51
|
Xie D, Liu Y, Xu F, Dang Z, Li M, Zhang Q, Dang Z. Immune microenvironment and immunotherapy in hepatocellular carcinoma: mechanisms and advances. Front Immunol 2025; 16:1581098. [PMID: 40242773 PMCID: PMC12000014 DOI: 10.3389/fimmu.2025.1581098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality globally. The tumor microenvironment (TME) plays a pivotal role in HCC progression, characterized by dynamic interactions between stromal components, immune cells, and tumor cells. Key immune players, including tumor-associated macrophages (TAMs), tumor-infiltrating lymphocytes (TILs), cytotoxic T lymphocytes (CTLs), regulatory T cells (Tregs), MDSCs, dendritic cells (DCs), and natural killer (NK) cells, contribute to immune evasion and tumor progression. Recent advances in immunotherapy, such as immune checkpoint inhibitors (ICIs), cancer vaccines, adoptive cell therapy (ACT), and combination therapies, have shown promise in enhancing anti-tumor responses. Dual ICI combinations, ICIs with molecular targeted drugs, and integration with local treatments or radiotherapy have demonstrated improved outcomes in HCC patients. This review highlights the evolving understanding of the immune microenvironment and the therapeutic potential of immunotherapeutic strategies in HCC management.
Collapse
Affiliation(s)
- Dong Xie
- Diagnosis and Treatment Center for Digestive Diseases of Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Yang Liu
- College of Traditional Chinese Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Fangbiao Xu
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhibo Dang
- Diagnosis and Treatment Center for Digestive Diseases of Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Mengge Li
- Diagnosis and Treatment Center for Digestive Diseases of Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Qinsheng Zhang
- Diagnosis and Treatment Center for Digestive Diseases of Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Zhongqin Dang
- Diagnosis and Treatment Center for Digestive Diseases of Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
52
|
Rezazadeh‐Gavgani E, Majidazar R, Lotfinejad P, Kazemi T, Shamekh A. Immune Checkpoint Molecules: A Review on Pathways and Immunotherapy Implications. Immun Inflamm Dis 2025; 13:e70196. [PMID: 40243372 PMCID: PMC12004596 DOI: 10.1002/iid3.70196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Today, treating cancer patients with monoclonal antibodies (mAbs), by targeting immune checkpoints, is one of the most outstanding immunotherapeutic methods. Immune checkpoints are special molecules having regulatory role in immune system responses. Once these molecules are presented on cancer cells, these cells will be capable of evading the immune system through their own specific pathways. This Evasion can be prevented by counterbalancing immune system responses with immune checkpoints related antibodies. AIMS The current study aimed to highlight immunotherapy and its methods, describe the immune checkpoints pathways, outline the immune checkpoint inhibitors (ICIs), and recent advances in this field, and sketch an outlook on the best treatment options for the most prevalent cancers. MATERIALS & METHODS This research implemented a narrative review method. A comprehensive literature review on the history, molecular and cellular biology, and the clinical aspects of immune checkpoint molecules was performed to illustrate the pathways involved in various cancers. Also, currently-available and future potential immunotherapies targeting these pathways were extracted from the searched studies. RESULTS The immune checkpoint family consists of many molecules, including CTLA-4, PD-1, PD-L1, LAG-3, TIM-3, and TIGIT. Attempts to modify these molecules in cancer treatment led to the development of therapeutic monoclonal antibodies. Most of these antibodies have entered clinical studies and some of them have been approved by the Food and Drug Administration (FDA) to be used in cancer patients' treatment plans. DISCUSSION With these novel treatments and the combination therapies they offer, there is also hope for better treatment outcomes for the previously untreatable metastatic cancers. In spite of the beneficial aspects of immune checkpoint therapy, similar to other treatments, they may cause side effects in some patients. Therefore, more studies are needed to reduce the probable side effects and uncover their underlying mechanism. CONCLUSION Based on the data shown in this review, there is still a lack of knowledge about the complete properties of ICIs and the possible combination therapies that we may be able to implement to achieve a better treatment response in cancer patients.
Collapse
Affiliation(s)
| | - Reza Majidazar
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Parisa Lotfinejad
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Department of ImmunologyTabriz University of Medical SciencesTabrizIran
| | - Tohid Kazemi
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Department of ImmunologyTabriz University of Medical SciencesTabrizIran
| | - Ali Shamekh
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
- Aging Research InstituteTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
53
|
Khalafallah SA, Mohammed Elzein A, Faris IM, Attaelmanan GA, Alamin MF, Almleeh A, Bader M, Alfaki M. Identification of Hub Genes and Pathways in Preinfusion Chimeric Antigen Receptor (CAR) T-cell Products Associated With Cytokine Release Syndrome. Cureus 2025; 17:e82155. [PMID: 40370902 PMCID: PMC12076287 DOI: 10.7759/cureus.82155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T-cell therapy has transformed cancer management over the past decades, offering new hope to many patients. However, its effectiveness is often limited due to cytokine release syndrome (CRS), a life-threatening inflammatory response. Despite its clinical relevance, the molecular mechanisms underlying CRS, specifically in CAR T-cell products, remain poorly understood. This study aims to identify hub genes and pathways in preinfusion CAR T-cell products associated with CRS development and evaluate their potential as therapeutic targets through drug-gene interaction analysis and immune cell correlation profiling. METHODS We examined gene expression data from 43 preinfusion clusters of differentiation 22 of CAR T-cell samples (CD22+), sourced from the Gene Expression Omnibus dataset GSE200296. Using the linear models for microarray data package, we identified differences in gene expression and conducted enrichment analyses to explore relevant biological pathways, including Kyoto Encyclopedia of Genes and Genomes and Gene Ontology terms. We built protein-protein interaction networks using the Search Tool for Retrieval of Interacting Genes/Proteins database to understand how these genes interact and pinpointed central "hub genes" with Cytoscape and the cytoHubba plugin. Our findings were validated using the GeneCards database (Weizmann Institute of Science, Israel) and an independent CRS-related dataset (GSE164805). Additionally, we analyzed immune cell populations and explored potential drug-gene interactions. RESULTS Our study identified 24 genes with changed expression levels: 16 were downregulated and eight were upregulated. We identified five hub genes, interleukin (IL)1B, IL15, CD276, NCR2, and CCL17, as key contributors in CRS, which were primarily implicated in immune-related pathways, including cytokine-cytokine receptor interactions, IL17 signaling, and TNF signaling. These genes were especially expressed in monocytes, macrophages, and dendritic cells, confirming that those immune cell types play a critical role in CRS development. Through drug-gene interaction analysis, we found prospective therapies, such as enoblituzumab (targeting CD276) and canakinumab (targeting IL1B), which might assist in reducing CRS severity. CONCLUSION The study highlights IL1B, IL15, CD276, NCR2, and CCL17 as key CRS genes in preinfusion CAR T-cell products. Their dysregulation activity may contribute to the increased inflammation noted in CRS, pointing to a loss of regulatory control. Bringing us closer to better patient outcomes, these findings not only suggest that these genes could serve as valuable biomarkers for predicting CRS but also open the way for the development of more precise treatments such as combining drugs such as enoblituzumab and canakinumab, which might assist in reducing CRS severity and making CAR T-cell therapy safer and more effective, ultimately improving patient lives.
Collapse
Affiliation(s)
- Somia A Khalafallah
- Department of Hematology and Immunohematology, Ibn Sina University, Khartoum, SDN
| | - Anas Mohammed Elzein
- Department of Molecular and Cellular Medicine, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, CHN
| | - Israa M Faris
- Department of Fertilization and Artificial Insemination, Istanbul University-Cerrahpasa, Istanbul, TUR
| | | | - Marwa F Alamin
- Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum, SDN
| | - Alaa Almleeh
- Department of Biotechnology, School of Pharmacy, Ahfad University for Women, Omdurman, SDN
| | - Mohammed Bader
- Department of Surgery, Faculty of Medicine, University of Khartoum, Khartoum, SDN
| | - Mohamed Alfaki
- Department of Software Engineering, Faculty of Computer Science, Al Neelain University, Khartoum, SDN
| |
Collapse
|
54
|
Reiss KA, Angelos MG, Dees EC, Yuan Y, Ueno NT, Pohlmann PR, Johnson ML, Chao J, Shestova O, Serody JS, Schmierer M, Kremp M, Ball M, Qureshi R, Schott BH, Sonawane P, DeLong SC, Christiano M, Swaby RF, Abramson S, Locke K, Barton D, Kennedy E, Gill S, Cushing D, Klichinsky M, Condamine T, Abdou Y. CAR-macrophage therapy for HER2-overexpressing advanced solid tumors: a phase 1 trial. Nat Med 2025; 31:1171-1182. [PMID: 39920391 DOI: 10.1038/s41591-025-03495-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025]
Abstract
Chimeric antigen receptor (CAR) macrophages (CAR-Ms) mediate antitumor immunity via phagocytosis, cytokine release, activation of the tumor microenvironment and antigen presentation. We report results from a non-prespecified interim analysis of a first-in-human, phase 1 clinical trial of CT-0508, an anti-human epidermal growth factor receptor 2 (HER2) CAR-M in patients with advanced HER2-overexpressing tumors. Fourteen patients were treated across two different regimens. Patients with breast cancer and gastroesophageal cancer were primarily enrolled and had to have demonstrated overexpression of HER2 according to the American Society of Clinical Oncology/College of American Pathologists guidelines (HER2 immunohistochemistry 3+ or immunohistochemistry 2+/in situ hybridization-amplified). No lymphodepletion chemotherapy was used before infusion. The primary endpoints were safety and CAR-M manufacturability. Secondary endpoints included cellular kinetics and efficacy using objective response rate, overall survival, progression-free survival and duration of response. No dose-limiting toxicities, severe cytokine release syndrome (≥grade 3) or immune effector cell-associated neurotoxicity syndrome were observed; 44% (n = 4 of 9, 95% confidence interval = 14-79%) of HER2 3+ tumors achieved stable disease as best overall response 8 weeks after treatment. No meaningful activity was observed in the HER2 2+ population (n = 5). Correlative analyses of serial biopsies confirmed that CT-0508 traffics to and remodels the tumor microenvironment, resulting in expansion of CD8+ T cells. These findings demonstrate the preliminary safety, tolerability and manufacturing feasibility of CT-0508 for HER2+ tumors. ClinicalTrials.gov registration: NCT04660929 .
Collapse
Affiliation(s)
- Kim A Reiss
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA, USA
| | - Mathew G Angelos
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA, USA
| | - E Claire Dees
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Yuan Yuan
- City of Hope Cancer Center, Duarte, CA, USA
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Naoto T Ueno
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- University of Hawai'i Cancer Center, Honolulu, HI, USA
| | - Paula R Pohlmann
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Olga Shestova
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA, USA
| | - Jonathan S Serody
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | | | | | | | - Ken Locke
- Carisma Therapeutics, Philadelphia, PA, USA
| | | | | | - Saar Gill
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA, USA
| | | | | | | | - Yara Abdou
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| |
Collapse
|
55
|
Tong QS, Huang H, Yu HH, Liu R, Shen S, Du JZ. A size-switchable nanocluster remodels the immunosuppressive microenvironment of tumor and tumor-draining lymph nodes for improved cancer immunotherapy. Biomaterials 2025; 315:122910. [PMID: 39467399 DOI: 10.1016/j.biomaterials.2024.122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Remodeling the immunosuppressive tumor microenvironment (TME) by immunomodulators has been well studied in the past years. However, strategies that enable concurrent modulation of both the immunosuppressive TME and tumor-draining lymph nodes (TDLNs) are still in the infancy. Here, we report a pH-sensitive size-switchable nanocluster, SPN-R848, to achieve simultaneous accumulation in tumor and TDLNs for immune activation. SPN-R848 with original size around 150 nm was formed by self-assembly of resiquimod (R848)-conjugated polyamidoamine (PAMAM) derivative, which could disintegrate into its small constituents (~ 8 nm) upon exposure to tumor acidity. The size reduction not only enhanced their accumulation and perfusion in the primary tumor, but promoted their transport and distribution in TDLNs. Accordingly, SPN-R848 remarkably remodeled the immunosuppressive TME by polarizing M2 to M1 macrophages and activated dendritic cells (DCs) in TDLNs, which synergistically facilitated the production and stimulation of cytotoxic T cells, and inhibited tumor growth in breast cancer and melanoma mouse models. Our study suggests that co-activation of immune microenvironments in both tumor and TDLNs may represent a promising direction to elicit strong antitumor immunity.
