51
|
Poganik JR, Huang KT, Parvez S, Zhao Y, Raja S, Long MJC, Aye Y. Wdr1 and cofilin are necessary mediators of immune-cell-specific apoptosis triggered by Tecfidera. Nat Commun 2021; 12:5736. [PMID: 34593792 PMCID: PMC8484674 DOI: 10.1038/s41467-021-25466-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/11/2021] [Indexed: 01/10/2023] Open
Abstract
Despite the emerging importance of reactive electrophilic drugs, deconvolution of their principal targets remains difficult. The lack of genetic tractability/interventions and reliance on secondary validation using other non-specific compounds frequently complicate the earmarking of individual binders as functionally- or phenotypically-sufficient pathway regulators. Using a redox-targeting approach to interrogate how on-target binding of pleiotropic electrophiles translates to a phenotypic output in vivo, we here systematically track the molecular components attributable to innate immune cell toxicity of the electrophilic-drug dimethyl fumarate (Tecfidera®). In a process largely independent of canonical Keap1/Nrf2-signaling, Keap1-specific modification triggers mitochondrial-targeted neutrophil/macrophage apoptosis. On-target Keap1–ligand-engagement is accompanied by dissociation of Wdr1 from Keap1 and subsequent coordination with cofilin, intercepting Bax. This phagocytic-specific cell-killing program is recapitulated by whole-animal administration of dimethyl fumarate, where individual depletions of the players identified above robustly suppress apoptosis. The mechanism-of-action of many electrohilic drugs remains poorly understood. Here, the authors use a redox-targeting approach to elucidate the basis for the innate immune cell toxicity of dimethyl fumarate, showing that it modifies Keap1 to trigger mitochondrial-targeted neutrophil/macrophage apoptosis.
Collapse
Affiliation(s)
- Jesse R Poganik
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kuan-Ting Huang
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Saba Parvez
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Yi Zhao
- BayRay Innovation Center, Shenzhen Bay Laboratory (SZBL), Guangdong, China
| | - Sruthi Raja
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | | | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
52
|
Fang MY, Huang KH, Tu WJ, Chen YT, Pan PY, Hsiao WC, Ke YY, Tsou LK, Zhang MM. Chemoproteomic profiling reveals cellular targets of nitro-fatty acids. Redox Biol 2021; 46:102126. [PMID: 34509914 PMCID: PMC8441202 DOI: 10.1016/j.redox.2021.102126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 02/02/2023] Open
Abstract
Nitro-fatty acids are a class of endogenous electrophilic lipid mediators with anti-inflammatory and cytoprotective effects in a wide range of inflammatory and fibrotic disease models. While these beneficial biological effects of nitro-fatty acids are mainly attributed to their ability to form covalent adducts with proteins, only a small number of proteins are known to be nitro-alkylated and the scope of protein nitro-alkylation remains undetermined. Here we describe the synthesis and application of a clickable nitro-fatty acid probe for the detection and first global identification of mammalian proteins that are susceptible to nitro-alkylation. 184 high confidence nitro-alkylated proteins were identified in THP1 macrophages, majority of which are novel targets of nitro-fatty acids, including extended synaptotagmin 2 (ESYT2), signal transducer and activator of transcription 3 (STAT3), toll-like receptor 2 (TLR2), retinoid X receptor alpha (RXRα) and glucocorticoid receptor (NR3C1). In particular, we showed that 9-nitro-oleate covalently modified and inhibited dexamethasone binding to NR3C1. Bioinformatic analyses revealed that nitro-alkylated proteins are highly enriched in endoplasmic reticulum and transmembrane proteins, and are overrepresented in lipid metabolism and transport pathways. This study significantly expands the scope of protein substrates targeted by nitro-fatty acids in living cells and provides a useful resource towards understanding the pleiotropic biological roles of nitro-fatty acids as signaling molecules or as multi-target therapeutic agents.
