51
|
Liu YW, Sutton JN, Ries JB, Eagle RA. Regulation of calcification site pH is a polyphyletic but not always governing response to ocean acidification. SCIENCE ADVANCES 2020; 6:eaax1314. [PMID: 32064331 PMCID: PMC6989143 DOI: 10.1126/sciadv.aax1314] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 11/21/2019] [Indexed: 05/21/2023]
Abstract
The response of marine-calcifying organisms to ocean acidification (OA) is highly variable, although the mechanisms behind this variability are not well understood. Here, we use the boron isotopic composition (δ11B) of biogenic calcium carbonate to investigate the extent to which organisms' ability to regulate pH at their site of calcification (pHCF) determines their calcification responses to OA. We report comparative δ11B analyses of 10 species with divergent calcification responses (positive, parabolic, threshold, and negative) to OA. Although the pHCF is closely coupled to calcification responses only in 3 of the 10 species, all 10 species elevate pHCF above pHsw under elevated pCO2. This result suggests that these species may expend additional energy regulating pHCF under future OA. This strategy of elevating pHCF above pHsw appears to be a polyphyletic, if not universal, response to OA among marine calcifiers-although not always the principal factor governing a species' response to OA.
Collapse
Affiliation(s)
- Yi-Wei Liu
- Université de Brest, UBO, CNRS, IRD, Ifremer, Institut Universitaire Européen de la Mer, LEMAR, Rue Dumont d’Urville, 29280 Plouzané, France
- Institute of Earth Sciences, Academia Sinica, 128, Sec. 2, Academia Road, Nangang, Taipei 11529, Taiwan
- Corresponding author. (Y.-W.L.); (R.A.E.)
| | - Jill N. Sutton
- Université de Brest, UBO, CNRS, IRD, Ifremer, Institut Universitaire Européen de la Mer, LEMAR, Rue Dumont d’Urville, 29280 Plouzané, France
| | - Justin B. Ries
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, 430 Nahant Rd., Nahant, MA 01908, USA
| | - Robert A. Eagle
- Université de Brest, UBO, CNRS, IRD, Ifremer, Institut Universitaire Européen de la Mer, LEMAR, Rue Dumont d’Urville, 29280 Plouzané, France
- Institute of the Environment and Sustainability, University of California–Los Angeles, La Kretz Hall, 619 Charles E. Young Dr. E #300, Los Angeles, CA 90095, USA
- Atmospheric and Oceanic Sciences Department, University of California–Los Angeles, Math Sciences Building, 520 Portola Plaza, Los Angeles, CA 90095, USA
- Corresponding author. (Y.-W.L.); (R.A.E.)
| |
Collapse
|
52
|
Drake JL, Mass T, Stolarski J, Von Euw S, van de Schootbrugge B, Falkowski PG. How corals made rocks through the ages. GLOBAL CHANGE BIOLOGY 2020; 26:31-53. [PMID: 31696576 PMCID: PMC6942544 DOI: 10.1111/gcb.14912] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 05/03/2023]
Abstract
Hard, or stony, corals make rocks that can, on geological time scales, lead to the formation of massive reefs in shallow tropical and subtropical seas. In both historical and contemporary oceans, reef-building corals retain information about the marine environment in their skeletons, which is an organic-inorganic composite material. The elemental and isotopic composition of their skeletons is frequently used to reconstruct the environmental history of Earth's oceans over time, including temperature, pH, and salinity. Interpretation of this information requires knowledge of how the organisms formed their skeletons. The basic mechanism of formation of calcium carbonate skeleton in stony corals has been studied for decades. While some researchers consider coral skeletons as mainly passive recorders of ocean conditions, it has become increasingly clear that biological processes play key roles in the biomineralization mechanism. Understanding the role of the animal in living stony coral biomineralization and how it evolved has profound implications for interpreting environmental signatures in fossil corals to understand past ocean conditions. Here we review historical hypotheses and discuss the present understanding of how corals evolved and how their skeletons changed over geological time. We specifically explain how biological processes, particularly those occurring at the subcellular level, critically control the formation of calcium carbonate structures. We examine the different models that address the current debate including the tissue-skeleton interface, skeletal organic matrix, and biomineralization pathways. Finally, we consider how understanding the biological control of coral biomineralization is critical to informing future models of coral vulnerability to inevitable global change, particularly increasing ocean acidification.
Collapse
Affiliation(s)
- Jeana L Drake
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Tali Mass
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | | | - Stanislas Von Euw
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Paul G Falkowski
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
- Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
53
|
Bernardet C, Tambutté E, Techer N, Tambutté S, Venn AA. Ion transporter gene expression is linked to the thermal sensitivity of calcification in the reef coral Stylophora pistillata. Sci Rep 2019; 9:18676. [PMID: 31822787 PMCID: PMC6904480 DOI: 10.1038/s41598-019-54814-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/21/2019] [Indexed: 12/22/2022] Open
Abstract
Coral calcification underpins biodiverse reef ecosystems, but the physiology underlying the thermal sensitivity of corals to changing seawater temperatures remains unclear. Furthermore, light is also a key factor in modulating calcification rates, but a mechanistic understanding of how light interacts with temperature to affect coral calcification is lacking. Here, we characterized the thermal performance curve (TPC) of calcification of the wide-spread, model coral species Stylophora pistillata, and used gene expression analysis to investigate the role of ion transport mechanisms in thermally-driven declines in day and nighttime calcification. Focusing on genes linked to transport of dissolved inorganic carbon (DIC), calcium and H+, our study reveals a high degree of coherence between physiological responses (e.g. calcification and respiration) with distinct gene expression patterns to the different temperatures in day and night conditions. At low temperatures, calcification and gene expression linked to DIC transport processes were downregulated, but showed little response to light. By contrast, at elevated temperature, light had a positive effect on calcification and stimulated a more functionally diverse gene expression response of ion transporters. Overall, our findings highlight the role of mechanisms linked to DIC, calcium and H+ transport in the thermal sensitivity of coral calcification and how this sensitivity is influenced by light.
Collapse
Affiliation(s)
- C Bernardet
- Centre Scientifique de Monaco, Marine Biology Department, 8 Quai Antoine 1er, Monaco, 98000, Monaco
- Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - E Tambutté
- Centre Scientifique de Monaco, Marine Biology Department, 8 Quai Antoine 1er, Monaco, 98000, Monaco
| | | | - S Tambutté
- Centre Scientifique de Monaco, Marine Biology Department, 8 Quai Antoine 1er, Monaco, 98000, Monaco
| | - A A Venn
- Centre Scientifique de Monaco, Marine Biology Department, 8 Quai Antoine 1er, Monaco, 98000, Monaco.
