51
|
Fisher LE, Lempka SF. Neurotechnology for Pain. Annu Rev Biomed Eng 2023; 25:387-412. [PMID: 37068766 DOI: 10.1146/annurev-bioeng-111022-121637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Neurotechnologies for treating pain rely on electrical stimulation of the central or peripheral nervous system to disrupt or block pain signaling and have been commercialized to treat a variety of pain conditions. While their adoption is accelerating, neurotechnologies are still frequently viewed as a last resort, after many other treatment options have been explored. We review the pain conditions commonly treated with electrical stimulation, as well as the specific neurotechnologies used for treating those conditions. We identify barriers to adoption, including a limited understanding of mechanisms of action, inconsistent efficacy across patients, and challenges related to selectivity of stimulation and off-target side effects. We describe design improvements that have recently been implemented, as well as some cutting-edge technologies that may address the limitations of existing neurotechnologies. Addressing these challenges will accelerate adoption and change neurotechnologies from last-line to first-line treatments for people living with chronic pain.
Collapse
Affiliation(s)
- Lee E Fisher
- Rehab Neural Engineering Labs, Department of Physical Medicine and Rehabilitation, and Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Scott F Lempka
- Department of Biomedical Engineering, Biointerfaces Institute, and Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA;
| |
Collapse
|
52
|
Sang M, Cho M, Lim S, Min IS, Han Y, Lee C, Shin J, Yoon K, Yeo WH, Lee T, Won SM, Jung Y, Heo YJ, Yu KJ. Fluorescent-based biodegradable microneedle sensor array for tether-free continuous glucose monitoring with smartphone application. SCIENCE ADVANCES 2023; 9:eadh1765. [PMID: 37256939 PMCID: PMC10413647 DOI: 10.1126/sciadv.adh1765] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023]
Abstract
Continuous glucose monitoring (CGM) allows patients with diabetes to manage critical disease effectively and autonomously and prevent exacerbation. A painless, wireless, compact, and minimally invasive device that can provide CGM is essential for monitoring the health conditions of freely moving patients with diabetes. Here, we propose a glucose-responsive fluorescence-based highly sensitive biodegradable microneedle CGM system. These ultrathin and ultralight microneedle sensor arrays continuously and precisely monitored glucose concentration in the interstitial fluid with minimally invasive, pain-free, wound-free, and skin inflammation-free outcomes at various locations and thicknesses of the skin. Bioresorbability in the body without a need for device removal after use was a key characteristic of the microneedle glucose sensor. We demonstrated the potential long-term use of the bioresorbable device by applying the tether-free CGM system, thus confirming the successful detection of glucose levels based on changes in fluorescence intensity. In addition, this microneedle glucose sensor with a user-friendly designed home diagnosis system using mobile applications and portable accessories offers an advance in CGM and its applicability to other bioresorbable, wearable, and implantable monitoring device technology.
Collapse
Affiliation(s)
- Mingyu Sang
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Myeongki Cho
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Selin Lim
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Electrical and Electronic Engineering, YU-Korea Institute of Science and Technology (KIST) Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - In Sik Min
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yuna Han
- Department of Mechanical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do 17104, Republic of Korea
- Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Chanwoo Lee
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jongwoon Shin
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kukro Yoon
- NanoBio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul 03722, Republic of Korea
| | - Woon-Hong Yeo
- Bio-Interfaced Translational Nanoengineering Group, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Taeyoon Lee
- NanoBio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul 03722, Republic of Korea
| | - Sang Min Won
- Flexible Electronic System Research Group, Department of Electrical and Computer Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Youngmee Jung
- Department of Electrical and Electronic Engineering, YU-Korea Institute of Science and Technology (KIST) Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yun Jung Heo
- Department of Mechanical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do 17104, Republic of Korea
- Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Ki Jun Yu
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Electrical and Electronic Engineering, YU-Korea Institute of Science and Technology (KIST) Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
53
|
