51
|
Farncombe KM, Thain E, Barnett-Tapia C, Sadeghian H, Kim RH. LZTR1 molecular genetic overlap with clinical implications for Noonan syndrome and schwannomatosis. BMC Med Genomics 2022; 15:160. [PMID: 35840934 PMCID: PMC9288044 DOI: 10.1186/s12920-022-01304-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background Noonan syndrome (NS) is a genetic disorder characterized by developmental delays, typical facial gestalt and cardiovascular defects. LZTR1 variants have been recently described in patients with NS and schwannomatosis, but the association, inheritance pattern and management strategy has not been fully elucidated. Here, we review the contribution of LZTR1 in NS and describe a patient with a novel, likely pathogenic variant in LZTR1. Case presentation A female patient was diagnosed with clinical NS at 8 months of age. She presented in adulthood when a brain and spine MRI identified plexiform neurofibromas; however, she did not meet the clinical criteria for Neurofibromatosis type 1. No pathogenic variants were identified through molecular genetic analysis of NF1, SPRED1 and a multigene NS panel. Whole exome sequencing at age 23 identified a novel de novo likely pathogenic heterozygous variant in the LZTR1 gene denoted as c.743G>A (p.Gly248Glu). Serial MRIs have shown stable imaging findings and the patient is being followed clinically by cardiology, neurology and medical genetics. Conclusions We identified a novel mutation in the LZTR1 gene, not previously reported in association with NS. This report provides additional evidence to support for the assessment of schwannomatosis in patients with LZTR1-NS and may have overlap with Neurofibromatosis type 1.
Collapse
Affiliation(s)
- Kirsten M Farncombe
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Emily Thain
- Bhalwani Familial Cancer Clinic, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Carolina Barnett-Tapia
- Division of Neurology, Department of Medicine, University Health Network, University of Toronto, Toronto, ON, Canada.,Ellen and Martin Prossermann Centre for Neuromuscular Diseases, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Hamid Sadeghian
- Division of Neurology, Department of Medicine, University Health Network, University of Toronto, Toronto, ON, Canada.,Ellen and Martin Prossermann Centre for Neuromuscular Diseases, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Raymond H Kim
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Sinai Health System, Toronto, ON, Canada. .,Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Ontario Institute for Cancer Research, Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
52
|
Nishimura K, Yamazaki H, Zang W, Inoue D. Dysregulated minor intron splicing in cancer. Cancer Sci 2022; 113:2934-2942. [PMID: 35766428 PMCID: PMC9459249 DOI: 10.1111/cas.15476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Pre‐mRNA splicing is now widely recognized as a cotranscriptional and post‐transcriptional mechanism essential for regulating gene expression and modifying gene product function. Mutations in genes encoding core spliceosomal proteins and accessory regulatory splicing factors are now considered among the most recurrent genetic abnormalities in patients with cancer, particularly hematologic malignancies. These include mutations in the major (U2‐type) and minor (U12‐type) spliceosomes, which remove >99% and ~0.35% of introns, respectively. Growing evidence indicates that aberrant splicing of evolutionarily conserved U12‐type minor introns plays a crucial role in cancer as the minor spliceosome component, ZRSR2, is subject to recurrent, leukemia‐associated mutations, and intronic mutations have been shown to disrupt the splicing of minor introns. Here, we review the importance of minor intron regulation, the molecular effects of the minor (U12‐type) spliceosomal mutations and cis‐regulatory regions, and the development of minor intron studies for better understanding of cancer biology.
Collapse
Affiliation(s)
- Koutarou Nishimura
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Hiromi Yamazaki
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Weijia Zang
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan.,Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daichi Inoue
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan.,Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
53
|
Wang M, Banik I, Shain AH, Yeh I, Bastian BC. Integrated genomic analyses of acral and mucosal melanomas nominate novel driver genes. Genome Med 2022; 14:65. [PMID: 35706047 PMCID: PMC9202124 DOI: 10.1186/s13073-022-01068-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/03/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Acral and mucosal melanomas are aggressive subtypes of melanoma, which have a significantly lower burden of somatic mutations than cutaneous melanomas, but more frequent copy number variations, focused gene amplifications, and structural alterations. The landscapes of their genomic alterations remain to be fully characterized. METHODS We compiled sequencing data of 240 human acral and mucosal melanoma samples from 11 previously published studies and applied a uniform pipeline to call tumor cell content, ploidy, somatic and germline mutations, as well as CNVs, LOH, and SVs. We identified genes that are significantly mutated or recurrently affected by CNVs and implicated in oncogenesis. We further examined the difference in the frequency of recurrent pathogenic alterations between the two melanoma subtypes, correlation between pathogenic alterations, and their association with clinical features. RESULTS We nominated PTPRJ, mutated and homozygously deleted in 3.8% (9/240) and 0.8% (2/240) of samples, respectively, as a probable tumor suppressor gene, and FER and SKP2, amplified in 3.8% and 11.7% of samples, respectively, as probable oncogenes. We further identified a long tail of infrequent pathogenic alterations, involving genes such as CIC and LZTR1. Pathogenic germline mutations were observed on MITF, PTEN, ATM, and PRKN. We found BRAF V600E mutations in acral melanomas with fewer structural variations, suggesting that they are distinct and related to cutaneous melanomas. Amplifications of PAK1 and GAB2 were more commonly observed in acral melanomas, whereas SF3B1 R625 codon mutations were unique to mucosal melanomas (12.9%). Amplifications at 11q13-14 were frequently accompanied by fusion to a region on chromosome 6q12, revealing a recurrent novel structural rearrangement whose role remains to be elucidated. CONCLUSIONS Our meta-analysis expands the catalog of driver mutations in acral and mucosal melanomas, sheds new light on their pathogenesis and broadens the catalog of therapeutic targets for these difficult-to-treat cancers.
Collapse
Affiliation(s)
- Meng Wang
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Ishani Banik
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - A Hunter Shain
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Iwei Yeh
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
| | - Boris C Bastian
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
54
|
Loh J, Ong PY, Goh DLM, Puhaindran ME, Vellayappan BA, Ow SGW, Chan G, Lee SC. Clinical characteristics and genetic testing outcome of suspected hereditary peripheral nerve sheath tumours in a tertiary cancer institution in Singapore. Hered Cancer Clin Pract 2022; 20:23. [PMID: 35698239 PMCID: PMC9195433 DOI: 10.1186/s13053-022-00230-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/27/2022] [Indexed: 12/03/2022] Open
Abstract
Background Peripheral Nerve Sheath Tumors (PNST) are a diverse group of mostly benign tumours uncommon in the general population. About 5–10% of PNSTs are hereditary, predominantly arising from germline variants in NF1, NF2, SMARCB1, or LZTR1 gene. Methods We reviewed the clinical characteristics and genetic testing results of patients referred to the NCIS Adult Cancer Genetics Clinic for suspected hereditary PNST. Results 3,001 patients suspected to have various hereditary cancer syndromes were evaluated between year 2000 to March 2021. 13 (0.4%) were clinically diagnosed to have hereditary PNSTs. The majority were male (54%), with a median age at presentation to the genetics clinic of 29 years (range 19–48). 11/13 (85%) patients had multiple PNSTs, 12/13 (92%) had young onset PNSTs, 5/13 (38.5%) had personal and family history of PNST. 11/13 patients (85%) had clinical features of neurofibromatosis type 1 (NF1) including one patient who also fulfilled clinical criteria of neurofibromatosis type 2 (NF2); 2/13 (14%) had multiple schwannomas. Four patients underwent multi-gene panel testing, including one patient with clinical NF1, one patient who met both clinical NF1 and NF2 criteria, and two patients with multiple schwannomas. The patient with clinical features of NF1 was heterozygous for a pathogenic c. 2033dup variant in the NF1 gene. The patient with both NF1/NF2 features was heterozygous for a novel c.732 T > A nonsense variant in the NF2 gene. The two patients with multiple schwannomas were heterozygous for a pathogenic/likely pathogenic variant in the LZTR1 gene and are the first LZTR1-positive schwannomatosis patients reported in Asia. Conclusion Hereditary PNSTs are rare referrals to an adult cancer genetics clinic. NF1 is the most common PNST seen. LZTR1 variants may be the underlying cause in Asian patients with multiple schwannomatosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13053-022-00230-4.
Collapse
Affiliation(s)
- Jerold Loh
- Department of Haematology-Oncology, NCIS, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - Pei Yi Ong
- Department of Haematology-Oncology, NCIS, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - Denise Li Meng Goh
- Division of Paediatric Genetics and Metabolism, Department of Paediatrics, Khoo Teck Puat - National University Children's Medical Institute, National University Hospital, Singapore, Singapore
| | - Mark E Puhaindran
- Department of Hand and Reconstructive Microsurgery, National University Hospital, Singapore, Singapore
| | | | - Samuel Guan Wei Ow
- Department of Haematology-Oncology, NCIS, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - Gloria Chan
- Department of Haematology-Oncology, NCIS, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - Soo-Chin Lee
- Department of Haematology-Oncology, NCIS, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore. .,Cancer Science Institute, Singapore, Singapore.
| |
Collapse
|
55
|
Allaf A, Victoria B, Rosario R, Misztal C, Humayun Gultekin S, Dinh CT, Fernandez-Valle C. WP1066 induces cell death in a schwannomatosis patient-derived schwannoma cell line. Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006178. [PMID: 35732500 PMCID: PMC9235848 DOI: 10.1101/mcs.a006178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/08/2022] [Indexed: 11/24/2022] Open
Abstract
Schwannomatosis is a rare genetic disorder that predisposes individuals to development of multiple schwannomas mainly in spinal and peripheral nerves and to debilitating chronic pain often unrelated to any schwannoma. Pathogenic variants of two genes, SMARCB1 and LZTR1, are causal in familial cases. However, many schwannomatosis patients lack mutations in these genes. Surgery is the standard treatment for schwannomas but leaves patients with increasing neurological deficits. Pain management is a daily struggle controlled by the use of multiple analgesic and anti-inflammatory drugs. There is a need for both nonsurgical treatment to manage tumor growth and nonaddictive, nonsedative pain control. Because standard clinical trials are exceedingly difficult for patients with rare disorders, precision medicine approaches offer the possibility of bespoke therapeutic regimens to control tumor growth. As a proof of principle, we obtained a bio-specimen of paraspinal schwannoma from a schwannomatosis patient with a germline point mutation in the SMARCB1/INI gene. We created an hTERT immortalized cell line and tested the ability of targeted small molecules with efficacy in neurofibromatosis type 2-related schwannomas to reduce cell viability and induce cell death. We identified WP1066, a STAT3 inhibitor, currently in phase 2 clinical trials for pediatric and adult brain tumors as a lead compound. It reduced cell viability and STAT-3 phosphorylation and induced expression of markers for both necroptosis and caspase-dependent cell death. The results demonstrate feasibility in creating patient-derived cell lines for use in precision medicine studies.
Collapse
Affiliation(s)
- Abdulrahman Allaf
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida (UCF), Orlando, Florida 32816, USA
| | - Berta Victoria
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida (UCF), Orlando, Florida 32816, USA
| | - Rosa Rosario
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida (UCF), Orlando, Florida 32816, USA
| | - Carly Misztal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Sakir Humayun Gultekin
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Christine T Dinh
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Cristina Fernandez-Valle
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida (UCF), Orlando, Florida 32816, USA
| |
Collapse
|
56
|
Castel P. Defective protein degradation in genetic disorders. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166366. [PMID: 35158019 PMCID: PMC8977116 DOI: 10.1016/j.bbadis.2022.166366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 01/15/2023]
Abstract
Understanding the molecular mechanisms that underlie different human pathologies is necessary to develop novel therapeutic strategies. An emerging mechanism of pathogenesis in many genetic disorders is the dysregulation of protein degradation, which leads to the accumulation of proteins that are responsible for the disease phenotype. Among the different cellular pathways that regulate active proteolysis, the Cullin RING E3 ligases represent an important group of sophisticated enzymatic complexes that mediate substrate ubiquitination through the interaction with specific adaptors. However, pathogenic variants in these adaptors affect the physiological ubiquitination of their substrates. This review discusses our current understanding of this emerging field.