| |
Collapse
|
54
|
Laipnik R, Bissi V, Sun CY, Falini G, Gilbert PUPA, Mass T. Coral acid rich protein selects vaterite polymorph in vitro. J Struct Biol 2019; 209:107431. [PMID: 31811894 PMCID: PMC7058422 DOI: 10.1016/j.jsb.2019.107431] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/27/2019] [Accepted: 12/01/2019] [Indexed: 12/14/2022]
Abstract
Corals and other biomineralizing organisms use proteins and other molecules to form different crystalline polymorphs and biomineral structures. In corals, it’s been suggested that proteins such as Coral Acid Rich Proteins (CARPs) play a major role in the polymorph selection of their calcium carbonate (CaCO3) aragonite exoskeleton. To date, four CARPs (1–4) have been characterized: each with a different amino acid composition and different temporal and spatial expression patterns during coral developmental stages. Interestingly, CARP3 is able to alter crystallization pathways in vitro, yet its function in this process remains enigmatic. To better understand the CARP3 function, we performed two independent in vitro CaCO3 polymorph selection experiments using purified recombinant CARP3 at different concentrations and at low or zero Mg2+ concentration. Our results show that, in the absence of Mg2+, CARP3 selects for the vaterite polymorph and inhibits calcite. However, in the presence of a low concentration of Mg2+ and CARP3 both Mg-calcite and vaterite are formed, with the relative amount of Mg-calcite increasing with CARP3 concentration. In all conditions, CARP3 did not select for the aragonite polymorph, which is the polymorph associated to CARP3 in vivo, even in the presence of Mg2+ (Mg:Ca molar ratio equal to 1). These results further emphasize the importance of Mg:Ca molar ratios similar to that in seawater (Mg:Ca equal to 5) and the activity of the biological system in a aragonite polymorph selection in coral skeleton formation.
Collapse
Affiliation(s)
- Ra'anan Laipnik
- Marine Biology Department, Leon H. Charney School of Marine Sciences, University of Haifa, Israel
| | - Veronica Bissi
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Italy
| | - Chang-Yu Sun
- Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Giuseppe Falini
- Dipartimento di Chimica "Giacomo Ciamician", Università di Bologna, Italy
| | - Pupa U P A Gilbert
- Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, USA; Departments of Chemistry, Materials Science and Engineering, and Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tali Mass
- Marine Biology Department, Leon H. Charney School of Marine Sciences, University of Haifa, Israel.
| |
Collapse
|
55
|
Conci N, Wörheide G, Vargas S. New Non-Bilaterian Transcriptomes Provide Novel Insights into the Evolution of Coral Skeletomes. Genome Biol Evol 2019; 11:3068-3081. [PMID: 31518412 PMCID: PMC6824150 DOI: 10.1093/gbe/evz199] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2019] [Indexed: 12/27/2022] Open
Abstract
A general trend observed in animal skeletomes-the proteins occluded in animal skeletons-is the copresence of taxonomically widespread and lineage-specific proteins that actively regulate the biomineralization process. Among cnidarians, the skeletomes of scleractinian corals have been shown to follow this trend. However, distributions and phylogenetic analyses of biomineralization-related genes are often based on only a few species, with other anthozoan calcifiers such as octocorals (soft corals), not being fully considered. We de novo assembled the transcriptomes of four soft-coral species characterized by different calcification strategies (aragonite skeleton vs. calcitic sclerites) and data-mined published nonbilaterian transcriptome resources to construct a taxonomically comprehensive sequence database to map the distribution of scleractinian and octocoral skeletome components. Cnidaria shared no skeletome proteins with Placozoa or Ctenophora, but did share some skeletome proteins with Porifera, such as galaxin-related proteins. Within Scleractinia and Octocorallia, we expanded the distribution for several taxonomically restricted genes such as secreted acidic proteins, scleritin, and carbonic anhydrases, and propose an early, single biomineralization-recruitment event for galaxin sensu stricto. Additionally, we show that the enrichment of acidic residues within skeletogenic proteins did not occur at the Corallimorpharia-Scleractinia transition, but appears to be associated with protein secretion into the organic matrix. Finally, the distribution of octocoral calcification-related proteins appears independent of skeleton mineralogy (i.e., aragonite/calcite) with no differences in the proportion of shared skeletogenic proteins between scleractinians and aragonitic or calcitic octocorals. This points to skeletome homogeneity within but not between groups of calcifying cnidarians, although some proteins such as galaxins and SCRiP-3a could represent instances of commonality.
Collapse
Affiliation(s)
- Nicola Conci
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- GeoBio-Center LMU, Ludwig-Maximilians-Universität München, Munich, Germany
- SNSB—Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
| | - Sergio Vargas
- Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
56
|
Measuring light scattering and absorption in corals with Inverse Spectroscopic Optical Coherence Tomography (ISOCT): a new tool for non-invasive monitoring. Sci Rep 2019; 9:14148. [PMID: 31578438 PMCID: PMC6775107 DOI: 10.1038/s41598-019-50658-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
The success of reef-building corals for >200 million years has been dependent on the mutualistic interaction between the coral host and its photosynthetic endosymbiont dinoflagellates (family Symbiodiniaceae) that supply the coral host with nutrients and energy for growth and calcification. While multiple light scattering in coral tissue and skeleton significantly enhance the light microenvironment for Symbiodiniaceae, the mechanisms of light propagation in tissue and skeleton remain largely unknown due to a lack of technologies to measure the intrinsic optical properties of both compartments in live corals. Here we introduce ISOCT (inverse spectroscopic optical coherence tomography), a non-invasive approach to measure optical properties and three-dimensional morphology of living corals at micron- and nano-length scales, respectively, which are involved in the control of light propagation. ISOCT enables measurements of optical properties in the visible range and thus allows for characterization of the density of light harvesting pigments in coral. We used ISOCT to characterize the optical scattering coefficient (μs) of the coral skeleton and chlorophyll a concentration of live coral tissue. ISOCT further characterized the overall micro- and nano-morphology of live tissue by measuring differences in the sub-micron spatial mass density distribution (D) that vary throughout the tissue and skeleton and give rise to light scattering, and this enabled estimates of the spatial directionality of light scattering, i.e., the anisotropy coefficient, g. Thus, ISOCT enables imaging of coral nanoscale structures and allows for quantifying light scattering and pigment absorption in live corals. ISOCT could thus be developed into an important tool for rapid, non-invasive monitoring of coral health, growth and photophysiology with unprecedented spatial resolution.
Collapse
|
57
|
Nash MC, Diaz-Pulido G, Harvey AS, Adey W. Coralline algal calcification: A morphological and process-based understanding. PLoS One 2019; 14:e0221396. [PMID: 31557180 PMCID: PMC6762179 DOI: 10.1371/journal.pone.0221396] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 07/24/2019] [Indexed: 01/08/2023] Open
Abstract
Research purpose and findings Coralline algae are key biological substrates of many carbonate systems globally. Their capacity to build enduring crusts that underpin the formation of tropical reefs, rhodolith beds and other benthic substrate is dependent on the formation of a calcified thallus. However, this important process of skeletal carbonate formation is not well understood. We undertook a study of cellular carbonate features to develop a model for calcification. We describe two types of cell wall calcification; 1) calcified primary cell wall (PCW) in the thin-walled elongate cells such as central medullary cells in articulated corallines and hypothallial cells in crustose coralline algae (CCA), 2) calcified secondary cell wall (SCW) with radial Mg-calcite crystals in thicker-walled rounded cortical cells of articulated corallines and perithallial cells of CCA. The distinctive banding found in many rhodoliths is the regular transition from PCW-only cells to SCW cells. Within the cell walls there can be bands of elevated Mg with Mg content of a few mol% higher than radial Mg-calcite (M-type), ranging up to dolomite composition (D-type). Model for calcification We propose the following three-step model for calcification. 1) A thin (< 0.5 μm) PCW forms and is filled with a mineralising fluid of organic compounds and seawater. Nanometer-scale Mg-calcite grains precipitate on the organic structures within the PCW. 2) Crystalline cellulose microfibrils (CMF) are extruded perpendicularly from the cellulose synthase complexes (CSC) in the plasmalemma to form the SCW. 3) The CMF soaks in the mineralising fluid as it extrudes and becomes calcified, retaining the perpendicular form, thus building the radial calcite. In Clathromorphum, SCW formation lags PCW creating a zone of weakness resulting in a split in the sub-surface crust. All calcification seems likely to be a bioinduced rather than controlled process. These findings are a substantial step forward in understanding how corallines calcify.