Wang G, Feng Y, Gao C, Zhang X, Wang Q, Zhang J, Zhang H, Wu Y, Li X, Wang L, Fu Y, Yu X, Zhang D, Liu J, Ding J. Biaxial stretching of polytetrafluoroethylene in industrial scale to fabricate medical ePTFE membrane with node-fibril microstructure. Regen Biomater 2023; 10:rbad056. [PMID: 37397871 PMCID: PMC10310521 DOI: 10.1093/rb/rbad056] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Expanded polytetrafluoroethylene (ePTFE) is promising in biomedical fields such as covered stents and plastic surgery owing to its excellent biocompatibility and mechanical properties. However, ePTFE material prepared by the traditional biaxial stretching process is with thicker middle and thinner sides due to the bowing effect, which poses a major problem in industrial-scale fabrication. To solve this problem, we design an olive-shaped winding roller to provide the middle part of the ePTFE tape with a greater longitudinal stretching amplitude than the two sides, so as to make up for the excessive longitudinal retraction tendency of the middle part when it is transversely stretched. The as-fabricated ePTFE membrane has, as designed, uniform thickness and node-fibril microstructure. In addition, we examine the effects of mass ratio of lubricant to PTFE powder, biaxial stretching ratio and sintering temperature on the performance of the resultant ePTFE membranes. Particularly, the relation between the internal microstructure of the ePTFE membrane and its mechanical properties is revealed. Besides stable mechanical properties, the sintered ePTFE membrane exhibits satisfactory biological properties. We make a series of biological assessments including in vitro hemolysis, coagulation, bacterial reverse mutation and in vivo thrombosis, intracutaneous reactivity test, pyrogen test and subchronic systemic toxicity test; all of the results meet the relevant international standards. The muscle implantation of the sintered ePTFE membrane into rabbits indicates acceptable inflammatory reactions of our sintered ePTFE membrane fabricated on industrial scale. Such a medical-grade raw material with the unique physical form and condensed-state microstructure is expected to afford an inert biomaterial potentially for stent-graft membrane.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
- R&D Center, Lifevalve Medical Scientific Co., Ltd., Shenzhen 518057, China
| | - Yusheng Feng
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
| | - Caiyun Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xu Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
- R&D Center, Lifevalve Medical Scientific Co., Ltd., Shenzhen 518057, China
| | - Qunsong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jie Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
- R&D Center, Lifevalve Medical Scientific Co., Ltd., Shenzhen 518057, China
| | - Hongjie Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yongqiang Wu
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
- R&D Center, Lifevalve Medical Scientific Co., Ltd., Shenzhen 518057, China
| | - Xin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Lin Wang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
- R&D Center, Lifevalve Medical Scientific Co., Ltd., Shenzhen 518057, China
| | - Ye Fu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xiaoye Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Deyuan Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
| | - Jianxiong Liu
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
54
|
Abstract
Advances in bioelectronic implants have been offering valuable chances to interface and modulate neural systems. Potential mismatches between bioelectronics and targeted neural tissues require devices to exhibit "tissue-like" properties for better implant-bio integration. In particular, mechanical mismatches pose a significant challenge. In the past years, efforts were made in both materials synthesis and device design to achieve bioelectronics mechanically and biochemically mimicking biological tissues. In this perspective, we mainly summarized recent progress of developing "tissue-like" bioelectronics and categorized them into different strategies. We also discussed how these "tissue-like" bioelectronics were utilized for modulating in vivo nervous systems and neural organoids. We concluded the perspective by proposing further directions including personalized bioelectronics, novel materials design and the involvement of artificial intelligence and robotic techniques.
Collapse
Affiliation(s)
- Changxu Sun
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Zhe Cheng
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Jj Abu-Halimah
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Bozhi Tian
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
55
|
Han WB, Ko GJ, Lee KG, Kim D, Lee JH, Yang SM, Kim DJ, Shin JW, Jang TM, Han S, Zhou H, Kang H, Lim JH, Rajaram K, Cheng H, Park YD, Kim SH, Hwang SW. Ultra-stretchable and biodegradable elastomers for soft, transient electronics. Nat Commun 2023; 14:2263. [PMID: 37081012 PMCID: PMC10119106 DOI: 10.1038/s41467-023-38040-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/13/2023] [Indexed: 04/22/2023] Open
Abstract
As rubber-like elastomers have led to scientific breakthroughs in soft, stretchable characteristics-based wearable, implantable electronic devices or relevant research fields, developments of degradable elastomers with comparable mechanical properties could bring similar technological innovations in transient, bioresorbable electronics or expansion into unexplored areas. Here, we introduce ultra-stretchable, biodegradable elastomers capable of stretching up to ~1600% with outstanding properties in toughness, tear-tolerance, and storage stability, all of which are validated by comprehensive mechanical and biochemical studies. The facile formation of thin films enables the integration of almost any type of electronic device with tunable, suitable adhesive strengths. Conductive elastomers tolerant/sensitive to mechanical deformations highlight possibilities for versatile monitoring/sensing components, particularly the strain-tolerant composites retain high levels of conductivities even under tensile strains of ~550%. Demonstrations of soft electronic grippers and transient, suture-free cardiac jackets could be the cornerstone for sophisticated, multifunctional biodegradable electronics in the fields of soft robots and biomedical implants.