Collapse
Affiliation(s)
- Pau Castel
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NY, 10016, United States of America.
| |
Collapse
|
57
|
Cuevas-Navarro A, Rodriguez-Muñoz L, Grego-Bessa J, Cheng A, Rauen KA, Urisman A, McCormick F, Jimenez G, Castel P. Cross-species analysis of LZTR1 loss-of-function mutants demonstrates dependency to RIT1 orthologs. eLife 2022; 11:e76495. [PMID: 35467524 PMCID: PMC9068208 DOI: 10.7554/elife.76495] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/22/2022] [Indexed: 11/25/2022] Open
Abstract
RAS GTPases are highly conserved proteins involved in the regulation of mitogenic signaling. We have previously described a novel Cullin 3 RING E3 ubiquitin ligase complex formed by the substrate adaptor protein LZTR1 that binds, ubiquitinates, and promotes proteasomal degradation of the RAS GTPase RIT1. In addition, others have described that this complex is also responsible for the ubiquitination of classical RAS GTPases. Here, we have analyzed the phenotypes of Lztr1 loss-of-function mutants in both fruit flies and mice and have demonstrated a biochemical preference for their RIT1 orthologs. Moreover, we show that Lztr1 is haplosufficient in mice and that embryonic lethality of the homozygous null allele can be rescued by deletion of Rit1. Overall, our results indicate that, in model organisms, RIT1 orthologs are the preferred substrates of LZTR1.
Collapse
Affiliation(s)
- Antonio Cuevas-Navarro
- Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
| | - Laura Rodriguez-Muñoz
- Institute for Molecular Biology of Barcelona, Consejo Superior de Investigaciones CientíficasBarcelonaSpain
| | | | - Alice Cheng
- Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
| | - Katherine A Rauen
- UC Davis MIND Institute, University of California DavisSacramentoUnited States
- Department of Pediatrics, University of California DavisSacramentoUnited States
| | - Anatoly Urisman
- Department of Anatomic Pathology, University of California San FranciscoSan FranciscoUnited States
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
| | - Gerardo Jimenez
- Institute for Molecular Biology of Barcelona, Consejo Superior de Investigaciones CientíficasBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Pau Castel
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
58
|
Deng F, Evans DG, Smith MJ. Comparison of the frequency of loss-of-function LZTR1 variants between Schwannomatosis patients and the general population. Hum Mutat 2022; 43:919-927. [PMID: 35391499 PMCID: PMC9324957 DOI: 10.1002/humu.24376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/10/2022]
Abstract
Schwannomatosis is a rare tumour predisposition syndrome that causes multiple schwannomas. Germline loss-of-function LZTR1 variants were only recently identified as disease-causing, so relatively few variants have been identified in patients. In addition, many loss-of-function variants exist in gnomAD in people who do not have clinical symptoms of schwannomatosis. These factors, and the incomplete penetrance seen in this condition, hinder definitive interpretation of the clinical significance of novel loss-of-function variants identified in schwannomatosis patients. We collated published loss-of-function LZTR1 variants identified in schwannomatosis patients and classified them according to current ACMG/AMP/ACGS guidelines. Subsequently, pathogenic/likely pathogenic schwannomatosis-associated loss-of-function variants were compared with loss-of-function LZTR1 variants reported in gnomAD data. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fanxuan Deng
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - D Gareth Evans
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Miriam J Smith
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
59
|
Nussinov R, Zhang M, Maloney R, Tsai C, Yavuz BR, Tuncbag N, Jang H. Mechanism of activation and the rewired network: New drug design concepts. Med Res Rev 2022; 42:770-799. [PMID: 34693559 PMCID: PMC8837674 DOI: 10.1002/med.21863] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/06/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022]
Abstract
Precision oncology benefits from effective early phase drug discovery decisions. Recently, drugging inactive protein conformations has shown impressive successes, raising the cardinal questions of which targets can profit and what are the principles of the active/inactive protein pharmacology. Cancer driver mutations have been established to mimic the protein activation mechanism. We suggest that the decision whether to target an inactive (or active) conformation should largely rest on the protein mechanism of activation. We next discuss the recent identification of double (multiple) same-allele driver mutations and their impact on cell proliferation and suggest that like single driver mutations, double drivers also mimic the mechanism of activation. We further suggest that the structural perturbations of double (multiple) in cis mutations may reveal new surfaces/pockets for drug design. Finally, we underscore the preeminent role of the cellular network which is deregulated in cancer. Our structure-based review and outlook updates the traditional Mechanism of Action, informs decisions, and calls attention to the intrinsic activation mechanism of the target protein and the rewired tumor-specific network, ushering innovative considerations in precision medicine.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunometabolismNational Cancer InstituteFrederickMarylandUSA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunometabolismNational Cancer InstituteFrederickMarylandUSA
| | - Ryan Maloney
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunometabolismNational Cancer InstituteFrederickMarylandUSA
| | - Chung‐Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunometabolismNational Cancer InstituteFrederickMarylandUSA
| | - Bengi Ruken Yavuz
- Department of Health Informatics, Graduate School of InformaticsMiddle East Technical UniversityAnkaraTurkey
| | - Nurcan Tuncbag
- Department of Health Informatics, Graduate School of InformaticsMiddle East Technical UniversityAnkaraTurkey
- Department of Chemical and Biological Engineering, College of EngineeringKoc UniversityIstanbulTurkey
- Koc University Research Center for Translational Medicine, School of MedicineKoc UniversityIstanbulTurkey
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer ImmunometabolismNational Cancer InstituteFrederickMarylandUSA
| |
Collapse
|
60
|
Palanivel C, Chaudhary N, Seshacharyulu P, Cox JL, Yan Y, Batra SK, Ouellette MM. The GSK3 kinase and LZTR1 protein regulate the stability of Ras family proteins and the proliferation of pancreatic cancer cells. Neoplasia 2022; 25:28-40. [PMID: 35114566 PMCID: PMC8814762 DOI: 10.1016/j.neo.2022.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/30/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022]
Abstract
Ras family proteins are membrane-bound GTPases that control proliferation, survival, and motility. Many forms of cancers are driven by the acquisition of somatic mutations in a RAS gene. In pancreatic cancer (PC), more than 90% of tumors carry an activating mutation in KRAS. Mutations in components of the Ras signaling pathway can also be the cause of RASopathies, a group of developmental disorders. In a subset of RASopathies, the causal mutations are in the LZTR1 protein, a substrate adaptor for E3 ubiquitin ligases that promote the degradation of Ras proteins. Here, we show that the function of LZTR1 is regulated by the glycogen synthase kinase 3 (GSK3). In PC cells, inhibiting or silencing GSK3 led to a decline in the level of Ras proteins, including both wild type Ras proteins and the oncogenic Kras protein. This decline was accompanied by a 3-fold decrease in the half-life of Ras proteins and was blocked by the inhibition of the proteasome or the knockdown of LZTR1. Irrespective of the mutational status of KRAS, the decline in Ras proteins was observed and accompanied by a loss of cell proliferation. This loss of proliferation was blocked by the knockdown of LZTR1 and could be recapitulated by the silencing of either KRAS or GSK3. These results reveal a novel GSK3-regulated LZTR1-dependent mechanism that controls the stability of Ras proteins and proliferation of PC cells. The significance of this novel pathway to Ras signaling and its contribution to the therapeutic properties of GSK3 inhibitors are both discussed.
Collapse
|
61
|
Lim SM, Yang SD, Lim S, Heo SG, Daniel S, Markovets A, Minoo R, Pyo KH, Yun MR, Hong MH, Kim HR, Cho BC. Molecular landscape of osimertinib resistance in patients and patient-derived preclinical models. Ther Adv Med Oncol 2022; 14:17588359221079125. [PMID: 35251316 PMCID: PMC8891830 DOI: 10.1177/17588359221079125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/21/2022] [Indexed: 01/04/2023] Open
Abstract
Introduction: Osimertinib is a third-generation EGFR tyrosine kinase inhibitor (TKI) that is approved for the use of EGFR-mutant non-small cell lung cancer (NSCLC) patients. In this study, we investigated the acquired resistance mechanisms in NSCLC patients and patient-derived preclinical models. Methods: Formalin-fixed paraffin-embedded tumor samples and plasma samples from 55 NSCLC patients who were treated with osimertinib were collected at baseline and at progressive disease (PD). Next-generation sequencing was performed in tumor and plasma samples using a 600-gene hybrid capture panel designed by AstraZeneca. Osimertinib-resistant cell lines and patient-derived xenografts and cells were generated and whole exome sequencing and RNA sequencing were performed. In vitro experiments were performed to functionally study the acquired mutations identified. Results: A total of 55 patients and a total of 149 samples (57 tumor samples and 92 plasma samples) were analyzed, and among them 36 patients had matched pre- and post-treatment samples. EGFR C797S (14%) mutation was the most frequent EGFR-dependent mechanism identified in all available progression samples, followed by EGFR G824D (6%), V726M (3%), and V843I (3%). Matched pre- and post-treatment sample analysis revealed in-depth acquired mechanisms of resistance. EGFR C797S was still most frequent (11%) among EGFR-dependent mechanism, while among EGFR-independent mechanisms, PIK3CA, ALK, BRAF, EP300, KRAS, and RAF1 mutations were detected. Among Osimertinib-resistant cell lines and patient-derived models, we noted acquired mutations which were potentially targetable such as NRAS p.Q61K, in which resistance could be overcome with combination of osimertinib and trametinib. A patient-derived xenograft established from osimertinib-resistant patient revealed KRAS p.G12D mutation which could be overcome with combination of osimertinib, trametinib, and buparlisib. Conclusion: In this study, we explored the genetic profiles of osimertinib-resistant NSCLC patient samples using targeted deep sequencing. In vitro and in vivo models harboring osimertinib resistance revealed potential novel treatment strategies after osimertinib failure.
Collapse
Affiliation(s)
- Sun Min Lim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - San-Duk Yang
- Department of Cyber Security & AI Technology, Kyung Hee Cyber University, Seoul, Republic of Korea
| | - Sangbin Lim
- Yonsei Cancer Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong Gu Heo
- Yonsei Cancer Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Stetson Daniel
- Translational Science, Oncology R&D, AstraZeneca, Boston, MA, USA
| | | | - Rafati Minoo
- Translational Science, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Kyoung-Ho Pyo
- Yonsei Cancer Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mi Ran Yun
- Yonsei Cancer Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Hee Hong
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byoung Chul Cho
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 03722, Republic of KoreaYonsei Cancer Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
62
|
Farshidfar F, Rhrissorrakrai K, Levovitz C, Peng C, Knight J, Bacchiocchi A, Su J, Yin M, Sznol M, Ariyan S, Clune J, Olino K, Parida L, Nikolaus J, Zhang M, Zhao S, Wang Y, Huang G, Wan M, Li X, Cao J, Yan Q, Chen X, Newman AM, Halaban R. Integrative molecular and clinical profiling of acral melanoma links focal amplification of 22q11.21 to metastasis. Nat Commun 2022; 13:898. [PMID: 35197475 PMCID: PMC8866401 DOI: 10.1038/s41467-022-28566-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/28/2022] [Indexed: 12/11/2022] Open
Abstract
Acral melanoma, the most common melanoma subtype among non-White individuals, is associated with poor prognosis. However, its key molecular drivers remain obscure. Here, we perform integrative genomic and clinical profiling of acral melanomas from 104 patients treated in North America (n = 37) or China (n = 67). We find that recurrent, late-arising focal amplifications of cytoband 22q11.21 are a leading determinant of inferior survival, strongly associated with metastasis, and linked to downregulation of immunomodulatory genes associated with response to immune checkpoint blockade. Unexpectedly, LZTR1 - a known tumor suppressor in other cancers - is a key candidate oncogene in this cytoband. Silencing of LZTR1 in melanoma cell lines causes apoptotic cell death independent of major hotspot mutations or melanoma subtypes. Conversely, overexpression of LZTR1 in normal human melanocytes initiates processes associated with metastasis, including anchorage-independent growth, formation of spheroids, and an increase in MAPK and SRC activities. Our results provide insights into the etiology of acral melanoma and implicate LZTR1 as a key tumor promoter and therapeutic target.
