by the metastable 2-HCC domain of the DesK signaling state.
Collapse
|
80
|
Möglich A. Signal transduction in photoreceptor histidine kinases. Protein Sci 2019; 28:1923-1946. [PMID: 31397927 PMCID: PMC6798134 DOI: 10.1002/pro.3705] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022]
Abstract
Two-component systems (TCS) constitute the predominant means by which prokaryotes read out and adapt to their environment. Canonical TCSs comprise a sensor histidine kinase (SHK), usually a transmembrane receptor, and a response regulator (RR). In signal-dependent manner, the SHK autophosphorylates and in turn transfers the phosphoryl group to the RR which then elicits downstream responses, often in form of altered gene expression. SHKs also catalyze the hydrolysis of the phospho-RR, hence, tightly adjusting the overall degree of RR phosphorylation. Photoreceptor histidine kinases are a subset of mostly soluble, cytosolic SHKs that sense light in the near-ultraviolet to near-infrared spectral range. Owing to their experimental tractability, photoreceptor histidine kinases serve as paradigms and provide unusually detailed molecular insight into signal detection, decoding, and regulation of SHK activity. The synthesis of recent results on receptors with light-oxygen-voltage, bacteriophytochrome and microbial rhodopsin sensor units identifies recurring, joint signaling strategies. Light signals are initially absorbed by the sensor module and converted into subtle rearrangements of α helices, mostly through pivoting and rotation. These conformational transitions propagate through parallel coiled-coil linkers to the effector unit as changes in left-handed superhelical winding. Within the effector, subtle conformations are triggered that modulate the solvent accessibility of residues engaged in the kinase and phosphatase activities. Taken together, a consistent view of the entire trajectory from signal detection to regulation of output emerges. The underlying allosteric mechanisms could widely apply to TCS signaling in general.
Collapse
Affiliation(s)
- Andreas Möglich
- Department of BiochemistryUniversität BayreuthBayreuthGermany
- Bayreuth Center for Biochemistry & Molecular BiologyUniversität BayreuthBayreuthGermany
- North‐Bavarian NMR CenterUniversität BayreuthBayreuthGermany
| |
Collapse
|
81
|
Gambucci M, Gentili PL, Sassi P, Latterini L. A multi-spectroscopic approach to investigate the interactions between Gramicidin A and silver nanoparticles. SOFT MATTER 2019; 15:6571-6580. [PMID: 31364666 DOI: 10.1039/c9sm01110b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The comprehension and control of the interactions between nanoparticles and proteins at a molecular level are crucial to improve biomedical applications of nanomaterials and to develop nanosystems able to influence and regulate the conformational changes in proteins. In this work, we explore the interactions between Gramicidin A peptide (GramA) and dodecanethiol-stabilized small silver nanoparticles (D-AgNPs), paying particular attention to the effect on GramA conformation in POPC bilayers. D-AgNPs have been prepared to have dimensions (5 nm) and a hydrophobic nature compatible with the POPC lipid bilayer. Fluorescence, Raman and IR spectroscopies have been used to investigate both peptide conformation and its position inside the phospholipid bilayer. Results are discussed in terms of solvent exposure and conformation of GramA peptide.
Collapse
Affiliation(s)
- Marta Gambucci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8- 06123 Perugia, Italy.
| | - Pier Luigi Gentili
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8- 06123 Perugia, Italy.
| | - Paola Sassi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8- 06123 Perugia, Italy.
| | - Loredana Latterini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8- 06123 Perugia, Italy.
| |
Collapse
|
82
|
Jacob-Dubuisson F, Mechaly A, Betton JM, Antoine R. Structural insights into the signalling mechanisms of two-component systems. Nat Rev Microbiol 2019; 16:585-593. [PMID: 30008469 DOI: 10.1038/s41579-018-0055-7] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two-component systems reprogramme diverse aspects of microbial physiology in response to environmental cues. Canonical systems are composed of a transmembrane sensor histidine kinase and its cognate response regulator. They catalyse three reactions: autophosphorylation of the histidine kinase, transfer of the phosphoryl group to the regulator and dephosphorylation of the phosphoregulator. Elucidating signal transduction between sensor and output domains is highly challenging given the size, flexibility and dynamics of histidine kinases. However, recent structural work has provided snapshots of the catalytic mechanisms of the three enzymatic reactions and described the conformation and dynamics of the enzymatic moiety in the kinase-competent and phosphatase-competent states. Insight into signalling mechanisms across the membrane is also starting to emerge from new crystal structures encompassing both sensor and transducer domains of sensor histidine kinases. In this Progress article, we highlight such important advances towards understanding at the molecular level the signal transduction mechanisms mediated by these fascinating molecular machines.
