51
|
Chen C, Wang X, Zhang Z. Humoral and cellular immunity against diverse SARS-CoV-2 variants. J Genet Genomics 2023; 50:934-947. [PMID: 37865193 DOI: 10.1016/j.jgg.2023.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
Since the outbreak of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in late 2019, the virus has rapidly spread worldwide. This has led to an unprecedented global pandemic, marked by millions of COVID-19 cases and a significant number of fatalities. Over a relatively short period, several different vaccine platforms are developed and deployed for use globally to curb the pandemic. However, the genome of SARS-CoV-2 continuously undergoes mutation and/or recombination, resulting in the emergence of several variants of concern (VOC). These VOCs can elevate viral transmission and evade the neutralizing antibodies induced by vaccines, leading to reinfections. Understanding the impact of the SARS-CoV-2 genomic mutation on viral pathogenesis and immune escape is crucial for assessing the threat of new variants to public health. This review focuses on the emergence and pathogenesis of VOC, with particular emphasis on their evasion of neutralizing antibodies. Furthermore, the memory B cell, CD4+, and CD8+ T cell memory induced by different COVID-19 vaccines or infections are discussed, along with how these cells recognize VOC. This review summarizes the current knowledge on adaptive immunology regarding SARS-CoV-2 infection and vaccines. Such knowledge may also be applied to vaccine design for other pathogens.
Collapse
Affiliation(s)
- Changxu Chen
- Center for Infectious Disease Research, School of Life Science, Westlake University, Hangzhou, Zhejiang 310001, China
| | - Xin Wang
- Center for Infectious Disease Research, School of Life Science, Westlake University, Hangzhou, Zhejiang 310001, China
| | - Zeli Zhang
- Center for Infectious Disease Research, School of Life Science, Westlake University, Hangzhou, Zhejiang 310001, China.
| |
Collapse
|
52
|
Wang L, Nicols A, Turtle L, Richter A, Duncan CJA, Dunachie SJ, Klenerman P, Payne RP. T cell immune memory after covid-19 and vaccination. BMJ MEDICINE 2023; 2:e000468. [PMID: 38027416 PMCID: PMC10668147 DOI: 10.1136/bmjmed-2022-000468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
The T cell memory response is a crucial component of adaptive immunity responsible for limiting or preventing viral reinfection. T cell memory after infection with the SARS-CoV-2 virus or vaccination is broad, and spans multiple viral proteins and epitopes, about 20 in each individual. So far the T cell memory response is long lasting and provides a high level of cross reactivity and hence resistance to viral escape by variants of the SARS-CoV-2 virus, such as the omicron variant. All current vaccine regimens tested produce robust T cell memory responses, and heterologous regimens will probably enhance protective responses through increased breadth. T cell memory could have a major role in protecting against severe covid-19 disease through rapid viral clearance and early presentation of epitopes, and the presence of cross reactive T cells might enhance this protection. T cell memory is likely to provide ongoing protection against admission to hospital and death, and the development of a pan-coronovirus vaccine might future proof against new pandemic strains.
Collapse
Affiliation(s)
- Lulu Wang
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Alex Nicols
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Lance Turtle
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Alex Richter
- Institute of Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Christopher JA Duncan
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
- Department of Infection and Tropical Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Susanna J Dunachie
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University Faculty of Science, Bangkok, Thailand
| | - Paul Klenerman
- Oxford University Hospitals NHS Foundation Trust, Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, Oxfordshire, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Rebecca P Payne
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
53
|
Lopes-Ribeiro Á, Oliveira PDM, Retes H, Barbosa-Stancioli EF, da Fonseca FG, Tsuji M, Coelho-dos-Reis JGA. Surveillance of SARS-CoV-2 immunogenicity: loss of immunodominant HLA-A*02-restricted epitopes that activate CD8 + T cells. Front Immunol 2023; 14:1229712. [PMID: 38022506 PMCID: PMC10656734 DOI: 10.3389/fimmu.2023.1229712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction and methods In this present work, coronavirus subfamilies and SARS-CoV-2 Variants of Concern (VOCs) were investigated for the presence of MHC-I immunodominant viral peptides using in silico and in vitro tools. Results In our results, HLA-A*02 haplotype showed the highest number of immunodominant epitopes but with the lowest combined prediction score. Furthermore, a decrease in combined prediction score was observed for HLA-A*02-restricted epitopes when the original strain was compared to the VOCs, indicating that the mutations on the VOCs are promoting escape from HLA-A2-mediated antigen presentation, which characterizes a immune evasion process. Additionally, epitope signature analysis revealed major immunogenic peptide loss for structural (S) and non-structural (ORF8) proteins of VOCs in comparison to the Wuhan sequence. Discussion These results may indicate that the antiviral CD8+ T-cell responses generated by original strains could not be sufficient for clearance of variants in either newly or reinfection with SARS-CoV-2. In contrast, N epitopes remain the most conserved and reactive peptides across SARS-CoV-2 VOCs. Overall, our data could contribute to the rational design and development of new vaccinal platforms to induce a broad cellular CD8+ T cell antiviral response, aiming at controlling viral transmission of future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ágata Lopes-Ribeiro
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Patrícia de Melo Oliveira
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Henrique Morais Retes
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Edel Figueiredo Barbosa-Stancioli
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávio Guimarães da Fonseca
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Centro de Tecnologia (CT) Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Irving Medical School, Columbia University, New York, NY, United States
| | - Jordana Grazziela Alves Coelho-dos-Reis
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
54
|
Khadri L, Ziraksaz MH, Barekzai AB, Ghauri B. T cell responses to SARS-CoV-2. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 202:183-217. [PMID: 38237986 DOI: 10.1016/bs.pmbts.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
This chapter provides a comprehensive analysis of T cell responses in COVID-19, focusing on T cell differentiation, specificity, and functional characteristics during SARS-CoV-2 infection. The differentiation of T cells in COVID-19 is explored, highlighting the key factors that influence T cell fate and effector functions. The immunology of the spike protein, a critical component of SARS-CoV-2, is discussed in detail, emphasizing its role in driving T-cell responses. The cellular immune responses against SARS-CoV-2 during acute infection are examined, including the specificity, phenotype, and functional attributes of SARS-CoV-2-specific T-cell responses. Furthermore, the chapter explores T-cell cross-recognition against other human coronaviruses (HCoVs) and the mechanisms of immune regulation mediated by spike proteins. This includes the induction of regulation through the innate immune system, the activation of self-spike protein-cross-reactive regulatory T cells, and the impact of self-tolerance on the regulation of spike proteins. The chapter investigates T cell responses to self-spike proteins and their implications in disease. The role of spike proteins as immunological targets in the context of COVID-19 is examined, shedding light on potential therapeutic interventions and clinical trials in autoimmune diseases. In conclusion, this chapter provides a comprehensive understanding of T cell responses in COVID-19, highlighting their differentiation, immune regulation, and clinical implications. This knowledge contributes to the development of targeted immunotherapies, vaccine strategies, and diagnostic approaches for COVID-19 and other related diseases.
Collapse
Affiliation(s)
- Laiqha Khadri
- Department of Biotechnology, Immune Inspired, Bangalore.
| | | | | | - Baber Ghauri
- Department of Biotechnology, Immune Inspired, Bangalore
| |
Collapse
|
55
|
Onofrio LI, Marin C, Dutto J, Brugo MB, Baigorri RE, Bossio SN, Quiróz JN, Almada L, Ruiz Moreno F, Olivera C, Silvera-Ruiz SM, Ponce NE, Icely PA, Amezcua Vesely MC, Fozzatti L, Rodríguez-Galán MC, Stempin CC, Cervi L, Maletto BA, Acosta Rodríguez EV, Bertone M, Abiega CD, Escudero D, Kahn A, Caeiro JP, Maccioni M, Motrán CC, Gruppi A, Sotomayor CE, Chiapello LS, Montes CL. COVID-19 patients display changes in lymphocyte subsets with a higher frequency of dysfunctional CD8lo T cells associated with disease severity. Front Immunol 2023; 14:1223730. [PMID: 37809093 PMCID: PMC10552777 DOI: 10.3389/fimmu.2023.1223730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
This work examines cellular immunity against SARS-CoV-2 in patients from Córdoba, Argentina, during two major waves characterized by different circulating viral variants and different social behavior. Using flow cytometry, we evaluated the main lymphocyte populations of peripheral blood from hospitalized patients with moderate and severe COVID-19 disease. Our results show disturbances in the cellular immune compartment, as previously reported in different cohorts worldwide. We observed an increased frequency of B cells and a significant decrease in the frequency of CD3+ T cells in COVID-19 patients compared to healthy donors (HD). We also found a reduction in Tregs, which was more pronounced in severe patients. During the first wave, the frequency of GZMB, CD107a, CD39, and PD-1-expressing conventional CD4+ T (T conv) cells was significantly higher in moderate and severe patients than in HD. During the second wave, only the GZMB+ T conv cells of moderate and severe patients increased significantly. In addition, these patients showed a decreased frequency in IL-2-producing T conv cells. Interestingly, we identified two subsets of circulating CD8+ T cells with low and high CD8 surface expression in both HD and COVID-19 patients. While the percentages of CD8hi and CD8lo T cells within the CD8+ population in HD are similar, a significant increase was observed in CD8lo T cell frequency in COVID-19 patients. CD8lo T cell populations from HD as well as from SARS-CoV-2 infected patients exhibited lower frequencies of the effector cytokine-producing cells, TNF, IL-2, and IFN-γ, than CD8hi T cells. Interestingly, the frequency of CD8lo T cells increased with disease severity, suggesting that this parameter could be a potential marker for disease progression. Indeed, the CD8hi/CD8lo index helped to significantly improve the patient's clinical stratification and disease outcome prediction. Our data support the addition of, at least, a CD8hi/CD8lo index into the panel of biomarkers commonly used in clinical labs, since its determination may be a useful tool with impact on the therapeutic management of the patients.
Collapse
Affiliation(s)
- Luisina Ines Onofrio
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Constanza Marin
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Jeremías Dutto
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - María Belén Brugo
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Ruth Eliana Baigorri
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Sabrina Noemi Bossio
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Juan Nahuel Quiróz
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Laura Almada
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Federico Ruiz Moreno
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Carolina Olivera
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Silene M. Silvera-Ruiz
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Nicolás Eric Ponce
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Paula Alejandra Icely
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - María Carolina Amezcua Vesely
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Laura Fozzatti
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - María Cecilia Rodríguez-Galán
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Cinthia Carolina Stempin
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Laura Cervi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Belkys Angélica Maletto
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Eva Virginia Acosta Rodríguez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Mariana Bertone
- Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Hospital Privado Universitario de Córdoba, Córdoba, Argentina
| | - Claudio Daniel Abiega
- Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Hospital Privado Universitario de Córdoba, Córdoba, Argentina
| | - Daiana Escudero
- Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Hospital Privado Universitario de Córdoba, Córdoba, Argentina
| | - Adrián Kahn
- Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Hospital Privado Universitario de Córdoba, Córdoba, Argentina
| | - Juan Pablo Caeiro
- Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Hospital Privado Universitario de Córdoba, Córdoba, Argentina
| | - Mariana Maccioni
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Claudia Cristina Motrán
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Adriana Gruppi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Claudia Elena Sotomayor
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Laura Silvina Chiapello
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Carolina Lucia Montes
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
56
|
Hossain MS, Kerkvliet JG, Hoppe AD. Whole genome CRISPR screening strategy to identify genes contributing to SARS-CoV-2 spike and VSV-G mediated entry. J Med Virol 2023; 95:e29087. [PMID: 37707319 DOI: 10.1002/jmv.29087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
Understanding the cellular host factors that promote and inhibit viral entry is important for identifying viral countermeasures. CRISPR whole-genome screens can be used to rapidly discover host factors that contribute to or impair viral entry. However, when using live viruses and cellular lethality for selection, these screens can identify an overwhelming number of genes without specificity for the stage of the viral infection cycle. New screening methods are needed to identify host machinery contributing to specific steps of viral infection. Here, we developed a CRISPR whole-genome screen and counter-screen strategy based on a pseudoviral platform that allowed identification of genes specific to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike and vesicular stomatitis virus glycoprotein (VSV-G) mediated entry. Screening of SARS-CoV-2 spike and VSV-G on the same lentiviral pseudovirus allowed the identification of entry-specific genes relative to genes associated with retro-transcription, integration, and reporter expression from the lentiviral pseudovirus. Second, a Cre-Gag fusion protein packaged into the pseudovirus was used to bypass retro-transcription and integration by directly activating a floxed fluorescent protein reporter upon entry reduced the number of gene hits and increase specificity for viral entry. Our approach correctly identified SARS-CoV-2 and VSV-G receptors ACE2 and low-density lipoprotein receptors, respectively, and distinguished genes associated with retroviral reporter expression from envelope-mediated entry. Moreover, the CRE-Gag fusion/flox reporter increased the screen specificity for viral entry-associated genes. Validation of a few hits demonstrates that this approach distinguishes envelope-specific host factors from genes affecting reporter expression. Overall, this approach provides a new strategy for identifying host genes influencing viral entry without the confounding complexity of live-viral screens which produce long gene lists associated with all aspects of viral pathogenesis and replication.
Collapse
Affiliation(s)
- Md Saddam Hossain
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, USA
- BioSNTR, South Dakota State University, Brookings, South Dakota, USA
| | - Jason G Kerkvliet
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, USA
- BioSNTR, South Dakota State University, Brookings, South Dakota, USA
| | - Adam D Hoppe
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, South Dakota, USA
- BioSNTR, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
57
|
Sadighi Akha AA, Csomós K, Ujházi B, Walter JE, Kumánovics A. Evolving Approach to Clinical Cytometry for Immunodeficiencies and Other Immune Disorders. Clin Lab Med 2023; 43:467-483. [PMID: 37481324 DOI: 10.1016/j.cll.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Primary immunodeficiencies were initially identified on the basis of recurrent, severe or unusual infections. Subsequently, it was noted that these diseases can also manifest with autoimmunity, autoinflammation, allergy, lymphoproliferation and malignancy, hence a conceptual change and their renaming as inborn errors of immunity. Ongoing advances in flow cytometry provide the opportunity to expand or modify the utility and scope of existing laboratory tests in this field to mirror this conceptual change. Here we have used the B cell subset, variably known as CD21low B cells, age-associated B cells and T-bet+ B cells, as an example to demonstrate this possibility.
