51
|
Zhou B, Ji B, Shen C, Zhang X, Yu X, Huang P, Yu R, Zhang H, Dou X, Chen Q, Zeng Q, Wang X, Cao Z, Hu G, Xu S, Zhao H, Yang Y, Zhou Y, Wang J. EVLncRNAs 3.0: an updated comprehensive database for manually curated functional long non-coding RNAs validated by low-throughput experiments. Nucleic Acids Res 2024; 52:D98-D106. [PMID: 37953349 PMCID: PMC10767905 DOI: 10.1093/nar/gkad1057] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have emerged as crucial regulators across diverse biological processes and diseases. While high-throughput sequencing has enabled lncRNA discovery, functional characterization remains limited. The EVLncRNAs database is the first and exclusive repository for all experimentally validated functional lncRNAs from various species. After previous releases in 2018 and 2021, this update marks a major expansion through exhaustive manual curation of nearly 25 000 publications from 15 May 2020, to 15 May 2023. It incorporates substantial growth across all categories: a 154% increase in functional lncRNAs, 160% in associated diseases, 186% in lncRNA-disease associations, 235% in interactions, 138% in structures, 234% in circular RNAs, 235% in resistant lncRNAs and 4724% in exosomal lncRNAs. More importantly, it incorporated additional information include functional classifications, detailed interaction pathways, homologous lncRNAs, lncRNA locations, COVID-19, phase-separation and organoid-related lncRNAs. The web interface was substantially improved for browsing, visualization, and searching. ChatGPT was tested for information extraction and functional overview with its limitation noted. EVLncRNAs 3.0 represents the most extensive curated resource of experimentally validated functional lncRNAs and will serve as an indispensable platform for unravelling emerging lncRNA functions. The updated database is freely available at https://www.sdklab-biophysics-dzu.net/EVLncRNAs3/.
Collapse
Affiliation(s)
- Bailing Zhou
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Baohua Ji
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
- College of Physics and Electronic Information, Dezhou University, Dezhou 253023, China
| | - Congcong Shen
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Xia Zhang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Xue Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Pingping Huang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Ru Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Hongmei Zhang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
- College of Life Science, Dezhou University, Dezhou 253023, China
| | - Xianghua Dou
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Qingshuai Chen
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Qiangcheng Zeng
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
- College of Life Science, Dezhou University, Dezhou 253023, China
| | - Xiaoxin Wang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
- College of Physics and Electronic Information, Dezhou University, Dezhou 253023, China
| | - Zanxia Cao
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Guodong Hu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Shicai Xu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Huiying Zhao
- Department of Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yuedong Yang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
- School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yaoqi Zhou
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518038, China
| | - Jihua Wang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| |
Collapse
|
52
|
Shah M, Sarkar D. HCC-Related lncRNAs: Roles and Mechanisms. Int J Mol Sci 2024; 25:597. [PMID: 38203767 PMCID: PMC10779127 DOI: 10.3390/ijms25010597] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents a significant global health threat, particularly in regions endemic to hepatitis B and C viruses, and because of the ongoing pandemic of obesity causing metabolic-dysfunction-related fatty liver disease (MAFLD), a precursor to HCC. The molecular intricacies of HCC, genetic and epigenetic alterations, and dysregulated signaling pathways facilitate personalized treatment strategies based on molecular profiling. Epigenetic regulation, encompassing DNA methyltion, histone modifications, and noncoding RNAs, functions as a critical layer influencing HCC development. Long noncoding RNAs (lncRNAs) are spotlighted for their diverse roles in gene regulation and their potential as diagnostic and therapeutic tools in cancer. In this review, we explore the pivotal role of lncRNAs in HCC, including MAFLD and viral hepatitis, the most prevalent risk factors for hepatocarcinogenesis. The dysregulation of lncRNAs is implicated in HCC progression by modulating chromatin regulation and transcription, sponging miRNAs, and influencing structural functions. The ongoing studies on lncRNAs contribute to a deeper comprehension of HCC pathogenesis and offer promising routes for precision medicine, highlighting the utility of lncRNAs as early biomarkers, prognostic indicators, and therapeutic targets.
Collapse
Affiliation(s)
- Mimansha Shah
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Comprehensive Cancer Center, and VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
53
|
Xing YH, Dong R, Lee L, Rengarajan S, Riggi N, Boulay G, Rivera MN. DisP-seq reveals the genome-wide functional organization of DNA-associated disordered proteins. Nat Biotechnol 2024; 42:52-64. [PMID: 37037903 PMCID: PMC10791585 DOI: 10.1038/s41587-023-01737-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/07/2023] [Indexed: 04/12/2023]
Abstract
Intrinsically disordered regions (IDRs) in DNA-associated proteins are known to influence gene regulation, but their distribution and cooperative functions in genome-wide regulatory programs remain poorly understood. Here we describe DisP-seq (disordered protein precipitation followed by DNA sequencing), an antibody-independent chemical precipitation assay that can simultaneously map endogenous DNA-associated disordered proteins genome-wide through a combination of biotinylated isoxazole precipitation and next-generation sequencing. DisP-seq profiles are composed of thousands of peaks that are associated with diverse chromatin states, are enriched for disordered transcription factors (TFs) and are often arranged in large lineage-specific clusters with high local concentrations of disordered proteins and different combinations of histone modifications linked to regulatory potential. We use DisP-seq to analyze cancer cells and reveal how disordered protein-associated islands enable IDR-dependent mechanisms that control the binding and function of disordered TFs, including oncogene-dependent sequestration of TFs through long-range interactions and the reactivation of differentiation pathways upon loss of oncogenic stimuli in Ewing sarcoma.
Collapse
Affiliation(s)
- Yu-Hang Xing
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Rui Dong
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Lukuo Lee
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Shruthi Rengarajan
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Nicolò Riggi
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Centre Hospitalier Universitaire Vaudois, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Gaylor Boulay
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Miguel N Rivera
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
54
|
Qin D, Gu Y, Zhang Y, Wang S, Jiang T, Wang Y, Wang C, Chen C, Zhang T, Xu W, Wang H, Zhang K, Hu L, Li L, Xie W, Wu X, Hu Z. Phase-separated CCER1 coordinates the histone-to-protamine transition and male fertility. Nat Commun 2023; 14:8209. [PMID: 38081819 PMCID: PMC10713660 DOI: 10.1038/s41467-023-43480-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 08/02/2023] [Indexed: 12/18/2023] Open
Abstract
Idiopathic fertility disorders are associated with mutations in various genes. Here, we report that coiled-coil glutamate-rich protein 1 (CCER1), a germline-specific and intrinsically disordered protein (IDP), mediates postmeiotic spermatid differentiation. In contrast, CCER1 deficiency results in defective sperm chromatin compaction and infertility in mice. CCER1 increases transition protein (Tnp1/2) and protamine (Prm1/2) transcription and mediates multiple histone epigenetic modifications during the histone-to-protamine (HTP) transition. Immiscible with heterochromatin in the nucleus, CCER1 self-assembles into a polymer droplet and forms a liquid-liquid phase-separated condensate in the nucleus. Notably, we identified loss-of-function (LoF) variants of human CCER1 (hCCER1) in five patients with nonobstructive azoospermia (NOA) that were absent in 2713 fertile controls. The mutants led to premature termination or frameshift in CCER1 translation, and disrupted condensates in vitro. In conclusion, we propose that nuclear CCER1 is a phase-separated condensate that links histone epigenetic modifications, HTP transitions, chromatin condensation, and male fertility.
Collapse
Affiliation(s)
- Dongdong Qin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Yu Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shu Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Tao Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Yao Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Cheng Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Chang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Tao Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Weiya Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Hanben Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Ke Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Liangjun Hu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Lufan Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
- School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, 211100, China.
| |
Collapse
|
55
|
Böğürcü-Seidel N, Ritschel N, Acker T, Németh A. Beyond ribosome biogenesis: noncoding nucleolar RNAs in physiology and tumor biology. Nucleus 2023; 14:2274655. [PMID: 37906621 PMCID: PMC10730139 DOI: 10.1080/19491034.2023.2274655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
The nucleolus, the largest subcompartment of the nucleus, stands out from the nucleoplasm due to its exceptionally high local RNA and low DNA concentrations. Within this central hub of nuclear RNA metabolism, ribosome biogenesis is the most prominent ribonucleoprotein (RNP) biogenesis process, critically determining the structure and function of the nucleolus. However, recent studies have shed light on other roles of the nucleolus, exploring the interplay with various noncoding RNAs that are not directly involved in ribosome synthesis. This review focuses on this intriguing topic and summarizes the techniques to study and the latest findings on nucleolar long noncoding RNAs (lncRNAs) as well as microRNAs (miRNAs) in the context of nucleolus biology beyond ribosome biogenesis. We particularly focus on the multifaceted roles of the nucleolus and noncoding RNAs in physiology and tumor biology.