Collapse
Affiliation(s)
- Françoise Jacob-Dubuisson
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204 - Center for Infection and Immunity of Lille, Lille, France.
| | - Ariel Mechaly
- Institut Pasteur, Plateforme de Cristallographie, CNRS-UMR3528, Paris, France
| | - Jean-Michel Betton
- Institut Pasteur, Unité de Microbiologie Structurale, CNRS-UMR3528, Paris, France
| | - Rudy Antoine
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204 - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
83
|
Abstract
Infections arising from multidrug-resistant pathogenic bacteria are spreading rapidly throughout the world and threaten to become untreatable. The origins of resistance are numerous and complex, but one underlying factor is the capacity of bacteria to rapidly export drugs through the intrinsic activity of efflux pumps. In this Review, we describe recent advances that have increased our understanding of the structures and molecular mechanisms of multidrug efflux pumps in bacteria. Clinical and laboratory data indicate that efflux pumps function not only in the drug extrusion process but also in virulence and the adaptive responses that contribute to antimicrobial resistance during infection. The emerging picture of the structure, function and regulation of efflux pumps suggests opportunities for countering their activities.
Collapse
|
84
|
Buschiazzo A, Trajtenberg F. Two-Component Sensing and Regulation: How Do Histidine Kinases Talk with Response Regulators at the Molecular Level? Annu Rev Microbiol 2019; 73:507-528. [PMID: 31226026 DOI: 10.1146/annurev-micro-091018-054627] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Perceiving environmental and internal information and reacting in adaptive ways are essential attributes of living organisms. Two-component systems are relevant protein machineries from prokaryotes and lower eukaryotes that enable cells to sense and process signals. Implicating sensory histidine kinases and response regulator proteins, both components take advantage of protein phosphorylation and flexibility to switch conformations in a signal-dependent way. Dozens of two-component systems act simultaneously in any given cell, challenging our understanding about the means that ensure proper connectivity. This review dives into the molecular level, attempting to summarize an emerging picture of how histidine kinases and cognate response regulators achieve required efficiency, specificity, and directionality of signaling pathways, properties that rely on protein:protein interactions. α helices that carry information through long distances, the fine combination of loose and specific kinase/regulator interactions, and malleable reaction centers built when the two components meet emerge as relevant universal principles.
Collapse
Affiliation(s)
- Alejandro Buschiazzo
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; , .,Integrative Microbiology of Zoonotic Agents, Department of Microbiology, Institut Pasteur, Paris 75015, France
| | - Felipe Trajtenberg
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; ,
| |
Collapse
|
85
|
Hall JW, Lima BP, Herbomel GG, Gopinath T, McDonald L, Shyne MT, Lee JK, Kreth J, Ross KF, Veglia G, Herzberg MC. An intramembrane sensory circuit monitors sortase A-mediated processing of streptococcal adhesins. Sci Signal 2019; 12:12/580/eaas9941. [PMID: 31064885 DOI: 10.1126/scisignal.aas9941] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial adhesins mediate adhesion to substrates and biofilm formation. Adhesins of the LPXTG family are posttranslationally processed by the cell membrane-localized peptidase sortase A, which cleaves the LPXTG motif. This generates a short C-terminal peptide (C-pep) that remains in the cell membrane, whereas the mature adhesin is incorporated into the cell wall. Genes encoding adhesins of the oral bacterium Streptococcus gordonii were differentially expressed depending on whether the bacteria were isolated from saliva or dental plaque and appeared to be coordinately regulated. Deletion of sspA and sspB (sspAB), both of which encode LPXTG-containing adhesins, unexpectedly enhanced adhesion and biofilm formation. C-peps produced from a model LPXTG-containing adhesin localized to the cell membrane and bound to and inhibited the intramembrane sensor histidine kinase SGO_1180, thus preventing activation of the cognate response regulator SGO_1181. The absence of SspAB C-peps induced the expression of the scaCBA operon encoding the lipoprotein adhesin ScaA, which was sufficient to preserve and even enhance biofilm formation. This C-pep-driven regulatory circuit also exists in pathogenic streptococci and is likely conserved among Gram-positive bacteria. This quality control mechanism ensures that the bacteria can form biofilms under diverse environmental conditions and may play a role in optimizing adhesion and biofilm formation.
Collapse
Affiliation(s)
- Jeffrey W Hall
- Department of Biological and Diagnostic Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bruno P Lima
- Department of Biological and Diagnostic Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Tata Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - LeAnna McDonald
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael T Shyne
- Biostatistical Design and Analysis Center (BDAC), Clinical and Translational Science Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - John K Lee
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jens Kreth
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Karen F Ross
- Department of Biological and Diagnostic Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark C Herzberg
- Department of Biological and Diagnostic Sciences, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
86
|
Chen JL, Lin YC, Fu HY, Yang CS. The Blue-Green Sensory Rhodopsin SRM from Haloarcula marismortui Attenuates Both Phototactic Responses Mediated by Sensory Rhodopsin I and II in Halobacterium salinarum. Sci Rep 2019; 9:5672. [PMID: 30952934 PMCID: PMC6450946 DOI: 10.1038/s41598-019-42193-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/25/2019] [Indexed: 11/10/2022] Open
Abstract
Haloarchaea utilize various microbial rhodopsins to harvest light energy or to mediate phototaxis in search of optimal environmental niches. To date, only the red light-sensing sensory rhodopsin I (SRI) and the blue light-sensing sensory rhodopsin II (SRII) have been shown to mediate positive and negative phototaxis, respectively. In this work, we demonstrated that a blue-green light-sensing (504 nm) sensory rhodopsin from Haloarcula marismortui, SRM, attenuated both positive and negative phototaxis through its sensing region. The H. marismortui genome encodes three sensory rhodopsins: SRI, SRII and SRM. Using spectroscopic assays, we first demonstrated the interaction between SRM and its cognate transducer, HtrM. We then transformed an SRM-HtrM fusion protein into Halobacterium salinarum, which contains only SRI and SRII, and observed that SRM-HtrM fusion protein decreased both positive and negative phototaxis of H. salinarum. Together, our results suggested a novel phototaxis signalling system in H. marismortui comprised of three sensory rhodopsins in which the phototactic response of SRI and SRII were attenuated by SRM.