Collapse
Affiliation(s)
- Amir A Sadighi Akha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Krisztián Csomós
- Division of Pediatric Allergy/Immunology, University of South Florida, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Boglárka Ujházi
- Division of Pediatric Allergy/Immunology, University of South Florida, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Jolán E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Attila Kumánovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
58
|
Silvestri Y, Clemente F, Moschetti G, Maioli S, Carelli E, Espadas de Arias A, Torelli R, Longhi E, De Feo T, Crosti M, Sarnicola ML, Salvi M, Mantovani G, Arosio M, Bombaci M, Pesce E, Grifantini R, Abrignani S, Geginat J, Muller I. SARS-COV-2 specific t-cells in patients with thyroid disorders related to COVID-19 are enriched in the thyroid and acquire a tissue-resident memory phenotype. Clin Immunol 2023; 254:109684. [PMID: 37451415 DOI: 10.1016/j.clim.2023.109684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND SARS-CoV-2 infections have been associated with the onset of thyroid disorders like classic subacute thyroiditis (SAT) or atypical SAT upon severe COVID disease (COV-A-SAT). Little is known about thyroid anti-viral immune responses. OBJECTIVES To define the role of T-cells in COV-A-SAT. METHODS T-cells from COV-A-SAT patients were analyzed by multi-dimensional flow cytometry, UMAP and DiffusionMap dimensionality reduction and FlowSOM clustering. T-cells from COVID-naïve healthy donors, patients with autoimmune thyroiditis (ATD) and with SAT following COVID vaccination were analyzed as controls. T-cells were analyzed four and eight months post-infection in peripheral blood and in thyroid specimen obtained by ultrasound-guided fine needle aspiration. SARS-COV2-specific T-cells were identified by cytokine production induced by SARS-COV2-derived peptides and with COVID peptide-loaded HLA multimers after HLA haplotyping. RESULTS COV-A-SAT was associated with HLA-DRB1*13 and HLA-B*57. COV-A-SAT patients contained activated Th1- and cytotoxic CD4+ and CD8+ effector cells four months post-infection, which acquired a quiescent memory phenotype after eight months. Anti-SARS-CoV-2-specific T-cell responses were readily detectable in peripheral blood four months post-infection, but were reduced after eight months. CD4+ and CD8+ tissue-resident memory cells (TRM) were present in the thyroid, and circulating CXCR3+T-cells identified as their putative precursors. SARS-CoV-2-specific T-cells were enriched in the thyroid, and acquired a TRM phenotype eight months post-infection. CONCLUSIONS The association of COV-A-SAT with specific HLA haplotypes suggests a genetic predisposition and a key role for T-cells. COV-A-SAT is characterized by a prolonged systemic anti-viral effector T-cell response and the late generation of COVID-specific TRM in the thyroid target tissue.
Collapse
Affiliation(s)
- Ylenia Silvestri
- Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Francesca Clemente
- Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Giorgia Moschetti
- Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Sara Maioli
- Dipartimento di Scienze Cliniche e di Comunità, Università di Milano, Milan, Italy
| | - Elena Carelli
- Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Alejandro Espadas de Arias
- S.C. Trapianti Lombardia - NITp, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Sforza 35 c/o INGM, 20122 Milano, Iraly
| | - Rosanna Torelli
- S.C. Trapianti Lombardia - NITp, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Sforza 35 c/o INGM, 20122 Milano, Iraly
| | - Elena Longhi
- S.C. Trapianti Lombardia - NITp, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Sforza 35 c/o INGM, 20122 Milano, Iraly
| | - Tullia De Feo
- S.C. Trapianti Lombardia - NITp, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Sforza 35 c/o INGM, 20122 Milano, Iraly
| | | | | | - Mario Salvi
- Struttura Complessa Endocrinologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanna Mantovani
- Dipartimento di Scienze Cliniche e di Comunità, Università di Milano, Milan, Italy; Struttura Complessa Endocrinologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maura Arosio
- Dipartimento di Scienze Cliniche e di Comunità, Università di Milano, Milan, Italy; Struttura Complessa Endocrinologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mauro Bombaci
- Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Elisa Pesce
- Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Renata Grifantini
- Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Sergio Abrignani
- Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy; Dipartimento di Scienze Cliniche e di Comunità, Università di Milano, Milan, Italy
| | - Jens Geginat
- Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy; Dipartimento di Scienze Cliniche e di Comunità, Università di Milano, Milan, Italy
| | - Ilaria Muller
- Dipartimento di Scienze Cliniche e di Comunità, Università di Milano, Milan, Italy; Struttura Complessa Endocrinologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
59
|
Aiello A, Najafi-Fard S, Goletti D. Initial immune response after exposure to Mycobacterium tuberculosis or to SARS-COV-2: similarities and differences. Front Immunol 2023; 14:1244556. [PMID: 37662901 PMCID: PMC10470049 DOI: 10.3389/fimmu.2023.1244556] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) and Coronavirus disease-2019 (COVID-19), whose etiologic agent is severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), are currently the two deadliest infectious diseases in humans, which together have caused about more than 11 million deaths worldwide in the past 3 years. TB and COVID-19 share several aspects including the droplet- and aerosol-borne transmissibility, the lungs as primary target, some symptoms, and diagnostic tools. However, these two infectious diseases differ in other aspects as their incubation period, immune cells involved, persistence and the immunopathological response. In this review, we highlight the similarities and differences between TB and COVID-19 focusing on the innate and adaptive immune response induced after the exposure to Mtb and SARS-CoV-2 and the pathological pathways linking the two infections. Moreover, we provide a brief overview of the immune response in case of TB-COVID-19 co-infection highlighting the similarities and differences of each individual infection. A comprehensive understanding of the immune response involved in TB and COVID-19 is of utmost importance for the design of effective therapeutic strategies and vaccines for both diseases.
Collapse
Affiliation(s)
| | | | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
60
|
Katahira J, Ohmae T, Yasugi M, Sasaki R, Itoh Y, Kohda T, Hieda M, Yokota Hirai M, Okamoto T, Miyamoto Y. Nsp14 of SARS-CoV-2 inhibits mRNA processing and nuclear export by targeting the nuclear cap-binding complex. Nucleic Acids Res 2023; 51:7602-7618. [PMID: 37260089 PMCID: PMC10415132 DOI: 10.1093/nar/gkad483] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/12/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023] Open
Abstract
To facilitate selfish replication, viruses halt host gene expression in various ways. The nuclear export of mRNA is one such process targeted by many viruses. SARS-CoV-2, the etiological agent of severe acute respiratory syndrome, also prevents mRNA nuclear export. In this study, Nsp14, a bifunctional viral replicase subunit, was identified as a novel inhibitor of mRNA nuclear export. Nsp14 induces poly(A)+ RNA nuclear accumulation and the dissolution/coalescence of nuclear speckles. Genome-wide gene expression analysis revealed the global dysregulation of splicing and 3'-end processing defects of replication-dependent histone mRNAs by Nsp14. These abnormalities were also observed in SARS-CoV-2-infected cells. A mutation introduced at the guanine-N7-methyltransferase active site of Nsp14 diminished these inhibitory activities. Targeted capillary electrophoresis-mass spectrometry analysis (CE-MS) unveiled the production of N7-methyl-GTP in Nsp14-expressing cells. Association of the nuclear cap-binding complex (NCBC) with the mRNA cap and subsequent recruitment of U1 snRNP and the stem-loop binding protein (SLBP) were impaired by Nsp14. These data suggest that the defects in mRNA processing and export arise from the compromise of NCBC function by N7-methyl-GTP, thus exemplifying a novel viral strategy to block host gene expression.
Collapse
Affiliation(s)
- Jun Katahira
- Laboratory of Cellular Molecular Biology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, 1-58 Rinku-Orai-kita, Izumisano, Osaka 598-8531, Japan
| | - Tatsuya Ohmae
- Laboratory of Cellular Molecular Biology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, 1-58 Rinku-Orai-kita, Izumisano, Osaka 598-8531, Japan
| | - Mayo Yasugi
- Laboratory of Veterinary Public Health, Graduate School of Veterinary Sciences, Osaka Metropolitan University, 1-58 Rinku-Orai-kita, Izumisano, Osaka 598-8531, Japan
| | - Ryosuke Sasaki
- RIKEN Center for Sustainable Resource Science, Mass Spectrometry and Microscopy Unit, 1-7-22 Suehiro. Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Yumi Itoh
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomoko Kohda
- Laboratory of Veterinary Epidemiology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, 1-58 Rinku-Orai-kita, Izumisano, Osaka 598-8531, Japan
| | - Miki Hieda
- Department of Medical Technology, Ehime Prefectural University of Health Sciences, 543 Tobe-Cho Takaoda, Iyo, Ehime791-2102, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, Mass Spectrometry and Microscopy Unit, 1-7-22 Suehiro. Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), 7-6-8 Saito Asagi, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
61
|
Müller TR, Sekine T, Trubach D, Niessl J, Chen P, Bergman P, Blennow O, Hansson L, Mielke S, Nowak P, Vesterbacka J, Akber M, Olofsson A, Amaya Hernandez SP, Gao Y, Cai C, Söderdahl G, Smith CIE, Österborg A, Loré K, Sällberg Chen M, Ljungman P, Ljunggren HG, Karlsson AC, Saini SK, Aleman S, Buggert M. Additive effects of booster mRNA vaccination and SARS-CoV-2 Omicron infection on T cell immunity across immunocompromised states. Sci Transl Med 2023; 15:eadg9452. [PMID: 37437015 PMCID: PMC7615622 DOI: 10.1126/scitranslmed.adg9452] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023]
Abstract
Suboptimal immunity to SARS-CoV-2 mRNA vaccination has frequently been observed in individuals with various immunodeficiencies. Given the increased antibody evasion properties of emerging SARS-CoV-2 subvariants, it is necessary to assess whether other components of adaptive immunity generate resilient and protective responses against infection. We assessed T cell responses in 279 individuals, covering five different immunodeficiencies and healthy controls, before and after booster mRNA vaccination, as well as after Omicron infection in a subset of patients. We observed robust and persistent Omicron-reactive T cell responses that increased markedly upon booster vaccination and correlated directly with antibody titers across all patient groups. Poor vaccination responsiveness in immunocompromised or elderly individuals was effectively counteracted by the administration of additional vaccine doses. Functionally, Omicron-reactive T cell responses exhibited a pronounced cytotoxic profile and signs of longevity, characterized by CD45RA+ effector memory subpopulations with stem cell-like properties and increased proliferative capacity. Regardless of underlying immunodeficiency, booster-vaccinated and Omicron-infected individuals appeared protected against severe disease and exhibited enhanced and diversified T cell responses against conserved and Omicron-specific epitopes. Our findings indicate that T cells retain the ability to generate highly functional responses against newly emerging variants, even after repeated antigen exposure and a robust immunological imprint from ancestral SARS-CoV-2 mRNA vaccination.
Collapse
Affiliation(s)
- Thomas R. Müller
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Takuya Sekine
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Darya Trubach
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Julia Niessl
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Puran Chen
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Peter Bergman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Clinical Immunology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ola Blennow
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Transplantation, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Lotta Hansson
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Stephan Mielke
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska Comprehensive Cancer Center, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Piotr Nowak
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
- Laboratory for Molecular Infection Medicine Sweden MIMS, Umeå University, Sweden
| | - Jan Vesterbacka
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Mira Akber
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Olofsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Susana Patricia Amaya Hernandez
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Yu Gao
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Curtis Cai
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Söderdahl
- Department of Transplantation, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - C. I. Edvard Smith
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska Comprehensive Cancer Center, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Anders Österborg
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Karin Loré
- Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Per Ljungman
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska Comprehensive Cancer Center, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Medicine Huddinge, Hematology, Karolinska Institutet, Stockholm
| | - Hans-Gustaf Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annika C. Karlsson
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Laboratory, Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Sunil Kumar Saini
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Soo Aleman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
62
|
Federico L, Tvedt THA, Gainullin M, Osen JR, Chaban V, Lund KP, Tietze L, Tran TT, Lund-Johansen F, Kared H, Lind A, Vaage JT, Stratford R, Tennøe S, Malone B, Clancy T, Myhre AEL, Gedde-Dahl T, Munthe LA. Robust spike-specific CD4 + and CD8 + T cell responses in SARS-CoV-2 vaccinated hematopoietic cell transplantation recipients: a prospective, cohort study. Front Immunol 2023; 14:1210899. [PMID: 37503339 PMCID: PMC10369799 DOI: 10.3389/fimmu.2023.1210899] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/13/2023] [Indexed: 07/29/2023] Open
Abstract
Poor overall survival of hematopoietic stem cell transplantation (HSCT) recipients who developed COVID-19 underlies the importance of SARS-CoV-2 vaccination. Previous studies of vaccine efficacy have reported weak humoral responses but conflicting results on T cell immunity. Here, we have examined the relationship between humoral and T cell response in 48 HSCT recipients who received two doses of Moderna's mRNA-1273 or Pfizer/BioNTech's BNT162b2 vaccines. Nearly all HSCT patients had robust T cell immunity regardless of protective humoral responses, with 18/48 (37%, IQR 8.679-5601 BAU/mL) displaying protective IgG anti-receptor binding domain (RBD) levels (>2000 BAU/mL). Flow cytometry analysis of activation induced markers (AIMs) revealed that 90% and 74% of HSCT patients showed reactivity towards immunodominant spike peptides in CD8+ and CD4+ T cells, respectively. The response rate increased to 90% for CD4+ T cells as well when we challenged the cells with a complete set of overlapping peptides spanning the entire spike protein. T cell response was detectable as early as 3 months after transplant, but only CD4+ T cell reactivity correlated with IgG anti-RBD level and time after transplantation. Boosting increased seroconversion rate, while only one patient developed COVID-19 requiring hospitalization. Our data suggest that HSCT recipients with poor serological responses were protected from severe COVID-19 by vaccine-induced T cell responses.
Collapse
Affiliation(s)
- Lorenzo Federico
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Murat Gainullin
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Julie Røkke Osen
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Viktoriia Chaban
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Katrine Persgård Lund
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lisa Tietze
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- ImmunoLingo Convergence Center, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Trung The Tran
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- ImmunoLingo Convergence Center, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Fridtjof Lund-Johansen
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- ImmunoLingo Convergence Center, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hassen Kared
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Andreas Lind
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - John Torgils Vaage
- ImmunoLingo Convergence Center, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | | | | | - Anders Eivind Leren Myhre
- Department of Haematology, Oslo University Hospital, Oslo, Norway
- ImmunoLingo Convergence Center, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Ludvig André Munthe
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
63
|
Wu X, Manske MK, Ruan GJ, Witter TL, Nowakowski KE, Abeykoon JP, Tang X, Yu Y, Gwin KA, Wu A, Taupin V, Bhardwaj V, Paludo J, Dasari S, Dong H, Ansell SM, Badley AD, Schellenberg MJ, Witzig TE. Secreted ORF8 induces monocytic pro-inflammatory cytokines through NLRP3 pathways in patients with severe COVID-19. iScience 2023; 26:106929. [PMID: 37260746 PMCID: PMC10193824 DOI: 10.1016/j.isci.2023.106929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/06/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023] Open
Abstract
Despite extensive research, the specific factor associated with SARS-CoV-2 infection that mediates the life-threatening inflammatory cytokine response in patients with severe COVID-19 remains unidentified. Herein we demonstrate that the virus-encoded Open Reading Frame 8 (ORF8) protein is abundantly secreted as a glycoprotein in vitro and in symptomatic patients with COVID-19. ORF8 specifically binds to the NOD-like receptor family pyrin domain-containing 3 (NLRP3) in CD14+ monocytes to induce inflammasomal cytokine/chemokine responses including IL1β, IL8, and CCL2. Levels of ORF8 protein in the blood correlate with severity and disease-specific mortality in patients with acute SARS-CoV-2 infection. Furthermore, the ORF8-induced inflammasome response was readily inhibited by the NLRP3 inhibitor MCC950 in vitro. Our study identifies a dominant cause of pathogenesis, its underlying mechanism, and a potential new treatment strategy for severe COVID-19.