Collapse
Affiliation(s)
- Farshad Farshidfar
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | | | | | - Cong Peng
- Xiangya Hospital, Central South University, Changsha, China
| | - James Knight
- Yale Center for Genome Analysis, Yale University, New Haven, CT, 06520, USA
| | | | - Juan Su
- Xiangya Hospital, Central South University, Changsha, China
| | - Mingzhu Yin
- Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Mario Sznol
- Department of Internal Medicine, Section of Medical Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - Stephan Ariyan
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - James Clune
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Kelly Olino
- Department of Surgery, Yale University School of Medicine, New Haven, CT, USA
| | | | - Joerg Nikolaus
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Meiling Zhang
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Shuang Zhao
- Xiangya Hospital, Central South University, Changsha, China
| | - Yan Wang
- Department of Dermatologic Surgery Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Gang Huang
- Department of Bone and Soft Tissue oncology, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Miaojian Wan
- Department of Dermatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xianan Li
- Department of Bone and Soft Tissue oncology, Hunan Cancer Hospital, Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, Hunan, China
| | - Jian Cao
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Qin Yan
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Xiang Chen
- Xiangya Hospital, Central South University, Changsha, China.
| | - Aaron M Newman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
| | - Ruth Halaban
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
63
|
Akimoto G, Fernandes AP, Bode JW. Site-Specific Protein Ubiquitylation Using an Engineered, Chimeric E1 Activating Enzyme and E2 SUMO Conjugating Enzyme Ubc9. ACS CENTRAL SCIENCE 2022; 8:275-281. [PMID: 35237717 PMCID: PMC8883482 DOI: 10.1021/acscentsci.1c01490] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Indexed: 05/10/2023]
Abstract
Ubiquitylation-the attachment of ubiquitin (Ub) to proteins in eukaryotic cells-involves a vast number of enzymes from three different classes, resulting in heterogeneous attachment sites and ubiquitin chains. Recently, we introduced lysine acylation using conjugating enzymes (LACE) in which ubiquitin or peptide thioester is site-specifically transferred to a short peptide tag by the SUMO E2 conjugating enzyme Ubc9. This process, however, suffers from slow kinetics-due to a rate-limiting thioester loading step-and the requirement for thioesters restricts its use to in vitro reactions. To overcome these challenges, we devised a chimeric E1 containing the Ub fold domain of the SUMO E1 and the remaining domains of the Ub E1, which activates and loads native Ub onto Ubc9 and obviates the need for Ub thioester in LACE. The chimeric E1 was subjected to directed evolution to improve its apparent second-order rate constant (k cat/K M) 400-fold. We demonstrate the utility of the chimeric E1 by site-specific transfer of mono- and oligo-Ub to various target proteins in vitro. Additionally, the chimeric E1, Ubc9, Ub, and the target protein can be coexpressed in Escherichia coli for the facile preparation of monoubiquitylated proteins.
Collapse
|
64
|
Groen JL, Moghadasi S, Spruijt L, Korpershoek E, van Ierland Y, van Wezel JT, van Duinen S, Malessy MJA, Lesnik Oberstein SAJ. Neurofibromas in LZTR1 schwannomatosis. Clin Genet 2022; 101:571-572. [PMID: 35178712 DOI: 10.1111/cge.14121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Justus L Groen
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Setareh Moghadasi
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Liesbeth Spruijt
- Department of Clinical Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - J Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sjoerd van Duinen
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn J A Malessy
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
65
|
Magits W, Sablina AA. The regulation of the protein interaction network by monoubiquitination. Curr Opin Struct Biol 2022; 73:102333. [PMID: 35176591 DOI: 10.1016/j.sbi.2022.102333] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/24/2021] [Accepted: 01/06/2022] [Indexed: 11/03/2022]
Abstract
The conjugation of a single ubiquitin or monoubiquitination acts as a versatile signal that can have both degradative and non-degradative functions. The latter is of particular interest as emerging evidence indicates that ubiquitin-driven alterations of the protein interaction landscape play a key role in multiple signaling pathways. Whereas early studies were focused on how monoubiquitination alters the interactions of proteins containing ubiquitin-binding domains, more recent reports demonstrate that ubiquitin conjugation can also affect the binding mode by changing the surface of the ubiquitinated substrate. Furthermore, monoubiquitination modulates the interactions with other macromolecules, such as DNA or lipids, underscoring the diverse role of monoubiquitination in cellular processes. In this review, we discussed how monoubiquitination achieves its function by modulating the interaction landscape.
Collapse
Affiliation(s)
- Wout Magits
- VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Anna A Sablina
- VIB-KU Leuven Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Department of Oncology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
66
|
Sasaki K, Yamauchi T, Semba Y, Nogami J, Imanaga H, Terasaki T, Nakao F, Akahane K, Inukai T, Verhoeyen E, Akashi K, Maeda T. Genome-wide CRISPR-Cas9 screen identifies rationally designed combination therapies for CRLF2-rearranged Ph-like ALL. Blood 2022; 139:748-760. [PMID: 34587248 PMCID: PMC9632759 DOI: 10.1182/blood.2021012976] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/14/2021] [Indexed: 02/05/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) harboring the IgH-CRLF2 rearrangement (IgH-CRLF2-r) exhibits poor clinical outcomes and is the most common subtype of Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL). While multiple chemotherapeutic regimens, including ruxolitinib monotherapy and/or its combination with chemotherapy, are being tested, their efficacy is reportedly limited. To identify molecules/pathways relevant for IgH-CRLF2-r ALL pathogenesis, we performed genome-wide CRISPR-Cas9 dropout screens in the presence or absence of ruxolitinib using 2 IgH-CRLF2-r ALL lines that differ in RAS mutational status. To do so, we employed a baboon envelope pseudotyped lentiviral vector system, which enabled, for the first time, highly efficient transduction of human B cells. While single-guide RNAs (sgRNAs) targeting CRLF2, IL7RA, or JAK1/2 significantly affected cell fitness in both lines, those targeting STAT5A, STAT5B, or STAT3 did not, suggesting that STAT signaling is largely dispensable for IgH-CRLF2-r ALL cell survival. We show that regulators of RAS signaling are critical for cell fitness and ruxolitinib sensitivity and that CRKL depletion enhances ruxolitinib sensitivity in RAS wild-type (WT) cells. Gilteritinib, a pan-tyrosine kinase inhibitor that blocks CRKL phosphorylation, effectively killed RAS WT IgH-CRLF2-r ALL cells in vitro and in vivo, either alone or combined with ruxolitinib. We further show that combining gilteritinib with trametinib, a MEK1/2 inhibitor, is an effective means to target IgH-CRLF2-r ALL cells regardless of RAS mutational status. Our study delineates molecules/pathways relevant for CRLF2-r ALL pathogenesis and could suggest rationally designed combination therapies appropriate for disease subtypes.
Collapse
Affiliation(s)
- Kensuke Sasaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Takuji Yamauchi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Yuichiro Semba
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Jumpei Nogami
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hiroshi Imanaga
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Tatsuya Terasaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Fumihiko Nakao
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Koshi Akahane
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Takeshi Inukai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Els Verhoeyen
- CIRI-International Center for Infectiology Research, INSERM, Unité 1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Université Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France; and
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takahiro Maeda
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
- CIRI-International Center for Infectiology Research, INSERM, Unité 1111, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Unité Mixte de Recherche (UMR) 5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Université Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France; and
- Division of Precision Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
67
|
Abstract
The RASopathies are a group of disorders caused by a germline mutation in one of the genes encoding a component of the RAS/MAPK pathway. These disorders, including neurofibromatosis type 1, Noonan syndrome, cardiofaciocutaneous syndrome, Costello syndrome and Legius syndrome, among others, have overlapping clinical features due to RAS/MAPK dysfunction. Although several of the RASopathies are very rare, collectively, these disorders are relatively common. In this Review, we discuss the pathogenesis of the RASopathy-associated genetic variants and the knowledge gained about RAS/MAPK signaling that resulted from studying RASopathies. We also describe the cell and animal models of the RASopathies and explore emerging RASopathy genes. Preclinical and clinical experiences with targeted agents as therapeutics for RASopathies are also discussed. Finally, we review how the recently developed drugs targeting RAS/MAPK-driven malignancies, such as inhibitors of RAS activation, direct RAS inhibitors and RAS/MAPK pathway inhibitors, might be leveraged for patients with RASopathies.
Collapse
Affiliation(s)
- Katie E Hebron
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Edjay Ralph Hernandez
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Marielle E Yohe
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
68
|
Cohen-Barak E, Toledano-Alhadef H, Danial-Farran N, Livneh I, Mwassi B, Hriesh M, Zagairy F, Gafni-Amsalem C, Bashir H, Khayat M, Warrour N, Sher O, Marom D, Postovsky S, Dujovny T, Ziv M, Shalev SA. Concomitant variants in NF1, LZTR1 and GNAZ genes probably contribute to the aggressiveness of plexiform neurofibroma and warrant treatment with MEK inhibitor. Exp Dermatol 2021; 31:775-780. [PMID: 34913528 DOI: 10.1111/exd.14514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/17/2021] [Accepted: 12/12/2021] [Indexed: 12/25/2022]
Abstract
Neurofibromatosis 1 (NF1) is caused by germline mutations in the NF1 gene and manifests as proliferation of various tissues, including plexiform neurofibromas. The plexiform neurofibroma phenotype varies from indolent to locally aggressive, suggesting contributions of other modifiers in addition to somatic loss of NF1. In this study, we investigated a life-threatening plexiform neurofibroma in a 9-month-old female infant with NF1. Germline mutations in two RASopathy-associated genes were identified using whole-exome sequencing-a de novo pathogenic variant in the NF1 gene, and a known pathogenic variant in the LZTR1 gene. Somatic analysis of the plexiform neurofibroma revealed NF1 loss of heterozygosity and a variant in GNAZ, a gene encoding a G protein-coupled receptor. Cells expressing mutant GNAZ exhibited increased ERK 1/2 activation compared to those expressing wild-type GNAZ. Taken together, we suggest the variants in NF1, LZRT1 and GNAZ act synergistically in our patient, leading to MAPK pathway activation and contributing to the severity of the patient's plexiform neurofibromatosis. After treatment with the MEK inhibitor, trametinib, a prominent clinical improvement was observed in this patient. This case study contributes to the knowledge of germline and somatic non-NF1 variants affecting the NF1 clinical phenotype and supports use of personalized, targeted therapy.
Collapse
Affiliation(s)
- Eran Cohen-Barak
- Department of Dermatology, "Emek" Medical Center, Afula, Israel.,Bruce and Ruth Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Hagit Toledano-Alhadef
- Pediatric Neurology and Child Development Center, Gilbert Israeli and International Neurofibromatosis Center, Dana-Dwek Children Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Ido Livneh
- Bruce and Ruth Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Banan Mwassi
- Department of Dermatology, "Emek" Medical Center, Afula, Israel.,Bruce and Ruth Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Maysa Hriesh
- Department of Dermatology, "Emek" Medical Center, Afula, Israel
| | - Fadia Zagairy
- Department of Dermatology, "Emek" Medical Center, Afula, Israel
| | | | - Husam Bashir
- The Genetic Institute, "Emek" Medical Center, Afula, Israel
| | - Morad Khayat
- The Genetic Institute, "Emek" Medical Center, Afula, Israel
| | - Nassim Warrour
- The Genetic Institute, "Emek" Medical Center, Afula, Israel
| | - Osnat Sher
- Bone&Soft Tissue Pathology Service, Department of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Daphna Marom
- Human Genetics Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Sergey Postovsky
- Department of Pediatric Oncology, "Emek" Medical Center, Afula, Israel
| | - Tal Dujovny
- Department of Pediatric Oncology, "Emek" Medical Center, Afula, Israel
| | - Michael Ziv
- Department of Dermatology, "Emek" Medical Center, Afula, Israel
| | - Stavit A Shalev
- Bruce and Ruth Rappaport Faculty of Medicine, Technion, Haifa, Israel.,The Genetic Institute, "Emek" Medical Center, Afula, Israel
| |
Collapse
|
69
|
Haidar M, Jacquemin P. Past and Future Strategies to Inhibit Membrane Localization of the KRAS Oncogene. Int J Mol Sci 2021; 22:13193. [PMID: 34947990 PMCID: PMC8707736 DOI: 10.3390/ijms222413193] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 12/13/2022] Open
Abstract
KRAS is one of the most studied oncogenes. It is well known that KRAS undergoes post-translational modifications at its C-terminal end. These modifications are essential for its membrane location and activity. Despite significant efforts made in the past three decades to target the mechanisms involved in its membrane localization, no therapies have been approved and taken into the clinic. However, many studies have recently reintroduced interest in the development of KRAS inhibitors, either by directly targeting KRAS or indirectly through the inhibition of critical steps involved in post-translational KRAS modifications. In this review, we summarize the approaches that have been applied over the years to inhibit the membrane localization of KRAS in cancer and propose a new anti-KRAS strategy that could be used in clinic.