Collapse
Affiliation(s)
- Qi-Song Tong
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China; School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Hua Huang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Hui-Han Yu
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Rong Liu
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Song Shen
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China.
| | - Jin-Zhi Du
- School of Medicine, South China University of Technology, Guangzhou, 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Biomedical Engineering, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
56
|
Belyaev IB, Griaznova OY, Yaremenko AV, Deyev SM, Zelepukin IV. Beyond the EPR effect: Intravital microscopy analysis of nanoparticle drug delivery to tumors. Adv Drug Deliv Rev 2025; 219:115550. [PMID: 40021012 DOI: 10.1016/j.addr.2025.115550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
Delivery of nanoparticles (NPs) to solid tumors has long relied on enhanced permeability and retention (EPR) effect, involving permeation of NPs through a leaky vasculature with prolonged retention by reduced lymphatic drainage in tumor. Recent research studies and clinical data challenge EPR concept, revealing alternative pathways and approaches of NP delivery. The area was significantly impacted by the implementation of intravital optical microscopy, unraveling delivery mechanisms at cellular level in vivo. This review presents analysis of the reasons for EPR heterogeneity in tumors and describes non-EPR based concepts for drug delivery, which can supplement the current paradigm. One of the approaches is targeting tumor endothelium by NPs with subsequent intravascular drug release and gradient-driven drug transport to tumor interstitium. Others exploit various immune cells for tumor infiltration and breaking endothelial barriers. Finally, we discuss the involvement of active transcytosis through endothelial cells in NP delivery. This review aims to inspire further understanding of the process of NP extravasation in tumors and provide insights for developing next-generation nanomedicines with improved delivery.
Collapse
Affiliation(s)
- Iaroslav B Belyaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands
| | - Olga Yu Griaznova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | | | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Ivan V Zelepukin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala 75123, Sweden.
| |
Collapse
|
57
|
Frisch AT, Wang Y, Xie B, Yang A, Ford BR, Joshi S, Kedziora KM, Peralta R, Wilfahrt D, Mullett SJ, Spahr K, Lontos K, Jana JA, Dean VG, Gunn WG, Gelhaus S, Poholek AC, Rivadeneira DB, Delgoffe GM. Redirecting glucose flux during in vitro expansion generates epigenetically and metabolically superior T cells for cancer immunotherapy. Cell Metab 2025; 37:870-885.e8. [PMID: 39879981 PMCID: PMC12101091 DOI: 10.1016/j.cmet.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 10/18/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025]
Abstract
Cellular therapies are living drugs whose efficacy depends on persistence and survival. Expansion of therapeutic T cells employs hypermetabolic culture conditions to promote T cell expansion. We show that typical in vitro expansion conditions generate metabolically and functionally impaired T cells more reliant on aerobic glycolysis than those expanding in vivo. We used dichloroacetate (DCA) to modulate glycolytic metabolism during expansion, resulting in elevated mitochondrial capacity, stemness, and improved antitumor efficacy in murine T cell receptor (TCR)-Tg and human CAR-T cells. DCA-conditioned T cells surprisingly show no elevated intratumoral effector function but rather have improved engraftment. DCA conditioning decreases reliance on glucose, promoting usage of serum-prevalent physiologic carbon sources. Further, DCA conditioning promotes metabolic flux from mitochondria to chromatin, resulting in increased histone acetylation at key longevity genes. Thus, hyperglycemic culture conditions promote expansion at the expense of metabolic flexibility and suggest pharmacologic metabolic rewiring as a beneficial strategy for improvement of cellular immunotherapies.
Collapse
Affiliation(s)
- Andrew T Frisch
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Yiyang Wang
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tsinghua University, Beijing, China
| | - Bingxian Xie
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Aaron Yang
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, UPMC Children's Hospital, Pittsburgh, PA, USA
| | - B Rhodes Ford
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, UPMC Children's Hospital, Pittsburgh, PA, USA
| | - Supriya Joshi
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Katarzyna M Kedziora
- Department of Cell Biology, Center for Biologic Imaging (CBI), University of Pittsburgh, Pittsburgh, PA, USA
| | - Ronal Peralta
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Drew Wilfahrt
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Steven J Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kellie Spahr
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Konstantinos Lontos
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Jessica A Jana
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Victoria G Dean
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - William G Gunn
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Stacy Gelhaus
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanda C Poholek
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, UPMC Children's Hospital, Pittsburgh, PA, USA
| | - Dayana B Rivadeneira
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Greg M Delgoffe
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
58
|
Chandrasekar AP, DiGuardo MA, Winters JL, Greiner CW, Dingli D, Alkhateeb HB, Jacob EK. Increasing use of CAR-T therapy occurs in conjunction with decreasing stem cell transplants with stable resource usage over a 6-year period: Resource utilization implications. Transfusion 2025; 65:719-724. [PMID: 39957566 DOI: 10.1111/trf.18167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND Since FDA approval in 2017, CAR-T therapy has seen rapid clinical adoption. Shifting clinical trends have emerged with increasing utilization of CAR-T therapies and a downward trend in HSCTs. Given the overlapping resources required for the manufacture and storage of these products, we sought to examine trends over a 6-year period. METHODS The apheresis patient database and Lab database were reviewed to compile a list of patients that underwent either CAR-T or HSCT (autologous) collections, and/or received CAR-T or autologous HSCT infusions between January 1, 2018 and December 12, 2023. This was further examined by year and disease group. RESULTS The total number of patients collecting for CAR-T increased from 52 in 2018 to 150 in 2023 (slope = 21.97; p = .0013), accompanied by a decrease in the number of patients collecting for HSCT, from 425 in 2018 to 341 in 2023 (slope = -21.2; p = .0177). Neither total number (calculated as number of HSCT + CAR-T) of patients collected (mean 476 + 20.4 per year), nor collection procedures (mean 972 ± 75.8 per year) changed significantly over the 6-year period. The total number of CAR-T infusions increased from 24 in 2018 to 111 in 2023 (slope = 17.7; p = .004), with a decrease in auto-HSCT from 400 to 289 (slope = -28.7; p = .008). The overall number of infusions (calculated as number of HSCT + CAR-T) did not change significantly (slope = -10.9; p = .13) over the 6-year period. DISCUSSION Our findings confirm the increasing adoption of CAR-T therapy occurring alongside a decreasing stem-cell transplants, with stable overall resource utilization.
Collapse
Affiliation(s)
- Aswath P Chandrasekar
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Margret A DiGuardo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jeffrey L Winters
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Carl W Greiner
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - David Dingli
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Eapen K Jacob
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
59
|
Cheng L, Wang Y, Zhang Y. Dying to survive: harnessing inflammatory cell death for better immunotherapy. Trends Cancer 2025; 11:376-402. [PMID: 39986988 DOI: 10.1016/j.trecan.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/24/2025]
Abstract
Immunotherapy has transformed cancer treatment paradigms, but its effectiveness depends largely on the immunogenicity of the tumor. Unfortunately, the high resemblance of cancer to normal tissues makes most tumors immunologically 'cold', with a poor response to immunotherapy. Danger signals are critical for breaking immune tolerance and mobilizing robust, long-lasting antitumor immunity. Recent studies have identified inflammatory cell death modalities and their power in providing danger signals to trigger optimal tumor suppression. However, key mediators of inflammatory cell death are preferentially silenced during early tumor immunoediting. Strategies to rejuvenate inflammatory cell death hold great promise for broadening immunotherapy-responsive tumors. In this review, we examine how inflammatory cell death enhances tumor immunogenicity, how it is suppressed during immunoediting, and the potential of harnessing it for improved immunotherapy.
Collapse
Affiliation(s)
- Long Cheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yibo Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ying Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
60
|
Kim K, Chihara D. The current understanding of chimeric antigen receptor (CAR) T-cell therapy for older patients with relapsed or refractory large B-cell lymphoma. Leuk Lymphoma 2025; 66:617-627. [PMID: 39688323 DOI: 10.1080/10428194.2024.2436606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/29/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has changed treatment landscape of relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL) and more older patients have been treated with curative intent for R/R disease, including patients previously deemed unfit for autologous stem-cell transplant with a broader application of CAR T-cell therapy. Due to the unique CAR T-cell-related toxicity and special attention needed in treating older patients, optimal patient selection and management of CAR T-cell therapy in older patients are becoming more critical. More data are emerging in the field; multiple approaches, such as geriatric and frailty assessment and multi-disciplinary work with geriatrics, are being studied for CAR T-cell therapy application. Studies support the safe use of CAR T-cell therapy in older patients, however, application of geriatric assessment tools and maximizing multi-disciplinary approach to tailor supportive care are critical to reduce morbidity and improve outcomes in older patients.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/mortality
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Aged
- Neoplasm Recurrence, Local/therapy
- Drug Resistance, Neoplasm
- Treatment Outcome
- Geriatric Assessment
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Age Factors
- Aged, 80 and over
- Recurrence
Collapse
Affiliation(s)
- Kunhwa Kim
- Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Dai Chihara
- Department of Lymphoma-Myeloma, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
61
|
Rutz AC, Weber KS, Forberg AL, Nik A, Unrau J, Hemmen AJ, Minicozzi M, Hartert KT. MYC networks associate with decreased CD8 T-cell presence in diffuse large B-cell lymphoma and may be addressed by the synergistic combination of AZD4573 and Selinexor - a preliminary analysis. Ann Hematol 2025; 104:2403-2416. [PMID: 40064656 PMCID: PMC12052866 DOI: 10.1007/s00277-025-06298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 02/28/2025] [Indexed: 05/06/2025]
Abstract
Diffuse Large B-cell Lymphoma (DLBCL) is a genomically-heterogenous disease affecting over 70,000 patients per year that presents a clinical challenge despite the success of frontline regimens and second-line Chimeric Antigen receptor T-cell (CAR-T) therapy. Recently, genomic alterations and tumor microenvironment features associated with poor CAR-T response have been identified, with MYC amplification emerging in new analyses. This retrospective analysis aimed to integrate various data to identify genomic partnerships capable of providing added clarity and actionable treatment targets within this population. Publicly-available data were analyzed for differential expression based on MYC, 24-month event-free survival (EFS24) status, and CAR-T response. Notable T-cell partner genes such as IL7R (FDR = 0.00150) and CD58 (FDR = 5.375E-06) and cell death mediators such as PDCD1LG2 (FDR = 4.061E-06) were significantly lost in patients with High/Altered MYC that also failed EFS24. CD8 T-cell presence was also significantly lower in High/Altered MYC de-novo patients (p = 0.00112) and CAR-T non-responders (p = 0.00835). De-novo patients with both High/Altered MYC and CD8 T-cell absence faced a significantly inferior survival compared to counterparts with only one factor or neither (p = 0.0226). rrDLBCL patients reflected similar oncogenic pathways associated with greater scRNA MYC expression. In vitro application of the CDK9 inhibitor AZD4573 and XPO1 inhibitor Selinexor significantly reduced DLBCL cell line viability as single agents and produced synergistic results when applied in combination. Our analysis presents key associations between the MYC oncogene and depleted TME presence capable of providing clarity within the evolving precision CAR-T treatment landscape.
Collapse
Affiliation(s)
- Alison C Rutz
- Department of Biological Sciences, Minnesota State University Mankato, Mankato, USA
| | - Kennedee S Weber
- Department of Biological Sciences, Minnesota State University Mankato, Mankato, USA
| | - Aidan L Forberg
- Department of Biological Sciences, Minnesota State University Mankato, Mankato, USA
| | - Adam Nik
- Department of Biological Sciences, Minnesota State University Mankato, Mankato, USA
| | - Jordan Unrau
- Department of Biological Sciences, Minnesota State University Mankato, Mankato, USA
| | - Ainslee J Hemmen
- Department of Biological Sciences, Minnesota State University Mankato, Mankato, USA
| | - Michael Minicozzi
- Department of Biological Sciences, Minnesota State University Mankato, Mankato, USA
| | - Keenan T Hartert
- Department of Biological Sciences, Minnesota State University Mankato, Mankato, USA.
| |
Collapse
|
62
|
Lim J, Oh D, Cheng M, Chintapula U, Liu S, Reynolds D, Zhang X, Zhou Y, Xu X, Ko J. Enhancing Chimeric Antigen Receptor T-Cell Generation via Microfluidic Mechanoporation and Lipid Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410975. [PMID: 40103509 PMCID: PMC12036559 DOI: 10.1002/smll.202410975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/04/2025] [Indexed: 03/20/2025]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has revolutionized cancer treatment by engineering patients' T cells to specifically target cancer cells. Traditional CAR-T cell manufacturing methods use viral transduction to integrate CAR genes into T cells, but this can cause severe side effects and immune reactions and is costly. To overcome these challenges, non-viral methods, such as plasmid DNA (pDNA) transfection, are being explored. Here, a high-throughput intracellular delivery platform that integrates microfluidic mechanoporation with lipid nanoparticle (LNP)-based delivery, LNP + Squeeze, is introduced. This system enhances pDNA transfection efficiency in T cells while maintaining cell viability compared to other non-viral transfection methods like electroporation. This platform successfully engineers CAR-T cells using primary human T cells with a high transfection efficiency and demonstrates potent cytotoxicity against melanoma cells. This approach offers a promising, cost-effective, and scalable alternative to viral methods, potentially improving the accessibility and efficacy of CAR-T cell therapies.