Collapse
Affiliation(s)
- Xiaosheng Wu
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Michelle K Manske
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Gordon J Ruan
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Taylor L Witter
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kevin E Nowakowski
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jithma P Abeykoon
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Xinyi Tang
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Yue Yu
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Kimberly A Gwin
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Annie Wu
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Vanessa Taupin
- Electron Microscopy Core, University of California San Diego, La Jolla, CA, USA
| | - Vaishali Bhardwaj
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jonas Paludo
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Surendra Dasari
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Haidong Dong
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephen M Ansell
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew D Badley
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Thomas E Witzig
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
64
|
Gil-Bescós R, Ostiz A, Zalba S, Tamayo I, Bandrés E, Rojas-de-Miguel E, Redondo M, Zabalza A, Ramírez N. Potency assessment of IFNγ-producing SARS-CoV-2-specific T cells from COVID-19 convalescent subjects. Life Sci Alliance 2023; 6:e202201759. [PMID: 36941056 PMCID: PMC10027900 DOI: 10.26508/lsa.202201759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
The development of new therapies for COVID-19 high-risk patients remains necessary to prevent additional deaths. Here, we studied the phenotypical and functional characteristics of IFN-γ producing-SARS-CoV-2-specific T cells (SC2-STs), obtained from 12 COVID-19 convalescent donors, to determine their potency as an off-the-shelf T cell therapy product. We found that these cells present mainly an effector memory phenotype, characterized by the basal expression of cytotoxicity and activation markers, including granzyme B, perforin, CD38, and PD-1. We demonstrated that SC2-STs could be expanded and isolated in vitro, and they exhibited peptide-specific cytolytic and proliferative responses after antigenic re-challenge. Collectively, these data demonstrate that SC2-STs can be a suitable candidate for the manufacture of a T cell therapy product aimed to treat severe COVID-19.
Collapse
Affiliation(s)
- Rubén Gil-Bescós
- Oncohematology Research Group, Navarrabiomed, University Hospital of Navarra, Public University of Navarra, Navarra Medical Research Institute (IdiSNA), Pamplona, Spain
| | - Ainhoa Ostiz
- Oncohematology Research Group, Navarrabiomed, University Hospital of Navarra, Public University of Navarra, Navarra Medical Research Institute (IdiSNA), Pamplona, Spain
| | - Saioa Zalba
- Hematology and Hemotherapy Department, University Hospital of Navarra, IdiSNA, Pamplona, Spain
| | - Ibai Tamayo
- Unit of Methodology, Navarrabiomed, University Hospital of Navarra, Public University of Navarra, IdiSNA, Pamplona, Spain
- Red de Investigación en Servicios Sanitarios y Enfermedades Crónicas (REDISSEC), Pamplona, Spain
- Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Pamplona, Spain
| | - Eva Bandrés
- Immunology Service, University Hospital of Navarra, IdiSNA, Pamplona, Spain
| | - Elvira Rojas-de-Miguel
- Oncohematology Research Group, Navarrabiomed, University Hospital of Navarra, Public University of Navarra, Navarra Medical Research Institute (IdiSNA), Pamplona, Spain
| | - Margarita Redondo
- Hematology and Hemotherapy Department, University Hospital of Navarra, IdiSNA, Pamplona, Spain
| | - Amaya Zabalza
- Oncohematology Research Group, Navarrabiomed, University Hospital of Navarra, Public University of Navarra, Navarra Medical Research Institute (IdiSNA), Pamplona, Spain
- Hematology and Hemotherapy Department, University Hospital of Navarra, IdiSNA, Pamplona, Spain
| | - Natalia Ramírez
- Oncohematology Research Group, Navarrabiomed, University Hospital of Navarra, Public University of Navarra, Navarra Medical Research Institute (IdiSNA), Pamplona, Spain
| |
Collapse
|
65
|
Brand M, Keşmir C. Evolution of SARS-CoV-2-specific CD4 + T cell epitopes. Immunogenetics 2023; 75:283-293. [PMID: 36719467 PMCID: PMC9887569 DOI: 10.1007/s00251-023-01295-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 02/01/2023]
Abstract
Vaccination clearly decreases coronavirus disease 2019 (COVID-19) mortality; however, they also impose selection pressure on the virus, which promotes the evolution of immune escape variants. For example, despite the high vaccination level in especially Western countries, the Omicron variant caused millions of breakthrough infections, suggesting that the highly mutated spike protein in the Omicron variant can escape antibody immunity much more efficiently than the other variants of concern (VOCs). In this study, we investigated the resistance/susceptibility of T helper cell responses that are necessary for generating efficient long-lasting antibody immunity, in several VOCs. By predicting T helper cell epitopes on the spike protein for most common HLA-DRB1 alleles worldwide, we found that although most of high frequency HLA-DRB1 alleles have several potential T helper cell epitopes, few alleles like HLA-DRB1 13:01 and 11:01 are not predicted to have any significant T helper cell responses after vaccination. Using these predictions, a population based on realistic human leukocyte antigen-II (HLA-II) frequencies were simulated to visualize the T helper cell immunity on the population level. While a small fraction of this population had alarmingly little predicted CD4 T cell epitopes, the majority had several epitopes that should be enough to generate efficient B cell responses. Moreover, we show that VOC spike mutations hardly affect T helper epitopes and mainly occur in other residues of the spike protein. These results suggest that lack of long-lasting antibody responses is not likely due to loss of T helper cell epitopes in new VOCs.
Collapse
Affiliation(s)
- Marina Brand
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, Netherlands
| | - Can Keşmir
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
66
|
Akkiz H. Unraveling the Molecular and Cellular Pathogenesis of COVID-19-Associated Liver Injury. Viruses 2023; 15:1287. [PMID: 37376587 PMCID: PMC10304875 DOI: 10.3390/v15061287] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/29/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2) continues to cause substantial morbidity and mortality. Most infections are mild; however, some patients experience severe and potentially fatal systemic inflammation, tissue damage, cytokine storm, and acute respiratory distress syndrome. Patients with chronic liver disease have been frequently affected, experiencing high morbidity and mortality. In addition, elevated liver enzymes may be a risk factor for disease progression, even in the absence of underlying liver disease. While the respiratory tract is a primary target of SARS-CoV-2, it has become evident that COVID-19 is a multisystemic infectious disease. The hepatobiliary system might be influenced during COVID-19 infection, ranging from a mild elevation of aminotransferases to the development of autoimmune hepatitis and secondary sclerosing cholangitis. Furthermore, the virus can promote existing chronic liver diseases to liver failure and activate the autoimmune liver disease. Whether the direct cytopathic effects of the virus, host reaction, hypoxia, drugs, vaccination, or all these risk factors cause liver injury has not been clarified to a large extent in COVID-19. This review article discussed the molecular and cellular mechanisms involved in the pathogenesis of SARS-CoV-2 virus-associated liver injury and highlighted the emerging role of liver sinusoidal epithelial cells (LSECs) in virus-related liver damage.
Collapse
Affiliation(s)
- Hikmet Akkiz
- Department of Gastroenterology and Hepatology, Medical Faculty, Bahçeşehir University, Istanbul 34349, Turkey
| |
Collapse
|
67
|
Eser TM, Baranov O, Huth M, Ahmed MIM, Deák F, Held K, Lin L, Pekayvaz K, Leunig A, Nicolai L, Pollakis G, Buggert M, Price DA, Rubio-Acero R, Reich J, Falk P, Markgraf A, Puchinger K, Castelletti N, Olbrich L, Vanshylla K, Klein F, Wieser A, Hasenauer J, Kroidl I, Hoelscher M, Geldmacher C. Nucleocapsid-specific T cell responses associate with control of SARS-CoV-2 in the upper airways before seroconversion. Nat Commun 2023; 14:2952. [PMID: 37225706 DOI: 10.1038/s41467-023-38020-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/12/2023] [Indexed: 05/26/2023] Open
Abstract
Despite intensive research since the emergence of SARS-CoV-2, it has remained unclear precisely which components of the early immune response protect against the development of severe COVID-19. Here, we perform a comprehensive immunogenetic and virologic analysis of nasopharyngeal and peripheral blood samples obtained during the acute phase of infection with SARS-CoV-2. We find that soluble and transcriptional markers of systemic inflammation peak during the first week after symptom onset and correlate directly with upper airways viral loads (UA-VLs), whereas the contemporaneous frequencies of circulating viral nucleocapsid (NC)-specific CD4+ and CD8+ T cells correlate inversely with various inflammatory markers and UA-VLs. In addition, we show that high frequencies of activated CD4+ and CD8+ T cells are present in acutely infected nasopharyngeal tissue, many of which express genes encoding various effector molecules, such as cytotoxic proteins and IFN-γ. The presence of IFNG mRNA-expressing CD4+ and CD8+ T cells in the infected epithelium is further linked with common patterns of gene expression among virus-susceptible target cells and better local control of SARS-CoV-2. Collectively, these results identify an immune correlate of protection against SARS-CoV-2, which could inform the development of more effective vaccines to combat the acute and chronic illnesses attributable to COVID-19.
Collapse
Affiliation(s)
- Tabea M Eser
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
| | - Olga Baranov
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
| | - Manuel Huth
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Center for Mathematics, Technische Universität München, 85748, Garching, Germany
| | - Mohammed I M Ahmed
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
| | - Flora Deák
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
| | - Kathrin Held
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
| | - Luming Lin
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
| | - Kami Pekayvaz
- Department of Medicine I, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 81377, Munich, Germany
| | - Alexander Leunig
- Department of Medicine I, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 81377, Munich, Germany
| | - Leo Nicolai
- Department of Medicine I, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 81377, Munich, Germany
| | - Georgios Pollakis
- Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 2BE, UK
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, CF14 4XN, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital, Heath Park, Cardiff, CF14 4XN, UK
| | - Raquel Rubio-Acero
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Jakob Reich
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Philine Falk
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Alissa Markgraf
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Kerstin Puchinger
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Noemi Castelletti
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
| | - Laura Olbrich
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Andreas Wieser
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, LMU Munich, 81377, Munich, Germany
| | - Jan Hasenauer
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Center for Mathematics, Technische Universität München, 85748, Garching, Germany
- Faculty of Mathematics and Natural Sciences, University of Bonn, 53113, Bonn, Germany
| | - Inge Kroidl
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, 81377, Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site Munich, 81377, Munich, Germany.
| |
Collapse
|
68
|
Tani Y, Takita M, Kobashi Y, Wakui M, Zhao T, Yamamoto C, Saito H, Kawashima M, Sugiura S, Nishikawa Y, Omata F, Shimazu Y, Kawamura T, Sugiyama A, Nakayama A, Kaneko Y, Kodama T, Kami M, Tsubokura M. Varying Cellular Immune Response against SARS-CoV-2 after the Booster Vaccination: A Cohort Study from Fukushima Vaccination Community Survey, Japan. Vaccines (Basel) 2023; 11:vaccines11050920. [PMID: 37243024 DOI: 10.3390/vaccines11050920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Booster vaccination reduces the incidence of severe cases and mortality related to COVID-19, with cellular immunity playing an important role. However, little is known about the proportion of the population that has achieved cellular immunity after booster vaccination. Thus, we conducted a Fukushima cohort database and assessed humoral and cellular immunity in 2526 residents and healthcare workers in Fukushima Prefecture in Japan through continuous blood collection every 3 months from September 2021. We identified the proportion of people with induced cellular immunity after booster vaccination using the T-SPOT.COVID test, and analyzed their background characteristics. Among 1089 participants, 64.3% (700/1089) had reactive cellular immunity after booster vaccination. Multivariable analysis revealed the following independent predictors of reactive cellular immunity: age < 40 years (adjusted odds ratio: 1.81; 95% confidence interval: 1.19-2.75; p-value: 0.005) and adverse reactions after vaccination (1.92, 1.19-3.09, 0.007). Notably, despite IgG(S) and neutralizing antibody titers of ≥500 AU/mL, 33.9% (349/1031) and 33.5% (341/1017) of participants, respectively, did not have reactive cellular immunity. In summary, this is the first study to evaluate cellular immunity at the population level after booster vaccination using the T-SPOT.COVID test, albeit with several limitations. Future studies will need to evaluate previously infected subjects and their T-cell subsets.