Collapse
Affiliation(s)
- Jheng-Liang Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10616, Taiwan
| | - Yu-Cheng Lin
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10616, Taiwan
| | - Hsu-Yuan Fu
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10616, Taiwan
| | - Chii-Shen Yang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10616, Taiwan.
| |
Collapse
|
87
|
Jung K, Fabiani F, Hoyer E, Lassak J. Bacterial transmembrane signalling systems and their engineering for biosensing. Open Biol 2019; 8:rsob.180023. [PMID: 29695618 PMCID: PMC5936718 DOI: 10.1098/rsob.180023] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/03/2018] [Indexed: 12/27/2022] Open
Abstract
Every living cell possesses numerous transmembrane signalling systems that receive chemical and physical stimuli from the environment and transduce this information into an intracellular signal that triggers some form of cellular response. As unicellular organisms, bacteria require these systems for survival in rapidly changing environments. The receptors themselves act as ‘sensory organs’, while subsequent signalling circuits can be regarded as forming a ‘neural network’ that is involved in decision making, adaptation and ultimately in ensuring survival. Bacteria serve as useful biosensors in industry and clinical diagnostics, in addition to producing drugs for therapeutic purposes. Therefore, there is a great demand for engineered bacterial strains that contain transmembrane signalling systems with high molecular specificity, sensitivity and dose dependency. In this review, we address the complexity of transmembrane signalling systems and discuss principles to rewire receptors and their signalling outputs.
Collapse
Affiliation(s)
- Kirsten Jung
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Florian Fabiani
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Elisabeth Hoyer
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Jürgen Lassak
- Munich Center for Integrated Protein Science (CiPSM) at the Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| |
Collapse
|
88
|
Martín-Mora D, Ortega Á, Matilla MA, Martínez-Rodríguez S, Gavira JA, Krell T. The Molecular Mechanism of Nitrate Chemotaxis via Direct Ligand Binding to the PilJ Domain of McpN. mBio 2019; 10:e02334-18. [PMID: 30782655 PMCID: PMC6381276 DOI: 10.1128/mbio.02334-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022] Open
Abstract
Chemotaxis and energy taxis permit directed bacterial movements in gradients of environmental cues. Nitrate is a final electron acceptor for anaerobic respiration and can also serve as a nitrogen source for aerobic growth. Previous studies indicated that bacterial nitrate taxis is mediated by energy taxis mechanisms, which are based on the cytosolic detection of consequences of nitrate metabolism. Here we show that Pseudomonas aeruginosa PAO1 mediates nitrate chemotaxis on the basis of specific nitrate sensing by the periplasmic PilJ domain of the PA2788/McpN chemoreceptor. The presence of nitrate reduced mcpN transcript levels, and McpN-mediated taxis occurred only under nitrate starvation conditions. In contrast to the NarX and NarQ sensor kinases, McpN bound nitrate specifically and showed no affinity for other ligands such as nitrite. We report the three-dimensional structure of the McpN ligand binding domain (LBD) at 1.3-Å resolution in complex with nitrate. Although structurally similar to 4-helix bundle domains, the ligand binding mode differs since a single nitrate molecule is bound to a site on the dimer symmetry axis. As for 4-helix bundle domains, ligand binding stabilized the McpN-LBD dimer. McpN homologues showed a wide phylogenetic distribution, indicating that nitrate chemotaxis is a widespread phenotype. These homologues were particularly abundant in bacteria that couple sulfide/sulfur oxidation with nitrate reduction. This work expands the range of known chemotaxis effectors and forms the basis for the exploration of nitrate chemotaxis in other bacteria and for the study of its physiological role.IMPORTANCE Nitrate is of central importance in bacterial physiology. Previous studies indicated that movements toward nitrate are due to energy taxis, which is based on the cytosolic sensing of consequences of nitrate metabolism. Here we present the first report on nitrate chemotaxis. This process is initiated by specific nitrate binding to the periplasmic ligand binding domain (LBD) of McpN. Nitrate chemotaxis is highly regulated and occurred only under nitrate starvation conditions, which is helpful information to explore nitrate chemotaxis in other bacteria. We present the three-dimensional structure of the McpN-LBD in complex with nitrate, which is the first structure of a chemoreceptor PilJ-type domain. This structure reveals striking similarities to that of the abundant 4-helix bundle domain but employs a different sensing mechanism. Since McpN homologues show a wide phylogenetic distribution, nitrate chemotaxis is likely a widespread phenomenon with importance for the life cycle of ecologically diverse bacteria.