Collapse
Affiliation(s)
| | - Nadja Ritschel
- Institute of Neuropathology, Justus Liebig University Giessen, Giessen, Germany
| | - Till Acker
- Institute of Neuropathology, Justus Liebig University Giessen, Giessen, Germany
| | - Attila Németh
- Institute of Neuropathology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
56
|
Wang J, Wang W, Ma F, Qian H. A hidden translatome in tumors-the coding lncRNAs. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2755-2772. [PMID: 37154857 DOI: 10.1007/s11427-022-2289-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/29/2022] [Indexed: 05/10/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been extensively identified in eukaryotic genomes and have been shown to play critical roles in the development of multiple cancers. Through the application and development of ribosome analysis and sequencing technologies, advanced studies have discovered the translation of lncRNAs. Although lncRNAs were originally defined as noncoding RNAs, many lncRNAs actually contain small open reading frames that are translated into peptides. This opens a broad area for the functional investigation of lncRNAs. Here, we introduce prospective methods and databases for screening lncRNAs with functional polypeptides. We also summarize the specific lncRNA-encoded proteins and their molecular mechanisms that promote or inhibit cancerous. Importantly, the role of lncRNA-encoded peptides/proteins holds promise in cancer research, but some potential challenges remain unresolved. This review includes reports on lncRNA-encoded peptides or proteins in cancer, aiming to provide theoretical basis and related references to facilitate the discovery of more functional peptides encoded by lncRNA, and to further develop new anti-cancer therapeutic targets as well as clinical biomarkers of diagnosis and prognosis.
Collapse
Affiliation(s)
- Jinsong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenna Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fei Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
57
|
Gao G, Sumrall ES, Pitchiaya S, Bitzer M, Alberti S, Walter NG. Biomolecular condensates in kidney physiology and disease. Nat Rev Nephrol 2023; 19:756-770. [PMID: 37752323 DOI: 10.1038/s41581-023-00767-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2023] [Indexed: 09/28/2023]
Abstract
The regulation and preservation of distinct intracellular and extracellular solute microenvironments is crucial for the maintenance of cellular homeostasis. In mammals, the kidneys control bodily salt and water homeostasis. Specifically, the urine-concentrating mechanism within the renal medulla causes fluctuations in extracellular osmolarity, which enables cells of the kidney to either conserve or eliminate water and electrolytes, depending on the balance between intake and loss. However, relatively little is known about the subcellular and molecular changes caused by such osmotic stresses. Advances have shown that many cells, including those of the kidney, rapidly (within seconds) and reversibly (within minutes) assemble membraneless, nano-to-microscale subcellular assemblies termed biomolecular condensates via the biophysical process of hyperosmotic phase separation (HOPS). Mechanistically, osmotic cell compression mediates changes in intracellular hydration, concentration and molecular crowding, rendering HOPS one of many related phase-separation phenomena. Osmotic stress causes numerous homo-multimeric proteins to condense, thereby affecting gene expression and cell survival. HOPS rapidly regulates specific cellular biochemical processes before appropriate protective or corrective action by broader stress response mechanisms can be initiated. Here, we broadly survey emerging evidence for, and the impact of, biomolecular condensates in nephrology, where initial concentration buffering by HOPS and its subsequent cellular escalation mechanisms are expected to have important implications for kidney physiology and disease.
Collapse
Affiliation(s)
- Guoming Gao
- Biophysics Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA
| | - Emily S Sumrall
- Biophysics Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Markus Bitzer
- Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Simon Alberti
- Technische Universität Dresden, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Engineering (CMCB), Dresden, Germany
| | - Nils G Walter
- Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
58
|
Yamamoto T, Yamazaki T, Ninomiya K, Hirose T. Nascent ribosomal RNA act as surfactant that suppresses growth of fibrillar centers in nucleolus. Commun Biol 2023; 6:1129. [PMID: 37935838 PMCID: PMC10630424 DOI: 10.1038/s42003-023-05519-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) has been thought to be the biophysical principle governing the assembly of the multiphase structures of nucleoli, the site of ribosomal biogenesis. Condensates assembled through LLPS increase their sizes to minimize the surface energy as far as their components are available. However, multiple microphases, fibrillar centers (FCs), dispersed in a nucleolus are stable and their sizes do not grow unless the transcription of pre-ribosomal RNA (pre-rRNA) is inhibited. To understand the mechanism of the suppression of the FC growth, we here construct a minimal theoretical model by taking into account nascent pre-rRNAs tethered to FC surfaces by RNA polymerase I. The prediction of this theory was supported by our experiments that quantitatively measure the dependence of the size of FCs on the transcription level. This work sheds light on the role of nascent RNAs in controlling the size of nuclear bodies.
Collapse
Affiliation(s)
- Tetsuya Yamamoto
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, 001-0021, Japan.
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8, Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Tomohiro Yamazaki
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan.
| | - Kensuke Ninomiya
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-3 Yamadaoka, Suita, 565-0871, Japan
| |
Collapse
|
59
|
Zhang L, Xu J, Li M, Chen X. The role of long noncoding RNAs in liquid-liquid phase separation. Cell Signal 2023; 111:110848. [PMID: 37557974 DOI: 10.1016/j.cellsig.2023.110848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Long noncoding RNAs (lncRNAs), which are among the most well-characterized noncoding RNAs, have attracted much attention due to their regulatory functions and potential therapeutic options in many types of disease. Liquid-liquid phase separation (LLPS), the formation of droplet condensates, is involved in various cellular processes, but the molecular interactions of lncRNAs in LLPS are unclear. In this review, we describe the research development on LLPS, including descriptions of various methods established to identify LLPS, summarize the physiological and pathological functions of LLPS, identify the molecular interactions of lncRNAs in LLPS, and present the potential applications of leveraging LLPS in the clinic. The aim of this review is to update the knowledge on the association between LLPS and lncRNAs, which might provide a new direction for the treatment of LLPS-mediated disease.
Collapse
Affiliation(s)
- Le Zhang
- Center for Reproductive Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia, China
| | - Jinjin Xu
- Department of Imaging Medicine, The People's Hospital of the Inner Mongolia Autonomous Region, Hohhot 010017, Inner Mongolia, China
| | - Muxuan Li
- The First Clinical Medical College of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia, China
| | - Xiujuan Chen
- Center for Reproductive Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia, China.
| |
Collapse
|
60
|
Zhu P, Liu B, Fan Z. Noncoding RNAs in tumorigenesis and tumor therapy. FUNDAMENTAL RESEARCH 2023; 3:692-706. [PMID: 38933287 PMCID: PMC11197782 DOI: 10.1016/j.fmre.2023.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/26/2023] [Accepted: 05/07/2023] [Indexed: 06/28/2024] Open
Abstract
Tumorigenesis is a complicated process in which numerous modulators are involved in different ways. Previous studies have focused primarily on tumor-associated protein-coding genes such as oncogenes and tumor suppressor genes, as well as their associated oncogenic pathways. However, noncoding RNAs (ncRNAs), rising stars in diverse physiological and pathological processes, have recently emerged as additional modulators in tumorigenesis. In this review, we focus on two typical kinds of ncRNAs: long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs). We describe the molecular patterns of ncRNAs and focus on the roles of ncRNAs in cancer stem cells (CSCs), tumor cells, and tumor environmental cells. CSCs are a small subset of tumor cells and are generally considered to be cells that initiate tumorigenesis, and dozens of ncRNAs have been defined as critical modulators in CSC maintenance and oncogenesis. Moreover, ncRNAs are widely involved in oncogenetic processes, including sustaining proliferation, resisting cell death, genome instability, metabolic disorders, immune escape and metastasis. We also discuss the potential applications of ncRNAs in tumor diagnosis and therapy. The progress in ncRNA research greatly improves our understanding of ncRNAs in oncogenesis and provides new potential targets for future tumor therapy.
Collapse
Affiliation(s)
- Pingping Zhu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Benyu Liu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zusen Fan
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
61
|
Wei R, Wang X, Li D. Explore the nucleolus: unveiling the hidden layer with super-resolution microscopy. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2193-2195. [PMID: 37243948 DOI: 10.1007/s11427-023-2370-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/08/2023] [Indexed: 05/29/2023]
Affiliation(s)
- Rongfei Wei
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinyu Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
62
|
Zeng C, Chujo T, Hirose T, Hamada M. Landscape of semi-extractable RNAs across five human cell lines. Nucleic Acids Res 2023; 51:7820-7831. [PMID: 37463833 PMCID: PMC10450185 DOI: 10.1093/nar/gkad567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 05/23/2023] [Accepted: 06/21/2023] [Indexed: 07/20/2023] Open
Abstract
Phase-separated membraneless organelles often contain RNAs that exhibit unusual semi-extractability using the conventional RNA extraction method, and can be efficiently retrieved by needle shearing or heating during RNA extraction. Semi-extractable RNAs are promising resources for understanding RNA-centric phase separation. However, limited assessments have been performed to systematically identify and characterize semi-extractable RNAs. In this study, 1074 semi-extractable RNAs, including ASAP1, DANT2, EXT1, FTX, IGF1R, LIMS1, NEAT1, PHF21A, PVT1, SCMH1, STRG.3024.1, TBL1X, TCF7L2, TVP23C-CDRT4, UBE2E2, ZCCHC7, ZFAND3 and ZSWIM6, which exhibited consistent semi-extractability were identified across five human cell lines. By integrating publicly available datasets, we found that semi-extractable RNAs tend to be distributed in the nuclear compartments but are dissociated from the chromatin. Long and repeat-containing semi-extractable RNAs act as hubs to provide global RNA-RNA interactions. Semi-extractable RNAs were divided into four groups based on their k-mer content. The NEAT1 group preferred to interact with paraspeckle proteins, such as FUS and NONO, implying that RNAs in this group are potential candidates of architectural RNAs that constitute nuclear bodies.