Collapse
Affiliation(s)
- Yuta Tani
- Medical Governance Research Institute, Tokyo 108-0074, Japan
| | - Morihito Takita
- Medical Governance Research Institute, Tokyo 108-0074, Japan
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Yurie Kobashi
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima 963-8202, Japan
| | - Masatoshi Wakui
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo 160-0016, Japan
| | - Tianchen Zhao
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Chika Yamamoto
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Hiroaki Saito
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
- Department of Internal Medicine, Soma Central Hospital, Fukushima 976-0016, Japan
| | - Moe Kawashima
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Sota Sugiura
- Medical Governance Research Institute, Tokyo 108-0074, Japan
| | - Yoshitaka Nishikawa
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima 963-8202, Japan
| | - Fumiya Omata
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima 963-8202, Japan
| | - Yuzo Shimazu
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima 963-8202, Japan
| | - Takeshi Kawamura
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Akira Sugiyama
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Aya Nakayama
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yudai Kaneko
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
- Medical and Biological Laboratories Co., Ltd., Tokyo 105-0012, Japan
| | - Tetsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Masahiro Kami
- Medical Governance Research Institute, Tokyo 108-0074, Japan
| | - Masaharu Tsubokura
- Department of Radiation Health Management, Fukushima Medical University, Fukushima 960-1295, Japan
- Department of General Internal Medicine, Hirata Central Hospital, Fukushima 963-8202, Japan
- Department of Internal Medicine, Soma Central Hospital, Fukushima 976-0016, Japan
| |
Collapse
|
69
|
Ning J, Wang Q, Chen Y, He T, Zhang F, Chen X, Shi L, Zhai A, Li B, Wu C. Immunodominant SARS-CoV-2-specific CD4 + and CD8 + T-cell responses elicited by inactivated vaccines in healthy adults. J Med Virol 2023; 95:e28743. [PMID: 37185843 DOI: 10.1002/jmv.28743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/20/2023] [Accepted: 04/09/2023] [Indexed: 05/17/2023]
Abstract
Safety profiles and humoral responses to inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have been previously assessed, but cellular immune responses to inactivated SARS-CoV-2 vaccines remain understudied. Here, we report the comprehensive characteristics of SARS-CoV-2-specific CD4+ and CD8+ T-cell responses elicited by the BBIBP-CorV vaccine. A total of 295 healthy adults were recruited, and SARS-CoV-2-specific T-cell responses were detected after stimulation with overlapping peptide pools spanning the entire length of the envelope (E), membrane (M), nucleocapsid (N), and spike (S) proteins. Robust and durable CD4+ (p < 0.0001) and CD8+ (p < 0.0001) T-cell responses specific to SARS-CoV-2 were detected following the third vaccination, with an increase in specific CD8+ T-cells, compared to CD4+ T-cells. Cytokine profiles showed that interferon gamma and tumor necrosis factor-α were predominantly expressed with the negligible expression of interleukin (IL)-4 and IL-10, indicating a Th1- or Tc1-biased response. Compared to E and M proteins, N and S activated a higher proportion of specific T-cells with broader functions. The predominant frequency of the N antigen (49/89) was highest for CD4+ T-cell immunity. Furthermore, N19-36 and N391-408 were identified to contain dominant CD8+ and CD4+ T-cell epitopes, respectively. In addition, N19-36 -specific CD8+ T-cells were mainly effector memory CD45RA cells, whereas N391-408 -specific CD4+ T-cells were mainly effector memory cells. Therefore, this study reports comprehensive features of T-cell immunity induced by the inactivated SARS-CoV-2 vaccine BBIBP-CorV and proposes highly conserved candidate peptides which may be beneficial in vaccine optimization.
Collapse
Affiliation(s)
- Jie Ning
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Qinjin Wang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Ying Chen
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Taojun He
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Fang Zhang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xingchi Chen
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Liang Shi
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Aixia Zhai
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Bin Li
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chao Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
70
|
Silva-Junior AL, Oliveira LDS, Belezia NCT, Tarragô AM, Costa AGD, Malheiro A. Immune Dynamics Involved in Acute and Convalescent COVID-19 Patients. IMMUNO 2023; 3:86-111. [DOI: 10.3390/immuno3010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
COVID-19 is a viral disease that has caused millions of deaths around the world since 2020. Many strategies have been developed to manage patients in critical conditions; however, comprehension of the immune system is a key factor in viral clearance, tissue repairment, and adaptive immunity stimulus. Participation of immunity has been identified as a major factor, along with biomarkers, prediction of clinical outcomes, and antibody production after infection. Immune cells have been proposed not only as a hallmark of severity, but also as a predictor of clinical outcomes, while dynamics of inflammatory molecules can also induce worse consequences for acute patients. For convalescent patients, mild disease was related to higher antibody production, although the factors related to the specific antibodies based on a diversity of antigens were not clear. COVID-19 was explored over time; however, the study of immunological predictors of outcomes is still lacking discussion, especially in convalescent patients. Here, we propose a review using previously published studies to identify immunological markers of COVID-19 outcomes and their relation to antibody production to further contribute to the clinical and laboratorial management of patients.
Collapse
Affiliation(s)
- Alexander Leonardo Silva-Junior
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Centro Universitário do Norte (UNINORTE), Manaus 69020-031, AM, Brazil
| | - Lucas da Silva Oliveira
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Centro Universitário do Norte (UNINORTE), Manaus 69020-031, AM, Brazil
| | - Nara Caroline Toledo Belezia
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Centro Universitário do Norte (UNINORTE), Manaus 69020-031, AM, Brazil
| | - Andréa Monteiro Tarragô
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69065-001, AM, Brazil
| | - Allyson Guimarães da Costa
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69065-001, AM, Brazil
- Programa de Pós-Graduação em Imunologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| | - Adriana Malheiro
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
- Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus 69050-001, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus 69065-001, AM, Brazil
- Programa de Pós-Graduação em Imunologia, Universidade Federal do Amazonas (UFAM), Manaus 69067-005, AM, Brazil
| |
Collapse
|
71
|
Yang G, Wang J, Sun P, Qin J, Yang X, Chen D, Zhang Y, Zhong N, Wang Z. SARS-CoV-2 epitope-specific T cells: Immunity response feature, TCR repertoire characteristics and cross-reactivity. Front Immunol 2023; 14:1146196. [PMID: 36969254 PMCID: PMC10036809 DOI: 10.3389/fimmu.2023.1146196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
The devastating COVID-19 pandemic caused by SARS-CoV-2 and multiple variants or subvariants remains an ongoing global challenge. SARS-CoV-2-specific T cell responses play a critical role in early virus clearance, disease severity control, limiting the viral transmission and underpinning COVID-19 vaccine efficacy. Studies estimated broad and robust T cell responses in each individual recognized at least 30 to 40 SARS-CoV-2 antigen epitopes and associated with COVID-19 clinical outcome. Several key immunodominant viral proteome epitopes, including S protein- and non-S protein-derived epitopes, may primarily induce potent and long-lasting antiviral protective effects. In this review, we summarized the immune response features of immunodominant epitope-specific T cells targeting different SRAS-CoV-2 proteome structures after infection and vaccination, including abundance, magnitude, frequency, phenotypic features and response kinetics. Further, we analyzed the epitopes immunodominance hierarchy in combination with multiple epitope-specific T cell attributes and TCR repertoires characteristics, and discussed the significant implications of cross-reactive T cells toward HCoVs, SRAS-CoV-2 and variants of concern, especially Omicron. This review may be essential for mapping the landscape of T cell responses toward SARS-CoV-2 and optimizing the current vaccine strategy.
Collapse
Affiliation(s)
- Gang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Guangzhou Laboratory, Guangzhou, China
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Junxiang Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ping Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jian Qin
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Xiaoyun Yang
- Guangzhou Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Daxiang Chen
- Guangzhou Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yunhui Zhang
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Nanshan Zhong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Guangzhou Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhongfang Wang
- Guangzhou Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
72
|
Desai N, Pradhan V, Chougule D, Tiwari S, Mandke C, Yadav RM, Athvale A, Kawle J, Pai V, Pawaskar S, Kharkar H, Bhosale S, Parab A, Ansari S, Kumar KH, Mhashal S, Redkar N, Madkaikar M. Perturbations of immune landscape in COVID-19 associated mucormycosis. Mycoses 2023; 66:226-236. [PMID: 36380699 DOI: 10.1111/myc.13546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND A rise in secondary fungal infections during the COVID-19 pandemic necessitates a deeper understanding of the associated immunological perturbations. OBJECTIVES To evaluate the clinical and immunological characteristics observed in patients with COVID-19 associated mucormycosis (CAM) infection. PATIENTS/ METHODS Cases of mucormycosis with or post-COVID-19 infection were compared with cases of acute COVID-19 and convalescent COVID-19. Lymphocyte subsets, cytokines and other laboratory markers were compared between the groups. RESULTS The frequency of proposed risk factors for CAM was diabetes mellitus (77%), recent history of steroid use (69%) and hypoxia during COVID-19 infection (52%). Iron metabolism was dysregulated in CAM patients with low TIBC and total iron. Further, CAM was accompanied with lymphopenia with drastic reduction in B cell counts; however, plasmablasts were not altered. Further, CAM patients had low immunoglobulin levels and antibodies specific to mucor peptide did not increase in CAM suggesting dysfunction in B-cell response. There was increase in activated effector cytotoxic CD8 T cells and NK cells in CAM compared with COVID-19 infection and healthy controls. Among T helper cells, Tregs were reduced and Th-1 frequency was increased in CAM compared with COVID-19 infection. A distinct cytokine signature was evident in CAM with increase in IL-1β, IFN-γ, IL-6, IL-22, IL-17A, IL-10, IL-2, IL-8, IL-7, IL-21 and GM-CSF. CONCLUSION This is the first study on immunophenotyping in CAM suggesting the need for long-term monitoring of B-cell function after SARS-CoV-2 in patients with dysregulated glycaemic control and the possible benefit of therapeutic supplementation with intravenous immunoglobulins in CAM.
Collapse
Affiliation(s)
- Nidhi Desai
- Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| | - Vandana Pradhan
- Department of Clinical & Experimental Immunology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| | - Durga Chougule
- Department of Clinical & Experimental Immunology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| | - Smrati Tiwari
- Department of Medicine, G.S. Medical College, King Edward Memorial Hospital, Mumbai, India
| | - Charuta Mandke
- Department of Ophthalmology, HBT Medical College and Dr R N Cooper Hospital, Mumbai, India
| | - Reetika Malik Yadav
- Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| | - Amita Athvale
- Department of Pulmonary Medicine, G.S. Medical College, King Edward Memorial Hospital, Mumbai, India
| | - Juhi Kawle
- Department of Medicine, G.S. Medical College, King Edward Memorial Hospital, Mumbai, India
| | - Vinayak Pai
- Department of Medicine, G.S. Medical College, King Edward Memorial Hospital, Mumbai, India
| | - Swapnal Pawaskar
- Department of Clinical & Experimental Immunology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| | - Harshada Kharkar
- Department of Clinical & Experimental Immunology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| | - Snehal Bhosale
- Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| | - Ankita Parab
- Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| | - Shazia Ansari
- Department of Ophthalmology, HBT Medical College and Dr R N Cooper Hospital, Mumbai, India
| | - Kinnera Harish Kumar
- Department of Otorhinolaryngology, HBT Medical College and Dr R N Cooper Hospital, Mumbai, India
| | - Shashikant Mhashal
- Department of Otolaryngology, HBT Medical College and Dr R N Cooper Hospital, Mumbai, India
| | - Neelam Redkar
- Department of Medicine, HBT Medical College and Dr R N Cooper Hospital, Mumbai, India
| | - Manisha Madkaikar
- Department of Pediatric Immunology and Leukocyte Biology, Indian Council of Medical Research- National Institute of Immunohaematology, Mumbai, India
| |
Collapse
|
73
|
Zhang L, Bisht P, Flamier A, Barrasa MI, Friesen M, Richards A, Hughes SH, Jaenisch R. LINE1-Mediated Reverse Transcription and Genomic Integration of SARS-CoV-2 mRNA Detected in Virus-Infected but Not in Viral mRNA-Transfected Cells. Viruses 2023; 15:629. [PMID: 36992338 PMCID: PMC10057545 DOI: 10.3390/v15030629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
SARS-CoV-2 sequences can be reverse-transcribed and integrated into the genomes of virus-infected cells by a LINE1-mediated retrotransposition mechanism. Whole-genome sequencing (WGS) methods detected retrotransposed SARS-CoV-2 subgenomic sequences in virus-infected cells overexpressing LINE1, while an enrichment method (TagMap) identified retrotranspositions in cells that did not overexpress LINE1. LINE1 overexpression increased retrotranspositions about 1000-fold as compared to non-overexpressing cells. Nanopore WGS can directly recover retrotransposed viral and flanking host sequences, but its sensitivity depends on the depth of sequencing (a typical 20-fold sequencing depth would only examine 10 diploid cell equivalents). In contrast, TagMap enriches the host-virus junctions and can interrogate up to 20,000 cells and is able to detect rare viral retrotranspositions in LINE1 non-overexpressing cells. Although Nanopore WGS is 10-20-fold more sensitive per tested cell, TagMap can interrogate 1000-2000-fold more cells and, therefore, can identify infrequent retrotranspositions. When comparing SARS-CoV-2 infection and viral nucleocapsid mRNA transfection by TagMap, retrotransposed SARS-CoV-2 sequences were only detected in infected but not in transfected cells. Retrotransposition in virus-infected cells, in contrast to transfected cells, may be facilitated because virus infection, in contrast to viral RNA transfection, results in significantly higher viral RNA levels and stimulates LINE1 expression by causing cellular stress.
Collapse
Affiliation(s)
- Liguo Zhang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Punam Bisht
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Anthony Flamier
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | - Max Friesen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Alexsia Richards
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Stephen H. Hughes
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
74
|
Woodworth JS, Contreras V, Christensen D, Naninck T, Kahlaoui N, Gallouët AS, Langlois S, Burban E, Joly C, Gros W, Dereuddre-Bosquet N, Morin J, Olsen ML, Rosenkrands I, Stein AK, Wood GK, Follmann F, Lindenstrøm T, LeGrand R, Pedersen GK, Mortensen R. A novel adjuvant formulation induces robust Th1/Th17 memory and mucosal recall responses in Non-Human Primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529651. [PMID: 36865310 PMCID: PMC9980079 DOI: 10.1101/2023.02.23.529651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
After clean drinking water, vaccination is the most impactful global health intervention. However, development of new vaccines against difficult-to-target diseases is hampered by the lack of diverse adjuvants for human use. Of particular interest, none of the currently available adjuvants induce Th17 cells. Here, we develop and test an improved liposomal adjuvant, termed CAF®10b, that incorporates a TLR-9 agonist. In a head-to-head study in non-human primates (NHPs), immunization with antigen adjuvanted with CAF®10b induced significantly increased antibody and cellular immune responses compared to previous CAF® adjuvants, already in clinical trials. This was not seen in the mouse model, demonstrating that adjuvant effects can be highly species specific. Importantly, intramuscular immunization of NHPs with CAF®10b induced robust Th17 responses that were observed in circulation half a year after vaccination. Furthermore, subsequent instillation of unadjuvanted antigen into the skin and lungs of these memory animals led to significant recall responses including transient local lung inflammation observed by Positron Emission Tomography-Computed Tomography (PET-CT), elevated antibody titers, and expanded systemic and local Th1 and Th17 responses, including >20% antigen-specific T cells in the bronchoalveolar lavage. Overall, CAF®10b demonstrated an adjuvant able to drive true memory antibody, Th1 and Th17 vaccine-responses across rodent and primate species, supporting its translational potential.