Collapse
Affiliation(s)
- Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Gwan-Jin Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kang-Gon Lee
- Department of Biomedical Sciences, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Donghak Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seung Min Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Hanwha Systems Co., Ltd., 188 Pangyoyeok-ro, Bundang-gu, Seongnam-Si, Gyeonggi-do, 13524, Republic of Korea
| | - Dong-Je Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sungkeun Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Honglei Zhou
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Heeseok Kang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jun Hyeon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kaveti Rajaram
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yong-Doo Park
- Department of Biomedical Sciences, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Soo Hyun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
56
|
Wong JW, Yang X, Zhao Q, Xue Y, Lok TJ, Wang L, Fan X, Xiao X, Wong TW, Li T, Chen L, Ismail AF. Sustainable Approach for the Synthesis of a Semicrystalline Polymer with a Reversible Shape-Memory Effect. ACS Macro Lett 2023; 12:563-569. [PMID: 37052196 DOI: 10.1021/acsmacrolett.3c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Shape-memory polymers (SMPs) have demonstrated potential for use in automotive, biomedical, and aerospace industries. However, ensuring the sustainability of these materials remains a challenge. Herein, a sustainable approach to synthesize a semicrystalline polymer using biomass-derivable precursors via catalyst-free polyesterification is presented. The synthesized biodegradable polymer, poly(1,8-octanediol-co-1,12-dodecanedioate-co-citrate) (PODDC), exhibits excellent shape-memory properties, as evidenced by good shape fixity and shape recovery ratios of 98%, along with a large reversible actuation strain of 28%. Without the use of a catalyst, the mild polymerization enables the reconfiguration of the partially cured two-dimensional (2D) film to a three-dimensional (3D) geometric form in the middle process. This study appears to be a step forward in developing sustainable SMPs and a simple way for constructing a 3D structure of a permanent shape.
Collapse
Affiliation(s)
- Jie-Wei Wong
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Xuxu Yang
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, 310027, Hangzhou, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Yaoting Xue
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, 310027, Hangzhou, China
| | - Tow-Jie Lok
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Li Wang
- School of Big Health and Intelligent Engineering, Chengdu Medical College, 610500, Chengdu, China
| | - Xiulin Fan
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Xuezhang Xiao
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Tuck-Whye Wong
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, 310027, Hangzhou, China
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Tiefeng Li
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, 310027, Hangzhou, China
| | - Lixin Chen
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| |
Collapse
|
57
|
Yamada S. A Transient Pseudo-Capacitor Using a Bioderived Ionic Liquid with Na Ions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205598. [PMID: 36651124 DOI: 10.1002/smll.202205598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/30/2022] [Indexed: 06/17/2023]
Abstract
A pseudo-capacitor with transient behavior is applied in implantable, disposable, and bioresorbable devices, incorporating an Na ion-doped bioderived ionic liquid, molybdenum trioxide (MoO3 )-covered molybdenum foil, and silk sheet as the electrolyte, electrode, and separator, respectively. Sodium lactate is dissolved in choline lactate as a source of Na ions. The Experimental results reveal that the Na ions are intercalated into the van der Waals gaps in MoO3 , and the pseudo-capacitor shows an areal capacitance (1.5 mF cm-2 ) that is three times larger than that without the Na ion. The fast ion diffusion of the electrolyte and the low resistance of the MoO3 and Mo interface result in an equivalent series resistance of 96 Ω. A cycle test indicates that the pseudo-capacitor exhibited a high capacitance retention of 82.8% after 10 000 cycles. The transient behavior is confirmed by the dissolution of the pseudo-capacitor into phosphate-buffered saline solution after 101 days. Potential applications of transient pseudo-capacitors include electronics without the need for device retrieval after use, including smart agriculture, implantable, and wearable devices.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Robotics, Division of Mechanical Engineering, Tohoku University, 6-6-01 Aoba, Aramakiaza, Aobaku, Sendaishi, Miyagi, 980-8579, Japan