Collapse
Affiliation(s)
- David Martín-Mora
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Álvaro Ortega
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Miguel A Matilla
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Sergio Martínez-Rodríguez
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Melilla, Spain
- Laboratorio de Estudios Cristalográficos, IACT, Superior de Investigaciones Científicas (CSIC) y la Universidad de Granada (UGR), Armilla, Spain
| | - José A Gavira
- Laboratorio de Estudios Cristalográficos, IACT, Superior de Investigaciones Científicas (CSIC) y la Universidad de Granada (UGR), Armilla, Spain
| | - Tino Krell
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
89
|
Xie Q, Zhao A, Jeffrey PD, Kim MK, Bassler BL, Stone HA, Novick RP, Muir TW. Identification of a Molecular Latch that Regulates Staphylococcal Virulence. Cell Chem Biol 2019; 26:548-558.e4. [PMID: 30773482 DOI: 10.1016/j.chembiol.2019.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/27/2018] [Accepted: 01/10/2019] [Indexed: 01/04/2023]
Abstract
Virulence induction in the Staphylococcus aureus is under the control of a quorum sensing (QS) circuit encoded by the accessory gene regulator (agr) locus. Allelic variation within agr produces four QS specificity groups, each producing a unique secreted autoinducer peptide (AIP) and receptor histidine kinase (RHK), AgrC. Cognate AIP-AgrC interactions activate virulence through a two-component signaling cascade, whereas non-cognate pairs are generally inhibitory. Here we pinpoint a key hydrogen-bonding interaction within AgrC that acts as a switch to convert helical motions propagating from the receptor sensor domain into changes in inter-domain association within the kinase module. AgrC mutants lacking this interaction are constitutively active in vitro and in vivo, the latter leading to a pronounced attenuation of S. aureus biofilm formation. Thus, our work sheds light on the regulation of this biomedically important RHK.
Collapse
Affiliation(s)
- Qian Xie
- Department of Chemistry, Princeton University, Frick Chemistry Laboratory, Washington Road, Princeton, NJ 08544-0015, USA
| | - Aishan Zhao
- Department of Chemistry, Princeton University, Frick Chemistry Laboratory, Washington Road, Princeton, NJ 08544-0015, USA
| | - Philip D Jeffrey
- Department of Molecular Biology, Princeton University, Schultz Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Minyoung Kevin Kim
- Department of Chemistry, Princeton University, Frick Chemistry Laboratory, Washington Road, Princeton, NJ 08544-0015, USA
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Schultz Laboratory, Washington Road, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Engineering Quadrangle, Olden Street, Princeton, NJ 08544, USA
| | - Richard P Novick
- Skirball Institute, Department of Microbiology, NYU Medical Center, 540-562 First Avenue, New York, NY 10016, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Frick Chemistry Laboratory, Washington Road, Princeton, NJ 08544-0015, USA.
| |
Collapse
|
90
|
Ghosh M, Wang LC, Huber RG, Gao Y, Morgan LK, Tulsian NK, Bond PJ, Kenney LJ, Anand GS. Engineering an Osmosensor by Pivotal Histidine Positioning within Disordered Helices. Structure 2019; 27:302-314.e4. [PMID: 30503779 DOI: 10.1016/j.str.2018.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/18/2018] [Accepted: 10/18/2018] [Indexed: 10/27/2022]
Abstract
Histidine kinases (HKs) funnel diverse environmental stimuli into a single autophosphorylation event at a conserved histidine residue. The HK EnvZ is a global sensor of osmolality and cellular acid pH. In previous studies, we discovered that osmosensing in EnvZ was mediated through osmolyte-induced stabilization of the partially disordered helical backbone spanning the conserved histidine autophosphorylation site (His243). Here, we describe how backbone stabilization leads to changes in the microenvironment of His243, resulting in enhanced autophosphorylation through relief of inhibition and repositioning of critical side chains and imidazole rotamerization. The conserved His-Asp/Glu dyad within the partially structured helix is equally geared to respond to acid pH, an alternative environmental stimulus in bacteria. This high-resolution "double-clamp" switch model proposes that a His-Asp/Glu dyad functions as an integrative node for regulating autophosphorylation in HKs. Because the His-Asp/Glu dyad is highly conserved in HKs, this study provides a universal model for describing HK function.