Collapse
Affiliation(s)
- Ming-Yu Fang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Kuan-Hsun Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Wei-Ju Tu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ting Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Nephrology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Pei-Yun Pan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Wan-Chi Hsiao
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan; Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yi-Yu Ke
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Lun K Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan
| | - Mingzi M Zhang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan.
| |
Collapse
|
53
|
Shen C, Zhang D, Xu F, Yang Y, Tan Y, Zhao Q, Li L, Ding K, Li Z. Two-photon fluorescent turn-on probes for highly efficient detection and profiling of thiols in live cells and tissues. Biol Chem 2021; 403:445-451. [PMID: 34505461 DOI: 10.1515/hsz-2021-0189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/25/2021] [Indexed: 01/06/2023]
Abstract
Thiols are important units in amino acids such as cysteine and peptides like glutathione. Development of chemical sensors capable of precise detection of thiols is important in cancer diagnosis and therapy. We have developed novel two-photon fluorescent turn-on probes for selective detection of thiols. The probes displayed excellent sensitivity and low detection limits. The dual-purpose probes have been demonstrated to be suitable for simultaneous imaging and proteome profiling in live cells and tumor tissues. The unique turn-on design endows the probes with excellent selectivity toward thiols in vitro and in situ, and can be further developed to support a thiol-quantification assay.
Collapse
Affiliation(s)
- Congzhen Shen
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou510632, China
| | - Duoteng Zhang
- Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing211800, China
| | - Fang Xu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou510632, China
| | - Yang Yang
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Yi Tan
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou510632, China
| | - Qian Zhao
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing211800, China
| | - Ke Ding
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou510632, China
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou510632, China.,MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| |
Collapse
|
54
|
Lee MTW, Mahy W, Rackham MD. The medicinal chemistry of mitochondrial dysfunction: a critical overview of efforts to modulate mitochondrial health. RSC Med Chem 2021; 12:1281-1311. [PMID: 34458736 PMCID: PMC8372206 DOI: 10.1039/d1md00113b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are subcellular organelles that perform a variety of critical biological functions, including ATP production and acting as hubs of immune and apoptotic signalling. Mitochondrial dysfunction has been extensively linked to the pathology of multiple neurodegenerative disorders, resulting in significant investment from the drug discovery community. Despite extensive efforts, there remains no disease modifying therapies for neurodegenerative disorders. This manuscript aims to review the compounds historically used to modulate the mitochondrial network through the lens of modern medicinal chemistry, and to offer a perspective on the evidence that relevant exposure was achieved in a representative model and that exposure was likely to result in target binding and engagement of pharmacology. We hope this manuscript will aid the community in identifying those targets and mechanisms which have been convincingly (in)validated with high quality chemical matter, and those for which an opportunity exists to explore in greater depth.
Collapse
Affiliation(s)
| | - William Mahy
- MSD The Francis Crick Institute 1 Midland Road London NW1 1AT UK
| | | |
Collapse
|
55
|
Lill JR, Mathews WR, Rose CM, Schirle M. Proteomics in the pharmaceutical and biotechnology industry: a look to the next decade. Expert Rev Proteomics 2021; 18:503-526. [PMID: 34320887 DOI: 10.1080/14789450.2021.1962300] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Pioneering technologies such as proteomics have helped fuel the biotechnology and pharmaceutical industry with the discovery of novel targets and an intricate understanding of the activity of therapeutics and their various activities in vitro and in vivo. The field of proteomics is undergoing an inflection point, where new sensitive technologies are allowing intricate biological pathways to be better understood, and novel biochemical tools are pivoting us into a new era of chemical proteomics and biomarker discovery. In this review, we describe these areas of innovation, and discuss where the fields are headed in terms of fueling biotechnological and pharmacological research and discuss current gaps in the proteomic technology landscape. AREAS COVERED Single cell sequencing and single molecule sequencing. Chemoproteomics. Biological matrices and clinical samples including biomarkers. Computational tools including instrument control software, data analysis. EXPERT OPINION Proteomics will likely remain a key technology in the coming decade, but will have to evolve with respect to type and granularity of data, cost and throughput of data generation as well as integration with other technologies to fulfill its promise in drug discovery.