| |
Collapse
|
58
|
Yao Z, Lundqvist E, Kuang Y, Ardoña HAM. Engineering Multi-Scale Organization for Biotic and Organic Abiotic Electroactive Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205381. [PMID: 36670065 PMCID: PMC10074131 DOI: 10.1002/advs.202205381] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Multi-scale organization of molecular and living components is one of the most critical parameters that regulate charge transport in electroactive systems-whether abiotic, biotic, or hybrid interfaces. In this article, an overview of the current state-of-the-art for controlling molecular order, nanoscale assembly, microstructure domains, and macroscale architectures of electroactive organic interfaces used for biomedical applications is provided. Discussed herein are the leading strategies and challenges to date for engineering the multi-scale organization of electroactive organic materials, including biomolecule-based materials, synthetic conjugated molecules, polymers, and their biohybrid analogs. Importantly, this review provides a unique discussion on how the dependence of conduction phenomena on structural organization is observed for electroactive organic materials, as well as for their living counterparts in electrogenic tissues and biotic-abiotic interfaces. Expansion of fabrication capabilities that enable higher resolution and throughput for the engineering of ordered, patterned, and architecture electroactive systems will significantly impact the future of bioelectronic technologies for medical devices, bioinspired harvesting platforms, and in vitro models of electroactive tissues. In summary, this article presents how ordering at multiple scales is important for modulating transport in both the electroactive organic, abiotic, and living components of bioelectronic systems.
Collapse
Affiliation(s)
- Ze‐Fan Yao
- Department of Chemical and Biomolecular EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
- Department of ChemistrySchool of Physical SciencesUniversity of CaliforniaIrvineCA92697USA
| | - Emil Lundqvist
- Department of Biomedical EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
| | - Yuyao Kuang
- Department of Chemical and Biomolecular EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
| | - Herdeline Ann M. Ardoña
- Department of Chemical and Biomolecular EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
- Department of ChemistrySchool of Physical SciencesUniversity of CaliforniaIrvineCA92697USA
- Department of Biomedical EngineeringSamueli School of EngineeringUniversity of CaliforniaIrvineCA92697USA
- Sue & Bill Gross Stem Cell Research CenterUniversity of CaliforniaIrvineCA92697USA
| |
Collapse
|
59
|
Liu B, Qin P, Liu M, Liu W, Zhang P, Ye Z, Deng Z, Li Z, Gui L. Pressure Driven Rapid Reconfigurable Liquid Metal Patterning. MICROMACHINES 2023; 14:717. [PMID: 37420950 DOI: 10.3390/mi14040717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 07/09/2023]
Abstract
This paper proposes a method for pressure driven rapid reconfigurable liquid metal patterning. A sandwich structure of "pattern-film-cavity" is designed to complete this function. Both sides of the highly elastic polymer film are bonded with two PDMS slabs. One PDMS slab has microchannels patterned on the surface. The other PDMS slab has a large cavity on its surface for liquid metal storage. These two PDMS slabs are bonded together, face to face, with the polymer film in the middle. In order to control the distribution of the liquid metal in the microfluidic chip, the elastic film will deform under the high pressure of the working medium in the microchannels and then extrude the liquid metal into different patterns in the cavity. This paper studies the factors of liquid metal patterning in detail, including external control conditions, such as the type and pressure of the working medium and the critical dimensions of the chip structure. Moreover, both a single-pattern and a double-pattern chip are fabricated in this paper, which can form or reconfigure the liquid metal pattern within 800 ms. Based on the above methods, reconfigurable antennas of two frequencies are designed and fabricated. Meanwhile, their performance is simulated and tested by simulation and vector network tests. The operating frequencies of the two antennas are respectively significantly switching between 4.66 GHz and 9.97 GHz.