Collapse
Affiliation(s)
- Chao Zeng
- Faculty of Science and Engineering, Waseda University, Tokyo 1698555, Japan
| | - Takeshi Chujo
- Faculty of Life Sciences, Kumamoto University, Kumamoto 8608556, Japan
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita 5650871, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita 5650871, Japan
| | - Michiaki Hamada
- Faculty of Science and Engineering, Waseda University, Tokyo 1698555, Japan
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Tokyo 1698555, Japan
- Graduate School of Medicine, Nippon Medical School, Tokyo 1138602, Japan
| |
Collapse
|
63
|
Lafontaine DLJ. In phase with the nucleolus. Cell Res 2023; 33:579-580. [PMID: 37055593 PMCID: PMC10397221 DOI: 10.1038/s41422-023-00801-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023] Open
Affiliation(s)
- Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark Campus, B-6041, Gosselies, Belgium.
| |
Collapse
|
64
|
Schede HH, Natarajan P, Chakraborty AK, Shrinivas K. A model for organization and regulation of nuclear condensates by gene activity. Nat Commun 2023; 14:4152. [PMID: 37438363 DOI: 10.1038/s41467-023-39878-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 07/03/2023] [Indexed: 07/14/2023] Open
Abstract
Condensation by phase separation has recently emerged as a mechanism underlying many nuclear compartments essential for cellular functions. Nuclear condensates enrich nucleic acids and proteins, localize to specific genomic regions, and often promote gene expression. How diverse properties of nuclear condensates are shaped by gene organization and activity is poorly understood. Here, we develop a physics-based model to interrogate how spatially-varying transcription activity impacts condensate properties and dynamics. Our model predicts that spatial clustering of active genes can enable precise localization and de novo nucleation of condensates. Strong clustering and high activity results in aspherical condensate morphologies. Condensates can flow towards distant gene clusters and competition between multiple clusters lead to stretched morphologies and activity-dependent repositioning. Overall, our model predicts and recapitulates morphological and dynamical features of diverse nuclear condensates and offers a unified mechanistic framework to study the interplay between non-equilibrium processes, spatially-varying transcription, and multicomponent condensates in cell biology.
Collapse
Affiliation(s)
- Halima H Schede
- School of Life Sciences, École Polytechnique Fédérale Lausanne, CH-1015, Lausanne, Switzerland
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pradeep Natarajan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arup K Chakraborty
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Krishna Shrinivas
- NSF-Simons Center for Mathematical & Statistical Analysis of Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
65
|
Han JDJ. LncRNAs: the missing link to senescence nuclear architecture. Trends Biochem Sci 2023; 48:618-628. [PMID: 37069045 DOI: 10.1016/j.tibs.2023.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/19/2023]
Abstract
During cellular senescence and organismal aging, cells display various molecular and morphological changes. Although many aging-related long noncoding RNAs (lncRNAs) are highly associated with senescence-associated secretory phenotype, the roles of lncRNAs in senescence-associated nuclear architecture and morphological changes are just starting to emerge. Here I review lncRNAs associated with nuclear structure establishment and maintenance, their aging-related changes, and then focus on the pervasive, yet underappreciated, role of RNA double-strand DNA triplexes for lncRNAs to recognize targeted genomic regions, making lncRNAs the nexus between DNA and proteins to regulate nuclear structural changes. Finally, I discuss the future of deciphering direct links of lncRNA changes to various nuclear morphology changes assisted by artificial intelligence and genetic perturbations.
Collapse
Affiliation(s)
- Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China; International Center for Aging and Cancer (ICAC), The First Affiliated Hospital, Hainan Medical University, Haikou, China.
| |
Collapse
|
66
|
Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen LL, Chen R, Dean C, Dinger ME, Fitzgerald KA, Gingeras TR, Guttman M, Hirose T, Huarte M, Johnson R, Kanduri C, Kapranov P, Lawrence JB, Lee JT, Mendell JT, Mercer TR, Moore KJ, Nakagawa S, Rinn JL, Spector DL, Ulitsky I, Wan Y, Wilusz JE, Wu M. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol 2023; 24:430-447. [PMID: 36596869 PMCID: PMC10213152 DOI: 10.1038/s41580-022-00566-8] [Citation(s) in RCA: 932] [Impact Index Per Article: 466.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 01/05/2023]
Abstract
Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult. Most lncRNAs evolve more rapidly than protein-coding sequences, are cell type specific and regulate many aspects of cell differentiation and development and other physiological processes. Many lncRNAs associate with chromatin-modifying complexes, are transcribed from enhancers and nucleate phase separation of nuclear condensates and domains, indicating an intimate link between lncRNA expression and the spatial control of gene expression during development. lncRNAs also have important roles in the cytoplasm and beyond, including in the regulation of translation, metabolism and signalling. lncRNAs often have a modular structure and are rich in repeats, which are increasingly being shown to be relevant to their function. In this Consensus Statement, we address the definition and nomenclature of lncRNAs and their conservation, expression, phenotypic visibility, structure and functions. We also discuss research challenges and provide recommendations to advance the understanding of the roles of lncRNAs in development, cell biology and disease.
Collapse
Affiliation(s)
- John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia.
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia.
| | - Paulo P Amaral
- INSPER Institute of Education and Research, São Paulo, Brazil
| | - Piero Carninci
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Human Technopole, Milan, Italy
| | - Susan Carpenter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamics Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ling-Ling Chen
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Caroline Dean
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, Australia
- UNSW RNA Institute, UNSW, Sydney, NSW, Australia
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Maite Huarte
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
- Institute of Health Research of Navarra, Pamplona, Spain
| | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Philipp Kapranov
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen, China
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joshua T Mendell
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Timothy R Mercer
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Kathryn J Moore
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - John L Rinn
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA
| | - David L Spector
- Cold Spring Harbour Laboratory, Cold Spring Harbour, NY, USA
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yue Wan
- Laboratory of RNA Genomics and Structure, Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
67
|
Zhang W, Liu Y, Luo Y, Shu X, Pu C, Zhang B, Feng P, Xiong A, Kong Q. New insights into the role of long non-coding RNAs in osteoporosis. Eur J Pharmacol 2023; 950:175753. [PMID: 37119958 DOI: 10.1016/j.ejphar.2023.175753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Osteoporosis is a common disease in elderly individuals, and osteoporosis can easily lead to bone and hip fractures that seriously endanger the health of elderly individuals. At present, the treatment of osteoporosis is mainly anti-osteoporosis drugs, but there are side effects associated with anti-osteoporosis drugs. Therefore, it is very important to develop early diagnostic indicators and new therapeutic drugs for the prevention and treatment of osteoporosis. Long noncoding RNAs (lncRNAs), noncoding RNAs longer than 200 nucleotides, can be used as diagnostic markers for osteoporosis, and lncRNAs play an important role in the progression of osteoporosis. Many studies have shown that lncRNAs can be the target of osteoporosis. Therefore, herein, the role of lncRNAs in osteoporosis is summarized, aiming to provide some information for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Weifei Zhang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuheng Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuanrui Luo
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiang Shu
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Sichuan University, Chengdu, 610041, China
| | - Congmin Pu
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Sichuan University, Chengdu, 610041, China
| | - Bin Zhang
- Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pin Feng
- Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ao Xiong
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Qingquan Kong
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
68
|
Hirose T, Ninomiya K, Nakagawa S, Yamazaki T. A guide to membraneless organelles and their various roles in gene regulation. Nat Rev Mol Cell Biol 2023; 24:288-304. [PMID: 36424481 DOI: 10.1038/s41580-022-00558-8] [Citation(s) in RCA: 217] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/25/2022]
Abstract
Membraneless organelles (MLOs) are detected in cells as dots of mesoscopic size. By undergoing phase separation into a liquid-like or gel-like phase, MLOs contribute to intracellular compartmentalization of specific biological functions. In eukaryotes, dozens of MLOs have been identified, including the nucleolus, Cajal bodies, nuclear speckles, paraspeckles, promyelocytic leukaemia protein (PML) nuclear bodies, nuclear stress bodies, processing bodies (P bodies) and stress granules. MLOs contain specific proteins, of which many possess intrinsically disordered regions (IDRs), and nucleic acids, mainly RNA. Many MLOs contribute to gene regulation by different mechanisms. Through sequestration of specific factors, MLOs promote biochemical reactions by simultaneously concentrating substrates and enzymes, and/or suppressing the activity of the sequestered factors elsewhere in the cell. Other MLOs construct inter-chromosomal hubs by associating with multiple loci, thereby contributing to the biogenesis of macromolecular machineries essential for gene expression, such as ribosomes and spliceosomes. The organization of many MLOs includes layers, which might have different biophysical properties and functions. MLOs are functionally interconnected and are involved in various diseases, prompting the emergence of therapeutics targeting them. In this Review, we introduce MLOs that are relevant to gene regulation and discuss their assembly, internal structure, gene-regulatory roles in transcription, RNA processing and translation, particularly in stress conditions, and their disease relevance.