Collapse
Affiliation(s)
- Jianhua Lim
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Daniel Oh
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Makayla Cheng
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Uday Chintapula
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Shujing Liu
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - David Reynolds
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Xiaogang Zhang
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Yumeng Zhou
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Jina Ko
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Department of Pathology and Laboratory MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| |
Collapse
|
63
|
Mohanty V, Shakhnovich EI. Biophysical fitness landscape design traps viral evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.30.646233. [PMID: 40236159 PMCID: PMC11996392 DOI: 10.1101/2025.03.30.646233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
We introduce foundational principles for designing customizable fitness landscapes for proteins. We focus on crafting antibody ensembles to create evolutionary traps which restrict viral fitness enhancement. By deriving a fundamental relationship between a mutant protein's fitness and its binding affinities to host receptors and antibodies, we show that the fitnesses of different protein sequences are designable, meaning they can be independently tuned by careful choice of antibodies. Given a user-defined target fitness landscape, stochastic optimization can be performed to obtain such an ensemble of antibodies which force the protein to evolve according to the designed target fitness landscape. We conduct in silico serial dilution experiments using microscopic chemical reaction dynamics to simulate viral evolution and validate the fitness landscape design. We then apply the design protocol to control the relative fitnesses of two SARS-CoV-2 neutral genotype networks while ensuring absolute fitness reduction. Finally, we introduce an iterative design protocol which consistently discovers better vaccination target sequences, generating antibodies that restrict the post-vaccination fitness growth of escape variants while simultaneously suppressing wildtype fitness. Biophysical fitness landscape design thus opens the door to prescient vaccine, antibody, and peptide design, thinking several steps ahead of pathogen evolution.
Collapse
|
64
|
Alvarez AC, Maguire D, Brannigan RP. Synthetic-polymer-assisted antisense oligonucleotide delivery: targeted approaches for precision disease treatment. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:435-463. [PMID: 40166479 PMCID: PMC11956074 DOI: 10.3762/bjnano.16.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/12/2025] [Indexed: 04/02/2025]
Abstract
This review explores the recent advancements in polymer-assisted delivery systems for antisense oligonucleotides (ASOs) and their potential in precision disease treatment. Synthetic polymers have shown significant promise in enhancing the delivery, stability, and therapeutic efficacy of ASOs by addressing key challenges such as cellular uptake, endosomal escape, and reducing cytotoxicity. The review highlights key studies from the past decade demonstrating how these polymers improve gene silencing efficiencies, particularly in cancer and neurodegenerative disease models. Despite the progress achieved, barriers such as immunogenicity, delivery limitations, and scalability still need to be overcome for broader clinical application. Emerging strategies, including stimuli-responsive polymers and advanced nanoparticle systems, offer potential solutions to these challenges. The review underscores the transformative potential of polymer-enhanced ASO delivery in personalised medicine, emphasising the importance of continued innovation to optimise ASO-based therapeutics for more precise and effective disease treatments.
Collapse
Affiliation(s)
- Ana Cubillo Alvarez
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Dylan Maguire
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Ruairí P Brannigan
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
65
|
Rassek K, Misiak J, Ołdak T, Rozwadowska N, Basak G, Kolanowski T. New player in CAR-T manufacture field: comparison of umbilical cord to peripheral blood strategies. Front Immunol 2025; 16:1561174. [PMID: 40191201 PMCID: PMC11968755 DOI: 10.3389/fimmu.2025.1561174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/28/2025] [Indexed: 04/09/2025] Open
Abstract
One of the most successful treatments in hematologic cancer is chimeric antigen receptor (CAR)-T cell-based immunotherapy. However, CAR-T therapy is not without challenges like the costly manufacturing process required to personalize each treatment for individual patients or graft-versus-host disease. Umbilical cord blood (UCB) has been most commonly used for hematopoietic cell transplant as it offers several advantages, including its rich source of hematopoietic stem cells, lower risk of graft-versus-host disease, and easier matching for recipients due to less stringent HLA requirements compared to bone marrow or peripheral blood stem cells. In this review, we have discussed the advantages and disadvantages of different CAR-T cell manufacturing strategies with the use of allogeneic and autologous peripheral blood cells. We compare them to the UCB approach and discuss ongoing pre-clinical and clinical trials in the field. Finally, we propose a cord blood bank as a readily available source of CAR-T cells.
Collapse
Affiliation(s)
- Karolina Rassek
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Tomasz Ołdak
- FamicordTx, Warsaw, Poland
- Polish Stem Cell Bank (PBKM), Warsaw, Poland
| | - Natalia Rozwadowska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
- FamicordTx, Warsaw, Poland
| | - Grzegorz Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Kolanowski
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
- FamicordTx, Warsaw, Poland
| |
Collapse
|
66
|
Akhtar A, Shakir M, Ansari MS, Divya, Faizan MI, Chauhan V, Singh A, Alam R, Azmi I, Sharma S, Pracha M, Uddin IM, Bashir U, Shahni SN, Chaudhuri R, Albogami S, Ganguly R, Sagar S, Singh VP, Kharya G, Srivastava AK, Mabalirajan U, Roy SS, Rahman I, Ahmad T. Bioengineering the metabolic network of CAR T cells with GLP-1 and Urolithin A increases persistence and long-term anti-tumor activity. Cell Rep Med 2025; 6:102021. [PMID: 40107240 PMCID: PMC11970383 DOI: 10.1016/j.xcrm.2025.102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/10/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Constant tumor antigen exposure disrupts chimeric antigen receptor (CAR) T cell metabolism, limiting their persistence and anti-tumor efficacy. To address this, we develop metabolically reprogrammed CAR (MCAR) T cells with enhanced autophagy and mitophagy. A compound screening identifies a synergy between GLP-1R agonist (semaglutide [SG]) and Urolithin A (UrA), which activate autophagy through mTOR (mechanistic target of rapamycin) inhibition and mitophagy via Atg4b activation, maintaining mitochondrial metabolism in CAR T cells (MCAR T-1). These changes increase CD8+ T memory cells (Tm), enhancing persistence and anti-tumor activity in vitro and in xenograft models. GLP-1R knockdown in CAR T cells diminishes autophagy/mitophagy induction, confirming its critical role. We further engineer GLP-1-secreting cells (MCAR T-2), which exhibited sustained memory, stemness, and long-term persistence, even under tumor re-challenge. MCAR T-2 cells also reduce cytokine release syndrome (CRS) risks while demonstrating potent anti-tumor effects. This strategy highlights the potential of metabolic reprogramming via targeting autophagy/mitophagy pathways to improve CAR T cell therapy outcomes, ensuring durability and efficacy.
Collapse
Affiliation(s)
- Areej Akhtar
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Md Shakir
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Sufyan Ansari
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Divya
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Md Imam Faizan
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Varnit Chauhan
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Aashi Singh
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Ruquaiya Alam
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Iqbal Azmi
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Sheetal Sharma
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Mehak Pracha
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Insha Mohi Uddin
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Uzma Bashir
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Syeda Najidah Shahni
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Rituparna Chaudhuri
- Indian Institute of Science, Centre for Brain Research, Bengaluru, Karnataka, India
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Rik Ganguly
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, India
| | - Shakti Sagar
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, India
| | - Vijay Pal Singh
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, India
| | - Gaurav Kharya
- Centre for Bone Marrow Transplant & Cellular Therapy, Indraprastha Apollo Hospital, New Delhi, India
| | | | | | - Soumya Sinha Roy
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, India
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Tanveer Ahmad
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
67
|
Cao G, Hu Y, Pan T, Tang E, Asby N, Althaus T, Wan J, Riedell PA, Bishop MR, Kline JP, Huang J. Two-Stage CD8 + CAR T-Cell Differentiation in Patients with Large B-Cell Lymphoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.05.641715. [PMID: 40161759 PMCID: PMC11952315 DOI: 10.1101/2025.03.05.641715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has expanded therapeutic options for patients with diffuse large B-cell lymphoma (DLBCL). However, progress in improving clinical outcomes has been limited by an incomplete understanding of CAR T-cell differentiation in patients. To comprehensively investigate CAR T-cell differentiation in vivo, we performed single-cell, multimodal, and longitudinal analyses of CD28-costimulated CAR T cells from infusion product and peripheral blood (day 8-28) of patients with DLBCL who were successfully treated with axicabtagene ciloleucel. Here, we show that CD8+ CAR T cells undergo two distinct waves of clonal expansion. The first wave is dominated by CAR T cells with an exhausted-like effector memory phenotype during the peak expansion period (day 8-14). The second wave is dominated by CAR T cells with a terminal effector phenotype during the post-peak persistence period (day 21-28). Importantly, the two waves have distinct ontogeny and are biologically uncoupled. Furthermore, lineage tracing analysis via each CAR T cell's endogenous TCR clonotype demonstrates that the two waves originate from different effector precursors in the infusion product. Precursors of the first wave exhibit more effector-like signatures, whereas precursors of the second wave exhibit more stem-like signatures. These findings suggest that pre-infusion heterogeneity mediates the two waves of in vivo clonal expansion. Our findings provide evidence against the intuitive idea that the post-peak contraction in CAR abundance is solely apoptosis or extravasation of short-lived CAR T cells from peak expansion. Rather, our findings demonstrate that CAR T-cell expansion and persistence are mediated by clonally, phenotypically, and ontogenically distinct CAR T-cell populations that serve complementary clinical purposes.
Collapse
Affiliation(s)
- Guoshuai Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Yifei Hu
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Tony Pan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Erting Tang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Nick Asby
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Thomas Althaus
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Peter A. Riedell
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Michael R. Bishop
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Justin P. Kline
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
68
|
Lin MH, Hu LJ, Miller JS, Huang XJ, Zhao XY. CAR-NK cell therapy: a potential antiviral platform. Sci Bull (Beijing) 2025; 70:765-777. [PMID: 39837721 DOI: 10.1016/j.scib.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/31/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025]
Abstract
Viral infections persist as a significant cause of morbidity and mortality worldwide. Conventional therapeutic approaches often fall short in fully eliminating viral infections, primarily due to the emergence of drug resistance. Natural killer (NK) cells, one of the important members of the innate immune system, possess potent immunosurveillance and cytotoxic functions, thereby playing a crucial role in the host's defense against viral infections. Chimeric antigen receptor (CAR)-NK cell therapy has been developed to redirect the cytotoxic function of NK cells specifically towards virus-infected cells, further enhancing their cytotoxic efficacy. In this manuscript, we review the role of NK cells in antiviral infections and explore the mechanisms by which viruses evade immune detection. Subsequently, we focus on the optimization strategies for CAR-NK cell therapy to address existing limitations. Furthermore, we discuss significant advancements in CAR-NK cell therapy targeting viral infections, including those caused by severe acute respiratory syndrome coronavirus 2, human immunodeficiency virus, hepatitis B virus, human cytomegalovirus, and Epstein-Barr virus.
Collapse
Affiliation(s)
- Ming-Hao Lin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing 100044, China
| | - Li-Juan Hu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing 100044, China
| | - Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, 55455, USA.
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing 100044, China; Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing 100044, China.
| |
Collapse
|
69
|
Park J, Rhoo KY, Kim Y, Kim YS, Paik SR. Cell-Division-Independent Rapid Expression of DNA Delivered with α-Synuclein-Gold Nanoparticle Conjugates. ACS APPLIED MATERIALS & INTERFACES 2025; 17:14846-14858. [PMID: 40014054 DOI: 10.1021/acsami.4c17967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Gene delivery is a primary technology employed in diverse areas of biomedical science, from gene therapy to gene editing, cancer treatment, and stem cell research. Here, we introduce a gene delivery system utilizing an intrinsically disordered protein of α-synuclein (αS) demonstrated to interact with lipid membranes by transforming its original random structure to an α-helix. Since the helix bundle formation is a signature of cell-penetrating peptides for membrane translocation, a multitude of αS(Y136C)s replacing tyrosine at the C-terminus with cysteine were covalently attached onto gold nanoparticles (AuNPs) in a specific orientation with the helix-forming basic N-termini exposed outward. The resulting αS(Y136C)-AuNP conjugates were found to exhibit a rapid gene expression without causing cytotoxicity when the gene of the enhanced green fluorescent protein (EGFP) was delivered with the conjugates into the cells. Based on inhibition studies toward endocytosis and mitosis, the αS(Y136C)-AuNP/DNA complex was demonstrated to take both endosomal and non-endosomal intracellular transport pathways. The DNA translocation into the nucleus was independent of cell division. This nondisruptive and rapid DNA transfection by αS(Y136C)-AuNPs allowed a successful delivery of granzyme A gene leading to cellular pyroptosis. Modifications of αS(Y136C)-AuNP/DNA complex, such as antibody immobilization and replacement of DNA with biological suprastructures including RNA, protein, and nonbiological fusion materials, would allow the intracellular delivery system to be applied in diverse areas of future biotechnology.