Collapse
Affiliation(s)
- Bingxin Liu
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Qin
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyang Liu
- Energy Storage and Novel Technology of Electrical Engineering Department, China Electric Power Research Institute, Beijing 100192, China
| | - Wei Liu
- Energy Storage and Novel Technology of Electrical Engineering Department, China Electric Power Research Institute, Beijing 100192, China
| | - Pan Zhang
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi Ye
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhongshan Deng
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenming Li
- Energy Storage and Novel Technology of Electrical Engineering Department, China Electric Power Research Institute, Beijing 100192, China
| | - Lin Gui
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
60
|
Han N, Yao X, Wang Y, Huang W, Niu M, Zhu P, Mao Y. Recent Progress of Biomaterials-Based Epidermal Electronics for Healthcare Monitoring and Human-Machine Interaction. BIOSENSORS 2023; 13:393. [PMID: 36979605 PMCID: PMC10046871 DOI: 10.3390/bios13030393] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Epidermal electronics offer an important platform for various on-skin applications including electrophysiological signals monitoring and human-machine interactions (HMI), due to their unique advantages of intrinsic softness and conformal interfaces with skin. The widely used nondegradable synthetic materials may produce massive electronic waste to the ecosystem and bring safety issues to human skin. However, biomaterials extracted from nature are promising to act as a substitute material for the construction of epidermal electronics, owing to their diverse characteristics of biocompatibility, biodegradability, sustainability, low cost and natural abundance. Therefore, the development of natural biomaterials holds great prospects for advancement of high-performance sustainable epidermal electronics. Here, we review the recent development on different types of biomaterials including proteins and polysaccharides for multifunctional epidermal electronics. Subsequently, the applications of biomaterials-based epidermal electronics in electrophysiological monitoring and HMI are discussed, respectively. Finally, the development situation and future prospects of biomaterials-based epidermal electronics are summarized. We expect that this review can provide some inspirations for the development of future, sustainable, biomaterials-based epidermal electronics.
Collapse
|
61
|
Dutta A, Cheng H. Pathway of transient electronics towards connected biomedical applications. NANOSCALE 2023; 15:4236-4249. [PMID: 36688506 DOI: 10.1039/d2nr06068j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Transient electronic devices have shown promising applications in hardware security and medical implants with diagnosing therapeutics capabilities since their inception. Control of the device transience allows the device to "dissolve at will" after its functional operation, leading to the development of on-demand transient electronics. This review discusses the recent developments and advantages of triggering strategies (e.g., electrical, thermal, ultrasound, and optical) for controlling the degradation of on-demand transient electronics. We also summarize bioresorbable sensors for medical diagnoses, including representative applications in electrophysiology and neurochemical sensing. Along with the profound advancements in medical diagnosis, the commencement of therapeutic systems such as electrical stimulation and drug delivery for the biomedical or medical implant community has also been discussed. However, implementing a transient electronic system in real healthcare infrastructure is still in its infancy. Many critical challenges still need to be addressed, including strategies to decouple multimodal sensing signals, dissolution selectivity in the presence of multiple stimuli, and a complete sensing-stimulation closed-loop system. Therefore, the review discusses future opportunities in transient decoupling sensors and robust transient devices, which are selective to a particular stimulus and act as hardware-based passwords. Recent advancements in closed-loop controller-enabled electronics have also been analyzed for future opportunities of using data-driven artificial intelligence-powered controllers in fully closed-loop transient systems.
Collapse
Affiliation(s)
- Ankan Dutta
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, 16802, USA.
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, 16802, USA.