Collapse
Affiliation(s)
- Joshua S Woodworth
- Department of Infectious Disease Immunology, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Vanessa Contreras
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Dennis Christensen
- Department of Infectious Disease Immunology, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Thibaut Naninck
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Nidhal Kahlaoui
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Anne-Sophie Gallouët
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Sébastien Langlois
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Emma Burban
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Candie Joly
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Wesley Gros
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Julie Morin
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Ming Liu Olsen
- Department of Infectious Disease Immunology, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Ida Rosenkrands
- Department of Infectious Disease Immunology, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Ann-Kathrin Stein
- Department of Vaccine Development, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Grith Krøyer Wood
- Department of Vaccine Development, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Frank Follmann
- Department of Infectious Disease Immunology, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Thomas Lindenstrøm
- Department of Infectious Disease Immunology, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Roger LeGrand
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184); 92265, Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Gabriel Kristian Pedersen
- Department of Infectious Disease Immunology, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| | - Rasmus Mortensen
- Department of Infectious Disease Immunology, Statens Serum Institut; Artillerivej 5, 2300 Copenhagen, Denmark
| |
Collapse
|
75
|
Zhang L, Bisht P, Flamier A, Barrasa MI, Richards A, Hughes SH, Jaenisch R. LINE1-mediated reverse transcription and genomic integration of SARS-CoV-2 mRNA detected in virus-infected but not in viral mRNA-transfected cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.527906. [PMID: 37293025 PMCID: PMC10245962 DOI: 10.1101/2023.02.10.527906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
SARS-CoV-2 sequences can be reverse-transcribed and integrated into the genomes of virus-infected cells by a LINE1-mediated retrotransposition mechanism. Whole genome sequencing (WGS) methods detected retrotransposed SARS-CoV-2 subgenomic sequences in virus-infected cells overexpressing LINE1, while an enrichment method (TagMap) identified retrotranspositions in cells that did not overexpress LINE1. LINE1 overexpression increased retrotranspositions about 1,000-fold as compared to non-overexpressing cells. Nanopore WGS can directly recover retrotransposed viral and flanking host sequences but its sensitivity depends on the depth of sequencing (a typical 20-fold sequencing depth would only examine 10 diploid cell equivalents). In contrast, TagMap enriches for the host-virus junctions and can interrogate up to 20,000 cells and is able to detect rare viral retrotranspositions in LINE1 non-overexpressing cells. Although Nanopore WGS is 10 - 20-fold more sensitive per tested cell, TagMap can interrogate 1,000 - 2,000-fold more cells and therefore can identify infrequent retrotranspositions. When comparing SARS-CoV-2 infection and viral nucleocapsid mRNA transfection by TagMap, retrotransposed SARS-CoV-2 sequences were only detected in infected but not in transfected cells. Retrotransposition in virus-infected in contrast to transfected cells may be facilitated because virus infection in contrast to viral RNA transfection results in significantly higher viral RNA levels and stimulates LINE1-expression which causes cellular stress.
Collapse
|
76
|
Ren A, He W, Rao J, Ye D, Cheng P, Jian Q, Fu Z, Zhang X, Deng R, Gao Y, Ma Y. Dysregulation of innate cell types in the hepatic immune microenvironment of alcoholic liver cirrhosis. Front Immunol 2023; 14:1034356. [PMID: 36845083 PMCID: PMC9947838 DOI: 10.3389/fimmu.2023.1034356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction The risk of alcoholic cirrhosis increases in a dose- and time-dependent manner with alcohol consumption and ethanol metabolism in the liver. Currently, no effective antifibrotic therapies are available. We aimed to obtain a better understanding of the cellular and molecular mechanisms involved in the pathogenesis of liver cirrhosis. Methods We performed single-cell RNA-sequencing to analyze immune cells from the liver tissue and peripheral blood form patients with alcoholic cirrhosis and healthy controls to profile the transcriptomes of more than 100,000 single human cells and yield molecular definitions for non-parenchymal cell types. In addition, we performed single-cell RNA-sequencing analysis to reveal the immune microenvironment related to alcoholic liver cirrhosis. Hematoxylin and eosin, Immunofluorescence staining and Flow cytometric analysis were employed to study the difference between tissues and cells with or without alcoholic cirrhosis. Results We identified a fibrosis-associated M1 subpopulation of macrophages that expands in liver fibrosis, differentiates from circulating monocytes, and is pro-fibrogenic. We also define mucosal-associated invariant T (MAIT) cells that expand in alcoholic cirrhosis and are topographically restricted to the fibrotic niche. Multilineage modeling of ligand and receptor interactions between the fibrosis-associated macrophages, MAIT, and NK cells revealed the intra-fibrotic activity of several pro-fibrogenic pathways, including responses to cytokines and antigen processing and presentation, natural killer cell-mediated cytotoxicity, cell adhesion molecules, Th1/Th2/Th17 cell differentiation, IL-17 signaling pathway, and Toll-like receptor signaling pathway. Discussion Our work dissects unanticipated aspects of the cellular and molecular basis of human organ alcoholic fibrosis at the single-cell level and provides a conceptual framework for the discovery of rational therapeutic targets in liver alcoholic cirrhosis.
Collapse
Affiliation(s)
- Ao Ren
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenjing He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiawei Rao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dongmei Ye
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pengrui Cheng
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qian Jian
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zongli Fu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuzhi Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ronghai Deng
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yifang Gao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Ma
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
77
|
Reeg DB, Hofmann M, Neumann-Haefelin C, Thimme R, Luxenburger H. SARS-CoV-2-Specific T Cell Responses in Immunocompromised Individuals with Cancer, HIV or Solid Organ Transplants. Pathogens 2023; 12:pathogens12020244. [PMID: 36839516 PMCID: PMC9966413 DOI: 10.3390/pathogens12020244] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Adaptive immune responses play an important role in the clinical course of SARS-CoV-2 infection. While evaluations of the virus-specific defense often focus on the humoral response, cellular immunity is crucial for the successful control of infection, with the early development of cytotoxic T cells being linked to efficient viral clearance. Vaccination against SARS-CoV-2 induces both CD4+ and CD8+ T cell responses and permits protection from severe COVID-19, including infection with the currently circulating variants of concern. Nevertheless, in immunocompromised individuals, first data imply significantly impaired SARS-CoV-2-specific immune responses after both natural infection and vaccination. Hence, these high-risk groups require particular consideration, not only in routine clinical practice, but also in the development of future vaccination strategies. In order to assist physicians in the guidance of immunocompromised patients, concerning the management of infection or the benefit of (booster) vaccinations, this review aims to provide a concise overview of the current knowledge about SARS-CoV-2-specific cellular immune responses in the vulnerable cohorts of cancer patients, people living with HIV (PLWH), and solid organ transplant recipients (SOT). Recent findings regarding the virus-specific cellular immunity in these differently immunocompromised populations might influence clinical decision-making in the future.
Collapse
|
78
|
Almendro-Vázquez P, Laguna-Goya R, Paz-Artal E. Defending against SARS-CoV-2: The T cell perspective. Front Immunol 2023; 14:1107803. [PMID: 36776863 PMCID: PMC9911802 DOI: 10.3389/fimmu.2023.1107803] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
SARS-CoV-2-specific T cell response has been proven essential for viral clearance, COVID-19 outcome and long-term memory. Impaired early T cell-driven immunity leads to a severe form of the disease associated with lymphopenia, hyperinflammation and imbalanced humoral response. Analyses of acute SARS-CoV-2 infection have revealed that mild COVID-19 course is characterized by an early induction of specific T cells within the first 7 days of symptoms, coordinately followed by antibody production for an effective control of viral infection. In contrast, patients who do not develop an early specific cellular response and initiate a humoral immune response with subsequent production of high levels of antibodies, develop severe symptoms. Yet, delayed and persistent bystander CD8+ T cell activation has been also reported in hospitalized patients and could be a driver of lung pathology. Literature supports that long-term maintenance of T cell response appears more stable than antibody titters. Up to date, virus-specific T cell memory has been detected 22 months post-symptom onset, with a predominant IL-2 memory response compared to IFN-γ. Furthermore, T cell responses are conserved against the emerging variants of concern (VoCs) while these variants are mostly able to evade humoral responses. This could be partly explained by the high HLA polymorphism whereby the viral epitope repertoire recognized could differ among individuals, greatly decreasing the likelihood of immune escape. Current COVID-19-vaccination has been shown to elicit Th1-driven spike-specific T cell response, as does natural infection, which provides substantial protection against severe COVID-19 and death. In addition, mucosal vaccination has been reported to induce strong adaptive responses both locally and systemically and to protect against VoCs in animal models. The optimization of vaccine formulations by including a variety of viral regions, innovative adjuvants or diverse administration routes could result in a desirable enhanced cellular response and memory, and help to prevent breakthrough infections. In summary, the increasing evidence highlights the relevance of monitoring SARS-CoV-2-specific cellular immune response, and not only antibody levels, as a correlate for protection after infection and/or vaccination. Moreover, it may help to better identify target populations that could benefit most from booster doses and to personalize vaccination strategies.
Collapse
Affiliation(s)
- Patricia Almendro-Vázquez
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rocío Laguna-Goya
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Estela Paz-Artal
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| |
Collapse
|
79
|
Jian X, Zhang Y, Zhao J, Zhao Z, Lu M, Xie L. CoV2-TCR: A web server for screening TCR CDR3 from TCR immune repertoire of COVID-19 patients and their recognized SARS-CoV-2 epitopes. Comput Struct Biotechnol J 2023; 21:1362-1371. [PMID: 36741787 PMCID: PMC9882952 DOI: 10.1016/j.csbj.2023.01.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/08/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023] Open
Abstract
Although multiple vaccines have been developed and widely administered, several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have been reported to evade immune responses and spread diffusely. Here, 108 RNA-seq files from coronavirus disease 2019 (COVID-19) patients and healthy donors (HD) were downloaded to extract their TCR immune repertoire by MiXCR. Those extracted TCR repertoire were compared and it was found that disease progression was related negatively with diversity and positively with clonality. Specifically, greater proportions of high-abundance clonotypes were observed in active and severe COVID-19 samples, probably resulting from strong stimulation of SARS-CoV-2 epitopes and a continued immune response in host. To investigate the specific recognition between TCR CDR3 and SARS-CoV-2 epitopes, we constructed an accurate classifier CoV2-TCR with an AUC of 0.967 in an independent dataset, which outperformed several similar tools. Based on this model, we observed a huge range in the number of those TCR CDR3 recognizing those different peptides, including 28 MHC-I epitopes from SARS-CoV-2 and 22 immunogenic peptides from SARS-CoV-2 variants. Interestingly, their proportions of high-abundance, low-abundance and rare clonotypes were close for each peptide. To expand the potential application of this model, we established the webserver, CoV2-TCR, in which users can obtain those recognizing CDR3 sequences from the TCR repertoire of COVID-19 patients based on the 9-mer peptides containing mutation site(s) on the four main proteins of SARS-CoV-2 variants. Overall, this study provides preliminary screening for candidate antigen epitopes and the TCR CDR3 that recognizes them, and should be helpful for vaccine design on SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Xingxing Jian
- Bioinformatics Center & National Clinical Research Centre for Geriatric Disorders & Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China,Corresponding author.
| | - Yu Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics (Chinese National Human Genome Center at Shanghai), Institute of Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China,School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jingjing Zhao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics (Chinese National Human Genome Center at Shanghai), Institute of Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China,College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zhuoming Zhao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics (Chinese National Human Genome Center at Shanghai), Institute of Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China,College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Manman Lu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics (Chinese National Human Genome Center at Shanghai), Institute of Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Lu Xie
- Bioinformatics Center & National Clinical Research Centre for Geriatric Disorders & Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China,Shanghai-MOST Key Laboratory of Health and Disease Genomics (Chinese National Human Genome Center at Shanghai), Institute of Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China,Corresponding author at: Bioinformatics Center & National Clinical Research Centre for Geriatric Disorders & Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
80
|
Lei H. A two-gene marker for the two-tiered innate immune response in COVID-19 patients. PLoS One 2023; 18:e0280392. [PMID: 36649304 PMCID: PMC9844909 DOI: 10.1371/journal.pone.0280392] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
For coronavirus disease 2019 (COVID-19), a pandemic disease characterized by strong immune dysregulation in severe patients, convenient and efficient monitoring of the host immune response is critical. Human hosts respond to viral and bacterial infections in different ways, the former is characterized by the activation of interferon stimulated genes (ISGs) such as IFI27, while the latter is characterized by the activation of anti-bacterial associated genes (ABGs) such as S100A12. This two-tiered innate immune response has not been examined in COVID-19. In this study, the activation patterns of this two-tiered innate immune response represented by IFI27 and S100A12 were explored based on 1421 samples from 17 transcriptome datasets derived from the blood of COVID-19 patients and relevant controls. It was found that IFI27 activation occurred in most of the symptomatic patients and displayed no correlation with disease severity, while S100A12 activation was more restricted to patients under severe and critical conditions with a stepwise activation pattern. In addition, most of the S100A12 activation was accompanied by IFI27 activation. Furthermore, the activation of IFI27 was most pronounced within the first week of symptom onset, but generally waned after 2-3 weeks. On the other hand, the activation of S100A12 displayed no apparent correlation with disease duration and could last for several months in certain patients. These features of the two-tiered innate immune response can further our understanding on the disease mechanism of COVID-19 and may have implications to the clinical triage. Development of a convenient two-gene protocol for the routine serial monitoring of this two-tiered immune response will be a valuable addition to the existing laboratory tests.
Collapse
Affiliation(s)
- Hongxing Lei
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
- Cunji Medical School, University of Chinese Academy of Sciences, Beijing, China
- Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
81
|
Maaske J, Sproule S, Falsey AR, Sobieszczyk ME, Luetkemeyer AF, Paulsen GC, Riddler SA, Robb ML, Rolle CP, Sha BE, Tong T, Ahani B, Aksyuk AA, Bansal H, Egan T, Jepson B, Padilla M, Patel N, Shoemaker K, Stanley AM, Swanson PA, Wilkins D, Villafana T, Green JA, Kelly EJ. Robust humoral and cellular recall responses to AZD1222 attenuate breakthrough SARS-CoV-2 infection compared to unvaccinated. Front Immunol 2023; 13:1062067. [PMID: 36713413 PMCID: PMC9881590 DOI: 10.3389/fimmu.2022.1062067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/06/2022] [Indexed: 01/15/2023] Open
Abstract
Background Breakthrough severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in coronavirus disease 2019 (COVID-19) vaccinees typically produces milder disease than infection in unvaccinated individuals. Methods To explore disease attenuation, we examined COVID-19 symptom burden and immuno-virologic responses to symptomatic SARS-CoV-2 infection in participants (AZD1222: n=177/17,617; placebo: n=203/8,528) from a 2:1 randomized, placebo-controlled, phase 3 study of two-dose primary series AZD1222 (ChAdOx1 nCoV-19) vaccination (NCT04516746). Results We observed that AZD1222 vaccinees had an overall lower incidence and shorter duration of COVID-19 symptoms compared with placebo recipients, as well as lower SARS-CoV-2 viral loads and a shorter median duration of viral shedding in saliva. Vaccinees demonstrated a robust antibody recall response versus placebo recipients with low-to-moderate inverse correlations with virologic endpoints. Vaccinees also demonstrated an enriched polyfunctional spike-specific Th-1-biased CD4+ and CD8+ T-cell response that was associated with strong inverse correlations with virologic endpoints. Conclusion Robust immune responses following AZD1222 vaccination attenuate COVID-19 disease severity and restrict SARS-CoV-2 transmission potential by reducing viral loads and the duration of viral shedding in saliva. Collectively, these analyses underscore the essential role of vaccination in mitigating the COVID-19 pandemic.