Collapse
Affiliation(s)
| | - Patrick Jacquemin
- De Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium;
| |
Collapse
|
70
|
Nussinov R, Tsai CJ, Jang H. Signaling in the crowded cell. Curr Opin Struct Biol 2021; 71:43-50. [PMID: 34218161 PMCID: PMC8648894 DOI: 10.1016/j.sbi.2021.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022]
Abstract
High-resolution technologies have clarified some of the principles underlying cellular actions. However, understanding how cells receive, communicate, and respond to signals is still challenging. Questions include how efficient regulation of assemblies, which execute cell actions at the nanoscales, transmits productively at micrometer scales, especially considering the crowded environment, and how the cell organization makes it happen. Here, we describe how cells can navigate long-range diffusion-controlled signaling via association/dissociation of spatially proximal entities. Dynamic clusters can span the cell, engaging in most signaling steps. Effective local concentration, allostery, scaffolding, affinities, and the chemical and mechanical properties of the macromolecules and the environment play key roles. Signaling strength and duration matter, for example, deciding if a mutation promotes cancer or developmental syndromes.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
71
|
Vasic V, Jones MSO, Haslinger D, Knaus LS, Schmeisser MJ, Novarino G, Chiocchetti AG. Translating the Role of mTOR- and RAS-Associated Signalopathies in Autism Spectrum Disorder: Models, Mechanisms and Treatment. Genes (Basel) 2021; 12:genes12111746. [PMID: 34828352 PMCID: PMC8624393 DOI: 10.3390/genes12111746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
Mutations affecting mTOR or RAS signaling underlie defined syndromes (the so-called mTORopathies and RASopathies) with high risk for Autism Spectrum Disorder (ASD). These syndromes show a broad variety of somatic phenotypes including cancers, skin abnormalities, heart disease and facial dysmorphisms. Less well studied are the neuropsychiatric symptoms such as ASD. Here, we assess the relevance of these signalopathies in ASD reviewing genetic, human cell model, rodent studies and clinical trials. We conclude that signalopathies have an increased liability for ASD and that, in particular, ASD individuals with dysmorphic features and intellectual disability (ID) have a higher chance for disruptive mutations in RAS- and mTOR-related genes. Studies on rodent and human cell models confirm aberrant neuronal development as the underlying pathology. Human studies further suggest that multiple hits are necessary to induce the respective phenotypes. Recent clinical trials do only report improvements for comorbid conditions such as epilepsy or cancer but not for behavioral aspects. Animal models show that treatment during early development can rescue behavioral phenotypes. Taken together, we suggest investigating the differential roles of mTOR and RAS signaling in both human and rodent models, and to test drug treatment both during and after neuronal development in the available model systems.
Collapse
Affiliation(s)
- Verica Vasic
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (V.V.); (M.J.S.)
| | - Mattson S. O. Jones
- Autism Therapy and Research Center of Excellence, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany; (M.S.O.J.); (D.H.)
- Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
| | - Denise Haslinger
- Autism Therapy and Research Center of Excellence, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany; (M.S.O.J.); (D.H.)
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria; (L.S.K.); (G.N.)
| | - Lisa S. Knaus
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria; (L.S.K.); (G.N.)
| | - Michael J. Schmeisser
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (V.V.); (M.J.S.)
- Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Gaia Novarino
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria; (L.S.K.); (G.N.)
| | - Andreas G. Chiocchetti
- Autism Therapy and Research Center of Excellence, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany; (M.S.O.J.); (D.H.)
- Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, 60528 Frankfurt am Main, Germany
- Correspondence: ; Tel.: +49-69-6301-80658
| |
Collapse
|
72
|
Amaravathi A, Oblinger JL, Welling DB, Kinghorn AD, Chang LS. Neurofibromatosis: Molecular Pathogenesis and Natural Compounds as Potential Treatments. Front Oncol 2021; 11:698192. [PMID: 34604034 PMCID: PMC8485038 DOI: 10.3389/fonc.2021.698192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022] Open
Abstract
The neurofibromatosis syndromes, including NF1, NF2, and schwannomatosis, are tumor suppressor syndromes characterized by multiple nervous system tumors, particularly Schwann cell neoplasms. NF-related tumors are mainly treated by surgery, and some of them have been treated by but are refractory to conventional chemotherapy. Recent advances in molecular genetics and genomics alongside the development of multiple animal models have provided a better understanding of NF tumor biology and facilitated target identification and therapeutic evaluation. Many targeted therapies have been evaluated in preclinical models and patients with limited success. One major advance is the FDA approval of the MEK inhibitor selumetinib for the treatment of NF1-associated plexiform neurofibroma. Due to their anti-neoplastic, antioxidant, and anti-inflammatory properties, selected natural compounds could be useful as a primary therapy or as an adjuvant therapy prior to or following surgery and/or radiation for patients with tumor predisposition syndromes, as patients often take them as dietary supplements and for health enhancement purposes. Here we review the natural compounds that have been evaluated in NF models. Some have demonstrated potent anti-tumor effects and may become viable treatments in the future.
Collapse
Affiliation(s)
- Anusha Amaravathi
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Janet L Oblinger
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - D Bradley Welling
- Department of Otolaryngology Head & Neck Surgery, Harvard Medical School, Massachusetts Eye and Ear, and Massachusetts General Hospital, Boston, MA, United States
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University College of Pharmacy, Columbus, OH, United States
| | - Long-Sheng Chang
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States.,Department of Otolaryngology-Head & Neck Surgery, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
73
|
De Meyer M, Fijalkowski I, Jonckheere V, De Sutter D, Eyckerman S, Van Damme P. Capturing Salmonella SspH2 Host Targets in Virus-Like Particles. Front Med (Lausanne) 2021; 8:725072. [PMID: 34568381 PMCID: PMC8455821 DOI: 10.3389/fmed.2021.725072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/19/2021] [Indexed: 01/09/2023] Open
Abstract
In the context of host-pathogen interactions, gram-negative bacterial virulence factors, such as effectors, may be transferred from bacterial to eukaryotic host cytoplasm by multicomponent Type III protein secretion systems (T3SSs). Central to Salmonella enterica serovar Typhimurium (S. Typhimurium) pathogenesis is the secretion of over 40 effectors by two T3SSs encoded within pathogenicity islands SPI-1 and SPI-2. These effectors manipulate miscellaneous host cellular processes, such as cytoskeleton organization and immune signaling pathways, thereby permitting host colonization and bacterial dissemination. Recent research on effector biology provided mechanistic insights for some effectors. However, for many effectors, clearly defined roles and host target repertoires-further clarifying effector interconnectivity and virulence networks-are yet to be uncovered. Here we demonstrate the utility of the recently described viral-like particle trapping technology Virotrap as an effective approach to catalog S. Typhimurium effector-host protein complexes (EH-PCs). Mass spectrometry-based Virotrap analysis of the novel E3 ubiquitin ligase SspH2 previously shown to be implicated in modulating actin dynamics and immune signaling, exposed known host interactors PFN1 and-2 besides several putative novel, interconnected host targets. Network analysis revealed an actin (-binding) cluster among the significantly enriched hits for SspH2, consistent with the known localization of the S-palmitoylated effector with actin cytoskeleton components in the host. We show that Virotrap complements the current state-of-the-art toolkit to study protein complexes and represents a valuable means to screen for effector host targets in a high-throughput manner, thereby bridging the knowledge gap between effector-host interplay and pathogenesis.
Collapse
Affiliation(s)
- Margaux De Meyer
- iRIP Unit, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Vlaams Instituut voor Biotechnologie Center for Medical Biotechnology, Vlaams Instituut voor Biotechnologie, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Igor Fijalkowski
- iRIP Unit, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Veronique Jonckheere
- iRIP Unit, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Delphine De Sutter
- Vlaams Instituut voor Biotechnologie Center for Medical Biotechnology, Vlaams Instituut voor Biotechnologie, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sven Eyckerman
- Vlaams Instituut voor Biotechnologie Center for Medical Biotechnology, Vlaams Instituut voor Biotechnologie, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Petra Van Damme
- iRIP Unit, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
74
|
Campbell SL, Philips MR. Post-translational modification of RAS proteins. Curr Opin Struct Biol 2021; 71:180-192. [PMID: 34365229 DOI: 10.1016/j.sbi.2021.06.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 11/26/2022]
Abstract
Mutations of RAS genes drive cancer more frequently than any other oncogene. RAS proteins integrate signals from a wide array of receptors and initiate downstream signaling through pathways that control cellular growth. RAS proteins are fundamentally binary molecular switches in which the off/on state is determined by the binding of GDP or GTP, respectively. As such, the intrinsic and regulated nucleotide-binding and hydrolytic properties of the RAS GTPase were historically believed to account for the entirety of the regulation of RAS signaling. However, it is increasingly clear that RAS proteins are also regulated by a vast array of post-translational modifications (PTMs). The current challenge is to understand what are the functional consequences of these modifications and which are physiologically relevant. Because PTMs are catalyzed by enzymes that may offer targets for drug discovery, the study of RAS PTMs has been a high priority for RAS biologists.
Collapse
Affiliation(s)
| | - Mark R Philips
- Perlmutter Cancer Center, NYU Grossman School of Medicine, USA
| |
Collapse
|
75
|
Abstract
KRAS is one of the most commonly mutated oncogene and a negative predictive factor for a number of targeted therapies. Therefore, the development of targeting strategies against mutant KRAS is urgently needed. One potential strategy involves disruption of K-Ras membrane localization, which is necessary for its proper function. In this review, we summarize the current data about the importance of membrane-anchorage of K-Ras and provide a critical evaluation of this targeting paradigm focusing mainly on prenylation inhibition. Additionally, we performed a RAS mutation-specific analysis of prenylation-related drug sensitivity data from a publicly available database (https://depmap.org/repurposing/) of three classes of prenylation inhibitors: statins, N-bisphosphonates, and farnesyl-transferase inhibitors. We observed significant differences in sensitivity to N-bisphosphonates and farnesyl-transferase inhibitors depending on KRAS mutational status and tissue of origin. These observations emphasize the importance of factors affecting efficacy of prenylation inhibition, like distinct features of different KRAS mutations, tissue-specific mutational patterns, K-Ras turnover, and changes in regulation of prenylation process. Finally, we enlist the factors that might be responsible for the large discrepancy between the outcomes in preclinical and clinical studies including methodological pitfalls, the incomplete understanding of K-Ras protein turnover, and the variation of KRAS dependency in KRAS mutant tumors.
Collapse
|
76
|
Duan S, Pagano M. Ubiquitin ligases in cancer: Functions and clinical potentials. Cell Chem Biol 2021; 28:918-933. [PMID: 33974914 PMCID: PMC8286310 DOI: 10.1016/j.chembiol.2021.04.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
Ubiquitylation, a highly regulated post-translational modification, controls many cellular pathways that are critical to cell homeostasis. Ubiquitin ligases recruit substrates and promote ubiquitin transfer onto targets, inducing proteasomal degradation or non-degradative signaling. Accumulating evidence highlights the critical role of dysregulated ubiquitin ligases in processes associated with the initiation and progression of cancer. Depending on the substrate specificity and biological context, a ubiquitin ligase can act either as a tumor promoter or as a tumor suppressor. In this review, we focus on the regulatory roles of ubiquitin ligases and how perturbations of their functions contribute to cancer pathogenesis. We also briefly discuss current strategies for targeting or exploiting ubiquitin ligases for cancer therapy.