Collapse
Affiliation(s)
- Jeongha Park
- School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Kun Yil Rhoo
- Interdisciplinary Program of Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yunsoo Kim
- School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Sik Kim
- Department of Pathology, Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea
| | - Seung R Paik
- School of Chemical and Biological Engineering, Institute of Engineering Research, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program of Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
70
|
Wang S, Liu Y, Sun S, Gui Q, Liu W, Long W. Living material-derived intelligent micro/nanorobots. Biomater Sci 2025; 13:1379-1397. [PMID: 39927456 DOI: 10.1039/d4bm01685h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Living materials, which include various types of cells, organelles, and biological components from animals, plants, and microorganisms, have become central to recent investigations in micro and nanorobotics. Living material-derived intelligent micro/nanorobots (LMNRs) are self-propelled devices that combine living materials with synthetic materials. By harnessing energy from external physical fields or biological sources, LMNRs can move autonomously and perform various biomedical functions, such as drug delivery, crossing biological barriers, medical imaging, and disease treatment. This review, from a biomimetic strategy perspective, summarized the latest advances in the design and biomedical applications of LMNRs. It provided a comprehensive overview of the living materials used to construct LMNRs, including mammalian cells, plants, and microorganisms while highlighting their biological properties and functions. Lastly, the review discussed the major challenges in this field and offered suggestions for future research that may help facilitate the clinical application of LMNRs in the near future.
Collapse
Affiliation(s)
- Shuhuai Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Ya Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Shuangjiao Sun
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Qinyi Gui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Wei Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Wei Long
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
71
|
Luo C, Zhang R, Guo R, Wu L, Xue T, He Y, Jin Y, Zhao Y, Zhang Z, Zhang P, Ye S, Li X, Li D, Zhang W, Wang C, Lai L, Pan-Hammarström Q, Wucherpfennig KW, Gao Z, Pan D, Zeng Z. Integrated computational analysis identifies therapeutic targets with dual action in cancer cells and T cells. Immunity 2025; 58:745-765.e9. [PMID: 40023158 DOI: 10.1016/j.immuni.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/11/2024] [Accepted: 02/04/2025] [Indexed: 03/04/2025]
Abstract
Many cancer drugs that target cancer cell pathways also impair the immune system. We developed a computational target discovery platform to enable examination of both cancer and immune cells so as to identify pathways that restrain tumor progression and potentiate anti-tumor immunity. Immune-related CRISPR screen analyzer of functional targets (ICRAFT) integrates immune-related CRISPR screen datasets, single-cell RNA sequencing (scRNA-seq) data, and pre-treatment RNA-seq data from clinical trials, enabling a systems-level approach to therapeutic target discovery. Using ICRAFT, we identified numerous targets that enhance both cancer cell susceptibility to immune attack and T cell activation, including tumor necrosis factor (TNF) alpha-induced protein 3 (TNFAIP3), protein tyrosine phosphatase non-receptor type 2 (PTPN2), and suppressor of cytokine signaling 1 (SOCS1). In cancer cells, Tnfaip3 (A20) deletion activated the TNF-nuclear factor kappa-B (NF-κB) pathway, promoting chemokine expression and T cell recruitment to the tumor. T cell-mediated elimination of Tnaifp3-null cancer cells was primarily driven by TNF-induced apoptosis. Inactivation of Tnfaip3 in T cells enhanced anti-tumor efficacy. By integrating diverse functional genomics and clinical datasets, ICRAFT provides an interactive resource toward a deeper understanding of anti-tumor immunity and immuno-oncology drug development.
Collapse
Affiliation(s)
- Ce Luo
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Rui Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Rui Guo
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Lijian Wu
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Teng Xue
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan 610213, China
| | - Yufeng He
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Yiteng Jin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Yanping Zhao
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zongxu Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Peng Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Sitong Ye
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Yale School of Medicine, New Haven, CT 06510, USA
| | - Xiaohong Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China
| | - Dian Li
- Division of Biology and Biomedical Sciences, Washington University in St. Louis School of Medicine, Saint Louis, MO 63108, USA
| | - Wubing Zhang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Chenfei Wang
- Shanghai Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Luhua Lai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China; Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan 610213, China
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17165, Sweden
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard Medical School, Boston, MA 02215, USA
| | - Zhidong Gao
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100084, China.
| | - Deng Pan
- School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Zexian Zeng
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100084, China; Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan 610213, China.
| |
Collapse
|
72
|
Park SY, Pylaeva E, Bhuria V, Gambardella AR, Schiavoni G, Mougiakakos D, Kim SH, Jablonska J. Harnessing myeloid cells in cancer. Mol Cancer 2025; 24:69. [PMID: 40050933 PMCID: PMC11887392 DOI: 10.1186/s12943-025-02249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/28/2025] [Indexed: 03/09/2025] Open
Abstract
Cancer-associated myeloid cells due to their plasticity play dual roles in both promoting and inhibiting tumor progression. Myeloid cells with immunosuppressive properties play a critical role in anti-cancer immune regulation. Cells of different origin, such as tumor associated macrophages (TAMs), tumor associated neutrophils (TANs), myeloid derived suppressor cells (also called MDSCs) and eosinophils are often expanded in cancer patients and significantly influence their survival, but also the outcome of anti-cancer therapies. For this reason, the variety of preclinical and clinical studies to modulate the activity of these cells have been conducted, however without successful outcome to date. In this review, pro-tumor activity of myeloid cells, myeloid cell-specific therapeutic targets, in vivo studies on myeloid cell re-polarization and the impact of myeloid cells on immunotherapies/genetic engineering are addressed. This paper also summarizes ongoing clinical trials and the concept of chimeric antigen receptor macrophage (CAR-M) therapies, and suggests future research perspectives, offering new opportunities in the development of novel clinical treatment strategies.
Collapse
Affiliation(s)
- Su-Yeon Park
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ekaterina Pylaeva
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, Essen, Germany
| | - Vikas Bhuria
- Department of Hematology, Oncology, and Cell Therapy, Otto-Von-Guericke University, Magdeburg, Germany
| | | | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore Di Sanità, Rome, Italy
| | - Dimitrios Mougiakakos
- Department of Hematology, Oncology, and Cell Therapy, Otto-Von-Guericke University, Magdeburg, Germany
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jadwiga Jablonska
- Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, Essen, 45147, Germany.
- German Cancer Consortium (DKTK) Partner Site Düsseldorf/Essen, Essen, Germany.
| |
Collapse
|
73
|
Paudel A, Chattopadhyay P, Rose B, Watson A, D’Amato G, Trent J, Bialick S, Jonczak E. Systemic Treatment in Soft Tissue Sarcomas: Are We Making a Difference? Cancers (Basel) 2025; 17:889. [PMID: 40075735 PMCID: PMC11898467 DOI: 10.3390/cancers17050889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Soft tissue sarcomas [STSs] are rare tumors of mesodermal origin that arise in diverse tissues such as muscles, fat, and nerves. There are over 100 subtypes of STS, each with distinct clinical behaviors and responses to treatment. Recent advances in treatment have moved towards histology-specific approaches, emphasizing the integration of pathological, immunohistochemical, and molecular features to guide treatment. Localized STS is primarily treated with surgery, often supplemented by neoadjuvant or adjuvant radiation and/or chemotherapy. However, about half of patients with localized disease will progress to an advanced stage, which is typically managed with systemic therapies including anthracycline-based chemotherapy such as doxorubicin or epirubicin. Despite these treatments, the survival rates for most subtypes of advanced metastatic STS remain relatively low. While anthracycline-based chemotherapy remains the mainstay of treatment, ongoing research into the biology of STSs is enhancing our understanding and approach to these complex tumors with an expansion beyond chemotherapy to include targeted therapy and immunotherapy to improve response rates and survival outcomes. This review focuses on STS other than gastrointestinal stromal tumors [GISTs], examines the current systemic treatment strategies, highlights recent advances, and explores future directions in the systemic therapy of sarcoma patients.
Collapse
Affiliation(s)
- Amrit Paudel
- Department of Medicine, Division of Medical Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; (A.W.); (G.D.); (J.T.); (S.B.)
| | - Priya Chattopadhyay
- Department of Internal Medicine, Jackson Health System, University of Miami, Miami, FL 33136, USA; (P.C.); (B.R.)
| | - Brandon Rose
- Department of Internal Medicine, Jackson Health System, University of Miami, Miami, FL 33136, USA; (P.C.); (B.R.)
| | - Aleksandra Watson
- Department of Medicine, Division of Medical Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; (A.W.); (G.D.); (J.T.); (S.B.)
| | - Gina D’Amato
- Department of Medicine, Division of Medical Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; (A.W.); (G.D.); (J.T.); (S.B.)
| | - Jonathan Trent
- Department of Medicine, Division of Medical Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; (A.W.); (G.D.); (J.T.); (S.B.)
| | - Steven Bialick
- Department of Medicine, Division of Medical Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; (A.W.); (G.D.); (J.T.); (S.B.)
| | - Emily Jonczak
- Department of Medicine, Division of Medical Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA; (A.W.); (G.D.); (J.T.); (S.B.)
| |
Collapse
|
74
|
Zhang J, Wang F, Sun Z, Ye J, Chu H. Multidimensional applications of prussian blue-based nanoparticles in cancer immunotherapy. J Nanobiotechnology 2025; 23:161. [PMID: 40033359 PMCID: PMC11874808 DOI: 10.1186/s12951-025-03236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/16/2025] [Indexed: 03/05/2025] Open
Abstract
Immunotherapy holds notable progress in the treatment of cancer. However, the clinical therapeutic effect remains a significant challenge due to immune-related side effects, poor immunogenicity, and immunosuppressive microenvironment. Nanoparticles have emerged as a revolutionary tool to surmount these obstacles and amplify the potency of immunotherapeutic agents. Prussian blue nanoparticles (PBNPs) exhibit multi-dimensional immune function in cancer immunotherapy, including acting as a nanocarrier to deliver immunotherapeutic agents, as a photothermal agent to improve the efficacy of immunotherapy through photothermal therapy, as a nanozyme to regulate tumor microenvironment, and as an iron donor to induce immune events related to ferroptosis and tumor-associated macrophages polarization. This review focuses on the advances and applications of PBNPs in cancer immunotherapy. First, the biomedical functions of PBNPs are introduced. Then, based on the immune function of PBNPs, we systematically reviewed the multidimensional application of PBNPs in cancer immunotherapy. Finally, the challenges and future developments of PBNPs-based cancer immunotherapy are highlighted.
Collapse
Affiliation(s)
- Jiayi Zhang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Fang Wang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| |
Collapse
|
75
|
Ma N, Huang L, Zhou Q, Zhang X, Luo Q, Song G. Mechanical stretch promotes the migration of mesenchymal stem cells via Piezo1/F-actin/YAP axis. Exp Cell Res 2025; 446:114461. [PMID: 39988125 DOI: 10.1016/j.yexcr.2025.114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/15/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
Mesenchymal stem cells (MSCs) have self-renewal ability and the potential for multi-directional differentiation, and their clinical application has promising prospects, but improving the migration ability of MSCs in vivo is one of the challenges. We previously determined mechanical stretch at 1 Hz with 10 % strain for 8 h can significantly promote MSC migration, however, the molecular mechanism remains poorly understood. Here, we reported that the expression and activity of yes-associated protein (YAP) are upregulated after mechanical stretch. As a classical inhibitor of the YAP-TEAD activity and YAP protein, the treatment of verteporfin (VP) suppressed mechanical stretch-promoted MSC migration. We also observed F-actin polymerization after mechanical stretch. Next, we used Latrunculin A (Lat A), the most widely used reagent to depolymerize actin filaments, to treat MSCs and we found that Lat A treatment inhibits MSC migration by suppressing YAP expression and activity. In addition, the protein expression of Piezo1 was also upregulated after mechanical stretch. Knockdown of Piezo1 suppressed mechanical stretch-promoted MSC migration by restraining F-actin polymerization. Together, these findings demonstrate the role of Piezo1/F-actin/YAP signaling pathway in MSC migration under mechanical stretch, providing new experimental evidence for an in-depth understanding the mechanobiological mechanism of MSC migration.