Collapse
Affiliation(s)
- Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.
| | - Kensuke Ninomiya
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Shinichi Nakagawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Tomohiro Yamazaki
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
69
|
Radhakrishnan S, Martin CA, Rammohan A, Vij M, Chandrasekar M, Rela M. Significance of nucleologenesis, ribogenesis, and nucleolar proteome in the pathogenesis and recurrence of hepatocellular carcinoma. Expert Rev Gastroenterol Hepatol 2023; 17:363-378. [PMID: 36919496 DOI: 10.1080/17474124.2023.2191189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/11/2023] [Indexed: 03/16/2023]
Abstract
INTRODUCTION Emerging evidence suggests that enhanced ribosome biogenesis, increased size, and quantitative distribution of nucleoli are associated with dysregulated transcription, which in turn drives a cell into aberrant cellular proliferation and malignancy. Nucleolar alterations have been considered a prognostic histological marker for aggressive tumors. More recently, advancements in the understanding of chromatin network (nucleoplasm viscosity) regulated liquid-liquid phase separation mechanism of nucleolus formation and their multifunctional role shed light on other regulatory processes, apart from ribosomal biogenesis of the nucleolus. AREAS COVERED Using hepatocellular carcinoma as a model to study the role of nucleoli in tumor progression, we review the potential of nucleolus coalescence in the onset and development of tumors through non-ribosomal biogenesis pathways, thereby providing new avenues for early diagnosis and cancer therapy. EXPERT OPINION Molecular-based classifications have failed to identify the nucleolar-based molecular targets that facilitate cell-cycle progression. However, the algorithm-based tumor risk identification with high-resolution medical images suggests prominent nucleoli, karyotheca, and increased nucleus/cytoplasm ratio as largely associated with tumor recurrence. Nonetheless, the role of the non-ribosomal functions of nucleoli in tumorigenesis remains elusive. This clearly indicates the lacunae in the study of the nucleolar proteins pertaining to cancer. [Figure: see text].
Collapse
Affiliation(s)
| | | | - Ashwin Rammohan
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Chennai, India
| | - Mukul Vij
- Department of Pathology, Dr. Rela Institute & Medical Centre, Chennai, India
| | - Mani Chandrasekar
- Department of Oncology, Dr. Rela Institute & Medical Centre, Chennai, India
| | - Mohamed Rela
- Cell Laboratory, National Foundation for Liver Research, Chennai, India
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Chennai, India
| |
Collapse
|
70
|
Huo Y, Li Q, Yang L, Li X, Sun C, Liu Y, Liu H, Pan Z, Li Q, Du X. SDNOR, a Novel Antioxidative lncRNA, Is Essential for Maintaining the Normal State and Function of Porcine Follicular Granulosa Cells. Antioxidants (Basel) 2023; 12:antiox12040799. [PMID: 37107173 PMCID: PMC10135012 DOI: 10.3390/antiox12040799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Increasing evidence shows that lncRNAs, an important kind of endogenous regulator, are involved in the regulation of follicular development and female fertility, but the mechanism remain largely unknown. In this study, we found that SDNOR, a recently identified antiapoptotic lncRNA, is a potential multifunctional regulator in porcine follicular granulosa cells (GCs) through RNA-seq and multi-dimension analyses. SDNOR-mediated regulatory networks were established and identified that SOX9, a transcription factor inhibited by SDNOR, mediates SDNOR's regulation of the transcription of downstream targets. Functional analyses showed that loss of SDNOR significantly impairs GC morphology, inhibits cell proliferation and viability, reduces E2/P4 index, and suppresses the expression of crucial markers, including PCNA, Ki67, CDK2, CYP11A1, CYP19A1, and StAR. Additionally, after the detection of ROS, SOD, GSH-Px, and MDA, we found that SDNOR elevates the resistance of GCs to oxidative stress (OS) and also inhibits OS-induced apoptosis. Notably, GCs with high SDNOR levels are insensitive to oxidative stress, leading to lower apoptosis rates and higher environmental adaptability. In summary, our findings reveal the regulation of porcine GCs in response to oxidative stress from the perspective of lncRNA and demonstrate that SDNOR is an essential antioxidative lncRNA for maintaining the normal state and function of GCs.
Collapse
Affiliation(s)
- Yangan Huo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiqi Li
- College of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College Agriculture and Forestry, Jurong 215314, China
| | - Liu Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxue Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
71
|
Zhao S, Meng J, Wekesa JS, Luan Y. Identification of small open reading frames in plant lncRNA using class-imbalance learning. Comput Biol Med 2023; 157:106773. [PMID: 36924731 DOI: 10.1016/j.compbiomed.2023.106773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023]
Abstract
Recently, small open reading frames (sORFs) in long noncoding RNA (lncRNA) have been demonstrated to encode small peptides that can help study the mechanisms of growth and development in organisms. Since machine learning-based computational methods are less costly compared with biological experiments, they can be used to identify sORFs and provide a basis for biological experiments. However, few computational methods and data resources have been exploited for identifying sORFs in plant lncRNA. Besides, machine learning models produce underperforming classifiers when faced with a class-imbalance problem. In this study, an alternative method called SMOTE based on weighted cosine distance (WCDSMOTE) which enables interaction with feature selection is put forward to synthesize minority class samples and weighted edited nearest neighbor (WENN) is applied to clean up majority class samples, thus, hybrid sampling WCDSMOTE-ENN is proposed to deal with imbalanced datasets with the multi-angle feature. A heterogeneous classifier ensemble is introduced to complete the classification task. Therefore, a novel computational method that is based on class-imbalance learning to identify the sORFs with coding potential in plant lncRNA (sORFplnc) is presented. Experimental results manifest that sORFplnc outperforms existing computational methods in identifying sORFs with coding potential. We anticipate that the proposed work can be a reference for relevant research and contribute to agriculture and biomedicine.
Collapse
Affiliation(s)
- Siyuan Zhao
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| | - Jael Sanyanda Wekesa
- Department of Information Technology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 62000-00200, Kenya
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| |
Collapse
|
72
|
DEAD-box ATPases as regulators of biomolecular condensates and membrane-less organelles. Trends Biochem Sci 2023; 48:244-258. [PMID: 36344372 DOI: 10.1016/j.tibs.2022.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
RNA-dependent DEAD-box ATPases (DDXs) are emerging as major regulators of RNA-containing membrane-less organelles (MLOs). On the one hand, oligomerizing DDXs can promote condensate formation 'in cis', often using RNA as a scaffold. On the other hand, DDXs can disrupt RNA-RNA and RNA-protein interactions and thereby 'in trans' remodel the multivalent interactions underlying MLO formation. In this review, we discuss the best studied examples of DDXs modulating MLOs in cis and in trans. Further, we illustrate how this contributes to the dynamic assembly and turnover of MLOs which might help cells to modulate RNA sequestration and processing in a temporal and spatial manner.
Collapse
|
73
|
Shan L, Xu G, Yao RW, Luan PF, Huang Y, Zhang PH, Pan YH, Zhang L, Gao X, Li Y, Cao SM, Gao SX, Yang ZH, Li S, Yang LZ, Wang Y, Wong CCL, Yu L, Li J, Yang L, Chen LL. Nucleolar URB1 ensures 3' ETS rRNA removal to prevent exosome surveillance. Nature 2023; 615:526-534. [PMID: 36890225 DOI: 10.1038/s41586-023-05767-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/27/2023] [Indexed: 03/10/2023]
Abstract
The nucleolus is the most prominent membraneless condensate in the nucleus. It comprises hundreds of proteins with distinct roles in the rapid transcription of ribosomal RNA (rRNA) and efficient processing within units comprising a fibrillar centre and a dense fibrillar component and ribosome assembly in a granular component1. The precise localization of most nucleolar proteins and whether their specific localization contributes to the radial flux of pre-rRNA processing have remained unknown owing to insufficient resolution in imaging studies2-5. Therefore, how these nucleolar proteins are functionally coordinated with stepwise pre-rRNA processing requires further investigation. Here we screened 200 candidate nucleolar proteins using high-resolution live-cell microscopy and identified 12 proteins that are enriched towards the periphery of the dense fibrillar component (PDFC). Among these proteins, unhealthy ribosome biogenesis 1 (URB1) is a static, nucleolar protein that ensures 3' end pre-rRNA anchoring and folding for U8 small nucleolar RNA recognition and the subsequent removal of the 3' external transcribed spacer (ETS) at the dense fibrillar component-PDFC boundary. URB1 depletion leads to a disrupted PDFC, uncontrolled pre-rRNA movement, altered pre-rRNA conformation and retention of the 3' ETS. These aberrant 3' ETS-attached pre-rRNA intermediates activate exosome-dependent nucleolar surveillance, resulting in decreased 28S rRNA production, head malformations in zebrafish and delayed embryonic development in mice. This study provides insight into functional sub-nucleolar organization and identifies a physiologically essential step in rRNA maturation that requires the static protein URB1 in the phase-separated nucleolus.