Collapse
Affiliation(s)
- Shanshan Duan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA; Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
77
|
Trivedi G, Inoue D, Zhang L. Targeting low-risk myelodysplastic syndrome with novel therapeutic strategies. Trends Mol Med 2021; 27:990-999. [PMID: 34257007 DOI: 10.1016/j.molmed.2021.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/26/2022]
Abstract
Myelodysplastic syndrome (MDS) is a group of hematopoietic disorders with limited treatment options. Anemia is a common symptom in MDS, and although erythropoiesis-stimulating agents such as erythropoietin, lenalidomide, and luspatercept are available to treat anemia, many MDS patients do not respond to these first-line therapies. Therefore, alternative drug development strategies are needed to improve therapeutic efficacy. Splicing modulators to correct splicing-related defects have shown promising results in clinical trials. Targeting differentiation of early erythroid progenitors to increase the erythroid output in MDS is another novel approach, which has shown encouraging results at the pre-clinical stage. Together, these therapeutic strategies provide new avenues to target MDS symptoms untreatable previously.
Collapse
Affiliation(s)
- Gaurang Trivedi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Genetics Program, Stony Brook University, Stony Brook, NY 11794, USA
| | - Daichi Inoue
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan
| | - Lingbo Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
78
|
Najm P, Zhao P, Steklov M, Sewduth RN, Baietti MF, Pandolfi S, Criem N, Lechat B, Maia TM, Van Haver D, Corthout N, Eyckerman S, Impens F, Sablina AA. Loss-of-Function Mutations in TRAF7 and KLF4 Cooperatively Activate RAS-Like GTPase Signaling and Promote Meningioma Development. Cancer Res 2021; 81:4218-4229. [PMID: 34215617 DOI: 10.1158/0008-5472.can-20-3669] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/02/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022]
Abstract
Meningiomas are the most common benign brain tumors. Mutations of the E3 ubiquitin ligase TRAF7 occur in 25% of meningiomas and commonly cooccur with mutations in KLF4, yet the functional link between TRAF7 and KLF4 mutations remains unclear. By generating an in vitro meningioma model derived from primary meningeal cells, we elucidated the cooperative interactions that promote meningioma development. By integrating TRAF7-driven ubiquitinome and proteome alterations in meningeal cells and the TRAF7 interactome, we identified TRAF7 as a proteostatic regulator of RAS-related small GTPases. Meningioma-associated TRAF7 mutations disrupted either its catalytic activity or its interaction with RAS GTPases. TRAF7 loss in meningeal cells altered actin dynamics and promoted anchorage-independent growth by inducing CDC42 and RAS signaling. TRAF deficiency-driven activation of the RAS/MAPK pathway promoted KLF4-dependent transcription that led to upregulation of the tumor-suppressive Semaphorin pathway, a negative regulator of small GTPases. KLF4 loss of function disrupted this negative feedback loop and enhanced mutant TRAF7-mediated cell transformation. Overall, this study provides new mechanistic insights into meningioma development, which could lead to novel treatment strategies. SIGNIFICANCE: The intricate molecular cross-talk between the ubiquitin ligase TRAF7 and the transcription factor KLF4 provides a first step toward the identification of new therapies for patients with meningioma.
Collapse
Affiliation(s)
- Paul Najm
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Peihua Zhao
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Mikhail Steklov
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Raj Nayan Sewduth
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Maria Francesca Baietti
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Silvia Pandolfi
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Nathan Criem
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Benoit Lechat
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Teresa Mendes Maia
- VIB Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,VIB Proteomics Core, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Delphi Van Haver
- VIB Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,VIB Proteomics Core, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Nikky Corthout
- VIB LiMoNe & Leuven Bio Imaging Core, VIB-KU Leuven Center For Brain & Disease Research, Leuven, Belgium
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Francis Impens
- VIB Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.,VIB Proteomics Core, VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Anna A Sablina
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium. .,Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
79
|
Abstract
PURPOSE OF REVIEW Splicing mutations are among the most recurrent genetic perturbations in hematological malignancies, highlighting an important impact of splicing regulation in hematopoietic development. However, compared to our understanding of splicing factor mutations in hematological malignancies, studies of splicing components and alternative splicing in normal hematopoiesis have been less well investigated. Here, we outline the most recent findings on splicing regulation in normal hematopoiesis and discuss the important questions in the field. RECENT FINDINGS Recent studies have highlighted the critical role of splicing regulation in hematopoiesis, including characterization of splicing components in normal hematopoiesis, investigation of transcriptional alterations on splicing, and identification of stage-specific alternative splicing events during hematopoietic development. SUMMARY These interesting findings provide insights on hematopoietic regulation at a co-transcriptional level. More high-throughput RNA ribonucleic acid (RNA) sequencing and functional genomic screens are needed to advance our knowledge of critical alternative splicing patterns in shaping hematopoiesis.
Collapse
Affiliation(s)
- Sisi Chen
- Human Oncology and Pathogenesis Program, Dept. of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Dept. of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
- Leukemia Service, Dept. of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| |
Collapse
|
80
|
Sarac Sivrikoz T, Basaran S, Has R, Karaman B, Kalelioglu IH, Kirgiz M, Altunoglu U, Yuksel A. Prenatal sonographic and cytogenetic/molecular findings of 22q11.2 microdeletion syndrome in 48 confirmed cases in a single tertiary center. Arch Gynecol Obstet 2021; 305:323-342. [PMID: 34145474 DOI: 10.1007/s00404-021-06125-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/12/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE We aimed to present the fetal ultrasound, cytogenetic/molecular testing and postmortem or postnatal clinical findings of cases with 22q11.2DS diagnosed prenatally. MATERIALS AND METHODS A retrospective medical record review of 48 prenatal cases diagnosed with 22q11.2DS were evaluated in our institution. Detailed ultrasound examination was performed on all fetuses. Postmortem and postnatal examinations were evaluated. The microdeletions were detected by karyotyping or microarray, then confirmed by FISH. Descriptive statistical analysis was performed. RESULTS Demographic data of 48 prenatal cases including 46 singletons and 1 dichorionic diamniotic twin pregnancy were evaluated. The most common extracardiac anomaly was skeletal system anomalies (25%), in which PEV was the most frequent one (20.8%). Polyhydramnios rate was detected as 31%, in 6.6% as an isolated finding. Microdeletion has been detected by karyotyping in 13 cases (13/47, 27.7%) (including 2 unbalanced translocations), by FISH in 28 cases (28/48, 58.3%), by microarray/a-CGH testing in 7 cases. Microarray analysis showed that in one case with unbalanced translocation had two consecutive deletions; one was proximal and other one distal to critical region and not encompassing TBX1 gene but CRKL and LZTR1 genes. CONCLUSION The current study demonstrates the whole spectrum of atypical phenotypic and genotypic variations of 22q11.2DS in the largest prenatal case series reported to date. Therefore, differential diagnosis should be considered not solely in CHD, but also in the presence of isolated clubfeet and polyhydramnios. Establishing the diagnosis in the prenatal period may allow a postnatal multidisciplinary approach, as well as affect the actual prevalence of the disease.
Collapse
Affiliation(s)
- Tugba Sarac Sivrikoz
- Division of Perinatology, Department of Obstetrics and Gynecology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Seher Basaran
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
- PREMED, Center for Genetic Diagnosis and Research, Mecidiyekoy, Istanbul, Turkey
| | - Recep Has
- Division of Perinatology, Department of Obstetrics and Gynecology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Birsen Karaman
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
- Department of Pediatric Basic Science, Child Health Institute, Istanbul University, Istanbul, Turkey
| | - Ibrahim Halil Kalelioglu
- Division of Perinatology, Department of Obstetrics and Gynecology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Melike Kirgiz
- PREMED, Center for Genetic Diagnosis and Research, Mecidiyekoy, Istanbul, Turkey
| | - Umut Altunoglu
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Atil Yuksel
- Division of Perinatology, Department of Obstetrics and Gynecology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
81
|
Talley MJ, Nardini D, Shabbir N, Ehrman LA, Prada CE, Waclaw RR. Generation of a Mouse Model to Study the Noonan Syndrome Gene Lztr1 in the Telencephalon. Front Cell Dev Biol 2021; 9:673995. [PMID: 34222248 PMCID: PMC8242193 DOI: 10.3389/fcell.2021.673995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/07/2021] [Indexed: 12/28/2022] Open
Abstract
The leucine zipper-like transcriptional regulator 1 (Lztr1) is a BTB-Kelch domain protein involved in RAS/MAPK pathway regulation. Mutations in LZTR1 are associated with cancers and Noonan syndrome, the most common RASopathy. The expression and function of Lztr1 in the developing brain remains poorly understood. Here we show that Lztr1 is expressed in distinct regions of the telencephalon, the most anterior region of the forebrain. Lztr1 expression was robust in the cortex, amygdala, hippocampus, and oligodendrocytes in the white matter. To gain insight into the impact of Lztr1 deficiency, we generated a conditional knockout (cKO) restricted to the telencephalon using Foxg1IREScre/+. Lztr1 cKOs are viable to postnatal stages and show reduced Lztr1 expression in the telencephalon. Interestingly, Lztr1 cKOs exhibit an increase in MAPK pathway activation in white matter regions and subsequently show an altered expression of stage-specific markers in the oligodendrocyte lineage with increased oligodendrocyte progenitor cells (OPCs) and decreased markers of oligodendrocyte differentiation. Moreover, Lztr1 cKOs also exhibit an increased expression of the astrocyte marker GFAP. These results highlight the generation of a new mouse model to study Lztr1 deficiency in the brain and reveal a novel role for Lztr1 in normal oligodendrocyte and astrocyte development in the telencephalon.
Collapse
Affiliation(s)
- Mary Jo Talley
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Diana Nardini
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Nisha Shabbir
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Lisa A Ehrman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Carlos E Prada
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Ronald R Waclaw
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
82
|
Total Anomalous Pulmonary Venous Connection in Mother and Son with a Central 22q11.2 Microdeletion. Case Rep Genet 2021; 2021:5539855. [PMID: 34221520 PMCID: PMC8213480 DOI: 10.1155/2021/5539855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/14/2021] [Accepted: 06/04/2021] [Indexed: 11/17/2022] Open
Abstract
In this clinical report, we describe a male infant and his mother, who had similar congenital heart defects. They were both diagnosed neonatally with total anomalous pulmonary venous connection (TAPVC) in combination with other heart defects. Neither of the two had any other organ malformations or dysmorphic facial features. SNP-array identified a central 22q11.2 microdeletion in the male infant and his mother as well as in the maternal grandmother and maternal aunt. The mother and the maternal aunt additionally harbored a 15q11.2 BP1-BP2 microdeletion. The maternal grandmother was unaffected by heart disease. However, heart computed tomography scan of the maternal aunt revealed a quadricuspid aortic valve. Additionally, the maternal grandmother and the maternal aunt both had significant learning disabilities. Rarely, TAPVC has been described in patients with the common 22q11.2 microdeletions. However, to the best of our knowledge, TAPVC has not previously been reported in patients with this small central 22q11.2 microdeletion. Haploinsufficiency of TBX1 was originally thought to be the main cause of the 22q11.2 microdeletion syndrome phenotype, but TBX1 is not included in the atypical central 22q11.2 microdeletion. Previous reports have suggested an association between TAPVC and the 15q11.2 BP1-BP2 microdeletion. Our report does not support this association as the maternal aunt, who harbors both microdeletions, is unaffected by TAPVC, and the male infant affected by TAPVC does not harbor the 15q11.2 BP1-BP2 microdeletion. Our findings support that genes located in the central 22q11.2 region are important for heart development and that haploinsufficiency of these genes plays a crucial role in the development of the rare heart defect TAPVC.