Collapse
Affiliation(s)
- Merinda C. Nash
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington DC, United States of America
- Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
- * E-mail:
| | - Guillermo Diaz-Pulido
- Griffith School of Environment and Science, and Australian Rivers Institute, Coast and Estuaries, Nathan Campus, Griffith University, Nathan, Queensland, Australia
| | - Adela S. Harvey
- Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, Victoria, Australia
| | - Walter Adey
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington DC, United States of America
| |
Collapse
|
58
|
Neder M, Laissue PP, Akiva A, Akkaynak D, Albéric M, Spaeker O, Politi Y, Pinkas I, Mass T. Mineral formation in the primary polyps of pocilloporoid corals. Acta Biomater 2019; 96:631-645. [PMID: 31302296 DOI: 10.1016/j.actbio.2019.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/18/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023]
Abstract
In reef-building corals, larval settlement and its rapid calcification provides a unique opportunity to study the bio-calcium carbonate formation mechanism involving skeleton morphological changes. Here we investigate the mineral formation of primary polyps, just after settlement, in two species of the pocilloporoid corals: Stylophora pistillata (Esper, 1797) and Pocillopora acuta (Lamarck, 1816). We show that the initial mineral phase is nascent Mg-Calcite, with rod-like morphology in P. acuta, and dumbbell morphology in S. pistillata. These structures constitute the first layer of the basal plate which is comparable to Rapid Accretion Deposits (Centers of Calcification, CoC) in adult coral skeleton. We found also that the rod-like/dumbbell Mg-Calcite structures in subsequent growth step will merge into larger aggregates by deposition of aragonite needles. Our results suggest that a biologically controlled mineralization of initial skeletal deposits occurs in three steps: first, vesicles filled with divalent ions are formed intracellularly. These vesicles are then transferred to the calcification site, forming nascent Mg-Calcite rod/pristine dumbbell structures. During the third step, aragonite crystals develop between these structures forming spherulite-like aggregates. STATEMENT OF SIGNIFICANCE: Coral settlement and recruitment periods are highly sensitive to environmental conditions. Successful mineralization during these periods is vital and influences the coral's chances of survival. Therefore, understanding the exact mechanism underlying carbonate precipitation is highly important. Here, we used in vivo microscopy, spectroscopy and molecular methods to provide new insights into mineral development. We show that the primary polyp's mineral arsenal consists of two types of minerals: Mg-Calcite and aragonite. In addition, we provide new insights into the ion pathway by showing that divalent ions are concentrated in intracellular vesicles and are eventually deposited at the calcification site.
Collapse
Affiliation(s)
- Maayan Neder
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; The Interuniversity Institute of Marine Sciences, Eilat 88103, Israel
| | | | - Anat Akiva
- Laboratory of Materials and Interface Chemistry and Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Derya Akkaynak
- The Interuniversity Institute of Marine Sciences, Eilat 88103, Israel; Department of Marine Technologies, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3498838, Israel
| | - Marie Albéric
- Max-Planck Institute of Colloids and Interfaces, Potsdam-Golm 14476, Germany
| | - Oliver Spaeker
- Max-Planck Institute of Colloids and Interfaces, Potsdam-Golm 14476, Germany
| | - Yael Politi
- Max-Planck Institute of Colloids and Interfaces, Potsdam-Golm 14476, Germany
| | - Iddo Pinkas
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Tali Mass
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3498838, Israel.
| |
Collapse
|
59
|
Coronado I, Fine M, Bosellini FR, Stolarski J. Impact of ocean acidification on crystallographic vital effect of the coral skeleton. Nat Commun 2019; 10:2896. [PMID: 31263108 PMCID: PMC6603003 DOI: 10.1038/s41467-019-10833-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/04/2019] [Indexed: 11/09/2022] Open
Abstract
Distinguishing between environmental and species-specific physiological signals, recorded in coral skeletons, is one of the fundamental challenges in their reliable use as (paleo)climate proxies. To date, characteristic biological bias in skeleton-recorded environmental signatures (vital effect) was shown in shifts in geochemical signatures. Herein, for the first time, we have assessed crystallographic parameters of bio-aragonite to study the response of the reef-building coral Stylophora pistillata to experimental seawater acidification (pH 8.2, 7.6 and 7.3). Skeletons formed under high pCO2 conditions show systematic crystallographic changes such as better constrained crystal orientation and anisotropic distortions of bio-aragonite lattice parameters due to increased amount of intracrystalline organic matrix and water content. These variations in crystallographic features that seem to reflect physiological adjustments of biomineralizing organisms to environmental change, are herein called crystallographic vital effect (CVE). CVE may register those changes in the biomineralization process that may not yet be perceived at the macromorphological skeletal level. Coral fossils can record climatic history, but teasing apart environmental signals remains a challenge. Here the authors show that crystallographic changes in coral skeletons grown under high CO2 conditions could be used as a sensitive pH proxy, enabling measurement of ocean acidification back in time.
Collapse
Affiliation(s)
- Ismael Coronado
- Institute of Paleobiology, Twarda 51/55, PL-00-818, Warsaw, Poland.
| | - Maoz Fine
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, 5290002, Ramat Gan, Israel.,The Interuniversity Institute for Marine Sciences, P.O. Box 469, 88103, Eilat, Israel
| | - Francesca R Bosellini
- Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | | |
Collapse
|
60
|
Von Euw S, Wang Y, Laurent G, Drouet C, Babonneau F, Nassif N, Azaïs T. Bone mineral: new insights into its chemical composition. Sci Rep 2019; 9:8456. [PMID: 31186433 PMCID: PMC6560110 DOI: 10.1038/s41598-019-44620-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/27/2019] [Indexed: 01/02/2023] Open
Abstract
Some compositional and structural features of mature bone mineral particles remain unclear. They have been described as calcium-deficient and hydroxyl-deficient carbonated hydroxyapatite particles in which a fraction of the PO43- lattice sites are occupied by HPO42- ions. The time has come to revise this description since it has now been proven that the surface of mature bone mineral particles is not in the form of hydroxyapatite but rather in the form of hydrated amorphous calcium phosphate. Using a combination of dedicated solid-state nuclear magnetic resonance techniques, the hydrogen-bearing species present in bone mineral and especially the HPO42- ions were closely scrutinized. We show that these HPO42- ions are concentrated at the surface of bone mineral particles in the so-called amorphous surface layer whose thickness was estimated here to be about 0.8 nm for a 4-nm thick particle. We also show that their molar proportion is much higher than previously estimated since they stand for about half of the overall amount of inorganic phosphate ions that compose bone mineral. As such, the mineral-mineral and mineral-biomolecule interfaces in bone tissue must be driven by metastable hydrated amorphous environments rich in HPO42- ions rather than by stable crystalline environments of hydroxyapatite structure.