Collapse
Affiliation(s)
- Lin Shan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guang Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Run-Wen Yao
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Peng-Fei Luan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Youkui Huang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pei-Hong Zhang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Hang Pan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lin Zhang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Gao
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ying Li
- Cryo EM facility, Technology Center for Protein Sciences, School of Life Science, Tsinghua University, Beijing, China
| | - Shi-Meng Cao
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shuai-Xin Gao
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Peking University, Beijing, China
| | - Zheng-Hu Yang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Siqi Li
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liang-Zhong Yang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ying Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Catharine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- New Cornerstone Science Laboratory, Shenzhen, China.
| |
Collapse
|
74
|
Tian J, Cheng H, Wang N, Wang C. SLERT, as a novel biomarker, orchestrates endometrial cancer metastasis via regulation of BDNF/TRKB signaling. World J Surg Oncol 2023; 21:27. [PMID: 36721236 PMCID: PMC9887878 DOI: 10.1186/s12957-022-02821-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/29/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Recent evidence suggests that the box H/ACA small nucleolar RNA (snoRNA)-ended long noncoding RNA (lncRNA), SLERT, plays a critical role in gene regulation. However, its role in cancer remains undetermined. Herein, we explored its implication in human endometrial cancer (EC). METHODS EC plasma and tissue samples were collected for the detection of SLERT expression using qRT-PCR method. The functional investigation was tested by CCK-8 and transwell assays. Luciferase reporter, RNA pull-down, and immunoprecipitation (RIP) assays were used to determine the regulatory network involved in SLERT. The in vivo effect of SLERT was tested by caudal vein lung metastasis model. RESULTS Stable knockdown of SLERT significantly inhibited EC cell (KLE and AN3CA) migration and invasion, while it did not affect cell viability. SLERT induced epithelial-mesenchymal transition (EMT) via elevating N-cadherin and Vimentin and downregulating E-cadherin. Further investigation showed that SLERT directly binds to METTL3, increasing the m6A levels of BDNF mRNA; then, the m6A sites were read by IGF2BP1, enhancing BDNF mRNA stability, followed by the activation of BDNF/TRKB signaling, an inducer of EMT. The animal model showed that overexpression of SLERT increased EC cell lung metastasis, and this effect was effectively blocked by BDNF silencing or treatment with TRKB inhibitor k252a. Clinically, EC patients have high levels of SLERT both in tissue or plasma, which might be used as a biomarker of diagnosis and prognosis. CONCLUSION Our findings, for the first time, uncover the metastasis-promoting effect of SLERT in EC via in vitro and in vivo evidence, providing a potential therapeutic target for metastatic EC treatment.
Collapse
Affiliation(s)
- Jun Tian
- grid.256922.80000 0000 9139 560XDepartment of Gynaecology, Huaihe Hospital of Henan University, 1 Baogong Hubei Road, Gulou District, Kaifeng City, 475001 Henan Province China
| | - Hailing Cheng
- grid.256922.80000 0000 9139 560XDepartment of Gynaecology, Huaihe Hospital of Henan University, 1 Baogong Hubei Road, Gulou District, Kaifeng City, 475001 Henan Province China
| | - Ning Wang
- grid.256922.80000 0000 9139 560XDepartment of Gynaecology, Huaihe Hospital of Henan University, 1 Baogong Hubei Road, Gulou District, Kaifeng City, 475001 Henan Province China
| | - Chenhui Wang
- grid.256922.80000 0000 9139 560XDepartment of Gynaecology, Huaihe Hospital of Henan University, 1 Baogong Hubei Road, Gulou District, Kaifeng City, 475001 Henan Province China
| |
Collapse
|
75
|
Tsue AF, Kania EE, Lei DQ, Fields R, McGann CD, Hershberg E, Deng X, Kihiu M, Ong SE, Disteche CM, Kugel S, Beliveau BJ, Schweppe DK, Shechner DM. Oligonucleotide-directed proximity-interactome mapping (O-MAP): A unified method for discovering RNA-interacting proteins, transcripts and genomic loci in situ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524825. [PMID: 36711823 PMCID: PMC9882335 DOI: 10.1101/2023.01.19.524825] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Throughout biology, RNA molecules form complex networks of molecular interactions that are central to their function, but remain challenging to investigate. Here, we introduce Oligonucleotide-mediated proximity-interactome MAPping (O-MAP), a straightforward method for elucidating the biomolecules near an RNA of interest, within its native cellular context. O-MAP uses programmable oligonucleotide probes to deliver proximity-biotinylating enzymes to a target RNA, enabling nearby molecules to be enriched by streptavidin pulldown. O-MAP induces exceptionally precise RNA-localized in situ biotinylation, and unlike alternative methods it enables straightforward optimization of its targeting accuracy. Using the 47S pre-ribosomal RNA and long noncoding RNA Xist as models, we develop O-MAP workflows for unbiased discovery of RNA-proximal proteins, transcripts, and genomic loci. This revealed unexpected co-compartmentalization of Xist and other chromatin-regulatory RNAs and enabled systematic characterization of nucleolar-chromatin interactions across multiple cell lines. O-MAP is portable to cultured cells, organoids, and tissues, and to RNAs of various lengths, abundances, and sequence composition. And, O-MAP requires no genetic manipulation and uses exclusively off-the-shelf parts. We therefore anticipate its application to a broad array of RNA phenomena.
Collapse
|
76
|
Peng J, Cai D, Zeng R, Zhang C, Li G, Chen S, Yuan X, Peng L. Upregulation of Superenhancer-Driven LncRNA FASRL by USF1 Promotes De Novo Fatty Acid Biosynthesis to Exacerbate Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2204711. [PMID: 36307901 PMCID: PMC9811444 DOI: 10.1002/advs.202204711] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Superenhancers drive abnormal gene expression in tumors and promote malignancy. However, the relationship between superenhancer-associated long noncoding RNA (lncRNA) and abnormal metabolism is unknown. This study identifies a novel lncRNA, fatty acid synthesis-related lncRNA (FASRL), whose expression is driven by upstream stimulatory factor 1 (USF1) through its superenhancer. FASRL promotes hepatocellular carcinoma (HCC) cell proliferation in vitro and in vivo. Furthermore, FASRL binds to acetyl-CoA carboxylase 1 (ACACA), a fatty acid synthesis rate-limiting enzyme, increasing fatty acid synthesis via the fatty acid metabolism pathway. Moreover, the expression of FASRL, USF1, and ACACA is increased, and their high expression indicates a worse prognosis in HCC patients. In summary, USF1 drives FASRL transcription via a superenhancer. FASRL binding to ACACA increases fatty acid synthesis and lipid accumulation to mechanistically exacerbate HCC. FASRL may serve as a novel prognostic marker and treatment target in HCC.
Collapse
Affiliation(s)
- Jiang‐Yun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Medical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Dian‐Kui Cai
- Department of Hepatobiliary SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Ren‐Li Zeng
- Department of EndocrinologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Chao‐Yang Zhang
- Division of Functional Genome AnalysisGerman Cancer Research Center (DKFZ)69120HeidelbergGermany
| | - Guan‐Cheng Li
- Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of EducationCentral South UniversityChangsha410078P. R. China
- Cancer Research InstituteCentral South UniversityChangsha410078P. R. China
| | - Si‐Fan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Medical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Xiao‐Qing Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Breast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| | - Li Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
- Medical Research CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120P. R. China
| |
Collapse
|
77
|
Guo H, Zhuang K, Ding N, Hua R, Tang H, Wu Y, Yuan Z, Li T, He S. High-fat diet induced cyclophilin B enhances STAT3/lncRNA-PVT1 feedforward loop and promotes growth and metastasis in colorectal cancer. Cell Death Dis 2022; 13:883. [PMID: 36266267 PMCID: PMC9584950 DOI: 10.1038/s41419-022-05328-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 01/23/2023]
Abstract
High-fat diet (HFD) has been implicated to promote colorectal cancer (CRC). Recently, oncogene Cyclophilin B (CypB) is reported to be induced by cholesterol. However, the role of CypB in CRC carcinogenesis and metastasis associated with HFD remains unknown. In the present study, we showed that HFD-induced CypB enhances proliferation and metastasis through an inflammation-driven circuit, including Signal Transducer and Activator of Transcription 3 (STAT3)-triggered transcription of lncRNA-PVT1, and its binding with CypB that promotes activation of STAT3. CypB was found to be upregulated in CRC, which was correlated with elevated body mass index and poor prognosis. HFD induced CypB expression and proinflammatory cytokines in colon of mice. Besides, CypB restoration facilitated growth, invasion and metastasis in CRC cells both in vitro and in vivo. Moreover, RIP sequencing data identified lncRNA-PVT1 as a functional binding partner of CypB. Mechanistically, PVT1 increased the phosphorylation and nuclear translocation of STAT3 in response to IL-6, through directly interaction with CypB, which impedes the binding of Suppressors Of Cytokine Signalling 3 (SOCS3) to STAT3. Furthermore, STAT3 in turn activated PVT1 transcription through binding to its promoter, forming a regulatory loop. Finally, this CypB/STAT3/PVT1 axis was verified in TCGA datasets and CRC tissue arrays. Our data revealed that CypB linked HFD and CRC malignancy by enhancing the CypB/STAT3/PVT1 feedforward axis and activation of STAT3.