Collapse
Affiliation(s)
- Jill Maaske
- Clinical Development, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Stephanie Sproule
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Ann R. Falsey
- University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
- Rochester Regional Health, Rochester, NY, United States
| | - Magdalena E. Sobieszczyk
- Division of Infectious Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, New York-Presbyterian Columbia University Irving Medical Center, New York, NY, United States
| | - Anne F. Luetkemeyer
- Zuckerberg San Francisco General, University of California, San Francisco, San Francisco, CA, United States
| | - Grant C. Paulsen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Pediatric Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Sharon A. Riddler
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Merlin L. Robb
- Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | | | - Beverly E. Sha
- Division of Infectious Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Tina Tong
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Bahar Ahani
- Bioinformatics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Anastasia A. Aksyuk
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Himanshu Bansal
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Timothy Egan
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Brett Jepson
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Marcelino Padilla
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Nirmeshkumar Patel
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Kathryn Shoemaker
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Ann Marie Stanley
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Phillip A. Swanson
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Deidre Wilkins
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Tonya Villafana
- Clinical Development, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Justin A. Green
- Clinical Development, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Elizabeth J. Kelly
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| |
Collapse
|
82
|
Andreano E, Paciello I, Pierleoni G, Piccini G, Abbiento V, Antonelli G, Pileri P, Manganaro N, Pantano E, Maccari G, Marchese S, Donnici L, Benincasa L, Giglioli G, Leonardi M, De Santi C, Fabbiani M, Rancan I, Tumbarello M, Montagnani F, Sala C, Medini D, De Francesco R, Montomoli E, Rappuoli R. B cell analyses after SARS-CoV-2 mRNA third vaccination reveals a hybrid immunity like antibody response. Nat Commun 2023; 14:53. [PMID: 36599850 DOI: 10.1038/s41467-022-35781-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
The continuous evolution of SARS-CoV-2 generated highly mutated variants able to escape natural and vaccine-induced primary immunity. The administration of a third mRNA vaccine dose induces a secondary response with increased protection. Here we investigate the longitudinal evolution of the neutralizing antibody response in four donors after three mRNA doses at single-cell level. We sorted 4100 spike protein specific memory B cells identifying 350 neutralizing antibodies. The third dose increases the antibody neutralization potency and breadth against all SARS-CoV-2 variants as observed with hybrid immunity. However, the B cell repertoire generating this response is different. The increases of neutralizing antibody responses is largely due to the expansion of B cell germlines poorly represented after two doses, and the reduction of germlines predominant after primary immunization. Our data show that different immunization regimens induce specific molecular signatures which should be considered while designing new vaccines and immunization strategies.
Collapse
Affiliation(s)
- Emanuele Andreano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Ida Paciello
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | | | | | - Valentina Abbiento
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Giada Antonelli
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Piero Pileri
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Noemi Manganaro
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Elisa Pantano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Giuseppe Maccari
- Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Silvia Marchese
- Department of Pharmacological and Biomolecular Sciences DiSFeB, University of Milan, Milan, Italy
| | - Lorena Donnici
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | | | | | | | - Concetta De Santi
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Massimiliano Fabbiani
- Department of Medical Sciences, Infectious and Tropical Diseases Unit, Siena University Hospital, Siena, Italy
| | - Ilaria Rancan
- Department of Medical Sciences, Infectious and Tropical Diseases Unit, Siena University Hospital, Siena, Italy
| | - Mario Tumbarello
- Department of Medical Sciences, Infectious and Tropical Diseases Unit, Siena University Hospital, Siena, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesca Montagnani
- Department of Medical Sciences, Infectious and Tropical Diseases Unit, Siena University Hospital, Siena, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Claudia Sala
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Duccio Medini
- Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Raffaele De Francesco
- Department of Pharmacological and Biomolecular Sciences DiSFeB, University of Milan, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Emanuele Montomoli
- VisMederi Research S.r.l., Siena, Italy
- VisMederi S.r.l, Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Rino Rappuoli
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy.
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy.
| |
Collapse
|
83
|
Escudero-Pérez B, Lawrence P, Castillo-Olivares J. Immune correlates of protection for SARS-CoV-2, Ebola and Nipah virus infection. Front Immunol 2023; 14:1156758. [PMID: 37153606 PMCID: PMC10158532 DOI: 10.3389/fimmu.2023.1156758] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023] Open
Abstract
Correlates of protection (CoP) are biological parameters that predict a certain level of protection against an infectious disease. Well-established correlates of protection facilitate the development and licensing of vaccines by assessing protective efficacy without the need to expose clinical trial participants to the infectious agent against which the vaccine aims to protect. Despite the fact that viruses have many features in common, correlates of protection can vary considerably amongst the same virus family and even amongst a same virus depending on the infection phase that is under consideration. Moreover, the complex interplay between the various immune cell populations that interact during infection and the high degree of genetic variation of certain pathogens, renders the identification of immune correlates of protection difficult. Some emerging and re-emerging viruses of high consequence for public health such as SARS-CoV-2, Nipah virus (NiV) and Ebola virus (EBOV) are especially challenging with regards to the identification of CoP since these pathogens have been shown to dysregulate the immune response during infection. Whereas, virus neutralising antibodies and polyfunctional T-cell responses have been shown to correlate with certain levels of protection against SARS-CoV-2, EBOV and NiV, other effector mechanisms of immunity play important roles in shaping the immune response against these pathogens, which in turn might serve as alternative correlates of protection. This review describes the different components of the adaptive and innate immune system that are activated during SARS-CoV-2, EBOV and NiV infections and that may contribute to protection and virus clearance. Overall, we highlight the immune signatures that are associated with protection against these pathogens in humans and could be used as CoP.
Collapse
Affiliation(s)
- Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, Braunschweig, Germany
- *Correspondence: Beatriz Escudero-Pérez, ; Javier Castillo-Olivares,
| | - Philip Lawrence
- CONFLUENCE: Sciences et Humanités (EA 1598), Université Catholique de Lyon (UCLy), Lyon, France
| | - Javier Castillo-Olivares
- Laboratory of Viral Zoonotics, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Beatriz Escudero-Pérez, ; Javier Castillo-Olivares,
| |
Collapse
|
84
|
Dhawan M, Rabaan AA, Fawarah MMA, Almuthree SA, Alsubki RA, Alfaraj AH, Mashraqi MM, Alshamrani SA, Abduljabbar WA, Alwashmi ASS, Ibrahim FA, Alsaleh AA, Khamis F, Alsalman J, Sharma M, Emran TB. Updated Insights into the T Cell-Mediated Immune Response against SARS-CoV-2: A Step towards Efficient and Reliable Vaccines. Vaccines (Basel) 2023; 11:101. [PMID: 36679947 PMCID: PMC9861463 DOI: 10.3390/vaccines11010101] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
The emergence of novel variants of SARS-CoV-2 and their abilities to evade the immune response elicited through presently available vaccination makes it essential to recognize the mechanisms through which SARS-CoV-2 interacts with the human immune response. It is essential not only to comprehend the infection mechanism of SARS-CoV-2 but also for the generation of effective and reliable vaccines against COVID-19. The effectiveness of the vaccine is supported by the adaptive immune response, which mainly consists of B and T cells, which play a critical role in deciding the prognosis of the COVID-19 disease. T cells are essential for reducing the viral load and containing the infection. A plethora of viral proteins can be recognized by T cells and provide a broad range of protection, especially amid the emergence of novel variants of SARS-CoV-2. However, the hyperactivation of the effector T cells and reduced number of lymphocytes have been found to be the key characteristics of the severe disease. Notably, excessive T cell activation may cause acute respiratory distress syndrome (ARDS) by producing unwarranted and excessive amounts of cytokines and chemokines. Nevertheless, it is still unknown how T-cell-mediated immune responses function in determining the prognosis of SARS-CoV-2 infection. Additionally, it is unknown how the functional perturbations in the T cells lead to the severe form of the disease and to reduced protection not only against SARS-CoV-2 but many other viral infections. Hence, an updated review has been developed to understand the involvement of T cells in the infection mechanism, which in turn determines the prognosis of the disease. Importantly, we have also focused on the T cells' exhaustion under certain conditions and how these functional perturbations can be modulated for an effective immune response against SARS-CoV-2. Additionally, a range of therapeutic strategies has been discussed that can elevate the T cell-mediated immune response either directly or indirectly.
Collapse
Affiliation(s)
- Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, Punjab, India
- Trafford College, Altrincham, Manchester WA14 5PQ, UK
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Mahmoud M. Al Fawarah
- Microbiology Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
| | - Souad A. Almuthree
- Department of Infectious Disease, King Abdullah Medical City, Makkah 43442, Saudi Arabia
| | - Roua A. Alsubki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Mutaib M. Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Saleh A. Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Wesam A. Abduljabbar
- Department of Medical Laboratory Sciences, Fakeeh College for Medical Science, Jeddah 21134, Saudi Arabia
| | - Ameen S. S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Fatimah Al Ibrahim
- Infectious Disease Division, Department of Internal Medicine, Dammam Medical Complex, Dammam 32245, Saudi Arabia
| | - Abdulmonem A. Alsaleh
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Faryal Khamis
- Infection Diseases Unit, Department of Internal Medicine, Royal Hospital, Muscat 1331, Oman
| | - Jameela Alsalman
- Infection Disease Unit, Department of Internal Medicine, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 435, Bahrain
| | - Manish Sharma
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| |
Collapse
|
85
|
Miluzio A, Cuomo A, Cordiglieri C, Donnici L, Pesce E, Bombaci M, Conti M, Fasciani A, Terracciano L, Manganaro L, Toccafondi M, Scagliola A, Oliveto S, Ricciardi S, Grifantini R, De Francesco R, Abrignani S, Manfrini N, Biffo S. Mapping of functional SARS-CoV-2 receptors in human lungs establishes differences in variant binding and SLC1A5 as a viral entry modulator of hACE2. EBioMedicine 2022; 87:104390. [PMID: 36584595 PMCID: PMC9795807 DOI: 10.1016/j.ebiom.2022.104390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic is an infectious disease caused by SARS-CoV-2. The first step of SARS-CoV-2 infection is the recognition of angiotensin-converting enzyme 2 (ACE2) receptors by the receptor-binding domain (RBD) of the viral Spike (S) glycoprotein. Although the molecular and structural bases of the SARS-CoV-2-RBD/hACE2 interaction have been thoroughly investigated in vitro, the relationship between hACE2 expression and in vivo infection is less understood. METHODS Here, we developed an efficient SARS-CoV-2-RBD binding assay suitable for super resolution microscopy and simultaneous hACE2 immunodetection and mapped the correlation between hACE2 receptor abundance and SARS-CoV-2-RBD binding, both in vitro and in human lung biopsies. Next, we explored the specific proteome of SARS-CoV-2-RBD/hACE2 through a comparative mass spectrometry approach. FINDINGS We found that only a minority of hACE2 positive spots are actually SARS-CoV-2-RBD binding sites, and that the relationship between SARS-CoV-2-RBD binding and hACE2 presence is variable, suggesting the existence of additional factors. Indeed, we found several interactors that are involved in receptor localization and viral entry and characterized one of them: SLC1A5, an amino acid transporter. High-resolution receptor-binding studies showed that co-expression of membrane-bound SLC1A5 with hACE2 predicted SARS-CoV-2 binding and entry better than hACE2 expression alone. SLC1A5 depletion reduces SARS-CoV-2 binding and entry. Notably, the Omicron variant is more efficient in binding hACE2 sites, but equally sensitive to SLC1A5 downregulation. INTERPRETATION We propose a method for mapping functional SARS-CoV-2 receptors in vivo. We confirm the existence of hACE2 co-factors that may contribute to differential sensitivity of cells to infection. FUNDING This work was supported by an unrestricted grant from "Fondazione Romeo ed Enrica Invernizzi" to Stefano Biffo and by AIRC under MFAG 2021 - ID. 26178 project - P.I. Manfrini Nicola.
Collapse
Affiliation(s)
- Annarita Miluzio
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Chiara Cordiglieri
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Lorena Donnici
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Elisa Pesce
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Mauro Bombaci
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Matteo Conti
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Alessandra Fasciani
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Luigi Terracciano
- Institute of Pathology, University Hospital Basel, 4031, Basel, Switzerland
| | - Lara Manganaro
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Mirco Toccafondi
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Alessandra Scagliola
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Stefania Oliveto
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Sara Ricciardi
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy,Department of Biosciences, University of Milan, 20133, Milan, Italy
| | - Renata Grifantini
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy
| | - Raffaele De Francesco
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy,Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133, Milan, Italy
| | - Sergio Abrignani
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy,Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy
| | - Nicola Manfrini
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy,Department of Biosciences, University of Milan, 20133, Milan, Italy,Corresponding author. National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy.
| | - Stefano Biffo
- National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy,Department of Biosciences, University of Milan, 20133, Milan, Italy,Corresponding author. National Institute of Molecular Genetics, "Fondazione Romeo ed Enrica Invernizzi", INGM, 20122, Milan, Italy.
| |
Collapse
|
86
|
Wang L, Zhao J, Schank M, Khanal S, Dang X, Cao D, Nguyen LNT, Zhang Y, Wu XY, Adkins JL, Brueggeman J, Zhang J, Ning S, El Gazzar M, Moorman JP, Yao ZQ. Identification of virus-specific B-cell epitopes by convalescent plasma from COVID-19 patients. Mol Immunol 2022; 152:215-223. [PMID: 36379129 PMCID: PMC9630139 DOI: 10.1016/j.molimm.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/11/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
Abstract
Identification of immunologic epitopes against SARS-CoV-2 is crucial for the discovery of diagnostic, therapeutic, and preventive targets. In this study, we used a pan-coronavirus peptide microarray to screen for potential B-cell epitopes and validated the results with peptide-based ELISA. Specifically, we identified three linear B-cell epitopes on the SARS-CoV-2 proteome, which were recognized by convalescent plasma from COVID-19 patients. Interestingly, two epitopes (S 809-823 and R1ab 909-923) strongly reacted to convalescent plasma collected at the early phase (< 90 days) of COVID-19 symptom onset, whereas one epitope (M 5-19) reacted to convalescent plasma collected > 90 days after COVID-19 symptom onset. Neutralization assays using antibody depletion with the identified spike (S) peptides revealed that three S epitopes (S 557-571, S 789-803, and S 809-823) elicited neutralizing antibodies in COVID-19 patients. However, the levels of virus-specific antibody targeting S 789-803 only positively correlated with the neutralizing rates at the early phase (<60 days) after disease onset, and the antibody titers diminished quickly with no correlation to the neutralizing activity beyond two months after recovery from COVID-19. Importantly, stimulation of peripheral blood mononuclear cells from COVID-19-recovered patients with these SARS-CoV-2 S peptides resulted in poor virus-specific B cell activation, proliferation, differentiation into memory B cells, and production of immunoglobulin G (IgG) antibodies, despite the B-cells being functionally competent as demonstrated by their response to non-specific stimulation. Taken together, these findings indicate that these newly identified SARS-CoV-2-specific B-cell epitopes can elicit neutralizing antibodies, with titers and/or neutralizing activities declining significantly within 2-3 months in the convalescent plasma of COVID-19 patients.