Collapse
Affiliation(s)
- Stanislas Von Euw
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4, place Jussieu, F-75005, Paris, France.,Trinity College Dublin, Trinity Centre for Bioengineering (TCBE), Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin 2, Ireland
| | - Yan Wang
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4, place Jussieu, F-75005, Paris, France
| | - Guillaume Laurent
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4, place Jussieu, F-75005, Paris, France
| | - Christophe Drouet
- CIRIMAT, Université de Toulouse, CNRS, INP-Ensiacet, 4 allée Emile Monso, F-31030, Toulouse, France
| | - Florence Babonneau
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4, place Jussieu, F-75005, Paris, France
| | - Nadine Nassif
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4, place Jussieu, F-75005, Paris, France
| | - Thierry Azaïs
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4, place Jussieu, F-75005, Paris, France.
| |
Collapse
|
61
|
Bogan SN, McMahon JB, Pechenik JA, Pires A. Legacy of Multiple Stressors: Responses of Gastropod Larvae and Juveniles to Ocean Acidification and Nutrition. THE BIOLOGICAL BULLETIN 2019; 236:159-173. [PMID: 31167086 DOI: 10.1086/702993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ocean acidification poses a significant threat to calcifying invertebrates by negatively influencing shell deposition and growth. An organism's performance under ocean acidification is not determined by the susceptibility of one single life-history stage, nor is it solely controlled by the direct physical consequences of ocean acidification. Shell development by one life-history stage is sometimes a function of the pH or pCO2 levels experienced during earlier developmental stages. Furthermore, environmental factors such as access to nutrition can buffer organismal responses of calcifying invertebrates to ocean acidification, or they can function as a co-occurring stressor when access is low. We reared larvae and juveniles of the planktotrophic marine gastropod Crepidula fornicata through combined treatments of nutritional stress and low pH, and we monitored how multiple stressors endured during the larval stage affected juvenile performance. Shell growth responded non-linearly to decreasing pH, significantly declining between pH 7.6 and pH 7.5 in larvae and juveniles. Larval rearing at pH 7.5 reduced juvenile growth as a carryover effect. Larval rearing at pH 7.6 reduced subsequent juvenile growth despite the absence of a negative impact on larval growth, demonstrating a latent effect. Low larval pH magnified the impact of larval nutritional stress on competence for metamorphosis and increased carryover effects of larval nutrition on juvenile growth. Trans-life-cycle effects of larval nutrition were thus modulated by larval exposure to ocean acidification.
Collapse
|
62
|
DeCarlo TM, Comeau S, Cornwall CE, Gajdzik L, Guagliardo P, Sadekov A, Thillainath EC, Trotter J, McCulloch MT. Investigating marine bio-calcification mechanisms in a changing ocean with in vivo and high-resolution ex vivo Raman spectroscopy. GLOBAL CHANGE BIOLOGY 2019; 25:1877-1888. [PMID: 30689259 PMCID: PMC6916197 DOI: 10.1111/gcb.14579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 05/20/2023]
Abstract
Ocean acidification poses a serious threat to marine calcifying organisms, yet experimental and field studies have found highly diverse responses among species and environments. Our understanding of the underlying drivers of differential responses to ocean acidification is currently limited by difficulties in directly observing and quantifying the mechanisms of bio-calcification. Here, we present Raman spectroscopy techniques for characterizing the skeletal mineralogy and calcifying fluid chemistry of marine calcifying organisms such as corals, coralline algae, foraminifera, and fish (carbonate otoliths). First, our in vivo Raman technique is the ideal tool for investigating non-classical mineralization pathways. This includes calcification by amorphous particle attachment, which has recently been controversially suggested as a mechanism by which corals resist the negative effects of ocean acidification. Second, high-resolution ex vivo Raman mapping reveals complex banding structures in the mineralogy of marine calcifiers, and provides a tool to quantify calcification responses to environmental variability on various timescales from days to years. We describe the new insights into marine bio-calcification that our techniques have already uncovered, and we consider the wide range of questions regarding calcifier responses to global change that can now be proposed and addressed with these new Raman spectroscopy tools.
Collapse
Affiliation(s)
- Thomas M. DeCarlo
- Oceans Graduate SchoolThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- Oceans Institute at The University of Western AustraliaCrawleyWestern AustraliaAustralia
- ARC Centre of Excellence for Coral Reef StudiesCrawleyWestern AustraliaAustralia
| | - Steeve Comeau
- Oceans Graduate SchoolThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- Oceans Institute at The University of Western AustraliaCrawleyWestern AustraliaAustralia
- ARC Centre of Excellence for Coral Reef StudiesCrawleyWestern AustraliaAustralia
- Present address:
Sorbonne Université, CNRS‐INSU, Laboratoire d'Océanographie de 30 Villefranche181 chemin du Lazaret, F–06230 Villefranche‐sur‐merFrance
| | - Christopher E. Cornwall
- Oceans Graduate SchoolThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- Oceans Institute at The University of Western AustraliaCrawleyWestern AustraliaAustralia
- ARC Centre of Excellence for Coral Reef StudiesCrawleyWestern AustraliaAustralia
- Present address:
School of Biological SciencesVictoria University of WellingtonWellingtonNew‐Zealand
| | - Laura Gajdzik
- School of Molecular and Life Sciences, TrEnD LaboratoryCurtin UniversityBentleyWestern AustraliaAustralia
| | - Paul Guagliardo
- Centre for Microscopy, Characterisation and AnalysisThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Aleksey Sadekov
- Oceans Graduate SchoolThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- Oceans Institute at The University of Western AustraliaCrawleyWestern AustraliaAustralia
- ARC Centre of Excellence for Coral Reef StudiesCrawleyWestern AustraliaAustralia
| | - Emma C. Thillainath
- Oceans Institute at The University of Western AustraliaCrawleyWestern AustraliaAustralia
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Julie Trotter
- Oceans Institute at The University of Western AustraliaCrawleyWestern AustraliaAustralia
- School of Earth SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Malcolm T. McCulloch
- Oceans Graduate SchoolThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- Oceans Institute at The University of Western AustraliaCrawleyWestern AustraliaAustralia
- ARC Centre of Excellence for Coral Reef StudiesCrawleyWestern AustraliaAustralia
| |
Collapse
|
63
|
Effects of light and darkness on pH regulation in three coral species exposed to seawater acidification. Sci Rep 2019; 9:2201. [PMID: 30778093 PMCID: PMC6379376 DOI: 10.1038/s41598-018-38168-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
The resilience of corals to ocean acidification has been proposed to rely on regulation of extracellular calcifying medium pH (pHECM), but few studies have compared the capacity of coral species to control this parameter at elevated pCO2. Furthermore, exposure to light and darkness influences both pH regulation and calcification in corals, but little is known about its effect under conditions of seawater acidification. Here we investigated the effect of acidification in light and darkness on pHECM, calcifying cell intracellular pH (pHI), calcification, photosynthesis and respiration in three coral species: Stylophora pistillata, Pocillopora damicornis and Acropora hyacinthus. We show that S. pistillata was able to maintain pHECM under acidification in light and darkness, but pHECM decreased in P. damicornis and A. hyacinthus to a much greater extent in darkness than in the light. Acidification depressed calcifying cell pHI in all three species, but we identified an unexpected positive effect of light on pHI. Calcification rate and pHECM decreased together under acidification, but there are inconsistencies in their relationship indicating that other physiological parameters are likely to shape how coral calcification responds to acidification. Overall our study reveals interspecies differences in coral regulation of pHECM and pHI when exposed to acidification, influenced by exposure to light and darkness.