Collapse
Affiliation(s)
- Madhubrata Ghosh
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Loo Chien Wang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Roland G Huber
- Bioinformatics Institute (A(∗)STAR), 30 Biopolis Street, Matrix, Singapore 138671, Singapore
| | - Yunfeng Gao
- Mechanobiology Institute, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Leslie K Morgan
- Jesse Brown Veteran Affairs Medical Center, 820 S. Damen Avenue, Chicago, IL 60612, USA; Department of Microbiology and Immunology, University of Illinois-Chicago, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | - Nikhil Kumar Tulsian
- Department of Biochemistry, National University of Singapore, 28 Medical Drive, Singapore 117546, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Peter J Bond
- Bioinformatics Institute (A(∗)STAR), 30 Biopolis Street, Matrix, Singapore 138671, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Linda J Kenney
- Mechanobiology Institute, 5A Engineering Drive 1, Singapore 117411, Singapore; Jesse Brown Veteran Affairs Medical Center, 820 S. Damen Avenue, Chicago, IL 60612, USA; Department of Microbiology and Immunology, University of Illinois-Chicago, 835 S. Wolcott Avenue, Chicago, IL 60612, USA; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
91
|
Mechanism of metal ion-induced activation of a two-component sensor kinase. Biochem J 2019; 476:115-135. [PMID: 30530842 DOI: 10.1042/bcj20180577] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/05/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022]
Abstract
Two-component systems (TCSs) are essential for bacteria to sense, respond, and adapt to changing environments, such as elevation of Cu(I)/Ag(I) ions in the periplasm. In Escherichia coli, the CusS-CusR TCS up-regulates the cusCFBA genes under increased periplasmic Cu(I)/Ag(I) concentrations to help maintain metal ion homeostasis. The CusS histidine kinase is a homodimeric integral membrane protein that binds to periplasmic Cu(I)/Ag(I) and transduces a signal to its cytoplasmic kinase domain. However, the mechanism of how metal binding in the periplasm activates autophosphorylation in the cytoplasm is unknown. Here, we report that only one of the two metal ion-binding sites in CusS enhances dimerization of the sensor domain. Utilizing nanodisc technology to study full-length CusS, we show that metal-induced dimerization in the sensor domain triggers kinase activity in the cytoplasmic domain. We also investigated autophosphorylation in the cytoplasmic domain of CusS and phosphotransfer between CusS and CusR. In vitro analyses show that CusS autophosphorylates its conserved H271 residue at the N1 position of the histidine imidazole. The phosphoryl group is removed by the response regulator CusR in a reaction that requires a conserved aspartate at position 51. Functional analyses in vivo of CusS and CusR variants with mutations in the autophosphorylation or phosphoacceptor residues suggest that the phosphotransfer event is essential for metal resistance in E. coli Biochemical analysis shows that the CusS dimer autophosphorylates using a cis mechanism. Our results support a signal transduction model in which rotation and bending movements in the cytoplasmic domain maintain the mode of autophosphorylation.
Collapse
|
92
|
Shimizu T, Lengalova A, Martínek V, Martínková M. Heme: emergent roles of heme in signal transduction, functional regulation and as catalytic centres. Chem Soc Rev 2019; 48:5624-5657. [DOI: 10.1039/c9cs00268e] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular mechanisms of unprecedented functions of exchangeable/labile heme and heme proteins including transcription, DNA binding, protein kinase activity, K+ channel functions, cis–trans isomerization, N–N bond formation, and other functions are described.
Collapse
Affiliation(s)
- Toru Shimizu
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Alzbeta Lengalova
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Václav Martínek
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Markéta Martínková
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| |
Collapse
|
93
|
Siligardi G, Hughes CS, Hussain R. Characterisation of sensor kinase by CD spectroscopy: golden rules and tips. Biochem Soc Trans 2018; 46:1627-1642. [PMID: 30514767 PMCID: PMC6299240 DOI: 10.1042/bst20180222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 01/22/2023]
Abstract
This is a review that describes the golden rules and tips on how to characterise the molecular interactions of membrane sensor kinase proteins with ligands using mainly circular dichroism (CD) spectroscopy. CD spectroscopy is essential for this task as any conformational change observed in the far-UV (secondary structures (α-helix, β-strands, poly-proline of type II, β-turns, irregular and folding) and near-UV regions [local environment of the aromatic side-chains of amino acid residues (Phe, Tyr and Trp) and ligands (drugs) and prosthetic groups (porphyrins, cofactors and coenzymes (FMN, FAD, NAD))] upon ligand addition to the protein can be used to determine qualitatively and quantitatively ligand-binding interactions. Advantages of using CD versus other techniques will be discussed. The difference CD spectra of the protein-ligand mixtures calculated subtracting the spectra of the ligand at various molar ratios can be used to determine the type of conformational changes induced by the ligand in terms of the estimated content of the various elements of protein secondary structure. The highly collimated microbeam and high photon flux of Diamond Light Source B23 beamline for synchrotron radiation circular dichroism (SRCD) enable the use of minimal amount of membrane proteins (7.5 µg for a 0.5 mg/ml solution) for high-throughput screening. Several examples of CD titrations of membrane proteins with a variety of ligands are described herein including the protocol tips that would guide the choice of the appropriate parameters to conduct these titrations by CD/SRCD in the best possible way.