Collapse
Affiliation(s)
- Ling Wang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA.
| | - Juan Zhao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Madison Schank
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Sushant Khanal
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Xindi Dang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Dechao Cao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Lam N T Nguyen
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Yi Zhang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Xiao Y Wu
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - James L Adkins
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Justin Brueggeman
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Jinyu Zhang
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Shunbin Ning
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Mohamed El Gazzar
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA
| | - Jonathan P Moorman
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA; Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37614, USA
| | - Zhi Q Yao
- Center of Excellence for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson City, TN 37614, USA; Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37614, USA.
| |
Collapse
|
87
|
Shafqat A, Omer MH, Ahmad O, Niaz M, Abdulkader HS, Shafqat S, Mushtaq AH, Shaik A, Elshaer AN, Kashir J, Alkattan K, Yaqinuddin A. SARS-CoV-2 epitopes inform future vaccination strategies. Front Immunol 2022; 13:1041185. [PMID: 36505475 PMCID: PMC9732895 DOI: 10.3389/fimmu.2022.1041185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
All currently approved COVID-19 vaccines utilize the spike protein as their immunogen. SARS-CoV-2 variants of concern (VOCs) contain mutations in the spike protein, enabling them to escape infection- and vaccination-induced immune responses to cause reinfection. New vaccines are hence being researched intensively. Studying SARS-CoV-2 epitopes is essential for vaccine design, as identifying targets of broadly neutralizing antibody responses and immunodominant T-cell epitopes reveal candidates for inclusion in next-generation COVID-19 vaccines. We summarize the major studies which have reported on SARS-CoV-2 antibody and T-cell epitopes thus far. These results suggest that a future of pan-coronavirus vaccines, which not only protect against SARS-CoV-2 but numerous other coronaviruses, may be possible. The T-cell epitopes of SARS-CoV-2 have gotten less attention than neutralizing antibody epitopes but may provide new strategies to control SARS-CoV-2 infection. T-cells target many SARS-CoV-2 antigens other than spike, recognizing numerous epitopes within these antigens, thereby limiting the chance of immune escape by VOCs that mainly possess spike protein mutations. Therefore, augmenting vaccination-induced T-cell responses against SARS-CoV-2 may provide adequate protection despite broad antibody escape by VOCs.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia,*Correspondence: Areez Shafqat,
| | - Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Omar Ahmad
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mahnoor Niaz
- Medical College, Aga Khan University, Karachi, Pakistan
| | | | | | | | - Abdullah Shaik
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia,Department of Comparative Medicine, King Faisal Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
88
|
Valenzuela-Fernández A, Cabrera-Rodriguez R, Ciuffreda L, Perez-Yanes S, Estevez-Herrera J, González-Montelongo R, Alcoba-Florez J, Trujillo-González R, García-Martínez de Artola D, Gil-Campesino H, Díez-Gil O, Lorenzo-Salazar JM, Flores C, Garcia-Luis J. Nanomaterials to combat SARS-CoV-2: Strategies to prevent, diagnose and treat COVID-19. Front Bioeng Biotechnol 2022; 10:1052436. [PMID: 36507266 PMCID: PMC9732709 DOI: 10.3389/fbioe.2022.1052436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the associated coronavirus disease 2019 (COVID-19), which severely affect the respiratory system and several organs and tissues, and may lead to death, have shown how science can respond when challenged by a global emergency, offering as a response a myriad of rapid technological developments. Development of vaccines at lightning speed is one of them. SARS-CoV-2 outbreaks have stressed healthcare systems, questioning patients care by using standard non-adapted therapies and diagnostic tools. In this scenario, nanotechnology has offered new tools, techniques and opportunities for prevention, for rapid, accurate and sensitive diagnosis and treatment of COVID-19. In this review, we focus on the nanotechnological applications and nano-based materials (i.e., personal protective equipment) to combat SARS-CoV-2 transmission, infection, organ damage and for the development of new tools for virosurveillance, diagnose and immune protection by mRNA and other nano-based vaccines. All the nano-based developed tools have allowed a historical, unprecedented, real time epidemiological surveillance and diagnosis of SARS-CoV-2 infection, at community and international levels. The nano-based technology has help to predict and detect how this Sarbecovirus is mutating and the severity of the associated COVID-19 disease, thereby assisting the administration and public health services to make decisions and measures for preparedness against the emerging variants of SARS-CoV-2 and severe or lethal COVID-19.
Collapse
Affiliation(s)
- Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Romina Cabrera-Rodriguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Laura Ciuffreda
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Silvia Perez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Judith Estevez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | | - Julia Alcoba-Florez
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | | | - Helena Gil-Campesino
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Oscar Díez-Gil
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Health Sciences, University of Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Jonay Garcia-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
89
|
Resch MD, Wen K, Mazboudi R, Mulhall Maasz H, Persaud M, Garvey K, Gallardo L, Gottlieb P, Alimova A, Khayat R, Morales J, Bielefeldt-Ohmann H, Bowen RA, Galarza JM. Immunogenicity and Efficacy of Monovalent and Bivalent Formulations of a Virus-Like Particle Vaccine against SARS-CoV-2. Vaccines (Basel) 2022; 10:1997. [PMID: 36560407 PMCID: PMC9782034 DOI: 10.3390/vaccines10121997] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Virus-like particles (VLPs) offer great potential as a safe and effective vaccine platform against SARS-CoV-2, the causative agent of COVID-19. Here, we show that SARS-CoV-2 VLPs can be generated by expression of the four viral structural proteins in a mammalian expression system. Immunization of mice with a monovalent VLP vaccine elicited a potent humoral response, showing neutralizing activity against multiple variants of SARS-CoV-2. Subsequent immunogenicity and efficacy studies were performed in the Golden Syrian hamster model, which closely resembles the pathology and progression of COVID-19 in humans. Hamsters immunized with a bivalent VLP vaccine were significantly protected from infection with the Beta or Delta variant of SARS-CoV-2. Vaccinated hamsters showed reduced viral load, shedding, replication, and pathology in the respiratory tract. Immunized hamsters also showed variable levels of cross-neutralizing activity against the Omicron variant. Overall, the VLP vaccine elicited robust protective efficacy against SARS-CoV-2. These promising results warrant further study of multivalent VLP vaccines in Phase I clinical trials in humans.
Collapse
Affiliation(s)
| | - Ke Wen
- TechnoVax, Inc., 6 Westchester Plaza, Elmsford, NY 10523, USA
| | - Ryan Mazboudi
- TechnoVax, Inc., 6 Westchester Plaza, Elmsford, NY 10523, USA
| | | | - Mirjana Persaud
- TechnoVax, Inc., 6 Westchester Plaza, Elmsford, NY 10523, USA
| | - Kaitlyn Garvey
- TechnoVax, Inc., 6 Westchester Plaza, Elmsford, NY 10523, USA
| | - Leslie Gallardo
- TechnoVax, Inc., 6 Westchester Plaza, Elmsford, NY 10523, USA
| | - Paul Gottlieb
- CUNY School of Medicine, The City College of New York, New York, NY 10031, USA
| | - Aleksandra Alimova
- CUNY School of Medicine, The City College of New York, New York, NY 10031, USA
| | - Reza Khayat
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
| | - Jorge Morales
- Microscopy Facility, Division of Science, The City College of New York, New York, NY 10031, USA
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80521, USA
| | - Jose M. Galarza
- TechnoVax, Inc., 6 Westchester Plaza, Elmsford, NY 10523, USA
| |
Collapse
|
90
|
Hackstein CP, Klenerman P. Emerging features of MAIT cells and other unconventional T cell populations in human viral disease and vaccination. Semin Immunol 2022; 61-64:101661. [PMID: 36374780 PMCID: PMC10933818 DOI: 10.1016/j.smim.2022.101661] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022]
Abstract
MAIT cells are one representative of a group of related unconventional or pre-set T cells, and are particularly abundant in humans. While these unconventional T cell types, which also include populations of Vδ2 cells and iNKT cells, recognise quite distinct ligands, they share functional features including the ability to sense "danger" by integration of cytokine signals. Since such signals are common to many human pathologies, activation of MAIT cells in particular has been widely observed. In this review we will discuss recent trends in these data, for example the findings from patients with Covid-19 and responses to novel vaccines. Covid-19 is an example where MAIT cell activation has been correlated with disease severity by several groups, and the pathways leading to activation are being clarified, but the overall role of the cells in vivo requires further exploration. Given the potential wide functional responsiveness of these cells, which ranges from tissue repair to cytotoxicity, and likely impacts on the activity of many other cell populations, defining the role of these cells - not only as sensitive biomarkers but also as mediators - across human disease remains an important task.
Collapse
Affiliation(s)
- Carl-Philipp Hackstein
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford OX1 3SY, UK; Translational Gastroenterology Unit, Nuffield Dept of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford OX1 3SY, UK; Translational Gastroenterology Unit, Nuffield Dept of Medicine, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
91
|
Abstract
Understanding the precise mechanism of vaccine-induced protection and the immune correlates of protection against coronavirus disease 2019 (COVID-19) is crucially important for developing next-generation vaccines that confer durable and protective immunity against COVID-19. Similar factors are also important for other infectious diseases. Here, I briefly summarize the mechanism of action of the currently used COVID-19 mRNA vaccines from the viewpoint of the function of the lymphatic system.
Collapse
|
92
|
Vitali L, Merlini A, Galvagno F, Proment A, Sangiolo D. Biological and Exploitable Crossroads for the Immune Response in Cancer and COVID-19. Biomedicines 2022; 10:2628. [PMID: 36289890 PMCID: PMC9599827 DOI: 10.3390/biomedicines10102628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 12/15/2022] Open
Abstract
The outbreak of novel coronavirus disease 2019 (COVID-19) has exacted a disproportionate toll on cancer patients. The effects of anticancer treatments and cancer patients' characteristics shared significant responsibilities for this dismal outcome; however, the underlying immunopathological mechanisms are far from being completely understood. Indeed, despite their different etiologies, SARS-CoV-2 infection and cancer unexpectedly share relevant immunobiological connections. In the pathogenesis and natural history of both conditions, there emerges the centrality of the immune response, orchestrating the timed appearance, functional and dysfunctional roles of multiple effectors in acute and chronic phases. A significant number (more than 600) of observational and interventional studies have explored the interconnections between COVID-19 and cancer, focusing on aspects as diverse as psychological implications and prognostic factors, with more than 4000 manuscripts published so far. In this review, we reported and discussed the dynamic behavior of the main cytokines and immune system signaling pathways involved in acute vs. early, and chronic vs. advanced stages of SARS-CoV-2 infection and cancer. We highlighted the biological similarities and active connections within these dynamic disease scenarios, exploring and speculating on possible therapeutic crossroads from one setting to the other.
Collapse
Affiliation(s)
- Letizia Vitali
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060 Candiolo, Italy
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Alessandra Merlini
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060 Candiolo, Italy
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Federica Galvagno
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060 Candiolo, Italy
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Alessia Proment
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060 Candiolo, Italy
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Dario Sangiolo
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060 Candiolo, Italy
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy
| |
Collapse
|
93
|
DeWolf S, Laracy JC, Perales MA, Kamboj M, van den Brink MRM, Vardhana S. SARS-CoV-2 in immunocompromised individuals. Immunity 2022; 55:1779-1798. [PMID: 36182669 PMCID: PMC9468314 DOI: 10.1016/j.immuni.2022.09.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/24/2022] [Accepted: 09/08/2022] [Indexed: 12/15/2022]
Abstract
Immunocompromised individuals and particularly those with hematologic malignancies are at increased risk for SARS-CoV-2-associated morbidity and mortality due to immunologic deficits that limit prevention, treatment, and clearance of the virus. Understanding the natural history of viral infections in people with impaired immunity due to underlying conditions, immunosuppressive therapy, or a combination thereof has emerged as a critical area of investigation during the COVID-19 pandemic. Studies focused on these individuals have provided key insights into aspects of innate and adaptive immunity underlying both the antiviral immune response and excess inflammation in the setting of COVID-19. This review presents what is known about distinct states of immunologic vulnerability to SARS-CoV-2 and how this information can be harnessed to improve prevention and treatment strategies for immunologically high-risk populations.
Collapse
Affiliation(s)
- Susan DeWolf
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justin C Laracy
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Mini Kamboj
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marcel R M van den Brink
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA; Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Santosha Vardhana
- Weill Cornell Medical College, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
94
|
Bennett B, Tahir H, Ganguly S, Moorthy A. An update on the considerations for patients with rheumatic disease being treated with rituximab during the COVID-19 pandemic and the potential drug treatment strategies. Expert Opin Pharmacother 2022; 23:1695-1700. [PMID: 36180063 DOI: 10.1080/14656566.2022.2131395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Over the last two decades, rituximab has become an increasingly popular drug in the treatment of a wide range of rheumatic diseases. However, with the advent of the COVID-19 pandemic, clinicians face challenges in weighing risk against benefit in its use. AREAS COVERED A review of existing data was performed to examine the relationship between rituximab use, morbidity and mortality from COVID-19, and vaccine efficacy in patients with rheumatic diseases, aiming to guide clinicians in continued use of the medication and consider the direction of future research. A literature review was performed through a search of the PubMed database, using the terms ((SARS-CoV-2) OR (COVID-19)) AND (rituximab) AND (rheumatic), which generated an initial 55 results, with relevant articles then selected for inclusion. EXPERT OPINION In order to safeguard patients with an ongoing need for rituximab therapy, vaccination remains the primary concern. A target of performing booster doses 6 months after last rituximab dose is a reasonable estimate, which may be made more precise by use of B cell counts, although primary immunization should not be delayed. In those patients who remain seronegative, the use of newer antivirals and broadly neutralizing antibody infusions may help provide further safeguards.