Collapse
Affiliation(s)
- Hanqing Guo
- grid.43169.390000 0001 0599 1243First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China ,grid.43169.390000 0001 0599 1243Department of Gastroenterology, Xi’an Central Hospital, College of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Kun Zhuang
- grid.43169.390000 0001 0599 1243Department of Gastroenterology, Xi’an Central Hospital, College of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Ning Ding
- grid.43169.390000 0001 0599 1243First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Rui Hua
- grid.43169.390000 0001 0599 1243First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Hailing Tang
- grid.43169.390000 0001 0599 1243Department of Gastroenterology, Xi’an Central Hospital, College of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Yue Wu
- grid.43169.390000 0001 0599 1243First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China ,grid.452438.c0000 0004 1760 8119Department of Cardiovascular Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zuyi Yuan
- grid.43169.390000 0001 0599 1243First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China ,grid.452438.c0000 0004 1760 8119Department of Cardiovascular Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ting Li
- grid.43169.390000 0001 0599 1243First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China ,grid.452438.c0000 0004 1760 8119Department of Cardiovascular Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shuixiang He
- grid.43169.390000 0001 0599 1243First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
78
|
Rao X, Zhang C, Luo H, Zhang J, Zhuang Z, Liang Z, Wu X. Targeting Gastric Cancer Stem Cells to Enhance Treatment Response. Cells 2022; 11:cells11182828. [PMID: 36139403 PMCID: PMC9496718 DOI: 10.3390/cells11182828] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Gastric cancer (GC) was the fourth deadliest cancer in the world in 2020, and about 770,000 people died from GC that year. The death of patients with GC is mainly caused by the metastasis, recurrence, and chemotherapy resistance of GC cells. The cancer stem cell theory defines cancer stem cells (CSCs) as a key factor in the metastasis, recurrence, and chemotherapy resistance of cancer. It considers targeting gastric cancer stem cells (GCSCs) to be an effective method for the treatment of GC. For GCSCs, genes or noncoding RNAs are important regulatory factors. Many experimental studies have found that some drugs can target the stemness of gastric cancer by regulating these genes or noncoding RNAs, which may bring new directions for the clinical treatment of gastric cancer. Therefore, this review mainly discusses related genes or noncoding RNAs in GCSCs and drugs that target its stemness, thereby providing some information for the treatment of GC.
Collapse
|
79
|
Rong W, Shukun W, Xiaoqing W, Wenxin H, Mengyuan D, Chenyang M, Zhang H. Regulatory roles of non-coding RNAs and m6A modification in trophoblast functions and the occurrence of its related adverse pregnancy outcomes. Crit Rev Toxicol 2022; 52:681-713. [PMID: 36794364 DOI: 10.1080/10408444.2022.2144711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Adverse pregnancy outcomes, such as preeclampsia, gestational diabetes mellitus, fetal growth restriction, and recurrent miscarriage, occur frequently in pregnant women and might further induce morbidity and mortality for both mother and fetus. Increasing studies have shown that dysfunctions of human trophoblast are related to these adverse pregnancy outcomes. Recent studies also showed that environmental toxicants could induce trophoblast dysfunctions. Moreover, non-coding RNAs (ncRNAs) have been reported to play important regulatory roles in various cellular processes. However, the roles of ncRNAs in the regulation of trophoblast dysfunctions and the occurrence of adverse pregnancy outcomes still need to be further investigated, especially with exposure to environmental toxicants. In this review, we analyzed the regulatory mechanisms of ncRNAs and m6A methylation modification in the dysfunctions of trophoblast cells and the occurrence of adverse pregnancy outcomes and also summarized the harmful effects of environmental toxicants. In addition to DNA replication, mRNA transcription, and protein translation, ncRNAs and m6A modification might be considered as the fourth and fifth elements that regulate the genetic central dogma, respectively. Environmental toxicants might also affect these processes. In this review, we expect to provide a deeper scientific understanding of the occurrence of adverse pregnancy outcomes and to discover potential biomarkers for the diagnosis and treatment of these outcomes.
Collapse
Affiliation(s)
- Wang Rong
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Department of Toxicology, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Wan Shukun
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Wang Xiaoqing
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Huang Wenxin
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dai Mengyuan
- Department of Toxicology, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Mi Chenyang
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
80
|
Liu CX, Chen LL. Circular RNAs: Characterization, cellular roles, and applications. Cell 2022; 185:2016-2034. [PMID: 35584701 DOI: 10.1016/j.cell.2022.04.021] [Citation(s) in RCA: 526] [Impact Index Per Article: 175.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
Abstract
Most circular RNAs are produced from the back-splicing of exons of precursor mRNAs. Recent technological advances have in part overcome problems with their circular conformation and sequence overlap with linear cognate mRNAs, allowing a better understanding of their cellular roles. Depending on their localization and specific interactions with DNA, RNA, and proteins, circular RNAs can modulate transcription and splicing, regulate stability and translation of cytoplasmic mRNAs, interfere with signaling pathways, and serve as templates for translation in different biological and pathophysiological contexts. Emerging applications of RNA circles to interfere with cellular processes, modulate immune responses, and direct translation into proteins shed new light on biomedical research. In this review, we discuss approaches used in circular RNA studies and the current understanding of their regulatory roles and potential applications.
Collapse
Affiliation(s)
- Chu-Xiao Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
81
|
Lu X, Wang J, Wang W, Lu C, Qu T, He X, Liu X, Guo R, Zhang E. Copy number amplification and SP1-activated lncRNA MELTF-AS1 regulates tumorigenesis by driving phase separation of YBX1 to activate ANXA8 in non-small cell lung cancer. Oncogene 2022; 41:3222-3238. [PMID: 35508543 DOI: 10.1038/s41388-022-02292-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) are reported to play key roles in tumorigenesis. However, the mechanisms underlying lncRNA-mediated regulation of RNA-binding protein phase separation in tumorigenesis have not been completely elucidated. In this study, an oncogenic lncRNA MELTF-AS1 was identified using systematic data analysis, screening, and verification. MELTF-AS1 was markedly upregulated in non-small cell lung cancer (NSCLC). High MELTF-AS1 levels were associated with advanced tumor-node-metastasis stage (TNM), high tumor size, and decreased survival time. Functionally, MELTF-AS1 regulated cell proliferation and metastasis in vitro and in vivo. RNA sequencing analysis revealed that MELTF-AS1 knockdown specifically modulated genes associated with cell proliferation, apoptosis, and migration. Mechanistically, at the genome level, copy number amplification promoted MELTF-AS1 expression. At the transcriptional level, the transcription factor SP1 directly activated MELTF-AS1 transcription by binding to its promoter. Furthermore, MELTF-AS1 could directly bind and drive the phase separation of YBX1, which was an RNA-binding protein and involved in tumorigenesis, thus activating ANXA8 transcription and promoting tumorigenesis of NSCLC. Aberrant activation of ANXA8 and promotion of tumorigenesis have been found in a variety of tumors. These novel findings demonstrated the critical role of MELTF-AS1-driven phase separation-mediated transcriptional regulation and provided a potential novel diagnostic and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xiyi Lu
- Department of Oncology, The first Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jing Wang
- Department of Anatomy, Histology and Embryology, State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Wei Wang
- Department of Thoracic surgery, The first Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Chenfei Lu
- Department of Clinical Medicine, Medical College of Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Tianyu Qu
- Department of Oncology, The first Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xuezhi He
- Department of Anatomy, Histology and Embryology, State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xinyin Liu
- Department of Oncology, The first Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Renhua Guo
- Department of Oncology, The first Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| | - Erbao Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
82
|
Li X, Li M, Huang M, Lin Q, Fang Q, Liu J, Chen X, Liu L, Zhan X, Shan H, Lu D, Li Q, Li Z, Zhu X. The multi-molecular mechanisms of tumor-targeted drug resistance in precision medicine. Biomed Pharmacother 2022; 150:113064. [PMID: 35658234 DOI: 10.1016/j.biopha.2022.113064] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022] Open
Abstract
Clinically, cancer drug therapy is still dominated by chemotherapy drugs. Although the emergence of targeted drugs has greatly improved the survival rate of patients with advanced cancer, drug resistance has always been a difficult problem in clinical cancer treatment. At the current level of medicine, most drugs cannot escape the fate of drug resistance. With the emergence and development of gene detection, liquid biopsy ctDNA technology, and single-cell sequencing technology, the molecular mechanism of tumor drug resistance has gradually emerged. Drugs can also be updated in response to drug resistance mechanisms and bring higher survival benefits. The use of new drugs often leads to new mechanisms of resistance. In this review, the multi-molecular mechanisms of drug resistance are introduced, and the overcoming of drug resistance is discussed from the perspective of the tumor microenvironment.
Collapse
Affiliation(s)
- Xinming Li
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China; Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Mingdong Li
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Meiying Huang
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Qianyi Lin
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Qiuping Fang
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Jianjiang Liu
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Xiaohui Chen
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Lin Liu
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Xuliang Zhan
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Huisi Shan
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Deshuai Lu
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Qinlan Li
- Cancer Research Center, Guangdong Medical University, Zhanjiang, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors,Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.
| | - Xiao Zhu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China; Cancer Research Center, Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
83
|
Substoichiometric action of long noncoding RNAs. Nat Cell Biol 2022; 24:608-615. [PMID: 35562482 DOI: 10.1038/s41556-022-00911-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/01/2022] [Indexed: 11/08/2022]
Abstract
Low expression levels and stoichiometric imbalances of long noncoding RNAs (lncRNAs) are often used as evidence for their probable lack of function or for limiting the scope of their potential influence. Recent advances in our understanding of the substoichiometric functions of lncRNAs challenge these notions and suggest routes through which unabundant lncRNAs can affect cellular functions and gene regulatory networks.