Collapse
Affiliation(s)
- Giuliano Siligardi
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, U.K
| | - Charlotte S Hughes
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, U.K
| | - Rohanah Hussain
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, U.K.
| |
Collapse
|
94
|
Structure of the sensory domain of McpX from Sinorhizobium meliloti, the first known bacterial chemotactic sensor for quaternary ammonium compounds. Biochem J 2018; 475:3949-3962. [PMID: 30442721 DOI: 10.1042/bcj20180769] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/07/2018] [Accepted: 11/14/2018] [Indexed: 02/01/2023]
Abstract
The α-proteobacterium Sinorhizobium meliloti can live freely in the soil or engage in a symbiosis with its legume host. S. meliloti facilitates nitrogen fixation in root nodules, thus providing pivotal, utilizable nitrogen to the host. The organism has eight chemoreceptors, namely McpT to McpZ and IcpA that facilitate chemotaxis. McpX is the first known bacterial sensor of quaternary ammonium compounds (QACs) such as choline and betaines. Because QACs are exuded at chemotaxis-relevant concentrations by germinating alfalfa seeds, McpX has been proposed to contribute to host-specific chemotaxis. We have determined the crystal structure of the McpX periplasmic region (McpXPR) in complex with the proline betaine at 2.7 Å resolution. In the crystal, the protein forms a symmetric dimer with one proline betaine molecule bound to each monomer of McpXPR within membrane-distal CACHE module. The ligand is bound through cation-πinteractions with four aromatic amino acid residues. Mutational analysis in conjunction with binding studies revealed that a conserved aspartate residue is pivotal for ligand binding. We discovered that, in a striking example of convergent evolution, the ligand-binding site of McpXPR resembles that of a group of structurally unrelated betaine-binding proteins including ProX and OpuAC. Through this comparison and docking studies, we rationalized the specificity of McpXPR for this specific group of ligands. Collectively, our structural, biochemical, and molecular docking data have revealed the molecular determinants in McpX that are crucial for its rare ligand specificity for QACs.
Collapse
|
95
|
Duclert-Savatier N, Bouvier G, Nilges M, Malliavin TE. Conformational sampling of CpxA: Connecting HAMP motions to the histidine kinase function. PLoS One 2018; 13:e0207899. [PMID: 30496238 PMCID: PMC6264157 DOI: 10.1371/journal.pone.0207899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/06/2018] [Indexed: 11/29/2022] Open
Abstract
In the histidine kinase family, the HAMP and DHp domains are considered to play an important role into the transmission of signal arising from environmental conditions to the auto-phosphorylation site and to the binding site of response regulator. Several conformational motions inside HAMP have been proposed to transmit this signal: (i) the gearbox model, (ii) α helices rotations, pistons and scissoring, (iii) transition between ordered and disordered states. In the present work, we explore by temperature-accelerated molecular dynamics (TAMD), an enhanced sampling technique, the conformational space of the cytoplasmic region of histidine kinase CpxA. Several HAMP motions, corresponding to α helices rotations, pistoning and scissoring have been detected and correlated to the segmental motions of HAMP and DHp domains of CpxA.
Collapse
Affiliation(s)
- Nathalie Duclert-Savatier
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR3528, Paris, France
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR3756, Paris, France
| | - Guillaume Bouvier
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR3528, Paris, France
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR3756, Paris, France
| | - Michael Nilges
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR3528, Paris, France
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR3756, Paris, France
| | - Thérèse E. Malliavin
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR3528, Paris, France
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR3756, Paris, France
- * E-mail:
| |
Collapse
|
96
|
Martín-Mora D, Fernández M, Velando F, Ortega Á, Gavira JA, Matilla MA, Krell T. Functional Annotation of Bacterial Signal Transduction Systems: Progress and Challenges. Int J Mol Sci 2018; 19:ijms19123755. [PMID: 30486299 PMCID: PMC6321045 DOI: 10.3390/ijms19123755] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 01/15/2023] Open
Abstract
Bacteria possess a large number of signal transduction systems that sense and respond to different environmental cues. Most frequently these are transcriptional regulators, two-component systems and chemosensory pathways. A major bottleneck in the field of signal transduction is the lack of information on signal molecules that modulate the activity of the large majority of these systems. We review here the progress made in the functional annotation of sensor proteins using high-throughput ligand screening approaches of purified sensor proteins or individual ligand binding domains. In these assays, the alteration in protein thermal stability following ligand binding is monitored using Differential Scanning Fluorimetry. We illustrate on several examples how the identification of the sensor protein ligand has facilitated the elucidation of the molecular mechanism of the regulatory process. We will also discuss the use of virtual ligand screening approaches to identify sensor protein ligands. Both approaches have been successfully applied to functionally annotate a significant number of bacterial sensor proteins but can also be used to study proteins from other kingdoms. The major challenge consists in the study of sensor proteins that do not recognize signal molecules directly, but that are activated by signal molecule-loaded binding proteins.
Collapse
Affiliation(s)
- David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain.
| | - Matilde Fernández
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain.
| | - Félix Velando
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain.
| | - Álvaro Ortega
- Department of Biochemistry and Molecular Biology 'B' and Immunology, Faculty of Chemistry, University of Murcia, Campus of Espinardo, Regional Campus of International Excellence "Campus Mare Nostrum", 30100 Murcia, Spain.
| | - José A Gavira
- Laboratorio de Estudios Cristalográficos, IACT, (CSIC-UGR), Avenida las Palmeras 4, 18100 Armilla, Spain.
| | - Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain.