Collapse
|
83
|
Zhang H, Cao X, Wang J, Li Q, Zhao Y, Jin X. LZTR1: A promising adaptor of the CUL3 family. Oncol Lett 2021; 22:564. [PMID: 34113392 PMCID: PMC8185703 DOI: 10.3892/ol.2021.12825] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
The study of the disorders of ubiquitin-mediated proteasomal degradation may unravel the molecular basis of human diseases, such as cancer (prostate cancer, lung cancer and liver cancer, etc.) and nervous system disease (Parkinson's disease, Alzheimer's disease and Huntington's disease, etc.) and help in the design of new therapeutic methods. Leucine zipper-like transcription regulator 1 (LZTR1) is an important substrate recognition subunit of cullin-RING E3 ligase that plays an important role in the regulation of cellular functions. Mutations in LZTR1 and dysregulation of associated downstream signaling pathways contribute to the pathogenesis of Noonan syndrome (NS), glioblastoma and chronic myeloid leukemia. Understanding the molecular mechanism of the normal function of LZTR1 is thus critical for its eventual therapeutic targeting. In the present review, the structure and function of LZTR1 are described. Moreover, recent advances in the current knowledge of the functions of LZTR1 in NS, glioblastoma (GBM), chronic myeloid leukemia (CML) and schwannomatosis and the influence of LZTR1 mutations are also discussed, providing insight into how LZTR1 may be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Biochemistry and Molecular Biology; Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xinyi Cao
- Department of Biochemistry and Molecular Biology; Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jian Wang
- Department of Biochemistry and Molecular Biology; Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Qian Li
- Department of Biochemistry and Molecular Biology; Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yiting Zhao
- Department of Biochemistry and Molecular Biology; Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology; Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
84
|
Lauri A, Fasano G, Venditti M, Dallapiccola B, Tartaglia M. In vivo Functional Genomics for Undiagnosed Patients: The Impact of Small GTPases Signaling Dysregulation at Pan-Embryo Developmental Scale. Front Cell Dev Biol 2021; 9:642235. [PMID: 34124035 PMCID: PMC8194860 DOI: 10.3389/fcell.2021.642235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/12/2021] [Indexed: 12/24/2022] Open
Abstract
While individually rare, disorders affecting development collectively represent a substantial clinical, psychological, and socioeconomic burden to patients, families, and society. Insights into the molecular mechanisms underlying these disorders are required to speed up diagnosis, improve counseling, and optimize management toward targeted therapies. Genome sequencing is now unveiling previously unexplored genetic variations in undiagnosed patients, which require functional validation and mechanistic understanding, particularly when dealing with novel nosologic entities. Functional perturbations of key regulators acting on signals' intersections of evolutionarily conserved pathways in these pathological conditions hinder the fine balance between various developmental inputs governing morphogenesis and homeostasis. However, the distinct mechanisms by which these hubs orchestrate pathways to ensure the developmental coordinates are poorly understood. Integrative functional genomics implementing quantitative in vivo models of embryogenesis with subcellular precision in whole organisms contribute to answering these questions. Here, we review the current knowledge on genes and mechanisms critically involved in developmental syndromes and pediatric cancers, revealed by genomic sequencing and in vivo models such as insects, worms and fish. We focus on the monomeric GTPases of the RAS superfamily and their influence on crucial developmental signals and processes. We next discuss the effectiveness of exponentially growing functional assays employing tractable models to identify regulatory crossroads. Unprecedented sophistications are now possible in zebrafish, i.e., genome editing with single-nucleotide precision, nanoimaging, highly resolved recording of multiple small molecules activity, and simultaneous monitoring of brain circuits and complex behavioral response. These assets permit accurate real-time reporting of dynamic small GTPases-controlled processes in entire organisms, owning the potential to tackle rare disease mechanisms.
Collapse
Affiliation(s)
- Antonella Lauri
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | | | | | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| |
Collapse
|
85
|
Inoue D, Polaski JT, Taylor J, Castel P, Chen S, Kobayashi S, Hogg SJ, Hayashi Y, Pineda JMB, El Marabti E, Erickson C, Knorr K, Fukumoto M, Yamazaki H, Tanaka A, Fukui C, Lu SX, Durham BH, Liu B, Wang E, Mehta S, Zakheim D, Garippa R, Penson A, Chew GL, McCormick F, Bradley RK, Abdel-Wahab O. Minor intron retention drives clonal hematopoietic disorders and diverse cancer predisposition. Nat Genet 2021; 53:707-718. [PMID: 33846634 PMCID: PMC8177065 DOI: 10.1038/s41588-021-00828-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/24/2021] [Indexed: 12/13/2022]
Abstract
Most eukaryotes harbor two distinct pre-mRNA splicing machineries: the major spliceosome, which removes >99% of introns, and the minor spliceosome, which removes rare, evolutionarily conserved introns. Although hypothesized to serve important regulatory functions, physiologic roles of the minor spliceosome are not well understood. For example, the minor spliceosome component ZRSR2 is subject to recurrent, leukemia-associated mutations, yet functional connections among minor introns, hematopoiesis and cancers are unclear. Here, we identify that impaired minor intron excision via ZRSR2 loss enhances hematopoietic stem cell self-renewal. CRISPR screens mimicking nonsense-mediated decay of minor intron-containing mRNA species converged on LZTR1, a regulator of RAS-related GTPases. LZTR1 minor intron retention was also discovered in the RASopathy Noonan syndrome, due to intronic mutations disrupting splicing and diverse solid tumors. These data uncover minor intron recognition as a regulator of hematopoiesis, noncoding mutations within minor introns as potential cancer drivers and links among ZRSR2 mutations, LZTR1 regulation and leukemias.
Collapse
Affiliation(s)
- Daichi Inoue
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Human Oncology and Pathogenesis Program, Memorial Sloan KetterAbsolute numbers of live mature hematopoietic cellsing Cancer Center, New York, NY, USA
| | - Jacob T Polaski
- Public Health Sciences and Basic Sciences Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Justin Taylor
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pau Castel
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Sisi Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan KetterAbsolute numbers of live mature hematopoietic cellsing Cancer Center, New York, NY, USA
| | - Susumu Kobayashi
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Division of Cellular Therapy, The Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Simon J Hogg
- Human Oncology and Pathogenesis Program, Memorial Sloan KetterAbsolute numbers of live mature hematopoietic cellsing Cancer Center, New York, NY, USA
| | - Yasutaka Hayashi
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Jose Mario Bello Pineda
- Public Health Sciences and Basic Sciences Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Ettaib El Marabti
- Human Oncology and Pathogenesis Program, Memorial Sloan KetterAbsolute numbers of live mature hematopoietic cellsing Cancer Center, New York, NY, USA
| | - Caroline Erickson
- Human Oncology and Pathogenesis Program, Memorial Sloan KetterAbsolute numbers of live mature hematopoietic cellsing Cancer Center, New York, NY, USA
| | - Katherine Knorr
- Human Oncology and Pathogenesis Program, Memorial Sloan KetterAbsolute numbers of live mature hematopoietic cellsing Cancer Center, New York, NY, USA
| | - Miki Fukumoto
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Hiromi Yamazaki
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Atsushi Tanaka
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Chie Fukui
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Sydney X Lu
- Human Oncology and Pathogenesis Program, Memorial Sloan KetterAbsolute numbers of live mature hematopoietic cellsing Cancer Center, New York, NY, USA
| | - Benjamin H Durham
- Human Oncology and Pathogenesis Program, Memorial Sloan KetterAbsolute numbers of live mature hematopoietic cellsing Cancer Center, New York, NY, USA
| | - Bo Liu
- Human Oncology and Pathogenesis Program, Memorial Sloan KetterAbsolute numbers of live mature hematopoietic cellsing Cancer Center, New York, NY, USA
| | - Eric Wang
- Human Oncology and Pathogenesis Program, Memorial Sloan KetterAbsolute numbers of live mature hematopoietic cellsing Cancer Center, New York, NY, USA
| | - Sanjoy Mehta
- Gene Editing & Screening Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Zakheim
- Gene Editing & Screening Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ralph Garippa
- Gene Editing & Screening Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alex Penson
- Human Oncology and Pathogenesis Program, Memorial Sloan KetterAbsolute numbers of live mature hematopoietic cellsing Cancer Center, New York, NY, USA
| | - Guo-Liang Chew
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Robert K Bradley
- Public Health Sciences and Basic Sciences Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan KetterAbsolute numbers of live mature hematopoietic cellsing Cancer Center, New York, NY, USA.
| |
Collapse
|
86
|
Paladino A, D'Angelo F, Noviello TMR, Iavarone A, Ceccarelli M. Structural Model for Recruitment of RIT1 to the LZTR1 E3 Ligase: Evidences from an Integrated Computational Approach. J Chem Inf Model 2021; 61:1875-1888. [PMID: 33792302 PMCID: PMC8154269 DOI: 10.1021/acs.jcim.1c00296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Leucine-zipper transcription regulator 1 (LZTR1) is a highly mutated tumor suppressor gene, involved in the pathogenesis of several cancer types and developmental disorders. In proteasomal degradation, it acts as an adaptor protein responsible for the recognition and recruitment of substrates to be ubiquitinated in Cullin3-RING ligase E3 (CRL3) machinery. LZTR1 belongs to the BTB-Kelch family, a multi-domain protein where the Kelch propeller plays as the substrate recognition region and for which no experimental structure has been solved. Recently, large effort mutational analyses pointed to the role of disease-associated LZTR1 mutations in the RAS/MAPK signaling pathway and RIT1, a small Ras-related GTPase protein, has been identified by mass spectroscopy to interact with LZTR1. Hence, a better understanding of native structure, molecular mechanism, and substrate specificity would help clarifying the role of LZTR1 in pathological diseases, thus promoting advancement in the development of novel therapeutic strategies. Here, we address the interaction model between adaptor LZTR1 and substrate RIT1 by applying an integrated computational approach, including molecular modeling and docking techniques. We observe that the interaction model LZTR1-RIT1 is stabilized by an electrostatic bond network established between the two protein surfaces, which is reminiscent of homologous ubiquitin ligases complexes. Then, running MD simulations, we characterize differential conformational dynamics of the multi-domain LZTR1, offering interesting implications on the mechanistic role of specific point mutations. We identify G248R and R283Q as damaging mutations involved in the recognition process of the substrate RIT1 and R412C as a possible allosteric mutation from the Kelch to the C-term BTB-domain. Our findings provide important structural insights on targeting CRL3s for drug discovery.
Collapse
Affiliation(s)
- Antonella Paladino
- BIOGEM Istituto di Ricerche Genetiche "G. Salvatore", via Camporeale, Ariano Irpino 83031, Italy
| | - Fulvio D'Angelo
- BIOGEM Istituto di Ricerche Genetiche "G. Salvatore", via Camporeale, Ariano Irpino 83031, Italy.,Institute for Cancer Genetics, Columbia University, 1130 St Nicholas Ave, New York, New York 10032, United States
| | - Teresa Maria Rosaria Noviello
- BIOGEM Istituto di Ricerche Genetiche "G. Salvatore", via Camporeale, Ariano Irpino 83031, Italy.,Department of Electrical Engineering and Information Technology (DIETI), University of Naples "Federico II", Via Claudio 21, Naples 80128, Italy
| | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University, 1130 St Nicholas Ave, New York, New York 10032, United States.,Department of Pathology and Cell Biology, Columbia University Medical Center, 1130 St Nicholas Ave, New York , New York 10032 United States.,Department of Neurology, Columbia University Medical Center, 1130 St Nicholas Ave, New York, New York 10032, United States
| | - Michele Ceccarelli
- BIOGEM Istituto di Ricerche Genetiche "G. Salvatore", via Camporeale, Ariano Irpino 83031, Italy.,Department of Electrical Engineering and Information Technology (DIETI), University of Naples "Federico II", Via Claudio 21, Naples 80128, Italy
| |
Collapse
|
87
|
Lim S, Khoo R, Juang YC, Gopal P, Zhang H, Yeo C, Peh KM, Teo J, Ng S, Henry B, Partridge AW. Exquisitely Specific anti-KRAS Biodegraders Inform on the Cellular Prevalence of Nucleotide-Loaded States. ACS CENTRAL SCIENCE 2021; 7:274-291. [PMID: 33655066 PMCID: PMC7908030 DOI: 10.1021/acscentsci.0c01337] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 05/05/2023]
Abstract
Mutations to RAS proteins (H-, N-, and K-RAS) are among the most common oncogenic drivers, and tumors harboring these lesions are some of the most difficult to treat. Although covalent small molecules against KRASG12C have shown promising efficacy against lung cancers, traditional barriers remain for drugging the more prevalent KRASG12D and KRASG12V mutants. Targeted degradation has emerged as an attractive alternative approach, but for KRAS, identification of the required high-affinity ligands continues to be a challenge. Another significant hurdle is the discovery of a hybrid molecule that appends an E3 ligase-recruiting moiety in a manner that satisfies the precise geometries required for productive polyubiquitin transfer while maintaining favorable druglike properties. To gain insights into the advantages and feasibility of KRAS targeted degradation, we applied a protein-based degrader (biodegrader) approach. This workflow centers on the intracellular expression of a chimeric protein consisting of a high-affinity target-binding domain fused to an engineered E3 ligase adapter. A series of anti-RAS biodegraders spanning different RAS isoform/nucleotide-state specificities and leveraging different E3 ligases provided definitive evidence for RAS degradability. Further, these established that the functional consequences of KRAS degradation are context dependent. Of broader significance, using the exquisite degradation specificity that biodegraders can possess, we demonstrated how this technology can be applied to answer questions that other approaches cannot. Specifically, application of the GDP-state specific degrader uncovered the relative prevalence of the "off-state" of WT and various KRAS mutants in the cellular context. Finally, if delivery challenges can be addressed, anti-RAS biodegraders will be exciting candidates for clinical development.