Collapse
Affiliation(s)
- Ning Ma
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Lei Huang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Qianxu Zhou
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Xiaomei Zhang
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Qing Luo
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Guanbin Song
- College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
76
|
Zhang H, Zhong M, Zhang J, Chen C. Blood cancer therapy with synthetic receptors and CRISPR technology. Leuk Res 2025; 150:107646. [PMID: 39919536 DOI: 10.1016/j.leukres.2025.107646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/18/2024] [Accepted: 01/05/2025] [Indexed: 02/09/2025]
Abstract
Chimeric antigen receptor (CAR)-T and -NK cells showed great success in treating hematological malignancies, including leukemia, lymphoma, and myeloma. CRISPR technology and other synthetic receptors (GPCR and synNotch) have helped to address some of the limitations and challenges associated with CAR-based therapies. Herein, this review aims to discuss how CAR can be integrated with other synthetic receptors and various CRISPR/Cas tools for blood cancer therapy. CAR-expressing cells equipped with other synthetic receptors can conditionally execute tumoricidal functions, prevent tumor escape from immune surveillance, and minimize non-tumor off-target toxicity. We also discussed how various CRISPR-Cas tools can be harnessed to enhance CAR cells functionality and persistence. The advances, pitfalls, and future perspectives for these synthetic receptors and CRISPR technology in blood cancer therapy are comprehensively discussed.
Collapse
Affiliation(s)
- Haiying Zhang
- Department of Hematology, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China; Jiangxi Health Commission Key Laboratory of Leukemia, Ganzhou, Jiangxi 341000, China
| | - Mingxin Zhong
- Department of Hematology, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China; Jiangxi Health Commission Key Laboratory of Leukemia, Ganzhou, Jiangxi 341000, China
| | - Jingdong Zhang
- Department of Hematology, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China; Jiangxi Health Commission Key Laboratory of Leukemia, Ganzhou, Jiangxi 341000, China
| | - Changkun Chen
- Department of Hematology, Ganzhou People's Hospital, Ganzhou, Jiangxi 341000, China; Jiangxi Health Commission Key Laboratory of Leukemia, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
77
|
Morrison MA, Artru F, Trovato FM, Triantafyllou E, McPhail MJ. Potential therapies for acute-on-chronic liver failure. Liver Int 2025; 45:e15545. [PMID: 36800487 PMCID: PMC11815631 DOI: 10.1111/liv.15545] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Acute-on-chronic liver failure (ACLF) is a syndrome that develops in approximately 30% of patients hospitalised with cirrhosis and is characterised by an acute decompensation of liver function associated with extra-hepatic organ failures and a high short-term mortality. At present, no specific therapies are available for ACLF, and current management is limited to treatment of the precipitating event and organ support. Given the high prevalence and high mortality of this severe liver disease, there is an urgent need for targeted treatments. There is increasing evidence of the important role played by systemic inflammation and immune dysfunction in the pathophysiology of ACLF and a better understanding of these immune processes is resulting in new therapeutic targets. The aim of this review is to present an overview of ongoing studies of potentially promising therapies and how they could be utilised in the management of ACLF.
Collapse
Affiliation(s)
- Maura A. Morrison
- Institute of Liver StudiesKing's College HospitalLondonUK
- Department of Inflammation Biology, School of Immunology and Microbial SciencesKing's College LondonLondonUK
| | - Florent Artru
- Institute of Liver StudiesKing's College HospitalLondonUK
- Department of Inflammation Biology, School of Immunology and Microbial SciencesKing's College LondonLondonUK
| | - Francesca M. Trovato
- Institute of Liver StudiesKing's College HospitalLondonUK
- Department of Inflammation Biology, School of Immunology and Microbial SciencesKing's College LondonLondonUK
| | - Evangelos Triantafyllou
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Mark J. McPhail
- Institute of Liver StudiesKing's College HospitalLondonUK
- Department of Inflammation Biology, School of Immunology and Microbial SciencesKing's College LondonLondonUK
| |
Collapse
|
78
|
Wang TW, Nakanishi M. Immune surveillance of senescence: potential application to age-related diseases. Trends Cell Biol 2025; 35:248-257. [PMID: 39025762 DOI: 10.1016/j.tcb.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024]
Abstract
Several lines of evidence suggest that the age-dependent accumulation of senescent cells leads to chronic tissue microinflammation, which in turn contributes to age-related pathologies. In general, senescent cells can be eliminated by the host's innate and adaptive immune surveillance system, including macrophages, NK cells, and T cells. Impaired immune surveillance leads to the accumulation of senescent cells and accelerates the aging process. Recently, senescent cells, like cancer cells, have been shown to express certain types of immune checkpoint proteins as well as non-classical immune-tolerant MHC variants, leading to immune escape from surveillance systems. Thus, immune checkpoint blockade (ICB) may be a promising strategy to enhance immune surveillance of senescence, leading to the amelioration of some age-related diseases and tissue dysfunction.
Collapse
Affiliation(s)
- Teh-Wei Wang
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
79
|
Lopez de Rodas M, Villalba-Esparza M, Sanmamed MF, Chen L, Rimm DL, Schalper KA. Biological and clinical significance of tumour-infiltrating lymphocytes in the era of immunotherapy: a multidimensional approach. Nat Rev Clin Oncol 2025; 22:163-181. [PMID: 39820025 DOI: 10.1038/s41571-024-00984-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 01/19/2025]
Abstract
Immune-checkpoint inhibitors (ICIs) have improved clinical outcomes across several solid tumour types. Prominent efforts have focused on understanding the anticancer mechanisms of these agents, identifying biomarkers of response and uncovering resistance mechanisms to develop new immunotherapeutic approaches. This research has underscored the crucial roles of the tumour microenvironment and, particularly, tumour-infiltrating lymphocytes (TILs) in immune-mediated tumour elimination. Numerous studies have evaluated the prognostic and predictive value of TILs and the mechanisms that govern T cell dysfunction, fuelled by technical developments in single-cell transcriptomics, proteomics, high-dimensional spatial platforms and advanced computational models. However, questions remain regarding the definition of TILs, optimal strategies to study them, specific roles of different TIL subpopulations and their clinical implications in different treatment contexts. Additionally, most studies have focused on the abundance of major TIL subpopulations but have not developed standardized quantification strategies or analysed other crucial aspects such as their functional profile, spatial distribution and/or arrangement, tumour antigen-reactivity, clonal diversity and heterogeneity. In this Review, we discuss a conceptual framework for the systematic study of TILs and summarize the evidence regarding their biological properties and biomarker potential for ICI therapy. We also highlight opportunities, challenges and strategies to support future developments in this field.
Collapse
Affiliation(s)
- Miguel Lopez de Rodas
- Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Cancer Center Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Maria Villalba-Esparza
- Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Miguel F Sanmamed
- Department of Immunology and Immunotherapy, Centro de Investigación Médica Aplicada and Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - David L Rimm
- Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Kurt A Schalper
- Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
80
|
Mishima Y, Okada S, Ishikawa A, Wang B, Waseda M, Kaneko MK, Kato Y, Kaneko S. Development of chimeric antigen receptor T cells targeting cancer-expressing podocalyxin. Regen Ther 2025; 28:292-300. [PMID: 39867135 PMCID: PMC11757227 DOI: 10.1016/j.reth.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/25/2024] [Accepted: 12/11/2024] [Indexed: 01/28/2025] Open
Abstract
Chimeric Antigen Receptor (CAR)-T cell therapy has revolutionized the treatment of CD19-positive B-cell malignancies. However, the field is rapidly evolving to target other antigens, such as podocalyxin (PODXL), a transmembrane protein implicated in tumor progression and poor prognosis in various cancers. This study explores the potential of PODXL-targeted CAR-T cells, utilizing a cancer-specific monoclonal antibody (CasMab) technique to enhance the specificity and safety of CAR-T cell therapy. We developed CAR-T cells based on the single-chain variable fragment (scFv) derived from the cancer-specific monoclonal antibody PcMab-6, which selectively targets glycosylation modifications on PODXL-expressing cancer cells. As a control, CAR-T cells were also generated from PcMab-47, a non-cancer-specific antibody for PODXL. In vitro experiments demonstrated that CAR-T cells based on PcMab-6 exhibited significant antitumor activity with reduced off-target effects on normal cells compared to PcMab-47-derived CAR-T cells. Additionally, to enhance the persistence and therapeutic efficacy of these CAR-T cells, we developed a humanized version of PcMab-6 scFv. The humanized CAR-T cells showed extended antitumor effects in vivo, demonstrating the potential for prolonged therapeutic activity. These findings underscore the utility of CasMab technology in generating highly specific and safer CAR-T cell therapies for solid tumors, highlighting the promise of humanized CAR-T cells for clinical application.
Collapse
Affiliation(s)
- Yuta Mishima
- Department of Cancer Immunotherapy and Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Division of Cancer Immunotherapy, Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Shintaro Okada
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Akihiro Ishikawa
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Bo Wang
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Masazumi Waseda
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Shin Kaneko
- Department of Cancer Immunotherapy and Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Division of Cancer Immunotherapy, Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
81
|
Schwarz M, Mozayani B, Trauner M, Stättermayer AF. Chronic hepatitis E in a patient after chimeric antigen receptor-T-cell treatment for diffuse large B-cell lymphoma and rapid progression towards decompensated liver cirrhosis. Br J Haematol 2025; 206:977-980. [PMID: 39506930 DOI: 10.1111/bjh.19892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Affiliation(s)
- Michael Schwarz
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Behrang Mozayani
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Albert Friedrich Stättermayer
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
82
|
Sharma E, Sahin OK, Łajczak P, Rajab N, Ahmed AR, Silva YP, Bakhsh A, Chatterjee A, Raake M, Fagundes W. Synergistic effects of laser interstitial thermal therapy (LITT) and immunotherapy for brain tumor recurrence: A systematic review and meta-analysis. Neurochirurgie 2025; 71:101629. [PMID: 39756615 DOI: 10.1016/j.neuchi.2025.101629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/11/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025]
Abstract
PURPOSE The confluence of laser interstitial thermal therapy (LITT) with immunotherapeutic approaches represents a promising option for managing recurrent brain lesions. However, the potential synergy between these modalities is still unclear. This meta-analysis examines the literature to elucidate the adverse effects and overall survival associated with this combination in treating recurrent brain metastases and glioblastoma. METHODS Systematic searches were performed on PubMed, Embase, and Web of Science databases. Inclusion criteria comprised studies investigating the combined utilization of LITT with immunotherapy, among adult patients diagnosed with recurrent brain metastases and recurrent glioblastoma. Our analysis, using a random-effects model, pooled Overall Survival (OS) and Adverse events (AEs) from all the included studies. RESULTS We analyzed 162 patients from one RCT and three non-randomized studies. The pooled analysis of all patients revealed a median OS of 12.8 months (95% CI = 8.31-17.31; p < 0.01) with the combined treatment of LITT and immunotherapy. Similarly, approximately 6% of patients experienced AEs (95% CI = -0.01-0.11; p = 0.03). Subgroup analysis further demonstrated that among patients with recurrent glioma, the combined treatment showed pooled OS of 11 months (95% CI = 7.13-16.62; p < 0.01), while AEs were observed in 4% of patients (95% CI = -0.02-0.10; p = 0.21). CONCLUSION This meta-analysis showed a potentially comparable safety profile and overall survival to conventional treatment modalities. Further research is warranted to test differences in the incidence of AEs and OS from LITT with immunotherapy versus a control.
Collapse
Affiliation(s)
- Eshita Sharma
- David Geffen School of Medicine at UCLA, Los Angeles, United States.
| | | | | | - Numa Rajab
- Sulaiman AlRajhi University, Saudi Arabia
| | | | | | | | | | | | - Walter Fagundes
- Department of Neurosurgery, Federal University of Espírito Santo, Vitória, Brazil
| |
Collapse
|
83
|
Tang L, Peng S, Zhuang X, He Y, Song Y, Nie H, Zheng C, Pan Z, Lam AK, He M, Shi X, Li B, Xu WW. Tumor Metastasis: Mechanistic Insights and Therapeutic Intervention. MEDCOMM – ONCOLOGY 2025; 4. [DOI: 10.1002/mog2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/10/2025] [Indexed: 03/04/2025]
Abstract
ABSTRACTMetastasis remains a leading cause of cancer‐related deaths, defined by a complex, multi‐step process in which tumor cells spread and form secondary growths in distant tissues. Despite substantial progress in understanding metastasis, the molecular mechanisms driving this process and the development of effective therapies remain incompletely understood. Elucidating the molecular pathways governing metastasis is essential for the discovery of innovative therapeutic targets. The rapid advancements in sequencing technologies and the expansion of biological databases have significantly deepened our understanding of the molecular drivers of metastasis and associated drug resistance. This review focuses on the molecular drivers of metastasis, particularly the roles of genetic mutations, epigenetic changes, and post‐translational modifications in metastasis progression. We also examine how the tumor microenvironment influences metastatic behavior and explore emerging therapeutic strategies, including targeted therapies and immunotherapies. Finally, we discuss future research directions, stressing the importance of novel treatment approaches and personalized strategies to overcome metastasis and improve patient outcomes. By integrating contemporary insights into the molecular basis of metastasis and therapeutic innovation, this review provides a comprehensive framework to guide future research and clinical advancements in metastatic cancer.