| |
Collapse
|
62
|
Deng Z, Guo L, Chen X, Wu W. Smart Wearable Systems for Health Monitoring. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23052479. [PMID: 36904682 PMCID: PMC10007426 DOI: 10.3390/s23052479] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 06/12/2023]
Abstract
Smart wearable systems for health monitoring are highly desired in personal wisdom medicine and telemedicine. These systems make the detecting, monitoring, and recording of biosignals portable, long-term, and comfortable. The development and optimization of wearable health-monitoring systems have focused on advanced materials and system integration, and the number of high-performance wearable systems has been gradually increasing in recent years. However, there are still many challenges in these fields, such as balancing the trade-off between flexibility/stretchability, sensing performance, and the robustness of systems. For this reason, more evolution is required to promote the development of wearable health-monitoring systems. In this regard, this review summarizes some representative achievements and recent progress of wearable systems for health monitoring. Meanwhile, a strategy overview is presented about selecting materials, integrating systems, and monitoring biosignals. The next generation of wearable systems for accurate, portable, continuous, and long-term health monitoring will offer more opportunities for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Zhiyong Deng
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
- Nuclear Power Institute of China, Huayang, Shuangliu District, Chengdu 610213, China
| | - Lihao Guo
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Xi’an 710126, China
| | - Ximeng Chen
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Weiwei Wu
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Xi’an 710126, China
| |
Collapse
|
63
|
Shen Q, Jiang M, Wang R, Song K, Vong MH, Jung W, Krisnadi F, Kan R, Zheng F, Fu B, Tao P, Song C, Weng G, Peng B, Wang J, Shang W, Dickey MD, Deng T. Liquid metal-based soft, hermetic, and wireless-communicable seals for stretchable systems. Science 2023; 379:488-493. [PMID: 36730410 DOI: 10.1126/science.ade7341] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Soft materials tend to be highly permeable to gases, making it difficult to create stretchable hermetic seals. With the integration of spacers, we demonstrate the use of liquid metals, which show both metallic and fluidic properties, as stretchable hermetic seals. Such soft seals are used in both a stretchable battery and a stretchable heat transfer system that involve volatile fluids, including water and organic fluids. The capacity retention of the battery was ~72.5% after 500 cycles, and the sealed heat transfer system showed an increased thermal conductivity of approximately 309 watts per meter-kelvin while strained and heated. Furthermore, with the incorporation of a signal transmission window, we demonstrated wireless communication through such seals. This work provides a route to create stretchable yet hermetic packaging design solutions for soft devices.
Collapse
Affiliation(s)
- Qingchen Shen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.,Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Modi Jiang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ruitong Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Kexian Song
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Man Hou Vong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Woojin Jung
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Febby Krisnadi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Ruyu Kan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Feiyu Zheng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Benwei Fu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Peng Tao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chengyi Song
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Guoming Weng
- Shanghai Key Laboratory of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University; Shanghai 200240, P. R. China
| | - Bo Peng
- Wanxiang A123-Global Headquarters, A123 Systems, Hangzhou 311215, P. R. China
| | - Jun Wang
- Research and Development Center, A123 Systems, Waltham, MA 02451, USA
| | - Wen Shang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Tao Deng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.,Shanghai Key Laboratory of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University; Shanghai 200240, P. R. China
| |
Collapse
|
64
|
Shah AM. Regional pain relief with focused cooling of peripheral nerves. Artif Organs 2023; 47:235-236. [PMID: 36546615 DOI: 10.1111/aor.14489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Opioids are an effective remedy for pain control, but their detrimental side effects are prompting the development of less systemic and addictive options. A team from Pusan National University has developed an implant capable of precisely desensitizing peripheral nerves with temperature regulation. The device employs microfluidic technology.
Collapse
|
65
|
Seo D, Kim D, Seo S, Park J, Kim T. Analyses of Pore-Size-Dependent Ionic Transport in Nanopores in the Presence of Concentration and Temperature Gradients. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2409-2418. [PMID: 36562122 DOI: 10.1021/acsami.2c17925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Mass transport through nanopores occurs in various natural systems, including the human body. For example, ion transport across nerve cell membranes plays a significant role in neural signal transmission, which can be significantly affected by the electrolyte and temperature conditions. To better understand and control the underlying nanoscopic transport, it is necessary to develop multiphysical transport models as well as validate them using enhanced experimental methods for facile nanopore fabrication and precise nanoscale transport characterization. Here, we report a nanopore-integrated microfluidic platform to characterize ion transport in the presence of electrolyte and temperature gradients; we employ our previous self-assembled particle membrane (SAPM)-integrated microfluidic platform to produce various nanopores with different pore sizes. Subsequently, we quantify pore-size-dependent ionic transport by measuring the short circuit current (SCC) and open circuit voltage (OCV) across various nanopores by manipulating the electrolyte and temperature gradients. We establish three simple theoretical models that heavily depend on pore size, electrolyte concentration, and temperature and subsequently validate them with the experimental results. Finally, we anticipate that the results of this study would help clarify ion transport phenomena at low-temperature conditions, not only providing a fundamental understanding but also enabling practical applications of cryo-anesthesia in the near future.