Collapse
|
88
|
Nussinov R, Jang H, Gursoy A, Keskin O, Gaponenko V. Inhibition of Nonfunctional Ras. Cell Chem Biol 2021; 28:121-133. [PMID: 33440168 PMCID: PMC7897307 DOI: 10.1016/j.chembiol.2020.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/28/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Intuitively, functional states should be targeted; not nonfunctional ones. So why could drugging the inactive K-Ras4BG12Cwork-but drugging the inactive kinase will likely not? The reason is the distinct oncogenic mechanisms. Kinase driver mutations work by stabilizing the active state and/or destabilizing the inactive state. Either way, oncogenic kinases are mostly in the active state. Ras driver mutations work by quelling its deactivation mechanisms, GTP hydrolysis, and nucleotide exchange. Covalent inhibitors that bind to the inactive GDP-bound K-Ras4BG12C conformation can thus work. By contrast, in kinases, allosteric inhibitors work by altering the active-site conformation to favor orthosteric drugs. From the translational standpoint this distinction is vital: it expedites effective pharmaceutical development and extends the drug classification based on the mechanism of action. Collectively, here we postulate that drug action relates to blocking the mechanism of activation, not to whether the protein is in the active or inactive state.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, Istanbul 34450, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul 34450, Turkey
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
89
|
Kiel C, Matallanas D, Kolch W. The Ins and Outs of RAS Effector Complexes. Biomolecules 2021; 11:236. [PMID: 33562401 PMCID: PMC7915224 DOI: 10.3390/biom11020236] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
RAS oncogenes are among the most commonly mutated proteins in human cancers. They regulate a wide range of effector pathways that control cell proliferation, survival, differentiation, migration and metabolic status. Including aberrations in these pathways, RAS-dependent signaling is altered in more than half of human cancers. Targeting mutant RAS proteins and their downstream oncogenic signaling pathways has been elusive. However, recent results comprising detailed molecular studies, large scale omics studies and computational modeling have painted a new and more comprehensive portrait of RAS signaling that helps us to understand the intricacies of RAS, how its physiological and pathophysiological functions are regulated, and how we can target them. Here, we review these efforts particularly trying to relate the detailed mechanistic studies with global functional studies. We highlight the importance of computational modeling and data integration to derive an actionable understanding of RAS signaling that will allow us to design new mechanism-based therapies for RAS mutated cancers.
Collapse
Affiliation(s)
- Christina Kiel
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland; (C.K.); (D.M.)
- UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland; (C.K.); (D.M.)
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland; (C.K.); (D.M.)
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
90
|
The role of E3 ubiquitin ligases in the development and progression of glioblastoma. Cell Death Differ 2021; 28:522-537. [PMID: 33432111 PMCID: PMC7862665 DOI: 10.1038/s41418-020-00696-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Despite recent advances in our understanding of the disease, glioblastoma (GB) continues to have limited treatment options and carries a dismal prognosis for patients. Efforts to stratify this heterogeneous malignancy using molecular classifiers identified frequent alterations in targetable proteins belonging to several pathways including the receptor tyrosine kinase (RTK) and mitogen-activated protein kinase (MAPK) signalling pathways. However, these findings have failed to improve clinical outcomes for patients. In almost all cases, GB becomes refractory to standard-of-care therapy, and recent evidence suggests that disease recurrence may be associated with a subpopulation of cells known as glioma stem cells (GSCs). Therefore, there remains a significant unmet need for novel therapeutic strategies. E3 ubiquitin ligases are a family of >700 proteins that conjugate ubiquitin to target proteins, resulting in an array of cellular responses, including DNA repair, pro-survival signalling and protein degradation. Ubiquitin modifications on target proteins are diverse, ranging from mono-ubiquitination through to the formation of polyubiquitin chains and mixed chains. The specificity in substrate tagging and chain elongation is dictated by E3 ubiquitin ligases, which have essential regulatory roles in multiple aspects of brain cancer pathogenesis. In this review, we begin by briefly summarising the histological and molecular classification of GB. We comprehensively describe the roles of E3 ubiquitin ligases in RTK and MAPK, as well as other, commonly altered, oncogenic and tumour suppressive signalling pathways in GB. We also describe the role of E3 ligases in maintaining glioma stem cell populations and their function in promoting resistance to ionizing radiation (IR) and chemotherapy. Finally, we consider how our knowledge of E3 ligase biology may be used for future therapeutic interventions in GB, including the use of blood-brain barrier permeable proteolysis targeting chimeras (PROTACs).
Collapse
|
91
|
Zhao X, Li Z, Wang L, Lan Z, Lin F, Zhang W, Su Z. A Chinese family with Noonan syndrome caused by a heterozygous variant in LZTR1: a case report and literature review. BMC Endocr Disord 2021; 21:2. [PMID: 33407364 PMCID: PMC7788825 DOI: 10.1186/s12902-020-00666-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/11/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Noonan syndrome is an inherited disease involving multiple systems. More than 15 related genes have been discovered, among which LZTR1 was discovered recently. However, the pathogenesis and inheritance pattern of LZTR1 in Noonan syndrome have not yet been elucidated. CASE PRESENTATION We herein describe a family with LZTR1-related Noonan syndrome. In our study, the proband, sister, mother, maternal aunt and grandmother and female cousin showed the typical or atypical features of Noonan syndrome. Only 3 patients underwent the whole-exome sequencing analysis and results showed that the proband as well as her sister inherited the same heterozygous LZTR1 variant (c.1149 + 1G > T) from their affected mother. Moreover, the proband accompanied by growth hormone deficiency without other associated variants. CONCLUSION In a Chinese family with Noonan syndrome, we find that the c.1149 + 1G > T variant in LZTR1 gene shows a different autosomal dominant inheritance from previous reports, which changes our understanding of its inheritance and improves our understanding of Noonan syndrome.
Collapse
Affiliation(s)
- Xiu Zhao
- Endocrinology Department, Shenzhen Children's Hospital, 7019# Yitian Road, Futian District, Shenzhen, 518038, Guangdong Province, China
| | - Zhuoguang Li
- Endocrinology Department, Shenzhen Children's Hospital, 7019# Yitian Road, Futian District, Shenzhen, 518038, Guangdong Province, China
| | - Li Wang
- Endocrinology Department, Shenzhen Children's Hospital, 7019# Yitian Road, Futian District, Shenzhen, 518038, Guangdong Province, China
| | - Zhangzhang Lan
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong Province, China
| | - Feifei Lin
- Radiology Department, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Wenyong Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong Province, China
| | - Zhe Su
- Endocrinology Department, Shenzhen Children's Hospital, 7019# Yitian Road, Futian District, Shenzhen, 518038, Guangdong Province, China.
| |
Collapse
|
92
|
Lu J, Chen L. Molecular Profile of a Pituitary Rhabdomyosarcoma Arising From a Pituitary Macroadenoma: A Case Report. Front Endocrinol (Lausanne) 2021; 12:752361. [PMID: 34659131 PMCID: PMC8513866 DOI: 10.3389/fendo.2021.752361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/13/2021] [Indexed: 11/15/2022] Open
Abstract
Pituitary sarcoma arising in association with pituitary adenoma is an uncommon finding. Most cases of secondary sarcoma have been noted to arise with a median interval of 10.5 years post radiation. In this case report, we describe a 77-year-old man with an incidental discovery of a pituitary macroadenoma on magnetic resonance imaging (MRI) and underwent radiotherapy. Three years after radiation treatment, there was an acute change in clinical symptoms and increase in tumor size and mass effect on the optic chiasm which prompted surgical resection. A pituitary adenoma along with a separate spindle-cell sarcomatous component was identified in histology. Immunohistochemical stain for muscle markers confirmed a development of pituitary rhabdomyosarcoma (RMS). Molecular profiling of the tumor identified mutations in TP53, ATRX, LZTR1, and NF1. Despite its rarity, characterization of pituitary RMS with immunohistochemistry and molecular studies may provide an insight to its pathophysiological relationship with pituitary adenoma.
Collapse
|
93
|
Damnernsawad A, Bottomly D, Kurtz SE, Eide CA, McWeeney SK, Tyner JW, Nechiporuk T. Genome-wide CRISPR screen identifies regulators of MAPK and MTOR pathways mediating sorafenib resistance in acute myeloid leukemia. Haematologica 2020; 107:77-85. [PMID: 33375770 PMCID: PMC8719098 DOI: 10.3324/haematol.2020.257964] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Indexed: 11/11/2022] Open
Abstract
Drug resistance impedes the long-term effect of targeted therapies in acute myeloid leukemia (AML), necessitating the identification of mechanisms underlying resistance. Approximately 25% of AML patients carry FLT3 mutations and develop post-treatment insensitivity to FLT3 inhibitors, including sorafenib. Using a genomewide CRISPR screen, we identified LZTR1, NF1, TSC1 and TSC2, negative regulators of the MAPK and MTOR pathways, as mediators of resistance to sorafenib. Analyses of ex vivo drug sensitivity assays in samples from patients with FLT3-ITD AML revealed that lower expression of LZTR1, NF1, and TSC2 correlated with sensitivity to sorafenib. Importantly, MAPK and/or MTOR complex 1 (MTORC1) activity was upregulated in AML cells made resistant to several FLT3 inhibitors, including crenolanib, quizartinib, and sorafenib. These cells were sensitive to MEK inhibitors, and the combination of FLT3 and MEK inhibitors showed enhanced efficacy, suggesting the effectiveness of such treatment in AML patients with FLT3 mutations and those with resistance to FLT3 inhibitors.
Collapse
Affiliation(s)
- Alisa Damnernsawad
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA; Department of Biology, Faculty of Science, Mahidol University, Bangkok
| | - Daniel Bottomly
- Division of Bioinformatics and Computational Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - Stephen E Kurtz
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - Christopher A Eide
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - Shannon K McWeeney
- Division of Bioinformatics and Computational Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - Jeffrey W Tyner
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA; Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR.
| | - Tamilla Nechiporuk
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR.
| |
Collapse
|
94
|
Li J, Zou J, Littlejohn R, Liu J, Su H. Neddylation, an Emerging Mechanism Regulating Cardiac Development and Function. Front Physiol 2020; 11:612927. [PMID: 33391028 PMCID: PMC7773599 DOI: 10.3389/fphys.2020.612927] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Defects in protein quality control have been increasingly recognized as pathogenic factors in the development of heart failure, a persistent devastating disease lacking efficacious therapies. Ubiquitin and ubiquitin-like proteins, a family of post-translational modifying polypeptides, play important roles in controlling protein quality by maintaining the stability and functional diversity of the proteome. NEDD8 (neural precursor cell expressed, developmentally downregulated 8), a small ubiquitin-like protein, was discovered two decades ago but until recently the biological significance of NEDD8 modifications (neddylation) in the heart has not been appreciated. In this review, we summarize the current knowledge of the biology of neddylation, highlighting several mechanisms by which neddylation regulates the function of its downstream targets, and discuss the expanding roles for neddylation in cardiac physiology and disease, with an emphasis on cardiac protein quality control. Finally, we outline challenges linked to the study of neddylation in health and disease.