Collapse
Affiliation(s)
- Lin Tang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Shao‐Cong Peng
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Xiao‐Wan Zhuang
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Yan He
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Yu‐Xiang Song
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Hao Nie
- Department of Radiation Oncology, The Fifth Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Can‐Can Zheng
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Zhen‐Yu Pan
- Department of Radiation Oncology, The Affiliated Huizhou Hospital Guangzhou Medical University Huizhou China
| | - Alfred King‐Yin Lam
- Cancer Molecular Pathology and Griffith Medical School Griffith University Gold Coast Queensland Australia
| | - Ming‐Liang He
- Department of Biomedical Sciences City University of Hong Kong Hong Kong China
| | - Xing‐Yuan Shi
- Department of Radiation Oncology, The Fifth Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Bin Li
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Wen Wen Xu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| |
Collapse
|
84
|
Du Y, Yang Y, Zheng B, Zhang Q, Zhou S, Zhao L. Finding a needle in a haystack: functional screening for novel targets in cancer immunology and immunotherapies. Oncogene 2025; 44:409-426. [PMID: 39863748 PMCID: PMC11810799 DOI: 10.1038/s41388-025-03273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/06/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Genome-wide functional genetic screening has been widely used in the biomedicine field, which makes it possible to find a needle in a haystack at the genetic level. In cancer research, gene mutations are closely related to tumor development, metastasis, and recurrence, and the use of state-of-the-art powerful screening technologies, such as clustered regularly interspaced short palindromic repeat (CRISPR), to search for the most critical genes or coding products provides us with a new possibility to further refine the cancer mapping and provide new possibilities for the treatment of cancer patients. The use of CRISPR screening for the most critical genes or coding products has further refined the cancer atlas and provided new possibilities for the treatment of cancer patients. Immunotherapy, as a highly promising cancer treatment method, has been widely validated in the clinic, but it could only meet the needs of a small proportion of cancer patients. Finding new immunotherapy targets is the key to the future of tumor immunotherapy. Here, we revisit the application of functional screening in cancer immunology from different perspectives, from the selection of diverse in vitro and in vivo screening models to the screening of potential immune checkpoints and potentiating genes for CAR-T cells. The data will offer fresh therapeutic clues for cancer patients.
Collapse
Affiliation(s)
- Yi Du
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Yang Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Bohao Zheng
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Qian Zhang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.
| | - Linjie Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.
| |
Collapse
|
85
|
Song P, Pan G, Zhang Y, Ni Y, Wang Q, Shi J, Peng Y, Jing R, Luo D. Prospects and Challenges of Immunotherapy for Thyroid Cancer. Endocr Pract 2025; 31:373-379. [PMID: 39631664 DOI: 10.1016/j.eprac.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/21/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Thyroid cancer generally boasts a favorable prognosis; however, advanced and refractory cases exhibit aggressive characteristics and resistance to conventional therapies, necessitating the investigation of innovative treatment modalities. Immunotherapy, which harnesses the body's immune system to target cancer cells, has shown considerable promise for specific thyroid cancer subtypes. OBJECTIVE This review article aims to encapsulate the latest advancements in immunotherapy for thyroid cancer, examining its mechanisms, therapeutic efficacy, ongoing challenges, and the potential benefits of combination therapy approaches. METHODS An extensive literature review and critical analysis of clinical trial data were conducted to inform this synthesis. RESULTS The review reveals that immunotherapy strategies, encompassing immune checkpoint inhibitors, CAR-T cell therapy, tumor vaccines, and immunomodulators, are demonstrating efficacy in the treatment of thyroid cancer. Notably, checkpoint inhibitors have been particularly effective in anaplastic and poorly differentiated thyroid cancers, albeit with challenges such as treatment resistance and adverse effects. The application of CAR-T cell therapy, successful in hematologic cancers, provides a novel perspective for thyroid cancer treatment, although its efficacy in solid tumors requires further study. Additionally, research into tumor vaccines and immunomodulators is advancing, with preliminary evidence suggesting their therapeutic potential for thyroid cancer patients. CONCLUSION The recognition of the immune microenvironment's role in treatment responsiveness is pivotal for enhancing the care of thyroid cancer patients. This review underscores the significance of combination therapy as a means to optimize treatment outcomes and charts a course for future research endeavors to broaden the spectrum of effective treatment options available to thyroid cancer patients.
Collapse
Affiliation(s)
- Ping Song
- Department of Surgical Oncology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang, China
| | - Gang Pan
- Department of Surgical Oncology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu Zhang
- Department of Surgical Oncology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang, China
| | - Yeqin Ni
- Department of Surgical Oncology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang, China
| | - Qianyu Wang
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jingjng Shi
- Department of Surgical Oncology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang, China
| | - You Peng
- Department of Surgical Oncology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang, China
| | - Ruirui Jing
- Department of Translational Medicine and Clinical Research, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Dingcun Luo
- Department of Surgical Oncology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang, China; The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; College of Mathematical Medicine, Zhejiang Normal University, Jinhua, Zhejiang, China.
| |
Collapse
|
86
|
Du M, Mayombo RTM, Liu J, Zhang Y, Liao D, Hu Y, Mei H. The impact of obesity and its related underlying diseases on cytokine release syndrome and the efficacy of CAR-T therapy in treating B-cell malignancies. Ann Hematol 2025; 104:1887-1895. [PMID: 40195173 PMCID: PMC12031977 DOI: 10.1007/s00277-025-06338-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/24/2025] [Indexed: 04/09/2025]
Abstract
Chimeric Antigen Receptor T-cell (CAR-T) therapy has revolutionized treatment for relapsed/refractory B-cell malignancies, including B-cell Acute Lymphoblastic Leukemia (B-ALL) and Diffuse Large B-Cell Lymphoma (DLBCL). However, the influence of obesity and related comorbidities on treatment outcomes and toxicity profiles remains unclear. This retrospective study included 115 patients treated with CAR-T therapy at Union Hospital, Tongji Medical College, Huazhong University of Science and Technology from 2017 to October 2023. Patients were stratified into high-risk and low-risk groups based on Body Mass Index (BMI) and the presence of obesity-related comorbidities. Clinical outcomes, including Cytokine Release Syndrome (CRS) and Immune effector Cell-Associated Neurotoxicity Syndrome (ICANS) severity, treatment efficacy, Overall Survival (OS), and Progression-Free Survival (PFS), were analyzed. Logistic regression models assessed the relationships between covariates and clinical outcomes. The median BMI was 21.91 (IQR 19.265-24.365). Among the patients, 32 were overweight, and only one had a BMI over 30. Severe CRS occurred in 16 patients, with a higher proportion in those with obesity or related conditions (10.4% vs. 3.5%, p = 0.01). Hyperlipidemia significantly increased the risk of severe CRS (OR = 3.730, CI [1.204-11.556], p = 0.022). However, being overweight, having diabetes, hypertension, coronary heart disease, or fatty liver were not significantly associated with severe CRS. Elevated total cholesterol was moderately correlated with increased Interleukin 6 (IL-6) levels (R = 0.637, p < 0.001) and weakly with Interferon gamma (IFN-γ) (R = 0.337, p < 0.001). Besides, overweight patients had a lower proportion of CAR-T cells post-infusion (OR = 0.98, CI [0.961-1.0], p = 0.048). Obesity and related comorbidities did not significantly impact treatment efficacy. However, hyperlipidemia was associated with an increased risk of severe CRS, emphasizing the need for tailored risk management strategies in CAR-T therapy. Clinical trial: NCT02965092/ NCT03366350/ NCT04008251(ClinicalTrials.gov).
Collapse
Affiliation(s)
- Mengyi Du
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Rosanna Tryphene Massounga Mayombo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Jiachen Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Yinqiang Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Danying Liao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China.
| |
Collapse
|
87
|
Ciantra Z, Paraskevopoulou V, Aifantis I. The rewired immune microenvironment in leukemia. Nat Immunol 2025; 26:351-365. [PMID: 40021898 DOI: 10.1038/s41590-025-02096-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/15/2025] [Indexed: 03/03/2025]
Abstract
Leukemias are a class of human cancers that originate from hematopoietic progenitors and are characterized by extensive remodeling of the immune microenvironment. Leukemic cells, on transformation, acquire the ability to evade immune recognition but, despite undergoing genetic and epigenetic changes, retain their characteristic immature immune signature. For this and other reasons, leukemias are often refractory to immune therapies. In the present Review, we cover these areas as a means of improving outcomes from a deeper understanding of immune rewiring, inflammatory signaling and the barriers to successful implementation of immune therapies.
Collapse
Affiliation(s)
- Zoe Ciantra
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Varvara Paraskevopoulou
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Iannis Aifantis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA.
- Laura & Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
88
|
Villa A, Lodolo M, Sonis S. Oral mucosal toxicities in oncology. Expert Opin Pharmacother 2025; 26:481-489. [PMID: 39927612 DOI: 10.1080/14656566.2025.2464106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/13/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
INTRODUCTION Oral mucosal toxicities are serious complications associated with conventional cytotoxic radiation and drug-based cancer regimens, and novel treatments such as immunotherapy and targeted agents. These toxicities, including oral mucositis, mammalian target of rapamycin inhibitor-associated stomatitis, oral immune-related adverse events, oral lichenoid lesions secondary to rituximab or imatinib, and geographic tongue associated with bevacizumab, sorafenib, sunitinib, or axitinib, can lead to significant morbidity, potentially compromising cancer treatment outcomes by necessitating treatment dose reductions, interruptions, or discontinuation. AREAS COVERED This review discusses the epidemiology, clinical presentation, pathobiology, and current management strategies for these oral mucosal toxicities. EXPERT OPINION With the evolution of novel cancer therapies, including immunotherapy and targeted agents, oral mucosal toxicities have become more prevalent, presenting significant management challenges. Advances in understanding the pathobiology of these complications have led to the development of promising therapeutic strategies. However, variability in patient responses underscores the need for precision medicine approaches that tailor treatments to individual molecular and immunological profiles. While the standardization of clinical trials has improved the comparability of interventions, therapies must be rigorously tested to ensure they do not interfere with the oncologic efficacy of cancer treatments. Ongoing research is essential to refine preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Alessandro Villa
- Oral Medicine, Oral Oncology and Dentistry. Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Michele Lodolo
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Stephen Sonis
- Divisions of Oral Medicine and Dentistry, Brigham and Women's Hospital and the Dana-Farber Cancer Institute, Boston, MA, USA
- Biomodels, LLC and Primary Endpoint Solutions, LLC, Waltham, MA, USA
| |
Collapse
|
89
|
Gao H, Qu L, Li M, Guan X, Zhang S, Deng X, Wang J, Xing F. Unlocking the potential of chimeric antigen receptor T cell engineering immunotherapy: Long road to achieve precise targeted therapy for hepatobiliary pancreatic cancers. Int J Biol Macromol 2025; 297:139829. [PMID: 39814310 DOI: 10.1016/j.ijbiomac.2025.139829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/03/2025] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Innovative therapeutic strategies are urgently needed to address the ongoing global health concern of hepatobiliary pancreatic malignancies. This review summarizes the latest and most comprehensive research of chimeric antigen receptor (CAR-T) cell engineering immunotherapy for treating hepatobiliary pancreatic cancers. Commencing with an exploration of the distinct anatomical location and the immunosuppressive, hypoxic tumor microenvironment (TME), this review critically assesses the limitations of current CAR-T therapy in hepatobiliary pancreatic cancers and proposes corresponding solutions. Various studies aim at enhancing CAR-T cell efficacy in these cancers through improving T cell persistence, enhancing antigen specificity and reducing tumor heterogeneity, also modulating the immunosuppressive and hypoxic TME. Additionally, the review examines the application of emerging nanoparticles and biotechnologies utilized in CAR-T therapy for these cancers. The results suggest that constructing optimized CAR-T cells to overcome physical barrier, manipulating the TME to relieve immunosuppression and hypoxia, designing CAR-T combination therapies, and selecting the most suitable delivery strategies, all together could collectively enhance the safety of CAR-T engineering and advance the effectiveness of adaptive cell therapy for hepatobiliary pancreatic cancers.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lianyue Qu
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China
| | - Mu Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xin Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Shuang Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xin Deng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Jin Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
90
|
Mousavi S, Nouri S, Sadeghipour A, Atashi A. Tumor microenvironment as a novel therapeutic target for lymphoid leukemias. Ann Hematol 2025; 104:1367-1386. [PMID: 39994019 PMCID: PMC12031866 DOI: 10.1007/s00277-025-06237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 01/29/2025] [Indexed: 02/26/2025]
Abstract
Lymphoid leukemias represent a significant global health burden, leading to substantial morbidity and mortality. The intricate interplay between leukemic cells and their surrounding tumor microenvironment (TME) is pivotal in disease initiation, progression, and therapeutic resistance. Comprising a dynamic milieu of stromal, immune, and leukemic cell populations, the TME orchestrates a complex network of signaling pathways and molecular interactions that foster leukemic cell survival and proliferation while evading immune surveillance. The crosstalk between these diverse cellular components within the TME not only fuels tumor progression but also confers resistance to conventional therapies, including the development of multi-drug resistance (MDR). Recognizing the pivotal role of the TME in shaping disease outcomes, novel therapeutic approaches targeting this dynamic ecosystem have emerged as promising strategies to complement existing anti-leukemic treatments. As a result, drugs that target the TME have been developed as complementary strategies to those that directly attack tumor cells. Thus, a detailed understanding of the TME components and their interactions with tumor cells is critical. Such knowledge can guide the design and implementation of novel targeted therapies for lymphoid leukemias.