Collapse
|
64
|
Albéric M, Stifler CA, Zou Z, Sun CY, Killian CE, Valencia S, Mawass MA, Bertinetti L, Gilbert PUPA, Politi Y. Growth and regrowth of adult sea urchin spines involve hydrated and anhydrous amorphous calcium carbonate precursors. JOURNAL OF STRUCTURAL BIOLOGY-X 2019; 1:100004. [PMID: 32647811 PMCID: PMC7337052 DOI: 10.1016/j.yjsbx.2019.100004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 01/25/2023]
Abstract
In various mineralizing marine organisms, calcite or aragonite crystals form through the initial deposition of amorphous calcium carbonate (ACC) phases with different hydration levels. Using X-ray PhotoEmission Electron spectroMicroscopy (X-PEEM), ACCs with varied spectroscopic signatures were previously identified. In particular, ACC type I and II were recognized in embryonic sea urchin spicules. ACC type I was assigned to hydrated ACC based on spectral similarity with synthetic hydrated ACC. However, the identity of ACC type II has never been unequivocally determined experimentally. In the present study we show that synthetic anhydrous ACC and ACC type II identified here in sea urchin spines, have similar Ca L2,3-edge spectra. Moreover, using X-PEEM chemical mapping, we revealed the presence of ACC-H2O and anhydrous ACC in growing stereom and septa regions of sea urchin spines, supporting their role as precursor phases in both structures. However, the distribution and the abundance of the two ACC phases differ substantially between the two growing structures, suggesting a variation in the crystal growth mechanism; in particular, ACC dehydration, in the two-step reaction ACC-H2O → ACC → calcite, presents different kinetics, which are proposed to be controlled biologically.
Collapse
Affiliation(s)
- Marie Albéric
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Cayla A Stifler
- Department of Physics, University of Wisconsin, Madison, WI 53706, USA
| | - Zhaoyong Zou
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070 Wuhan, China
| | - Chang-Yu Sun
- Department of Physics, University of Wisconsin, Madison, WI 53706, USA.,Materials Science Program, University of Wisconsin, Madison, WI 53706, USA
| | - Christopher E Killian
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Sergio Valencia
- Helmholtz-Zentrum Berlin für Materialen & Energie, 12489 Berlin, Germany
| | | | - Luca Bertinetti
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Pupa U P A Gilbert
- Department of Physics, University of Wisconsin, Madison, WI 53706, USA.,Departments of Chemistry, Geoscience, Materials Science and Engineering, University of Wisconsin, Madison, WI 53706, USA
| | - Yael Politi
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| |
Collapse
|
65
|
Byrne M, Fitzer S. The impact of environmental acidification on the microstructure and mechanical integrity of marine invertebrate skeletons. CONSERVATION PHYSIOLOGY 2019; 7:coz062. [PMID: 31737270 PMCID: PMC6846232 DOI: 10.1093/conphys/coz062] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/25/2019] [Accepted: 07/25/2019] [Indexed: 05/20/2023]
Abstract
Ocean acidification (OA), from seawater uptake of anthropogenic CO2, has a suite of negative effects on the ability of marine invertebrates to produce and maintain their skeletons. Increased organism pCO2 causes hypercapnia, an energetically costly physiological stress. OA alters seawater carbonate chemistry, limiting the carbonate available to form the calcium carbonate (CaCO3) minerals used to build skeletons. The reduced saturation state of CaCO3 also causes corrosion of CaCO3 structures. Global change is also accelerating coastal acidification driven by land-run off (e.g. acid soil leachates, tannic acid). Building and maintaining marine biomaterials in the face of changing climate will depend on the balance between calcification and dissolution. Overall, in response to environmental acidification, many calcifiers produce less biomineral and so have smaller body size. Studies of skeleton development in echinoderms and molluscs across life stages show the stunting effect of OA. For corals, linear extension may be maintained, but at the expense of less dense biomineral. Conventional metrics used to quantify growth and calcification need to be augmented by characterisation of the changes to biomineral structure and mechanical integrity caused by environmental acidification. Scanning electron microscopy and microcomputed tomography of corals, tube worms and sea urchins exposed to experimental (laboratory) and natural (vents, coastal run off) acidification show a less dense biomineral with greater porosity and a larger void space. For bivalves, CaCO3 crystal deposition is more chaotic in response to both ocean and coastal acidification. Biomechanics tests reveal that these changes result in weaker, more fragile skeletons, compromising their vital protective roles. Vulnerabilities differ among taxa and depend on acidification level. Climate warming has the potential to ameliorate some of the negative effects of acidification but may also make matters worse. The integrative morphology-ecomechanics approach is key to understanding how marine biominerals will perform in the face of changing climate.
Collapse
Affiliation(s)
- Maria Byrne
- School of Medical Science and School of Life and Environmental Science, The University of Sydney, NSW 2006, Australia
- Corresponding author: School of Medical Science and School of Life and Environmental Science, The University of Sydney, NSW 2006, Australia.
| | - Susan Fitzer
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
66
|
Sevilgen DS, Venn AA, Hu MY, Tambutté E, de Beer D, Planas-Bielsa V, Tambutté S. Full in vivo characterization of carbonate chemistry at the site of calcification in corals. SCIENCE ADVANCES 2019; 5:eaau7447. [PMID: 30746460 PMCID: PMC6357752 DOI: 10.1126/sciadv.aau7447] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/04/2018] [Indexed: 05/20/2023]
Abstract
Reef-building corals form their calcium carbonate skeletons within an extracellular calcifying medium (ECM). Despite the critical role of the ECM in coral calcification, ECM carbonate chemistry is poorly constrained in vivo, and full ECM carbonate chemistry has never been characterized based solely on direct in vivo measurements. Here, we measure pHECM in the growing edge of Stylophora pistillata by simultaneously using microsensors and the fluorescent dye SNARF-1, showing that, when measured at the same time and place, the results agree. We then conduct microscope-guided microsensor measurements of pH, [Ca2+], and [CO3 2-] in the ECM and, from this, determine [DIC]ECM and aragonite saturation state (Ωarag), showing that all parameters are elevated with respect to the surrounding seawater. Our study provides the most complete in vivo characterization of ECM carbonate chemistry parameters in a coral species to date, pointing to the key role of calcium- and carbon-concentrating mechanisms in coral calcification.