Collapse
Affiliation(s)
- Jie Li
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jianqiu Zou
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Rodney Littlejohn
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jinbao Liu
- Protein Modification and Degradation Lab, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
95
|
Asmar AJ, Beck DB, Werner A. Control of craniofacial and brain development by Cullin3-RING ubiquitin ligases: Lessons from human disease genetics. Exp Cell Res 2020; 396:112300. [PMID: 32986984 PMCID: PMC10627151 DOI: 10.1016/j.yexcr.2020.112300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 12/19/2022]
Abstract
Metazoan development relies on intricate cell differentiation, communication, and migration pathways, which ensure proper formation of specialized cell types, tissues, and organs. These pathways are crucially controlled by ubiquitylation, a reversible post-translational modification that regulates the stability, activity, localization, or interaction landscape of substrate proteins. Specificity of ubiquitylation is ensured by E3 ligases, which bind substrates and co-operate with E1 and E2 enzymes to mediate ubiquitin transfer. Cullin3-RING ligases (CRL3s) are a large class of multi-subunit E3s that have emerged as important regulators of cell differentiation and development. In particular, recent evidence from human disease genetics, animal models, and mechanistic studies have established their involvement in the control of craniofacial and brain development. Here, we summarize regulatory principles of CRL3 assembly, substrate recruitment, and ubiquitylation that allow this class of E3s to fulfill their manifold functions in development. We further review our current mechanistic understanding of how specific CRL3 complexes orchestrate neuroectodermal differentiation and highlight diseases associated with their dysregulation. Based on evidence from human disease genetics, we propose that other unknown CRL3 complexes must help coordinate craniofacial and brain development and discuss how combining emerging strategies from the field of disease gene discovery with biochemical and human pluripotent stem cell approaches will likely facilitate their identification.
Collapse
Affiliation(s)
- Anthony J Asmar
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David B Beck
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA; Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Achim Werner
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
96
|
Natural Products Attenuating Biosynthesis, Processing, and Activity of Ras Oncoproteins: State of the Art and Future Perspectives. Biomolecules 2020; 10:biom10111535. [PMID: 33182807 PMCID: PMC7698260 DOI: 10.3390/biom10111535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
RAS genes encode signaling proteins, which, in mammalian cells, act as molecular switches regulating critical cellular processes as proliferation, growth, differentiation, survival, motility, and metabolism in response to specific stimuli. Deregulation of Ras functions has a high impact on human health: gain-of-function point mutations in RAS genes are found in some developmental disorders and thirty percent of all human cancers, including the deadliest. For this reason, the pathogenic Ras variants represent important clinical targets against which to develop novel, effective, and possibly selective pharmacological inhibitors. Natural products represent a virtually unlimited resource of structurally different compounds from which one could draw on for this purpose, given the improvements in isolation and screening of active molecules from complex sources. After a summary of Ras proteins molecular and regulatory features and Ras-dependent pathways relevant for drug development, we point out the most promising inhibitory approaches, the known druggable sites of wild-type and oncogenic Ras mutants, and describe the known natural compounds capable of attenuating Ras signaling. Finally, we highlight critical issues and perspectives for the future selection of potential Ras inhibitors from natural sources.
Collapse
|
97
|
Rivera B, Nadaf J, Fahiminiya S, Apellaniz-Ruiz M, Saskin A, Chong AS, Sharma S, Wagener R, Revil T, Condello V, Harra Z, Hamel N, Sabbaghian N, Muchantef K, Thomas C, de Kock L, Hébert-Blouin MN, Bassenden AV, Rabenstein H, Mete O, Paschke R, Pusztaszeri MP, Paulus W, Berghuis A, Ragoussis J, Nikiforov YE, Siebert R, Albrecht S, Turcotte R, Hasselblatt M, Fabian MR, Foulkes WD. DGCR8 microprocessor defect characterizes familial multinodular goiter with schwannomatosis. J Clin Invest 2020; 130:1479-1490. [PMID: 31805011 DOI: 10.1172/jci130206] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/26/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUNDDICER1 is the only miRNA biogenesis component associated with an inherited tumor syndrome, featuring multinodular goiter (MNG) and rare pediatric-onset lesions. Other susceptibility genes for familial forms of MNG likely exist.METHODSWhole-exome sequencing of a kindred with early-onset MNG and schwannomatosis was followed by investigation of germline pathogenic variants that fully segregated with the disease. Genome-wide analyses were performed on 13 tissue samples from familial and nonfamilial DGCR8-E518K-positive tumors, including MNG, schwannomas, papillary thyroid cancers (PTCs), and Wilms tumors. miRNA profiles of 4 tissue types were compared, and sequencing of miRNA, pre-miRNA, and mRNA was performed in a subset of 9 schwannomas, 4 of which harbor DGCR8-E518K.RESULTSWe identified c.1552G>A;p.E518K in DGCR8, a microprocessor component located in 22q, in the kindred. The variant identified is a somatic hotspot in Wilms tumors and has been identified in 2 PTCs. Copy number loss of chromosome 22q, leading to loss of heterozygosity at the DGCR8 locus, was found in all 13 samples harboring c.1552G>A;p.E518K. miRNA profiling of PTCs, MNG, schwannomas, and Wilms tumors revealed a common profile among E518K hemizygous tumors. In vitro cleavage demonstrated improper processing of pre-miRNA by DGCR8-E518K. MicroRNA and RNA profiling show that this variant disrupts precursor microRNA production, impacting populations of canonical microRNAs and mirtrons.CONCLUSIONWe identified DGCR8 as the cause of an unreported autosomal dominant mendelian tumor susceptibility syndrome: familial multinodular goiter with schwannomatosis.FUNDINGCanadian Institutes of Health Research, Compute Canada, Alex's Lemonade Stand Foundation, the Mia Neri Foundation for Childhood Cancer, Cassa di Sovvenzioni e Risparmio fra il Personale della Banca d'Italia, and the KinderKrebsInitiative Buchholz/Holm-Seppensen.
Collapse
Affiliation(s)
- Barbara Rivera
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research and.,Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Javad Nadaf
- Lady Davis Institute for Medical Research and.,Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Somayyeh Fahiminiya
- Cancer Research Program, McGill University Health Centre, Montreal, Quebec, Canada
| | - Maria Apellaniz-Ruiz
- Lady Davis Institute for Medical Research and.,Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada.,Cancer Research Program, McGill University Health Centre, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Avi Saskin
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Division of Medical Genetics, Department of Medicine, McGill University Health Centre and Jewish General Hospital, Montreal, Quebec, Canada
| | - Anne-Sophie Chong
- Lady Davis Institute for Medical Research and.,Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Sahil Sharma
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Rabea Wagener
- Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Ulm, Germany
| | - Timothée Revil
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Génome Québec Innovation Centre, McGill University, Montreal, Quebec, Canada
| | - Vincenzo Condello
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Zineb Harra
- Lady Davis Institute for Medical Research and.,Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Nancy Hamel
- Cancer Research Program, McGill University Health Centre, Montreal, Quebec, Canada
| | - Nelly Sabbaghian
- Lady Davis Institute for Medical Research and.,Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada
| | - Karl Muchantef
- Department of Diagnostic Radiology, McGill University, Montreal, Quebec, Canada.,Pediatric Radiology, Montreal Children's Hospital, Montreal, Quebec, Canada
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Muenster, Muenster, Germany
| | - Leanne de Kock
- Lady Davis Institute for Medical Research and.,Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | | | | | - Hannah Rabenstein
- Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Ulm, Germany
| | - Ozgur Mete
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Pathology, University Health Network, Toronto, Ontario, Canada
| | - Ralf Paschke
- Department of Medicine.,Department of Oncology.,Department of Pathology.,Biochemistry and Molecular Biology Institute, and.,Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marc P Pusztaszeri
- Department of Pathology, Jewish General Hospital, Montreal, Quebec, Canada
| | - Werner Paulus
- Institute of Neuropathology, University Hospital Muenster, Muenster, Germany
| | - Albert Berghuis
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Jiannis Ragoussis
- Cancer Research Program, McGill University Health Centre, Montreal, Quebec, Canada.,Génome Québec Innovation Centre, McGill University, Montreal, Quebec, Canada
| | - Yuri E Nikiforov
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Reiner Siebert
- Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Ulm, Germany
| | - Steffen Albrecht
- Department of Pathology, Montreal Children's Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Robert Turcotte
- Division of Orthopedic Surgery (Experimental Surgery), McGill University, Montreal, Quebec, Canada.,Department of Surgical Oncology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Muenster, Muenster, Germany
| | - Marc R Fabian
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research and.,Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada.,Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada.,Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - William D Foulkes
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research and.,Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada.,Cancer Research Program, McGill University Health Centre, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Division of Medical Genetics, Department of Medicine, McGill University Health Centre and Jewish General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
98
|
Linnik Y, Pastakia D, Dryden I, Head DR, Mason EF. Primary central nervous system erythroid sarcoma with NFIA-CBFA2T3 translocation: A rare but distinct clinicopathologic entity. Am J Hematol 2020; 95:E299-E301. [PMID: 32697373 DOI: 10.1002/ajh.25944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Yevgeniy Linnik
- Department of Pathology, Microbiology, and Immunology, Division of Hematopathology Vanderbilt University Medical Center Nashville Tennessee
| | - Devang Pastakia
- Department of Pediatrics, Division of Pediatric Hematology and Oncology Monroe Carell Jr. Children's Hospital at Vanderbilt Nashville Tennessee
| | - Ian Dryden
- Department of Pathology, Microbiology, and Immunology, Division of Neuropathology Vanderbilt University Medical Center Nashville Tennessee
| | - David R. Head
- Department of Pathology, Microbiology, and Immunology, Division of Hematopathology Vanderbilt University Medical Center Nashville Tennessee
| | - Emily F. Mason
- Department of Pathology, Microbiology, and Immunology, Division of Hematopathology Vanderbilt University Medical Center Nashville Tennessee
| |
Collapse
|
99
|
Vere G, Kealy R, Kessler BM, Pinto-Fernandez A. Ubiquitomics: An Overview and Future. Biomolecules 2020; 10:E1453. [PMID: 33080838 PMCID: PMC7603029 DOI: 10.3390/biom10101453] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Covalent attachment of ubiquitin, a small globular polypeptide, to protein substrates is a key post-translational modification that determines the fate, function, and turnover of most cellular proteins. Ubiquitin modification exists as mono- or polyubiquitin chains involving multiple ways how ubiquitin C-termini are connected to lysine, perhaps other amino acid side chains, and N-termini of proteins, often including branching of the ubiquitin chains. Understanding this enormous complexity in protein ubiquitination, the so-called 'ubiquitin code', in combination with the ∼1000 enzymes involved in controlling ubiquitin recognition, conjugation, and deconjugation, calls for novel developments in analytical techniques. Here, we review different headways in the field mainly driven by mass spectrometry and chemical biology, referred to as "ubiquitomics", aiming to understand this system's biological diversity.
Collapse
Affiliation(s)
- George Vere
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; (G.V.); (B.M.K.)
| | - Rachel Kealy
- St Anne’s College, University of Oxford, Oxford OX2 6HS, UK;
| | - Benedikt M. Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; (G.V.); (B.M.K.)
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
- Chinese Academy of Medical Sciences Oxford Institute (CAMS), Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Adan Pinto-Fernandez
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK; (G.V.); (B.M.K.)
| |
Collapse
|
100
|
Quadri R, Sertic S, Muzi-Falconi M. gRASping Depolarization: Contribution of RAS GTPases to Mitotic Polarity Clusters Resolution. Front Cell Dev Biol 2020; 8:589993. [PMID: 33178703 PMCID: PMC7593642 DOI: 10.3389/fcell.2020.589993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/31/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Roberto Quadri
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Sarah Sertic
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Marco Muzi-Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|