Collapse
Affiliation(s)
- Shahrzad Mousavi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran
| | - Soheil Nouri
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran
| | - Arezoo Sadeghipour
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Amir Atashi
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
91
|
Xia W, Tan Y, Liu Y, Xie N, Zhu H. Prospect of extracellular vesicles in tumor immunotherapy. Front Immunol 2025; 16:1525052. [PMID: 40078996 PMCID: PMC11897508 DOI: 10.3389/fimmu.2025.1525052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/28/2025] [Indexed: 03/14/2025] Open
Abstract
Extracellular vesicles (EVs), as cell-derived small vesicles, facilitate intercellular communication within the tumor microenvironment (TME) by transporting biomolecules. EVs from different sources have varied contents, demonstrating differentiated functions that can either promote or inhibit cancer progression. Thus, regulating the formation, secretion, and intake of EVs becomes a new strategy for cancer intervention. Advancements in EV isolation techniques have spurred interest in EV-based therapies, particularly for tumor immunotherapy. This review explores the multifaceted functions of EVs from various sources in tumor immunotherapy, highlighting their potential in cancer vaccines and adoptive cell therapy. Furthermore, we explore the potential of EVs as nanoparticle delivery systems in tumor immunotherapy. Finally, we discuss the current state of EVs in clinical settings and future directions, aiming to provide crucial information to advance the development and clinical application of EVs for cancer treatment.
Collapse
Affiliation(s)
- Wenbo Xia
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yunhan Tan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yongen Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huili Zhu
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
92
|
Li P, Huang M, Li M, Li G, Ma Y, Zhao Y, Wang X, Zhang Y, Shi C. Combining molecular characteristics and therapeutic analysis of PDOs predict clinical responses and guide PDAC personalized treatment. J Exp Clin Cancer Res 2025; 44:72. [PMID: 40001264 PMCID: PMC11863571 DOI: 10.1186/s13046-025-03332-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND The emergence of targeted therapies and immunotherapy has broadened treatment options for patients with pancreatic ductal adenocarcinoma (PDAC). Despite this, traditional drug selection, predominantly relies on tumor markers and clinical staging, has underutilized these drugs due to ignoring patient genomic diversity. Patient-derived organoids (PDOs) and corresponding patient-derived organoid xenograft (PDOX) models offer a way to better understand and address this. METHODS In this study, we established PDOs and PDOX models from PDAC clinical samples. These models were analyzed using immunohistochemistry, H&E staining, and genomic profiling. Drug screening with 111 FDA-approved drugs was performed on PDOs, and drug responses in PDOs and PDOX models were compared to assess consistency with clinical treatment outcomes. Gene analysis was conducted to explore the molecular mechanisms underlying variations in drug responses. Additionally, by analyzing the sequencing results from various drug-sensitive groups, the identified differential gene-drug metabolism gene UGT1A10 were modulated in PDOs to evaluate its impact on drug efficacy. A co-culture system of PDOs with immune cells was developed to study the efficacy of immunotherapies. RESULTS PDOs and matched PDOX models retain the morphological, biological, and genomic characteristics of the primary tumor. Exome sequencing and RNA sequencing confirmed both the consistency and heterogeneity among the PDOs. High-throughput drug screening revealed significant variability in drug sensitivity across different organoids, yet PDOs and PDOX derived from the same patient exhibited a high degree of concordance in response to clinical chemotherapy agents. The gene expression analysis of PDOs with significant differences in drug sensitivity revealed UGT1A10 as a crucial regulator. The knockdown of UGT1A10 notably increased drug sensitivity. Furthermore, immune cells demonstrated specific cytotoxicity towards the organoids, underscoring the potential of the co-culture system for application in tumor immunotherapy. CONCLUSION Our results highlight the necessity for personalized treatment strategies that consider genomic diversity beyond tumor markers, thus validating the utility of PDOs and PDOX models in advancing PDAC research and personalized medicine.
Collapse
Affiliation(s)
- Peng Li
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
- Animal Laboratory Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xi'an, Shaanxi, 710032, PR China
| | - Minli Huang
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
- Animal Laboratory Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Mengyao Li
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
- Animal Laboratory Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Gen Li
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Yifan Ma
- Gansu University of Chinese Medicine, Lanzhou, 730030, China
| | - Yong Zhao
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xi'an, Shaanxi, 710032, PR China
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, PR China.
| | - Yongbin Zhang
- Animal Laboratory Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China.
- Animal Experiment Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xi'an, Shaanxi, 710032, PR China.
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
93
|
Ding S. Therapeutic Reprogramming toward Regenerative Medicine. Chem Rev 2025; 125:1805-1822. [PMID: 39907153 DOI: 10.1021/acs.chemrev.4c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Therapeutic reprogramming represents a transformative paradigm in regenerative medicine, developing new approaches in cell therapy, small molecule drugs, biologics, and gene therapy to address unmet medical challenges. This paradigm encompasses the precise modulation of cellular fate and function to either generate safe and functional cells ex vivo for cell-based therapies or to directly reprogram endogenous cells in vivo or in situ for tissue repair and regeneration. Building on the discovery of induced pluripotent stem cells (iPSCs), advancements in chemical modulation and CRISPR-based gene editing have propelled a new iterative medicine paradigm, focusing on developing scalable, standardized cell therapy products from universal starting materials and enabling iterative improvements for more effective therapeutic profiles. Beyond cell-based therapies, non-cell-based therapeutic strategies targeting endogenous cells may offer a less invasive, more convenient, accessible, and cost-effective alternative for treating a broad range of diseases, potentially rejuvenating tissues and extending healthspan.
Collapse
Affiliation(s)
- Sheng Ding
- New Cornerstone Science Laboratory, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Global Health Drug Discovery Institute, Beijing 100192, China
- CRE Life Institute, Beijing 100192, China
| |
Collapse
|
94
|
Liu M, Li L, Cao L, Li W, Gu X, Yang M, Wu D, Li Y, Deng Y, Zhang J, Yang C, Liang Q, Liu H, Rong P, Ma X, Wang W. Targeted delivery of CCL3 reprograms macrophage antigen presentation and enhances the efficacy of immune checkpoint blockade therapy in hepatocellular carcinoma. J Immunother Cancer 2025; 13:e010947. [PMID: 39988347 PMCID: PMC11848677 DOI: 10.1136/jitc-2024-010947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 02/05/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related deaths worldwide, especially in advanced stages where limited treatment options result in poor prognosis. The immunosuppressive tumor immune microenvironment (TIME), characterized by low immune cell infiltration and exhaustion, limits immunotherapy efficacy. To address this, our study investigates the role of C-C motif chemokine ligand 3 (CCL3) in modulating the HCC TIME. METHODS We analyzed CCL3 expression in human HCC samples from The Cancer Genome Atlas database, focusing on its correlation with inflammatory gene signatures and immune cell infiltration. High-dimensional single-cell RNA sequencing (scRNA-seq), flow cytometry, and multiplex immunofluorescence were used to investigate CCL3's effects on macrophage function and T cell activation. The biological impact of CCL3 on macrophages was assessed using co-culture systems, confocal imaging, metabolite detection, and inhibition assays. Preclinical HCC models and ex vivo tumor fragment assays further explored how CCL3 modulates immune responses and enhances immune checkpoint blockade efficacy. RESULTS Our study shows that CCL3 is suppressed in the tumor microenvironment and positively correlates with immune infiltration and inflammatory responses. Targeted liver delivery of rAAV-Ccl3 reprograms the immune microenvironment in HCC, promoting immune cell recruitment and tertiary lymphoid structure formation, thus suppressing tumor growth via immune engagement. Through scRNA-seq, flow cytometry, and multiplex immunofluorescence, we found that CCL3 enhances macrophage antigen uptake and activates cytotoxic T cells. In vivo and in vitro experiments confirmed that CCL3 facilitates T cell infiltration and upregulates MHC II expression on macrophages, enhancing antigen presentation. The CCL3-CCR5 pathway also boosts macrophage metabolism, increasing lysosomal activity and antigen uptake, thereby strengthening adaptive immune responses and increasing sensitivity to immune checkpoint blockade therapies in preclinical models. CONCLUSIONS This study highlights the pivotal role of CCL3 in reshaping the TIME and enhancing antitumor immunity in HCC. By promoting immune cell recruitment and enhancing antigen presentation, CCL3 demonstrates significant potential to improve the efficacy of immunotherapy, particularly in combination with immune checkpoint inhibitors. Targeting CCL3 may help to overcome the immunosuppressive TIME in HCC and improve patient outcomes.
Collapse
Affiliation(s)
- Muqi Liu
- Institute for Cell Transplantation and Gene Therapy, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Minimally Invasive Diagnosis and Therapy Under Image Navigation, Changsha, Hunan, China
| | - Linzhe Li
- Institute for Cell Transplantation and Gene Therapy, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lu Cao
- Institute for Cell Transplantation and Gene Therapy, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Minimally Invasive Diagnosis and Therapy Under Image Navigation, Changsha, Hunan, China
| | - Wei Li
- Institute for Cell Transplantation and Gene Therapy, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Minimally Invasive Diagnosis and Therapy Under Image Navigation, Changsha, Hunan, China
| | - Xingshi Gu
- Institute for Cell Transplantation and Gene Therapy, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Min Yang
- Institute for Cell Transplantation and Gene Therapy, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Minimally Invasive Diagnosis and Therapy Under Image Navigation, Changsha, Hunan, China
| | - Di Wu
- Institute for Cell Transplantation and Gene Therapy, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Minimally Invasive Diagnosis and Therapy Under Image Navigation, Changsha, Hunan, China
| | - Yanan Li
- Institute for Cell Transplantation and Gene Therapy, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Minimally Invasive Diagnosis and Therapy Under Image Navigation, Changsha, Hunan, China
| | - Yao Deng
- Institute for Cell Transplantation and Gene Therapy, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Juan Zhang
- Institute for Cell Transplantation and Gene Therapy, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Minimally Invasive Diagnosis and Therapy Under Image Navigation, Changsha, Hunan, China
| | - Cejun Yang
- Institute for Cell Transplantation and Gene Therapy, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Minimally Invasive Diagnosis and Therapy Under Image Navigation, Changsha, Hunan, China
| | - Qi Liang
- Institute for Cell Transplantation and Gene Therapy, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Minimally Invasive Diagnosis and Therapy Under Image Navigation, Changsha, Hunan, China
| | - Huaping Liu
- Institute for Cell Transplantation and Gene Therapy, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Minimally Invasive Diagnosis and Therapy Under Image Navigation, Changsha, Hunan, China
| | - Pengfei Rong
- Institute for Cell Transplantation and Gene Therapy, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Minimally Invasive Diagnosis and Therapy Under Image Navigation, Changsha, Hunan, China
| | - Xiaoqian Ma
- Institute for Cell Transplantation and Gene Therapy, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Minimally Invasive Diagnosis and Therapy Under Image Navigation, Changsha, Hunan, China
| | - Wei Wang
- Institute for Cell Transplantation and Gene Therapy, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Research Center for Minimally Invasive Diagnosis and Therapy Under Image Navigation, Changsha, Hunan, China
| |
Collapse
|
95
|
Song Y, Wang Y, Man J, Xu Y, Zhou G, Shen W, Chao Y, Yang K, Pei P, Hu L. Chimeric Antigen Receptor Cells Solid Tumor Immunotherapy Assisted by Biomaterials Tools. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10246-10264. [PMID: 39903799 DOI: 10.1021/acsami.4c20275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Chimeric antigen receptor (CAR) immune cell therapies have revolutionized oncology, particularly in hematological malignancies, yet their efficacy against solid tumors remains limited due to challenges such as dense stromal barriers and immunosuppressive microenvironments. With advancements in nanobiotechnology, researchers have developed various strategies and methods to enhance the CAR cell efficacy in solid tumor treatment. In this Review, we first outline the structure and mechanism of CAR-T (T, T cell), CAR-NK (NK, natural killer), and CAR-M (M, macrophage) cell therapies and deeply analyze the potential of these cells in the treatment of solid tumors and the challenges they face. Next, we explore how biomaterials can optimize these treatments by improving the tumor microenvironment, controlling CAR cell release, promoting cell infiltration, and enhancing efficacy. Finally, we summarize the current challenges and potential solutions, emphasize the effective combination of biomaterials and CAR cell therapy, and look forward to its future clinical application and treatment strategies. This Review provides important theoretical perspectives and practical guidance for the future development of more effective solid tumor treatment strategies.