Collapse
Affiliation(s)
- Benjamin Bennett
- Department of Rheumatology, Barnet Hospital, Royal Free London NHS Foundation Trust, London, UK
| | - Hasan Tahir
- Department of Rheumatology, Barnet Hospital, Royal Free London NHS Foundation Trust, London, UK.,Division of Medicine, University College London, London, UK
| | - Sujata Ganguly
- University Hospitals of Leicester NHS Foundation Trust, Leicester, UK
| | - Arumugam Moorthy
- University Hospitals of Leicester NHS Foundation Trust, Leicester, UK
| |
Collapse
|
95
|
Wei X, Rong N, Liu J. Prospects of animal models and their application in studies on adaptive immunity to SARS-CoV-2. Front Immunol 2022; 13:993754. [PMID: 36189203 PMCID: PMC9523127 DOI: 10.3389/fimmu.2022.993754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/05/2022] [Indexed: 01/08/2023] Open
Abstract
The adaptive immune response induced by SARS-CoV-2 plays a key role in the antiviral process and can protect the body from the threat of infection for a certain period of time. However, owing to the limitations of clinical studies, the antiviral mechanisms, protective thresholds, and persistence of the immune memory of adaptive immune responses remain unclear. This review summarizes existing research models for SARS-CoV-2 and elaborates on the advantages of animal models in simulating the clinical symptoms of COVID-19 in humans. In addition, we systematically summarize the research progress on the SARS-CoV-2 adaptive immune response and the remaining key issues, as well as the application and prospects of animal models in this field. This paper provides direction for in-depth analysis of the anti-SARS-CoV-2 mechanism of the adaptive immune response and lays the foundation for the development and application of vaccines and drugs.
Collapse
Affiliation(s)
- Xiaohui Wei
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | | | - Jiangning Liu
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
96
|
Rivera-Correa J, Rodriguez A. Autoantibodies during infectious diseases: Lessons from malaria applied to COVID-19 and other infections. Front Immunol 2022; 13:938011. [PMID: 36189309 PMCID: PMC9520403 DOI: 10.3389/fimmu.2022.938011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmunity is a common phenomenon reported in many globally relevant infections, including malaria and COVID-19. These and other highly inflammatory diseases have been associated with the presence of autoantibodies. The role that these autoantibodies play during infection has been an emerging topic of interest. The vast numbers of studies reporting a range of autoantibodies targeting cellular antigens, such as dsDNA and lipids, but also immune molecules, such as cytokines, during malaria, COVID-19 and other infections, underscore the importance that autoimmunity can play during infection. During both malaria and COVID-19, the presence of autoantibodies has been correlated with associated pathologies such as malarial anemia and severe COVID-19. Additionally, high levels of Atypical/Autoimmune B cells (ABCs and atypical B cells) have been observed in both diseases. The growing literature of autoimmune B cells, age-associated B cells and atypical B cells in Systemic Lupus erythematosus (SLE) and other autoimmune disorders has identified recent mechanistic and cellular targets that could explain the development of autoantibodies during infection. These new findings establish a link between immune responses during infection and autoimmune disorders, highlighting shared mechanistic insights. In this review, we focus on the recent evidence of autoantibody generation during malaria and other infectious diseases and their potential pathological role, exploring possible mechanisms that may explain the development of autoimmunity during infections.
Collapse
Affiliation(s)
- Juan Rivera-Correa
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, NY, United States
- *Correspondence: Juan Rivera-Correa,
| | - Ana Rodriguez
- Department of Microbiology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
97
|
Jonny J, Putranto TA, Irfon R, Sitepu EC. Developing dendritic cell for SARS-CoV-2 vaccine: Breakthrough in the pandemic. Front Immunol 2022; 13:989685. [PMID: 36148241 PMCID: PMC9485669 DOI: 10.3389/fimmu.2022.989685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Finding a vaccine that can last a long time and effective against viruses with high mutation rates such as SARS-CoV-2 is still a challenge today. The various vaccines that have been available have decreased in effectiveness and require booster administration. As the professional antigen presenting cell, Dendritic Cells can also activate the immune system, especially T cells. This ability makes dendritic cells have been developed as vaccines for some types of diseases. In SARS-CoV-2 infection, T cells play a vital role in eliminating the virus, and their presence can be detected in the long term. Hence, this condition shows that the formation of T cell immunity is essential to prevent and control the course of the disease. The construction of vaccines oriented to induce strong T cells response can be formed by utilizing dendritic cells. In this article, we discuss and illustrate the role of dendritic cells and T cells in the pathogenesis of SARS-CoV-2 infection and summarizing the crucial role of dendritic cells in the formation of T cell immunity. We arrange the basis concept of developing dendritic cells for SARS-CoV-2 vaccines. A dendritic cell-based vaccine for SARS-CoV-2 has the potential to be an effective vaccine that solves existing problems.
Collapse
|
98
|
Qi F, Cao Y, Zhang S, Zhang Z. Single-cell analysis of the adaptive immune response to SARS-CoV-2 infection and vaccination. Front Immunol 2022; 13:964976. [PMID: 36119105 PMCID: PMC9478577 DOI: 10.3389/fimmu.2022.964976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/10/2022] [Indexed: 12/04/2022] Open
Abstract
Amid the ongoing Coronavirus Disease 2019 (COVID-19) pandemic, vaccination and early therapeutic interventions are the most effective means to combat and control the severity of the disease. Host immune responses to SARS-CoV-2 and its variants, particularly adaptive immune responses, should be fully understood to develop improved strategies to implement these measures. Single-cell multi-omic technologies, including flow cytometry, single-cell transcriptomics, and single-cell T-cell receptor (TCR) and B-cell receptor (BCR) profiling, offer a better solution to examine the protective or pathological immune responses and molecular mechanisms associated with SARS-CoV-2 infection, thus providing crucial support for the development of vaccines and therapeutics for COVID-19. Recent reviews have revealed the overall immune landscape of natural SARS-CoV-2 infection, and this review will focus on adaptive immune responses (including T cells and B cells) to SARS-CoV-2 revealed by single-cell multi-omics technologies. In addition, we explore how the single-cell analyses disclose the critical components of immune protection and pathogenesis during SARS-CoV-2 infection through the comparison between the adaptive immune responses induced by natural infection and by vaccination.
Collapse
Affiliation(s)
- Furong Qi
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Single-Cell Omics Reasearch and Application, Shenzhen, China
| | - Yingyin Cao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Shuye Zhang
- Clinical Center for BioTherapy and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Single-Cell Omics Reasearch and Application, Shenzhen, China
- Shenzhen Research Center for Communicable Disease Diagnosis and Treatment of Chinese Academy of Medical Science, Shenzhen, China
| |
Collapse
|
99
|
Paul S, Royal S, Lee M, Shin S, Chahine J, Rozeboom A, Ahn J, Dhani H, Yazigi N, Kaufman S, Khan K, Matsumoto C, Kroemer A, Fishbein T, Ekong UD. SARS-CoV-2 Infection in Pediatric Solid Organ Transplant Recipients: A Single Center Observation. J Pediatr Gastroenterol Nutr 2022; 75:276-285. [PMID: 35758426 PMCID: PMC9365074 DOI: 10.1097/mpg.0000000000003548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/31/2022] [Indexed: 12/10/2022]
Abstract
OBJECTIVES This is a descriptive study to characterize rates of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in pediatric solid organ transplant (SOT) recipients during the early days of the pandemic. We hypothesized that asymptomatic infection may represent a large proportion of SARS-CoV-2 infection in pediatric SOT recipients. METHODS We queried Organ Transplant Tracking Record (OTTR) for all pediatric SOT recipients followed at our center and reviewed medical records to identify patients tested for SARS-CoV-2 between March 15, 2020 and June 30, 2021. Patients were tested by polymerase chain reaction (PCR): prior to planned procedures or because of symptoms; OR: tested by measurement of IgG to spike protein with their routine labs q 2-monthly. A positive PCR was called acute infection. A positive IgG with negative PCR was called convalescence. For immunologic studies, blood was obtained when the PCR or IgG was positive. Statistical comparisons were made between (1) acute infection versus convalescence; (2) acute infection versus SOT recipients without infection (called healthy controls); (3) liver transplant (LT) versus small bowel (SB)/multivisceral transplant (MVT); (4) positive versus negative test result. RESULTS Of 257 LT recipients, 99 were tested: 6 were PCR positive, 13 were antibody positive. Of 150 SB/MVT recipients, 55 were tested: 4 were PCR positive, 6 were antibody positive. Of 8 simultaneous liver, kidney transplant recipients, 3 were tested: 1 was PCR positive. Symptoms when present were mostly mild. Patients with a positive test result were younger (6.3 vs 10.0 years; P = 0.017). We observed a rapid decline in viral load within 96 hours without a change in immunosuppression. Antibody lasted >8 months beyond the time it was monitored. Acute infection was associated with increased CD4 and CD8 T EM cell frequency ( P = 0.04, P = 0.03, respectively), decreased interferon (IFN)-γ production from T-cells (2.8% vs 11.3%; P = 0.006), and decreased CD8 TEMRA frequency (4.56% vs 11.70%; P = 0.006). CONCLUSIONS Early in the pandemic, COVID-19 disease was mostly mild in pediatric SOT recipients with no rejection, patient death, or graft loss observed.
Collapse
Affiliation(s)
- Saikat Paul
- From the Medstar Georgetown Transplant Institute, Medstar Georgetown University Hospital, Washington, DC
| | - Scott Royal
- the Department of Pediatrics, Georgetown University School of Medicine, Washington, DC
| | - Margaret Lee
- the Georgetown University School of Medicine, Washington, DC
| | - Stephanie Shin
- the Georgetown University School of Medicine, Washington, DC
| | - Joeffrey Chahine
- the Department of Pathology & Laboratory Medicine, Medstar Georgetown University Hospital, Washington, DC
| | - Aaron Rozeboom
- the Georgetown University School of Medicine, Washington, DC
| | - Jaeil Ahn
- the Department of Biostatistics, Bioinformatics, & Biomathematics, Georgetown University, Washington, DC
| | - Harmeet Dhani
- From the Medstar Georgetown Transplant Institute, Medstar Georgetown University Hospital, Washington, DC
| | - Nada Yazigi
- From the Medstar Georgetown Transplant Institute, Medstar Georgetown University Hospital, Washington, DC
| | - Stuart Kaufman
- From the Medstar Georgetown Transplant Institute, Medstar Georgetown University Hospital, Washington, DC
| | - Khalid Khan
- From the Medstar Georgetown Transplant Institute, Medstar Georgetown University Hospital, Washington, DC
| | - Cal Matsumoto
- From the Medstar Georgetown Transplant Institute, Medstar Georgetown University Hospital, Washington, DC
| | - Alexander Kroemer
- From the Medstar Georgetown Transplant Institute, Medstar Georgetown University Hospital, Washington, DC
| | - Thomas Fishbein
- From the Medstar Georgetown Transplant Institute, Medstar Georgetown University Hospital, Washington, DC
| | - Udeme D. Ekong
- From the Medstar Georgetown Transplant Institute, Medstar Georgetown University Hospital, Washington, DC
| |
Collapse
|
100
|
Aldridge RW, Yavlinsky A, Nguyen V, Eyre MT, Shrotri M, Navaratnam AMD, Beale S, Braithwaite I, Byrne T, Kovar J, Fragaszy E, Fong WLE, Geismar C, Patel P, Rodger A, Johnson AM, Hayward A. SARS-CoV-2 antibodies and breakthrough infections in the Virus Watch cohort. Nat Commun 2022; 13:4869. [PMID: 35982056 PMCID: PMC9387883 DOI: 10.1038/s41467-022-32265-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/22/2022] [Indexed: 12/27/2022] Open
Abstract
A range of studies globally demonstrate that the effectiveness of SARS-CoV-2 vaccines wane over time, but the total effect of anti-S antibody levels on risk of SARS-CoV-2 infection and whether this varies by vaccine type is not well understood. Here we show that anti-S levels peak three to four weeks following the second dose of vaccine and the geometric mean of the samples is nine fold higher for BNT162b2 than ChAdOx1. Increasing anti-S levels are associated with a reduced risk of SARS-CoV-2 infection (Hazard Ratio 0.85; 95%CIs: 0.79-0.92). We do not find evidence that this antibody relationship with risk of infection varies by second dose vaccine type (BNT162b2 vs. ChAdOx1). In keeping with our anti-S antibody data, we find that people vaccinated with ChAdOx1 had 1.64 times the odds (95% confidence interval 1.45-1.85) of a breakthrough infection compared to BNT162b2. We anticipate our findings to be useful in the estimation of the protective effect of anti-S levels on risk of infection due to Delta. Our findings provide evidence about the relationship between antibody levels and protection for different vaccines and will support decisions on optimising the timing of booster vaccinations and identifying individuals who should be prioritised for booster vaccination, including those who are older, clinically extremely vulnerable, or received ChAdOx1 as their primary course. Our finding that risk of infection by anti-S level does not interact with vaccine type, but that individuals vaccinated with ChAdOx1 were at higher risk of infection, provides additional support for the use of using anti-S levels for estimating vaccine efficacy.
Collapse
Affiliation(s)
- Robert W Aldridge
- Centre for Public Health Data Science, Institute of Health Informatics, University College London, London, UK.
| | - Alexei Yavlinsky
- Centre for Public Health Data Science, Institute of Health Informatics, University College London, London, UK
| | - Vincent Nguyen
- Centre for Public Health Data Science, Institute of Health Informatics, University College London, London, UK
- Institute of Epidemiology and Health Care, University College London, London, UK
| | - Max T Eyre
- Centre of Health Informatics, Computing and Statistics, Lancaster Medical School, Lancaster University, Lancaster, UK
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Madhumita Shrotri
- Centre for Public Health Data Science, Institute of Health Informatics, University College London, London, UK
| | - Annalan M D Navaratnam
- Centre for Public Health Data Science, Institute of Health Informatics, University College London, London, UK
- Institute of Epidemiology and Health Care, University College London, London, UK
| | - Sarah Beale
- Centre for Public Health Data Science, Institute of Health Informatics, University College London, London, UK
- Institute of Epidemiology and Health Care, University College London, London, UK
| | - Isobel Braithwaite
- Centre for Public Health Data Science, Institute of Health Informatics, University College London, London, UK
| | - Thomas Byrne
- Centre for Public Health Data Science, Institute of Health Informatics, University College London, London, UK
| | - Jana Kovar
- Institute of Epidemiology and Health Care, University College London, London, UK
| | - Ellen Fragaszy
- Centre for Public Health Data Science, Institute of Health Informatics, University College London, London, UK
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Wing Lam Erica Fong
- Centre for Public Health Data Science, Institute of Health Informatics, University College London, London, UK
| | - Cyril Geismar
- Centre for Public Health Data Science, Institute of Health Informatics, University College London, London, UK
- Institute of Epidemiology and Health Care, University College London, London, UK
| | - Parth Patel
- Centre for Public Health Data Science, Institute of Health Informatics, University College London, London, UK
| | - Alison Rodger
- Institute for Global Health, University College London, London, UK
| | - Anne M Johnson
- Institute for Global Health, University College London, London, UK
| | - Andrew Hayward
- Centre of Health Informatics, Computing and Statistics, Lancaster Medical School, Lancaster University, Lancaster, UK
| |
Collapse
|