Collapse
Affiliation(s)
- Duygu S. Sevilgen
- Centre Scientifique de Monaco, Marine Biology Department, 8 Quai Antoine 1er, MC 98000 Monaco, Monaco
- Corresponding author. (S.T.); (D.S.S.)
| | - Alexander A. Venn
- Centre Scientifique de Monaco, Marine Biology Department, 8 Quai Antoine 1er, MC 98000 Monaco, Monaco
| | - Marian Y. Hu
- Christian-Albrechts-Universität zu Kiel, Hermann-Rodewald-Straße 5, DE 24118 Kiel, Germany
| | - Eric Tambutté
- Centre Scientifique de Monaco, Marine Biology Department, 8 Quai Antoine 1er, MC 98000 Monaco, Monaco
| | - Dirk de Beer
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, DE 28359 Bremen, Germany
| | - Víctor Planas-Bielsa
- Centre Scientifique de Monaco, Polar Biology Department, 8 Quai Antoine 1er, MC 98000 Monaco, Monaco
- Laboratoire International Associé LIA 647 BioSensib (CSM-CNRS-Unistra), 8 Quai Antoine 1er, MC 98000 Monaco, Monaco
| | - Sylvie Tambutté
- Centre Scientifique de Monaco, Marine Biology Department, 8 Quai Antoine 1er, MC 98000 Monaco, Monaco
- Corresponding author. (S.T.); (D.S.S.)
| |
Collapse
|
67
|
Characterizing coral skeleton mineralogy with Raman spectroscopy. Nat Commun 2018; 9:5325. [PMID: 30552319 PMCID: PMC6293996 DOI: 10.1038/s41467-018-07601-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/06/2018] [Indexed: 11/08/2022] Open
|
68
|
Abstract
The mechanism (s) that drive the organization of bone mineral throughout the bone extracellular matrix remain unclear. The long-standing theory implicates the organic matrix, namely specific non-collagenous proteins and/or collagen fibrils, while a recent theory proposes a self-assembly mechanism. Applying a combination of spectroscopic and microscopic techniques in wet and dry conditions to bone-like hydroxyapatite nanoparticles that were used as a proxy for bone mineral, we confirm that mature bone mineral particles have the capacity to self-assemble into organized structures. A large quantity of water is present at the surface of bone mineral due to the presence of a hydrophilic, amorphous surface layer that coats bone mineral nanoparticles. These water molecules must not only be strongly bound to the surface of bone mineral in the form of a rigid hydration shell, but they must also be trapped within the amorphous surface layer. Cohesive forces between these water molecules present at the mineral–mineral interface not only hold the mature bone mineral particles together, but also promote their oriented stacking. This intrinsic ability of mature bone mineral particles to organize themselves without recourse to the organic matrix forms the foundation for the development of the next generation of orthopedic biomaterials.
Collapse
|
69
|
Barron ME, Thies AB, Espinoza JA, Barott KL, Hamdoun A, Tresguerres M. A vesicular Na+/Ca2+ exchanger in coral calcifying cells. PLoS One 2018; 13:e0205367. [PMID: 30379874 PMCID: PMC6209159 DOI: 10.1371/journal.pone.0205367] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023] Open
Abstract
The calcium carbonate skeletons of corals provide the underlying structure of coral reefs; however, the cellular mechanisms responsible for coral calcification remain poorly understood. In osteoblasts from vertebrate animals, a Na+/Ca2+ exchanger (NCX) present in the plasma membrane transports Ca2+ to the site of bone formation. The aims of this study were to establish whether NCX exists in corals and its localization within coral cells, which are essential first steps to investigate its potential involvement in calcification. Data mining identified genes encoding for NCX proteins in multiple coral species, a subset of which were more closely related to NCXs from vertebrates (NCXA). We cloned NCXA from Acropora yongei (AyNCXA), which, unexpectedly, contained a peptide signal that targets proteins to vesicles from the secretory pathway. AyNCXA subcellular localization was confirmed by heterologous expression of fluorescently tagged AyNCXA protein in sea urchin embryos, which localized together with known markers of intracellular vesicles. Finally, immunolabeling of coral tissues with specific antibodies revealed AyNCXA was present throughout coral tissue. AyNCXA was especially abundant in calcifying cells, where it exhibited a subcellular localization pattern consistent with intracellular vesicles. Altogether, our results demonstrate AyNCXA is present in vesicles in coral calcifying cells, where potential functions include intracellular Ca2+ homeostasis and Ca2+ transport to the growing skeleton as part of an intracellular calcification mechanism.
Collapse
Affiliation(s)
- Megan E. Barron
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States of America
| | - Angus B. Thies
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States of America
| | - Jose A. Espinoza
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States of America
| | - Katie L. Barott
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Amro Hamdoun
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States of America
| | - Martin Tresguerres
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
70
|
McCoy SJ, Kamenos NA. Coralline algal skeletal mineralogy affects grazer impacts. GLOBAL CHANGE BIOLOGY 2018; 24:4775-4783. [PMID: 30030870 DOI: 10.1111/gcb.14370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/14/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
In macroalgal-dominated systems, herbivory is a major driver in controlling ecosystem structure. However, the role of altered plant-herbivore interactions and effects of changes to trophic control under global change are poorly understood. This is because both macroalgae and grazers themselves may be affected by global change, making changes in plant-herbivore interactions hard to predict. Coralline algae lay down a calcium carbonate skeleton, which serves as protection from grazing and is preserved in archival samples. Here, we compare grazing damage and intensity to coralline algae in situ over 4 decades characterized by changing seawater acidity. While grazing intensity, herbivore abundance and identity remained constant over time, grazing wound width increased together with Mg content of the skeleton and variability in its mineral organization. In one species, decreases in skeletal organization were found concurrent with deeper skeletal damage by grazers over time since the 1980s. Thus, in a future characterized by acidification, we suggest coralline algae may be more prone to grazing damage, mediated by effects of variability between individuals and species.
Collapse
Affiliation(s)
- Sophie J McCoy
- Department of Biological Science, Florida State University, Tallahassee, Florida
| | - Nicholas A Kamenos
- School of Geographical and Earth Science, University of Glasgow, Glasgow, UK
| |
Collapse
|
71
|
Alsulami IK, Alharbi TMD, Harvey DP, Gibson CT, Raston CL. Controlling the growth of fullerene C 60 cones under continuous flow. Chem Commun (Camb) 2018; 54:7896-7899. [PMID: 29926036 DOI: 10.1039/c8cc03730b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Micromixing of an o-xylene solution of C60 with N-N-dimethylformamide (DMF) at room temperature under continuous flow in a vortex fluidic device (VFD) results in the formation of symmetrical right cones in high yield with diameters 0.5 to 2.5 μm, pitch angle 25° to 55° and wall thickness 120 to 310 nm. Their formation is in the absence of surfactants and any other reagents, and is scalable. The cones are formed at specific operating parameters of the VFD, including rotational speed, flow rate and concentration, and varying these results in other structures such as grooved fractals. Other aromatic solvents in place of o-xylene results in the formation of rods, spicules and prisms, respectively for m-xylene, p-xylene and mesitylene.