Collapse
Affiliation(s)
- Yujie Song
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yifan Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianping Man
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yihua Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Wenhao Shen
- Department of Oncology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, Jiangsu 225300, China
| | - Yu Chao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pei Pei
- Department of Nuclear Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
96
|
Cao B, Liu M, Xiao Z, Leng D, Zhou Y, Zhang Z, Wang L, Huang X, Ni Q, Cheng W, Assaraf YG, Zhao Q, Shen J, Zhu K. CV1-secreting sCAR-T cells potentiate the abscopal effect of microwave ablation in heterogeneous tumors. Cell Rep Med 2025; 6:101965. [PMID: 39970874 PMCID: PMC11866491 DOI: 10.1016/j.xcrm.2025.101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/01/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
Microwave ablation (MWA) triggers a weak systemic immune response that leads to the abscopal regression of distant metastases while killing local tumors, known as the abscopal effect. Combining MWA with chimeric antigen receptor (CAR)-T cells demonstrates promise in enhancing the abscopal effect in antigen-homogeneous tumors. However, the loss of the antigen recognized by CAR or intrinsic antigenic heterogeneity in solid tumors poses a major obstacle. SIRPα variant (CV1)-secreting CAR-T (sCAR-T) cells elicit an abscopal effect on distant tumors with antigen heterogeneity in mice receiving local MWA. Mechanistically, sCAR-T cells can locally eliminate antigen-positive tumors and secrete CV1, whereas the secreted CV1 can activate macrophages that migrate to non-ablated tumor sites in response to post-MWA chemokines, eliciting a macrophage-dependent abscopal effect that enables phagocytosis of antigen-heterogeneous cancer cells. This macrophage-dependent abscopal effect instigated by MWA and sCAR-T cells offers a clinically translatable strategy in metastatic solid tumors with antigen heterogeneity.
Collapse
Affiliation(s)
- Bihui Cao
- Department of Minimally Invasive Interventional Radiology, Department of Radiology, Central Laboratory, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, China; Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Manting Liu
- Department of Minimally Invasive Interventional Radiology, Department of Radiology, Central Laboratory, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Zecong Xiao
- Nanomedicine Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Dongliang Leng
- MoE Frontiers Science Center for Precision Oncology, Institute of Translational Medicine, Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Yubo Zhou
- Department of Library, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhenfeng Zhang
- Department of Minimally Invasive Interventional Radiology, Department of Radiology, Central Laboratory, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Lu Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Xinkun Huang
- Department of Minimally Invasive Interventional Radiology, Department of Radiology, Central Laboratory, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Qianqian Ni
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Wei Cheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Qi Zhao
- MoE Frontiers Science Center for Precision Oncology, Institute of Translational Medicine, Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China.
| | - Jia Shen
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, Department of Radiology, Central Laboratory, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, China.
| |
Collapse
|
97
|
Ding J, Zhao X, Long S, Sun W, Du J, Fan J, Peng X. A Dual Stimuli-Responsive Nanoimmunomodulator for Antitumor Synergy of Macrophages and T Cells. ACS NANO 2025; 19:6468-6478. [PMID: 39919169 DOI: 10.1021/acsnano.4c17285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Only a minority of patients benefit from current T-cell-focused adaptive immunotherapies, underscoring the need to engage innate immune cells, particularly macrophages, for multilayered tumor control. However, high-efficacy therapeutics capable of orchestrating multiple immune cells remain scarce. Herein, a dual stimuli-responsive nanoimmunomodulator (6EPP@si) that caters specifically to the tumor microenvironment (TME) is presented for the antitumor synergy of macrophages and T cells. Using the functional polymer-based carrier, we co-deliver the endoplasmic reticulum (ER)-localized photosensitizer 6E and small interfering RNA targeting CD47 (siCD47) into breast tumors. Within the acidic and high-glutathione TME, 6EPP@si undergoes self-lysosome escape and nanocleavage for precise, on-demand drug release. Consequently, siCD47 released into the cytoplasm enables potent CD47 silencing, while the ER-targeted photosensitizer 6E induces immunogenic cell death through reactive oxygen species-based ER stress, triggering the release of damage-associated molecular patterns, including calreticulin surface translocation. 6EPP@si enhances macrophage phagocytosis by modulating both antiphagocytic and prophagocytic signals and also promotes antigen presentation to activate T cells. In orthotopic breast tumor and spontaneous lung metastatic tumor models, this combined approach demonstrates robust antitumor effects and effective antimetastatic immunity, offering a meaningful strategy to simultaneously activate multiple immune cells for enhancing cancer immunotherapy.
Collapse
Affiliation(s)
- Junying Ding
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xueze Zhao
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
98
|
Cao B, Ni Q, Chen Z, Yang S, Zhang X, Su H, Zhang Z, Zhao Q, Zhu X, Liu M. Development of glypican-3-specific chimeric antigen receptor-modified natural killer cells and optimization as a therapy for hepatocellular carcinoma. J Leukoc Biol 2025; 117:qiae144. [PMID: 38922297 DOI: 10.1093/jleuko/qiae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/28/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor characterized by insidious onset and rapid progression, with limited treatment choices. One treatment modality, chimeric antigen receptor (CAR)-modified natural killer (NK) cell immunotherapy, has shown promise for various cancers. However, the treatment efficacy of CAR-NK cells for HCC remain inferior. In this study, we developed two glypican-3 (GPC3)-specific CAR-NK-92 cell lines (GPC3-CAR-NK) and explored their antitumor efficacy for the treatment of HCC. Significant levels of cytokine production and in vitro cytotoxicity were produced following co-culture of GPC3+ HCC cells with the developed GPC3-CAR-NK cells. GC33-G2D-NK cells with NK cell-specific signaling domains showed better activation and killing abilities than GC33-CD28-NK cells containing T-cell-specific signaling domains. Moreover, GC33-G2D-NK cells efficiently eliminated tumors in cell-derived xenograft and patient-derived xenograft mouse models. In an abdominal metastasis model, intraperitoneally delivered GC33-G2D-NK cells showed better antitumor ability than intravenously injected cells. Finally, the combination of microwave ablation (MWA) with GC33-G2D-NK cell administration showed greater CAR-NK infiltration and tumor regression in ablated tumors than monotherapy alone. These findings indicate that administration of GPC3-CAR-NK cells may be a potential strategy for the treatment of HCC, and regional delivery or their combination with MWA may optimize their efficacy against HCC and may have translational value.
Collapse
Affiliation(s)
- Bihui Cao
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
- Department of Guangdong Provincial Key Laboratory of Pathogenesis and Precision Prevention of Heart Disease, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510100, China
- Department of Radiology, Central Laboratory, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Qianqian Ni
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Zhuxin Chen
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
- Department of Guangdong Provincial Key Laboratory of Pathogenesis and Precision Prevention of Heart Disease, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510100, China
| | - Shuo Yang
- Department of Guangdong Provincial and Guangzhou Municipal Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xinkui Zhang
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
- Department of Guangdong Provincial Key Laboratory of Pathogenesis and Precision Prevention of Heart Disease, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510100, China
| | - Haotao Su
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
- Department of Guangdong Provincial Key Laboratory of Pathogenesis and Precision Prevention of Heart Disease, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510100, China
| | - Zhenfeng Zhang
- Department of Radiology, Central Laboratory, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Qi Zhao
- Faculty of Health Sciences, MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China
| | - Xiaolan Zhu
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510080, China
| | - Manting Liu
- Department of Radiology, Central Laboratory, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| |
Collapse
|
99
|
Mu W, Tomer S, Harding J, Kedia N, Rezek V, Cook E, Patankar V, Carrillo MA, Martin H, Ng H, Wang L, Marsden MD, Kitchen SG, Zhen A. Rapamycin enhances CAR-T control of HIV replication and reservoir elimination in vivo. J Clin Invest 2025; 135:e185489. [PMID: 39932788 PMCID: PMC11957703 DOI: 10.1172/jci185489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy shows promise for various diseases. Our studies in humanized mice and nonhuman primates demonstrate that hematopoietic stem cells (HSCs) modified with anti-HIV CAR achieve lifelong engraftment, providing functional antiviral CAR-T cells that reduce viral rebound after antiretroviral therapy (ART) withdrawal. However, T cell exhaustion due to chronic immune activation remains a key obstacle to sustained CAR-T efficacy, necessitating additional measures to achieve functional cure. We recently showed that low-dose rapamycin treatment reduced inflammation and improved anti-HIV T cell function in HIV-infected humanized mice. Here, we report that rapamycin improved CAR-T cell function both in vitro and in vivo. In vitro treatment with rapamycin enhanced CAR-T cell mitochondrial respiration and cytotoxicity. In vivo treatment with low-dose rapamycin in HIV-infected, CAR-HSC mice decreased chronic inflammation, prevented exhaustion of CAR-T cells, and improved CAR-T control of viral replication. RNA-sequencing analysis of CAR-T cells from humanized mice showed that rapamycin downregulated multiple checkpoint inhibitors and upregulated key survival genes. Mice treated with CAR-HSCs and rapamycin had delayed viral rebound after ART and reduced HIV reservoir compared with those treated with CAR-HSCs alone. These findings suggest that HSC-based anti-HIV CAR-T cells combined with rapamycin treatment are a promising approach for treating persistent inflammation and improving immune control of HIV replication.
Collapse
Affiliation(s)
- Wenli Mu
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Shallu Tomer
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jeffrey Harding
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Nandita Kedia
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Valerie Rezek
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ethan Cook
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Vaibahavi Patankar
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Mayra A. Carrillo
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Heather Martin
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Hwee Ng
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Li Wang
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Matthew D. Marsden
- Department of Microbiology & Molecular Genetics and
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Scott G. Kitchen
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Anjie Zhen
- Division of Hematology/Oncology, Department of Medicine, and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
100
|
Crespo E, Loureiro LR, Stammberger A, Hoffmann L, Berndt N, Hoffmann A, Dagostino C, Soto KEG, Rupp L, Arndt C, Schneider M, Ball CR, Bachmann M, Schmitz M, Feldmann A. RevCAR-mediated T-cell response against PD-L1-expressing cells turns suppression into activation. NPJ Precis Oncol 2025; 9:42. [PMID: 39924591 PMCID: PMC11808103 DOI: 10.1038/s41698-025-00828-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/28/2025] [Indexed: 02/11/2025] Open
Abstract
Applying CAR T-cell therapy to treat solid tumors is especially challenging due to the immunosuppressive tumor microenvironment (TME). While our modular RevCAR system enhances the safety and controllability of CAR T-cell therapy, effectively targeting solid tumors remains difficult. Since PD-L1 is an immune checkpoint frequently upregulated by cancer cells and their microenvironment, it is a relevant target for solid tumors. Here, we introduce a novel PD-L1 RevTM capable of redirecting RevCAR T-cells to specifically target and kill PD-L1-expressing tumor cells, becoming activated and secreting pro-inflammatory cytokines. This is shown in vitro with monolayer and 3D models, including patient-derived cultures, and in vivo. Furthermore, we demonstrate in vitro and in vivo an AND-gated targeting of cells simultaneously expressing PD-L1 and another tumor-associated antigen by the Dual RevCAR system. Our findings suggest that RevCAR-mediated targeting of PD-L1 could be a promising therapeutic approach for modulating the TME and improving solid tumor treatment.
Collapse
Affiliation(s)
- Eugenia Crespo
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Liliana R Loureiro
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Antonia Stammberger
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Lydia Hoffmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Nicole Berndt
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Anja Hoffmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Claudia Dagostino
- Department for Translational Medical Oncology, National Center for Tumor Diseases Dresden (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Karla E G Soto
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Luise Rupp
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Claudia Arndt
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Claudia R Ball
- Department for Translational Medical Oncology, National Center for Tumor Diseases Dresden (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Faculty of Biology, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, Dresden, Germany
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.
- German Cancer Consortium (DKTK), partner site Dresden, Dresden, Germany.
- National Center for Tumor Diseases (NCT), partner site Dresden, Dresden, Germany.
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), partner site Dresden, Dresden, Germany
| | - Anja Feldmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.
- German Cancer Consortium (DKTK), partner site Dresden, Dresden, Germany.
- National Center for Tumor Diseases (NCT), partner site Dresden, Dresden, Germany.
| |
Collapse
|