Collapse
Affiliation(s)
- Dongwoo Seo
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan44919, Republic of Korea
| | - Dongjun Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan44919, Republic of Korea
| | - Sangjin Seo
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan44919, Republic of Korea
| | - Jungyul Park
- Department of Mechanical Engineering, Sogang University, Sinsudong, Mapogu, Seoul04107, Republic of Korea
| | - Taesung Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan44919, Republic of Korea
| |
Collapse
|
66
|
Yan S, Yuan Q, Wu J, Jia Z. A free-standing, phase-change liquid metal mold for 3D flexible microfluidics. Front Bioeng Biotechnol 2022; 10:1094294. [PMID: 36545676 PMCID: PMC9760860 DOI: 10.3389/fbioe.2022.1094294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
This paper describes a method to fabricate the 3D microfluidic channel using the free-standing, phase-change gallium mold. Three approaches to prepare the free-standing gallium molds are described. The solid metal framework is strong enough to stand against the gravity. After casting, the embedded gallium molds are melted from solid to liquid and then extracted from the encasing elastomer to form the 3D microfluidic channel due to the phase change property. Since this method is compatible with many encasing materials (e.g., elastomers, gels, resins, ceramics), the encasing materials will bring novel functionalities to the microfluidic chip. Two proof-of-concept experiments have been demonstrated. Firstly, a soft, sticky, on-skin microfluidic cooler is developed based on this method to deliver the focused, minimal invasive cooling power at arbitrary skins of human body with temperature control. Secondly, an ultra-stretchable viscoelastic microchannel with the ultra-soft base is fabricated to continuously tune the viscoelastic particle focusing with a large dynamic range. This proposed technique suggests the new possibilities for the development of lab-on-a-chip applications.
Collapse
Affiliation(s)
- Sheng Yan
- Institute for Advanced Study, Shenzhen University, Shenzhen, China,*Correspondence: Sheng Yan,
| | - Qingwei Yuan
- Nanophotonics Research Center, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Jialin Wu
- Nanophotonics Research Center, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Zixuan Jia
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
67
|
Chen G, Shen S, Tat T, Zhao X, Zhou Y, Fang Y, Chen J. Wearable respiratory sensors for COVID-19 monitoring. VIEW 2022; 3:20220024. [PMID: 36710943 PMCID: PMC9874505 DOI: 10.1002/viw.20220024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/30/2022] Open
Abstract
Since its outbreak in 2019, COVID-19 becomes a pandemic, severely burdening the public healthcare systems and causing an economic burden. Thus, societies around the world are prioritizing a return to normal. However, fighting the recession could rekindle the pandemic owing to the lightning-fast transmission rate of SARS-CoV-2. Furthermore, many of those who are infected remain asymptomatic for several days, leading to the increased possibility of unintended transmission of the virus. Thus, developing rigorous and universal testing technologies to continuously detect COVID-19 for entire populations remains a critical challenge that needs to be overcome. Wearable respiratory sensors can monitor biomechanical signals such as the abnormities in respiratory rate and cough frequency caused by COVID-19, as well as biochemical signals such as viral biomarkers from exhaled breaths. The point-of-care system enabled by advanced respiratory sensors is expected to promote better control of the pandemic by providing an accessible, continuous, widespread, noninvasive, and reliable solution for COVID-19 diagnosis, monitoring, and management.
Collapse
Affiliation(s)
- Guorui Chen
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCalifornia90095USA
| | - Sophia Shen
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCalifornia90095USA
| | - Trinny Tat
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCalifornia90095USA
| | - Xun Zhao
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCalifornia90095USA
| | - Yihao Zhou
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCalifornia90095USA
| | - Yunsheng Fang
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCalifornia90095USA
| | - Jun Chen
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCalifornia90095USA
| |
Collapse
|
68
|
Jiang S, Hong G. Cooling the pain. Science 2022; 377:28-29. [PMID: 35771916 DOI: 10.1126/science.abm8159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A miniaturized, flexible cooling device can be used for precise analgesia.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|