Collapse
Affiliation(s)
- Ibrahim K Alsulami
- Centre for NanoScale Science and Technology (CNST), College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia.
| | | | | | | | | |
Collapse
|
72
|
Schoepf V, Jury CP, Toonen RJ, McCulloch MT. Coral calcification mechanisms facilitate adaptive responses to ocean acidification. Proc Biol Sci 2018; 284:rspb.2017.2117. [PMID: 29212728 DOI: 10.1098/rspb.2017.2117] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/02/2017] [Indexed: 11/12/2022] Open
Abstract
Ocean acidification (OA) is a pressing threat to reef-building corals, but it remains poorly understood how coral calcification is inhibited by OA and whether corals could acclimatize and/or adapt to OA. Using a novel geochemical approach, we reconstructed the carbonate chemistry of the calcifying fluid in two coral species using both a pH and dissolved inorganic carbon (DIC) proxy (δ11B and B/Ca, respectively). To address the potential for adaptive responses, both species were collected from two sites spanning a natural gradient in seawater pH and temperature, and then subjected to three pHT levels (8.04, 7.88, 7.71) crossed by two temperatures (control, +1.5°C) for 14 weeks. Corals from the site with naturally lower seawater pH calcified faster and maintained growth better under simulated OA than corals from the higher-pH site. This ability was consistently linked to higher pH yet lower DIC values in the calcifying fluid, suggesting that these differences are the result of long-term acclimatization and/or local adaptation to naturally lower seawater pH. Nevertheless, all corals elevated both pH and DIC significantly over seawater values, even under OA. This implies that high pH upregulation combined with moderate levels of DIC upregulation promote resistance and adaptive responses of coral calcification to OA.
Collapse
Affiliation(s)
- Verena Schoepf
- ARC Centre of Excellence for Coral Reef Studies, School of Earth Sciences and UWA Oceans Institute, The University of Western Australia, Perth, Western Australia, Australia
| | - Christopher P Jury
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| | - Malcolm T McCulloch
- ARC Centre of Excellence for Coral Reef Studies, School of Earth Sciences and UWA Oceans Institute, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
73
|
Minerals in the pre-settled coral Stylophora pistillata crystallize via protein and ion changes. Nat Commun 2018; 9:1880. [PMID: 29760444 PMCID: PMC5951882 DOI: 10.1038/s41467-018-04285-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/18/2018] [Indexed: 11/26/2022] Open
Abstract
Aragonite skeletons in corals are key contributors to the storage of atmospheric CO2 worldwide. Hence, understanding coral biomineralization/calcification processes is crucial for evaluating and predicting the effect of environmental factors on this process. While coral biomineralization studies have focused on adult corals, the exact stage at which corals initiate mineralization remains enigmatic. Here, we show that minerals are first precipitated as amorphous calcium carbonate and small aragonite crystallites, in the pre-settled larva, which then evolve into the more mature aragonitic fibers characteristic of the stony coral skeleton. The process is accompanied by modulation of proteins and ions within these minerals. These findings may indicate an underlying bimodal regulation tactic adopted by the animal, with important ramification to its resilience or vulnerability toward a changing environment. Coral biomineralization is an important example of natural mineralization and understanding the process will aid biomineralization research. Here, the authors identify the precipitation of amorphous calcium carbonate and small aragonite crystals in pre-settled larva of Stylophora pistillata.
Collapse
|
74
|
Naggi A, Torri G, Iacomini M, Colombo Castelli G, Reggi M, Fermani S, Dubinsky Z, Goffredo S, Falini G. Structure and Function of Stony Coral Intraskeletal Polysaccharides. ACS OMEGA 2018; 3:2895-2901. [PMID: 30221225 PMCID: PMC6130787 DOI: 10.1021/acsomega.7b02053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/14/2018] [Indexed: 05/20/2023]
Abstract
Polysaccharides represent a main weight fraction of the intraskeletal organic matrix of corals, but their structure, as well as their function in the calcification process, has been poorly investigated. This communication shows by a combination of techniques (nuclear magnetic resonance, Fourier transform infrared, and monosaccharide composition) that their key component is a 1→3 β-d glucuronic acid polymer and evidences its influence in vitro in the calcification process.
Collapse
Affiliation(s)
- Annamaria Naggi
- Istituto
di Ricerche Chimiche e Biochimiche “G. Ronzoni” Milano, via Giuseppe Colombo 81, 20133 Milano, Italy
- E-mail: (A.N.)
| | - Giangiacomo Torri
- Istituto
di Ricerche Chimiche e Biochimiche “G. Ronzoni” Milano, via Giuseppe Colombo 81, 20133 Milano, Italy
| | - Marcello Iacomini
- Departamento
de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, CP 19046, CEP 81531-980 Curitiba, Paraná, Brazil
| | - Gabriele Colombo Castelli
- Istituto
di Ricerche Chimiche e Biochimiche “G. Ronzoni” Milano, via Giuseppe Colombo 81, 20133 Milano, Italy
| | - Michela Reggi
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Simona Fermani
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Zvy Dubinsky
- The
Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Stefano Goffredo
- Marine
Science Group, Department of Biological, Geological and Environmental
Sciences, Alma Mater Studiorum—Università
di Bologna, Via Selmi
3, 40126 Bologna, Italy
- E-mail: (S.G.)
| | - Giuseppe Falini
- Dipartimento
di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, via Selmi 2, 40126 Bologna, Italy
- E-mail: (G.F.)
| |
Collapse
|
75
|
Abstract
Ocean acidification (OA) is considered an important threat to coral reef ecosystems, because it reduces the availability of carbonate ions that reef-building corals need to produce their skeletons. However, while theory predicts that coral calcification rates decline as carbonate ion concentrations decrease, this prediction is not consistently borne out in laboratory manipulation experiments or in studies of corals inhabiting naturally low-pH reefs today. The skeletal growth of corals consists of two distinct processes: extension (upward growth) and densification (lateral thickening). Here, we show that skeletal density is directly sensitive to changes in seawater carbonate ion concentration and thus, to OA, whereas extension is not. We present a numerical model of Porites skeletal growth that links skeletal density with the external seawater environment via its influence on the chemistry of coral calcifying fluid. We validate the model using existing coral skeletal datasets from six Porites species collected across five reef sites and use this framework to project the impact of 21st century OA on Porites skeletal density across the global tropics. Our model predicts that OA alone will drive up to 20.3 ± 5.4% decline in the skeletal density of reef-building Porites corals.
Collapse
|
76
|
Burch MJ, Ievlev AV, Mahady K, Hysmith H, Rack PD, Belianinov A, Ovchinnikova OS. Helium Ion Microscopy for Imaging and Quantifying Porosity at the Nanoscale. Anal Chem 2017; 90:1370-1375. [PMID: 29227631 DOI: 10.1021/acs.analchem.7b04418] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanoporous materials are key components in a vast number of applications from energy to drug delivery and to agriculture. However, the number of ways to analytically quantify the salient features of these materials, for example: surface structure, pore shape, and size, remain limited. The most common approach is gas absorption, where volumetric gas absorption and desorption are measured. This technique has some fundamental drawbacks such as low sample throughput and a lack of direct surface visualization. In this work, we demonstrate Helium Ion Microscopy (HIM) as a tool for imaging and quantification of pores in industrially relevant SiO2 catalyst supports. We start with the fundamental principles of ion-sample interaction, and build on this knowledge to experimentally observe and quantify surface pores by using the HIM and image data analytics. We contrast our experimental results to gas absorption and demonstrate full statistical agreement between two techniques. The principles behind the theoretical, experimental, and analytical framework presented herein offer an automated framework for visualization and quantification of pore structures in a wide variety of materials.