Collapse
|
84
|
Feric M, Misteli T. Function moves biomolecular condensates in phase space. Bioessays 2022; 44:e2200001. [PMID: 35243657 PMCID: PMC9277701 DOI: 10.1002/bies.202200001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 11/08/2022]
Abstract
Phase separation underlies the formation of biomolecular condensates. We hypothesize the cellular processes that occur within condensates shape their structural features. We use the example of transcription to discuss structure-function relationships in condensates. Various types of transcriptional condensates have been reported across the evolutionary spectrum in the cell nucleus as well as in mitochondrial and bacterial nucleoids. In vitro and in vivo observations suggest that transcriptional activity of condensates influences their supramolecular structure, which in turn affects their function. Condensate organization thus becomes driven by differences in miscibility among the DNA and proteins of the transcription machinery and the RNA transcripts they generate. These considerations are in line with the notion that cellular processes shape the structural properties of condensates, leading to a dynamic, mutual interplay between structure and function in the cell.
Collapse
Affiliation(s)
- Marina Feric
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
85
|
Zhang J, Guan M, Zhou X, Berry K, He X, Lu QR. Long Noncoding RNAs in CNS Myelination and Disease. Neuroscientist 2022; 29:287-301. [PMID: 35373640 DOI: 10.1177/10738584221083919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Myelination by oligodendrocytes is crucial for neuronal survival and function, and defects in myelination or failure in myelin repair can lead to axonal degeneration and various neurological diseases. At present, the factors that promote myelination and overcome the remyelination block in demyelinating diseases are poorly defined. Although the roles of protein-coding genes in oligodendrocyte differentiation have been extensively studied, the majority of the mammalian genome is transcribed into noncoding RNAs, and the functions of these molecules in myelination are poorly characterized. Long noncoding RNAs (lncRNAs) regulate transcription at multiple levels, providing spatiotemporal control and robustness for cell type-specific gene expression and physiological functions. lncRNAs have been shown to regulate neural cell-type specification, differentiation, and maintenance of cell identity, and dysregulation of lncRNA function has been shown to contribute to neurological diseases. In this review, we discuss recent advances in our understanding of the functions of lncRNAs in oligodendrocyte development and myelination as well their roles in neurological diseases and brain tumorigenesis. A more systematic characterization of lncRNA functional networks will be instrumental for a better understanding of CNS myelination, myelin disorders, and myelin repair.
Collapse
Affiliation(s)
- Jing Zhang
- Laboratory of Nervous System Injuries and Diseases, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children at Sichuan University, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.,Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Menglong Guan
- Laboratory of Nervous System Injuries and Diseases, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children at Sichuan University, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xianyao Zhou
- Laboratory of Nervous System Injuries and Diseases, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children at Sichuan University, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Kalen Berry
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xuelian He
- Laboratory of Nervous System Injuries and Diseases, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children at Sichuan University, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
86
|
Peltier DC, Roberts A, Reddy P. LNCing RNA to immunity. Trends Immunol 2022; 43:478-495. [DOI: 10.1016/j.it.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 12/29/2022]
|
87
|
Wang Z, Lou J, Zhang H. Essence determines phenomenon: Assaying the material properties of biological condensates. J Biol Chem 2022; 298:101782. [PMID: 35245500 PMCID: PMC8958544 DOI: 10.1016/j.jbc.2022.101782] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/02/2023] Open
Abstract
Intracellular spaces are partitioned into separate compartments to ensure that numerous biochemical reactions and cellular functions take place in a spatiotemporally controlled manner. Biomacromolecules including proteins and RNAs undergo liquid–liquid phase separation and subsequent phase transition to form biological condensates with diverse material states. The material/physical properties of biological condensates are crucial for fulfilling their distinct physiological functions, and abnormal material properties can cause deleterious effects under pathological conditions. Here, we review recent studies showing the role of the material properties of biological condensates in their physiological functions. We also summarize several classic methods as well as newly emerging techniques for characterization and/or measurement of the material properties of biological condensates.
Collapse
Affiliation(s)
- Zheng Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Jizhong Lou
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Hong Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
88
|
Wang D, Ye R, Cai Z, Xue Y. Emerging roles of RNA-RNA interactions in transcriptional regulation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1712. [PMID: 35042277 DOI: 10.1002/wrna.1712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 12/26/2022]
Abstract
Pervasive transcription of the human genome generates a massive amount of noncoding RNAs (ncRNAs) that lack protein-coding potential but play crucial roles in development, differentiation, and tumorigenesis. To achieve these biological functions, ncRNAs must first fold into intricate structures via intramolecular RNA-RNA interactions (RRIs) and then interact with different RNA substrates via intermolecular RRIs. RRIs are usually facilitated, stabilized, or mediated by RNA-binding proteins. With this guiding principle, several protein-based high-throughput methods have been developed for unbiased mapping of defined or all RNA-binding protein-mediated RRIs in various species and cell lines. In addition, some chemical-based approaches are also powerful to detect RRIs globally based on the fact that RNA duplex can be cross-linked by psoralen or its derivative 4'-aminomethyltrioxsalen. These efforts have significantly expanded our understanding of RRIs in determining the specificity and variability of gene regulation. Here, we review the current knowledge of the regulatory roles of RRI, focusing on their emerging roles in transcriptional regulation and nuclear body formation. This article is categorized under: RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Collapse
Affiliation(s)
- Di Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rong Ye
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaokui Cai
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
89
|
García-Padilla C, Dueñas Á, García-López V, Aránega A, Franco D, Garcia-Martínez V, López-Sánchez C. Molecular Mechanisms of lncRNAs in the Dependent Regulation of Cancer and Their Potential Therapeutic Use. Int J Mol Sci 2022; 23:764. [PMID: 35054945 PMCID: PMC8776057 DOI: 10.3390/ijms23020764] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/31/2021] [Accepted: 01/08/2022] [Indexed: 12/16/2022] Open
Abstract
Deep whole genome and transcriptome sequencing have highlighted the importance of an emerging class of non-coding RNA longer than 200 nucleotides (i.e., long non-coding RNAs (lncRNAs)) that are involved in multiple cellular processes such as cell differentiation, embryonic development, and tissue homeostasis. Cancer is a prime example derived from a loss of homeostasis, primarily caused by genetic alterations both in the genomic and epigenetic landscape, which results in deregulation of the gene networks. Deregulation of the expression of many lncRNAs in samples, tissues or patients has been pointed out as a molecular regulator in carcinogenesis, with them acting as oncogenes or tumor suppressor genes. Herein, we summarize the distinct molecular regulatory mechanisms described in literature in which lncRNAs modulate carcinogenesis, emphasizing epigenetic and genetic alterations in particular. Furthermore, we also reviewed the current strategies used to block lncRNA oncogenic functions and their usefulness as potential therapeutic targets in several carcinomas.
Collapse
Affiliation(s)
- Carlos García-Padilla
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (Á.D.); (A.A.); (D.F.)
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Ángel Dueñas
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (Á.D.); (A.A.); (D.F.)
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Virginio García-López
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Amelia Aránega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (Á.D.); (A.A.); (D.F.)
- Fundación Medina, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (Á.D.); (A.A.); (D.F.)
- Fundación Medina, 18016 Granada, Spain
| | - Virginio Garcia-Martínez
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Carmen López-Sánchez
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
90
|
Gao Y, Liu C, Wu T, Liu R, Mao W, Gan X, Lu X, Liu Y, Wan L, Xu B, Chen M. Current status and perspectives of non-coding RNA and phase separation interactions. Biosci Trends 2022; 16:330-345. [DOI: 10.5582/bst.2022.01304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yue Gao
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Chunhui Liu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Tiange Wu
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Ruiji Liu
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Weipu Mao
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Xinqiang Gan
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Xun Lu
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Yifan Liu
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Lilin Wan
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
91
|
Xue Y. Architecture of RNA-RNA interactions. Curr Opin Genet Dev 2021; 72:138-144. [PMID: 34954430 DOI: 10.1016/j.gde.2021.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/04/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022]
Abstract
RNA molecules tend to form intricate tertiary structures via intramolecular RNA-RNA interactions (RRIs) to regulate transcription, RNA processing, and translation processes. In these biological processes, RNAs, especially noncoding RNAs, usually achieve their regulatory specificity through intermolecular RNA-RNA base pairing and execute their regulatory outcomes via associated RNA-binding proteins. Decoding intramolecular and intermolecular RRIs is a prerequisite for understanding the architecture of various RNA molecules and their regulatory roles in development, differentiation, and disease. Many sequencing-based methods have recently been invented and have revealed extraordinarily complicated RRIs in mammalian cells. Here, we discuss the technical advances and limitations of various methodologies developed for studying cellular RRIs, with a focus on the emerging architectural roles of RRIs in gene regulation.