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain.
| |
Collapse
|
97
|
Polyansky AA, Bocharov EV, Velghe AI, Kuznetsov AS, Bocharova OV, Urban AS, Arseniev AS, Zagrovic B, Demoulin JB, Efremov RG. Atomistic mechanism of the constitutive activation of PDGFRA via its transmembrane domain. Biochim Biophys Acta Gen Subj 2018; 1863:82-95. [PMID: 30253204 DOI: 10.1016/j.bbagen.2018.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/12/2018] [Accepted: 09/16/2018] [Indexed: 12/14/2022]
Abstract
Single-point mutations in the transmembrane (TM) region of receptor tyrosine kinases (RTKs) can lead to abnormal ligand-independent activation. We use a combination of computational modeling, NMR spectroscopy and cell experiments to analyze in detail the mechanism of how TM domains contribute to the activation of wild-type (WT) PDGFRA and its oncogenic V536E mutant. Using a computational framework, we scan all positions in PDGFRA TM helix for identification of potential functional mutations for the WT and the mutant and reveal the relationship between the receptor activity and TM dimerization via different interfaces. This strategy also allows us design a novel activating mutation in the WT (I537D) and a compensatory mutation in the V536E background eliminating its constitutive activity (S541G). We show both computationally and experimentally that single-point mutations in the TM region reshape the TM dimer ensemble and delineate the structural and dynamic determinants of spontaneous activation of PDGFRA via its TM domain. Our atomistic picture of the coupling between TM dimerization and PDGFRA activation corroborates the data obtained for other RTKs and provides a foundation for developing novel modulators of the pathological activity of PDGFRA.
Collapse
Affiliation(s)
- Anton A Polyansky
- MM Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria.
| | - Eduard V Bocharov
- MM Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny, Moscow region 141700, Russia; National Research Centre "Kurchatov Institute", Akad. Kurchatova pl. 1, Moscow 123182, Russia
| | - Amélie I Velghe
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Andrey S Kuznetsov
- MM Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny, Moscow region 141700, Russia; Higher School of Economics, Myasnitskaya 20, 101000 Moscow, Russia
| | - Olga V Bocharova
- MM Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny, Moscow region 141700, Russia
| | - Anatoly S Urban
- MM Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny, Moscow region 141700, Russia
| | - Alexander S Arseniev
- MM Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny, Moscow region 141700, Russia
| | - Bojan Zagrovic
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, A-1030 Vienna, Austria
| | - Jean-Baptiste Demoulin
- de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, 1200 Brussels, Belgium.
| | - Roman G Efremov
- MM Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; Moscow Institute of Physics and Technology (State University), Institutskiy Pereulok 9, Dolgoprudny, Moscow region 141700, Russia; Higher School of Economics, Myasnitskaya 20, 101000 Moscow, Russia
| |
Collapse
|
98
|
Housseini B Issa K, Phan G, Broutin I. Functional Mechanism of the Efflux Pumps Transcription Regulators From Pseudomonas aeruginosa Based on 3D Structures. Front Mol Biosci 2018; 5:57. [PMID: 29971236 PMCID: PMC6018408 DOI: 10.3389/fmolb.2018.00057] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/31/2018] [Indexed: 01/19/2023] Open
Abstract
Bacterial antibiotic resistance is a worldwide health problem that deserves important research attention in order to develop new therapeutic strategies. Recently, the World Health Organization (WHO) classified Pseudomonas aeruginosa as one of the priority bacteria for which new antibiotics are urgently needed. In this opportunistic pathogen, antibiotics efflux is one of the most prevalent mechanisms where the drug is efficiently expulsed through the cell-wall. This resistance mechanism is highly correlated to the expression level of efflux pumps of the resistance-nodulation-cell division (RND) family, which is finely tuned by gene regulators. Thus, it is worthwhile considering the efflux pump regulators of P. aeruginosa as promising therapeutical targets alternative. Several families of regulators have been identified, including activators and repressors that control the genetic expression of the pumps in response to an extracellular signal, such as the presence of the antibiotic or other environmental modifications. In this review, based on different crystallographic structures solved from archetypal bacteria, we will first focus on the molecular mechanism of the regulator families involved in the RND efflux pump expression in P. aeruginosa, which are TetR, LysR, MarR, AraC, and the two-components system (TCS). Finally, the regulators of known structure from P. aeruginosa will be presented.