Collapse
Affiliation(s)
- Matthew J Burch
- The Center for Nanophase Materials Sciences and the Institute for Functional Imaging of Materials, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Anton V Ievlev
- The Center for Nanophase Materials Sciences and the Institute for Functional Imaging of Materials, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Kyle Mahady
- Department of Materials Science and Engineering, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Holland Hysmith
- The Center for Nanophase Materials Sciences and the Institute for Functional Imaging of Materials, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Philip D Rack
- The Center for Nanophase Materials Sciences and the Institute for Functional Imaging of Materials, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States.,Department of Materials Science and Engineering, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Alex Belianinov
- The Center for Nanophase Materials Sciences and the Institute for Functional Imaging of Materials, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Olga S Ovchinnikova
- The Center for Nanophase Materials Sciences and the Institute for Functional Imaging of Materials, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
77
|
Wall CB, Mason RAB, Ellis WR, Cunning R, Gates RD. Elevated pCO 2 affects tissue biomass composition, but not calcification, in a reef coral under two light regimes. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170683. [PMID: 29291059 PMCID: PMC5717633 DOI: 10.1098/rsos.170683] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/28/2017] [Indexed: 06/02/2023]
Abstract
Ocean acidification (OA) is predicted to reduce reef coral calcification rates and threaten the long-term growth of coral reefs under climate change. Reduced coral growth at elevated pCO2 may be buffered by sufficiently high irradiances; however, the interactive effects of OA and irradiance on other fundamental aspects of coral physiology, such as the composition and energetics of coral biomass, remain largely unexplored. This study tested the effects of two light treatments (7.5 versus 15.7 mol photons m-2 d-1) at ambient or elevated pCO2 (435 versus 957 µatm) on calcification, photopigment and symbiont densities, biomass reserves (lipids, carbohydrates, proteins), and biomass energy content (kJ) of the reef coral Pocillopora acuta from Kāne'ohe Bay, Hawai'i. While pCO2 and light had no effect on either area- or biomass-normalized calcification, tissue lipids gdw-1 and kJ gdw-1 were reduced 15% and 14% at high pCO2, and carbohydrate content increased 15% under high light. The combination of high light and high pCO2 reduced protein biomass (per unit area) by approximately 20%. Thus, under ecologically relevant irradiances, P. acuta in Kāne'ohe Bay does not exhibit OA-driven reductions in calcification reported for other corals; however, reductions in tissue lipids, energy content and protein biomass suggest OA induced an energetic deficit and compensatory catabolism of tissue biomass. The null effects of OA on calcification at two irradiances support a growing body of work concluding some reef corals may be able to employ compensatory physiological mechanisms that maintain present-day levels of calcification under OA. However, negative effects of OA on P. acuta biomass composition and energy content may impact the long-term performance and scope for growth of this species in a high pCO2 world.
Collapse
Affiliation(s)
- C. B. Wall
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, PO Box 1346, Kāne‘ohe, HI 96744, USA
| | - R. A. B. Mason
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, PO Box 1346, Kāne‘ohe, HI 96744, USA
| | - W. R. Ellis
- Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA
| | - R. Cunning
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, PO Box 1346, Kāne‘ohe, HI 96744, USA
| | - R. D. Gates
- Hawai‘i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, PO Box 1346, Kāne‘ohe, HI 96744, USA
| |
Collapse
|
78
|
Mass T, Drake JL, Heddleston JM, Falkowski PG. Nanoscale Visualization of Biomineral Formation in Coral Proto-Polyps. Curr Biol 2017; 27:3191-3196.e3. [PMID: 29033329 DOI: 10.1016/j.cub.2017.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/11/2017] [Accepted: 09/06/2017] [Indexed: 11/16/2022]
Abstract
Calcium carbonate platforms produced by reef-building stony corals over geologic time are pervasive features around the world [1]; however, the mechanism by which these organisms produce the mineral is poorly understood (see review by [2]). It is generally assumed that stony corals precipitate calcium carbonate extracellularly as aragonite in a calcifying medium between the calicoblastic ectoderm and pre-existing skeleton, separated from the overlying seawater [2]. The calicoblastic ectoderm produces extracellular matrix (ECM) proteins, secreted to the calcifying medium [3-6], which appear to provide the nucleation, alteration, elongation, and inhibition mechanisms of the biomineral [7] and remain occluded and preserved in the skeleton [8-10]. Here we show in cell cultures of the stony coral Stylophora pistillata that calcium is concentrated in intracellular pockets that are subsequently exported from the cell where a nucleation process leads to the formation of extracellular aragonite crystals. Analysis of the growing crystals by lattice light-sheet microscopy suggests that the crystals elongate from the cells' surfaces outward.
Collapse
Affiliation(s)
- Tali Mass
- University of Haifa, Department of Marine Biology, The Leon H. Charney School of Marine Sciences, Multi Purpose Boulevard, Mt. Carmel, Haifa 3498838, Israel.
| | - Jeana L Drake
- Rutgers University, Department of Marine and Coastal Sciences, Dudley Road, New Brunswick, NJ 08901, USA
| | - John M Heddleston
- Howard Hughes Medical Institute Janelia Research Campus, Advanced Imaging Center, Helix Drive, Ashburn, VA 20147, USA
| | - Paul G Falkowski
- Rutgers University, Department of Marine and Coastal Sciences, Dudley Road, New Brunswick, NJ 08901, USA; Rutgers University, Department of Earth and Planetary Sciences, Taylor Road, Piscataway, NJ 08854, USA
| |
Collapse
|
79
|
Reconstructing coral calcification fluid dissolved inorganic carbon chemistry from skeletal boron: An exploration of potential controls on coral aragonite B/Ca. Heliyon 2017; 3:e00387. [PMID: 28920090 PMCID: PMC5576960 DOI: 10.1016/j.heliyon.2017.e00387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/10/2017] [Indexed: 11/22/2022] Open
Abstract
The boron geochemistry of coral skeletons reflects the dissolved inorganic carbon (DIC) chemistry of the calcification fluid from which the skeletons precipitates and may be a valuable tool to investigate the effects of climate change on coral calcification. In this paper I calculate the predicted B/Ca of aragonite precipitating from seawater based fluids as a function of pH, [DIC] and [Ca2+]. I consider how different co-precipitating DIC species affect aragonite B/Ca and also estimate the impact of variations in the B(OH)4-/co-precipitating DIC aragonite partition coefficient (KD), which may be associated with changes in the DIC and Ca2+ chemistry of the calcification fluid. The coral skeletal B/Ca versus calcification fluid pH relationships reported previously can be reproduced by estimating B(OH)4- and co-precipitating DIC speciation as a function of pHCF and assuming that KD are constant i.e. unaffected by calcification fluid saturation state. Assuming that B(OH)4- co-precipitates with CO32-, then observed patterns can be reproduced by a fluid with approximately constant [DIC] i.e. increasing pHCF concentrates CO32-, as a function of DIC speciation. Assuming that B(OH)4- co-precipitates with HCO3- only or CO32- + HCO3- then the observed patterns can be reproduced if [DIC]CF and pHCF are positively related i.e. if DIC is increasingly concentrated in the calcification fluid at higher pHCF probably by CO2 diffusion into the calcification site.
Collapse
|
80
|
Abstract
Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed "vital effects," that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO3). We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO2 increases, such as the Paleocene-Eocene Thermal Maximum that occurred 56 Mya.
Collapse
|
81
|
Party slugs, pseudo-Saturn and a dancing Moon rover. Nature 2017. [DOI: 10.1038/nature.2017.22236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|