Collapse
Affiliation(s)
- Yuanchao Xue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
92
|
Liu J, Yang LZ, Chen LL. Understanding lncRNA-protein assemblies with imaging and single-molecule approaches. Curr Opin Genet Dev 2021; 72:128-137. [PMID: 34933201 DOI: 10.1016/j.gde.2021.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 11/24/2022]
Abstract
Long non-coding RNAs (lncRNAs) associate with RNA-binding proteins (RBPs) to form lncRNA-protein complexes that act in a wide range of biological processes. Understanding the molecular mechanism of how a lncRNA-protein complex is assembled and regulated is key for their cellular functions. In this mini-review, we outline molecular methods used to identify lncRNA-protein interactions from large-scale to individual levels using bulk cells as well as those recently developed imaging and single-molecule approaches that are capable of visualizing RNA-protein assemblies in single cells and in real-time. Focusing on the latter group of approaches, we discuss their applications and limitations, which nevertheless have enabled quantification and comprehensive dissection of RNA-protein interactions possible.
Collapse
Affiliation(s)
- Jiaquan Liu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| | - Liang-Zhong Yang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
93
|
Cable J, Heard E, Hirose T, Prasanth KV, Chen LL, Henninger JE, Quinodoz SA, Spector DL, Diermeier SD, Porman AM, Kumar D, Feinberg MW, Shen X, Unfried JP, Johnson R, Chen CK, Wilusz JE, Lempradl A, McGeary SE, Wahba L, Pyle AM, Hargrove AE, Simon MD, Marcia M, Przanowska RK, Chang HY, Jaffrey SR, Contreras LM, Chen Q, Shi J, Mendell JT, He L, Song E, Rinn JL, Lalwani MK, Kalem MC, Chuong EB, Maquat LE, Liu X. Noncoding RNAs: biology and applications-a Keystone Symposia report. Ann N Y Acad Sci 2021; 1506:118-141. [PMID: 34791665 PMCID: PMC9808899 DOI: 10.1111/nyas.14713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 01/07/2023]
Abstract
The human transcriptome contains many types of noncoding RNAs, which rival the number of protein-coding species. From long noncoding RNAs (lncRNAs) that are over 200 nucleotides long to piwi-interacting RNAs (piRNAs) of only 20 nucleotides, noncoding RNAs play important roles in regulating transcription, epigenetic modifications, translation, and cell signaling. Roles for noncoding RNAs in disease mechanisms are also being uncovered, and several species have been identified as potential drug targets. On May 11-14, 2021, the Keystone eSymposium "Noncoding RNAs: Biology and Applications" brought together researchers working in RNA biology, structure, and technologies to accelerate both the understanding of RNA basic biology and the translation of those findings into clinical applications.
Collapse
Affiliation(s)
| | - Edith Heard
- European Molecular Biology Laboratory (EMBL), Heidelberg, Heidelberg, Germany
- Collège de France, Paris, France
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- School of Life Sciences, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, China
| | | | - Sofia A Quinodoz
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - David L Spector
- Cold Spring Harbor Laboratory, Cold Spring Harbor and Genetics Program, Stony Brook University, Stony Brook, New York
| | - Sarah D Diermeier
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Allison M Porman
- Biochemistry and Molecular Genetics Department, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Dhiraj Kumar
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Xiaohua Shen
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, China
| | - Juan Pablo Unfried
- Center for Applied Medical Research (CIMA), Department of Gene Therapy and Regulation of Gene Expression, Universidad de Navarra (UNAV), Pamplona, Spain
| | - Rory Johnson
- Department of Medical Oncology, Inselspital, Bern University Hospital; and Department for BioMedical Research University of Bern, Bern, Switzerland
- School of Biology and Environmental Science and Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Chun-Kan Chen
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Adelheid Lempradl
- Department of Metabolism and Nutritional Programming, Van Andel Research Institute, Grand Rapids, Michigan
| | - Sean E McGeary
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
- Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Lamia Wahba
- Department of Genetics, Stanford University School of Medicine, Stanford, California
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Anna Marie Pyle
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut
- Connecticut and Howard Hughes Medical Institute, Chevy Chase, Maryland
| | | | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France
| | - Róża K Przanowska
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California
- Howard Hughes Medical Institute, Stanford University, Stanford, California
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas
| | - Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Junchao Shi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Joshua T Mendell
- Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer Center, Hamon Center for Regenerative Science and Medicine; and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lin He
- Division of Cellular and Developmental Biology, Molecular and Cell Biology Department, University of California at Berkeley, Berkeley, California
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center and Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Bioland Laboratory; Program of Molecular Medicine, Zhongshan School of Medicine, Sun Yat-sen University; and Fountain-Valley Institute for Life Sciences, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences Guangzhou, Guangzhou, China
| | - John L Rinn
- Department of Biochemistry, BioFrontiers Institute, and Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado
| | - Mukesh Kumar Lalwani
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences, University of Edinburgh, Scotland, United Kingdom
| | - Murat Can Kalem
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York
| | - Edward B Chuong
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry and Center for RNA Biology, University of Rochester, Rochester, New York
| | - Xuhang Liu
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, New York
| |
Collapse
|
94
|
Abstract
Although long noncoding RNAs (lncRNAs) are generally expressed at low levels, emerging evidence has revealed that many play important roles in gene regulation by a variety of mechanisms as they engage with proteins. Given that the abundance of proteins often greatly exceeds that of their interacting lncRNAs, quantification of the relative abundance, or even the exact stoichiometry in some cases, within lncRNA-protein complexes is helpful for understanding of the mechanism(s) of action of lncRNAs. We discuss methods used to examine lncRNA and protein expression at the single cell, subcellular, and suborganelle levels, the average and local lncRNA concentration in cells, as well as how lncRNAs can modulate the functions of their interacting proteins even at a low stoichiometric concentration.
Collapse
Affiliation(s)
- Man Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liang-Zhong Yang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
95
|
Yu H, Sun Z, Tan T, Pan H, Zhao J, Zhang L, Chen J, Lei A, Zhu Y, Chen L, Xu Y, Liu Y, Chen M, Sheng J, Xu Z, Qian P, Li C, Gao S, Daley GQ, Zhang J. rRNA biogenesis regulates mouse 2C-like state by 3D structure reorganization of peri-nucleolar heterochromatin. Nat Commun 2021; 12:6365. [PMID: 34753899 PMCID: PMC8578659 DOI: 10.1038/s41467-021-26576-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/06/2021] [Indexed: 11/09/2022] Open
Abstract
The nucleolus is the organelle for ribosome biogenesis and sensing various types of stress. However, its role in regulating stem cell fate remains unclear. Here, we present evidence that nucleolar stress induced by interfering rRNA biogenesis can drive the 2-cell stage embryo-like (2C-like) program and induce an expanded 2C-like cell population in mouse embryonic stem (mES) cells. Mechanistically, nucleolar integrity maintains normal liquid-liquid phase separation (LLPS) of the nucleolus and the formation of peri-nucleolar heterochromatin (PNH). Upon defects in rRNA biogenesis, the natural state of nucleolus LLPS is disrupted, causing dissociation of the NCL/TRIM28 complex from PNH and changes in epigenetic state and reorganization of the 3D structure of PNH, which leads to release of Dux, a 2C program transcription factor, from PNH to activate a 2C-like program. Correspondingly, embryos with rRNA biogenesis defect are unable to develop from 2-cell (2C) to 4-cell embryos, with delayed repression of 2C/ERV genes and a transcriptome skewed toward earlier cleavage embryo signatures. Our results highlight that rRNA-mediated nucleolar integrity and 3D structure reshaping of the PNH compartment regulates the fate transition of mES cells to 2C-like cells, and that rRNA biogenesis is a critical regulator during the 2-cell to 4-cell transition of murine pre-implantation embryo development.
Collapse
Affiliation(s)
- Hua Yu
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Zhen Sun
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Tianyu Tan
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Hongru Pan
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Jing Zhao
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Ling Zhang
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Anhua Lei
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Yuqing Zhu
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Lang Chen
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Yuyan Xu
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China
| | - Yaxin Liu
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Ming Chen
- College of Life Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jinghao Sheng
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Zhengping Xu
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Pengxu Qian
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China
| | - Cheng Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, 100871, Beijing, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - George Q Daley
- Stem Cell Transplantation Program, Division of Pediatric Hematology Oncology, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jin Zhang
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, 311121, Hangzhou, China.
- Institute of Hematology, Zhejiang University, 310058, Hangzhou, China.
- Center of Gene/Cell Engineering and Genome Medicine, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
96
|
Shen D, Bai Y, Liu Y. Chemical Biology Toolbox to Visualize Protein Aggregation in Live Cells. Chembiochem 2021; 23:e202100443. [PMID: 34613660 DOI: 10.1002/cbic.202100443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/05/2021] [Indexed: 11/09/2022]
Abstract
Protein misfolding and aggregation is a complex biochemical process and has been associated with numerous human degenerative diseases. Developing novel chemical and biological tools and approaches to visualize aggregated proteins in live cells is in high demand for mechanistic studies, diagnostics, and therapeutics. In this review, we summarize the recent developments in the chemical biology toolbox applied to protein aggregation studies in live cells. These methods exploited fluorescent protein tags, fluorescent chemical tags, and small-molecule probes to visualize the protein-aggregation process, detect proteome stresses, and quantify the protein homeostasis network capacity. Inspired by these seminal works, we have generalized design principles for the development of new detection methods and probes in the future that will illuminate this important biological process.
Collapse
Affiliation(s)
- Di Shen
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Yulong Bai
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| |
Collapse
|
97
|
Affiliation(s)
- Tomohiro Yamazaki
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan.
| |
Collapse
|