Collapse
Affiliation(s)
- Karim Housseini B Issa
- Laboratoire de Cristallographie et RMN Biologiques (UMR 8015), Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Gilles Phan
- Laboratoire de Cristallographie et RMN Biologiques (UMR 8015), Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Isabelle Broutin
- Laboratoire de Cristallographie et RMN Biologiques (UMR 8015), Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| |
Collapse
|
99
|
Bhate MP, Lemmin T, Kuenze G, Mensa B, Ganguly S, Peters JM, Schmidt N, Pelton JG, Gross CA, Meiler J, DeGrado WF. Structure and Function of the Transmembrane Domain of NsaS, an Antibiotic Sensing Histidine Kinase in Staphylococcus aureus. J Am Chem Soc 2018; 140:7471-7485. [PMID: 29771498 DOI: 10.1021/jacs.7b09670] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
NsaS is one of four intramembrane histidine kinases (HKs) in Staphylococcus aureus that mediate the pathogen's response to membrane active antimicrobials and human innate immunity. We describe the first integrative structural study of NsaS using a combination of solution state NMR spectroscopy, chemical-cross-linking, molecular modeling and dynamics. Three key structural features emerge: First, NsaS has a short N-terminal amphiphilic helix that anchors its transmembrane (TM) bundle into the inner leaflet of the membrane such that it might sense neighboring proteins or membrane deformations. Second, the transmembrane domain of NsaS is a 4-helix bundle with significant dynamics and structural deformations at the membrane interface. Third, the intracellular linker connecting the TM domain to the cytoplasmic catalytic domains of NsaS is a marginally stable helical dimer, with one state likely to be a coiled-coil. Data from chemical shifts, heteronuclear NOE, H/D exchange measurements and molecular modeling suggest that this linker might adopt different conformations during antibiotic induced signaling.
Collapse
Affiliation(s)
- Manasi P Bhate
- Department of Pharmaceutical Chemistry , UC San Francisco , San Francisco , California 94158 , United States
| | - Thomas Lemmin
- Department of Pharmaceutical Chemistry , UC San Francisco , San Francisco , California 94158 , United States
| | - Georg Kuenze
- Department of Chemistry, Center for Structural Biology , Vanderbilt University , 465 21st Avenue South , Nashville , Tennessee 37203 , United States
| | - Bruk Mensa
- Department of Pharmaceutical Chemistry , UC San Francisco , San Francisco , California 94158 , United States
| | - Soumya Ganguly
- Department of Chemistry, Center for Structural Biology , Vanderbilt University , 465 21st Avenue South , Nashville , Tennessee 37203 , United States
| | - Jason M Peters
- Department of Microbiology and Immunology , UC San Francisco , San Francisco , California 94158 , United States
| | - Nathan Schmidt
- Department of Pharmaceutical Chemistry , UC San Francisco , San Francisco , California 94158 , United States
| | - Jeffrey G Pelton
- QB3 Institute , UC Berkeley , Berkeley , California 94720 , United States
| | - Carol A Gross
- Department of Pharmaceutical Chemistry , UC San Francisco , San Francisco , California 94158 , United States
| | - Jens Meiler
- Department of Chemistry, Center for Structural Biology , Vanderbilt University , 465 21st Avenue South , Nashville , Tennessee 37203 , United States
| | - William F DeGrado
- Department of Pharmaceutical Chemistry , UC San Francisco , San Francisco , California 94158 , United States
| |
Collapse
|
100
|
The Yin and Yang of SagS: Distinct Residues in the HmsP Domain of SagS Independently Regulate Biofilm Formation and Biofilm Drug Tolerance. mSphere 2018; 3:3/3/e00192-18. [PMID: 29848761 PMCID: PMC5976881 DOI: 10.1128/msphere.00192-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/09/2018] [Indexed: 01/16/2023] Open
Abstract
The formation of inherently drug-tolerant biofilms by the opportunistic pathogen Pseudomonas aeruginosa requires the sensor-regulator hybrid SagS, with ΔsagS biofilms being unstructured and exhibiting increased antimicrobial susceptibility. Recent findings indicated SagS to function as a switch to control biofilm formation and drug tolerance independently. Moreover, findings suggested the periplasmic sensory HmsP domain of SagS is likely to be the control point in the regulation of biofilm formation and biofilm cells transitioning to a drug-tolerant state. We thus asked whether specific amino acid residues present in the HmsP domain contribute to the switch function of SagS. HmsP domain residues were therefore subjected to alanine replacement mutagenesis to identify substitutions that block the sensory function(s) of SagS, which is apparent by attached cells being unable to develop mature biofilms and/or prevent transition to an antimicrobial-resistant state. Mutant analyses revealed 32 residues that only contribute to blocking one sensory function. Moreover, amino acid residues affecting attachment and subsequent biofilm formation but not biofilm tolerance also impaired histidine kinase signaling via BfiS. In contrast, residues affecting biofilm drug tolerance but not attachment and subsequent biofilm formation negatively impacted BrlR transcription factor levels. Structure prediction suggested the two sets of residues affecting sensory functions are located in distinct areas that were previously described as being involved in ligand binding interactions. Taken together, these studies identify the molecular basis for the dual regulatory function of SagS.IMPORTANCE The membrane-bound sensory protein SagS plays a pivotal role in P. aeruginosa biofilm formation and biofilm cells gaining their heightened resistance to antimicrobial agents, with SagS being the control point at which both pathways diverge. Here, we demonstrate for the first time that the two distinct pathways leading to biofilm formation and biofilm drug tolerance are under the control of two sets of amino acid residues located within the HmsP sensory domain of SagS. The respective amino acids are likely part of ligand binding interaction sites. Thus, our findings have the potential not only to enable the manipulation of SagS function but also to enable research of biofilm drug tolerance in a manner independent of biofilm formation (and vice versa). Moreover, the manipulation of SagS function represents a promising target/avenue open for biofilm control.
Collapse
|