Collapse
Affiliation(s)
- Jennie R Lill
- Department of Microchemistry, Lipidomics and Next Generation Sequencing, Genentech Inc. DNA Way, South San Francisco, CA, USA
| | - William R Mathews
- OMNI Department, Genentech Inc. 1 DNA Way, South San Francisco, CA, USA
| | - Christopher M Rose
- Department of Microchemistry, Lipidomics and Next Generation Sequencing, Genentech Inc. DNA Way, South San Francisco, CA, USA
| | - Markus Schirle
- Chemical Biology and Therapeutics Department, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| |
Collapse
|
56
|
Liang L, Ma K, Wang Z, Janissen R, Yu Z. Dynamics and inhibition of MLL1 CXXC domain on DNA revealed by single-molecule quantification. Biophys J 2021; 120:3283-3291. [PMID: 34280370 DOI: 10.1016/j.bpj.2021.03.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/09/2021] [Accepted: 03/11/2021] [Indexed: 02/05/2023] Open
Abstract
CpG islands recruit MLL1 via the CXXC domain to modulate chromatin structure and regulate gene expression. The amino acid motif of CXXC also plays a pivotal role in MLL1's structure and function and serves as a target for drug design. In addition, the CpG pattern in an island governs spatially dependent collaboration among CpGs in recruiting epigenetic enzymes. However, current studies using short DNA fragments cannot probe the dynamics of CXXC on long DNA with crowded CpG motifs. Here, we used single-molecule magnetic tweezers to examine the binding dynamics of MLL1's CXXC domain on a long DNA with a CpG island. The mechanical strand separation assay allows profiling of protein-DNA complexes and reports force-dependent unfolding times. Further design of a hairpin detector reveals the unfolding time of individual CXXC-CpG complexes. Finally, in a proof of concept we demonstrate the inhibiting effect of dimethyl fumarate on the CXXC-DNA complexes by measuring the dose response curve of the unfolding time. This demonstrates the potential feasibility of using single-molecule strand separation as a label-free detector in drug discovery and chemical biology.
Collapse
Affiliation(s)
- Lin Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Kangkang Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Zeyu Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Richard Janissen
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft, South-Holland, The Netherlands
| | - Zhongbo Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China.
| |
Collapse
|
57
|
Genito CJ, Eckshtain-Levi M, Piedra-Quintero ZL, Krovi SA, Kroboth A, Stiepel RT, Guerau-de-Arellano M, Bachelder EM, Ainslie KM. Dexamethasone and Fumaric Acid Ester Conjugate Synergistically Inhibits Inflammation and NF-κB in Macrophages. Bioconjug Chem 2021; 32:1629-1640. [PMID: 34165285 PMCID: PMC10372493 DOI: 10.1021/acs.bioconjchem.1c00200] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Macrophage-mediated inflammation drives autoimmune and chronic inflammatory diseases. Treatment with anti-inflammatory agents can be an effective strategy to reduce this inflammation; however, high concentrations of these agents can have immune-dampening and other serious side effects. Synergistic combination of anti-inflammatory agents can mitigate dosing by requiring less drug. Multiple anti-inflammatory agents were evaluated in combination for synergistic inhibition of macrophage inflammation. The most potent synergy was observed between dexamethasone (DXM) and fumaric acid esters (e.g., monomethyl fumarate (MMF)). Furthermore, this combination was found to synergistically inhibit inflammatory nuclear factor κB (NF-κB) transcription factor activity. The optimal ratio for synergy was determined to be 1:1, and DXM and MMF were conjugated by esterification at this molar ratio. The DXM-MMF conjugate displayed improved inhibition of inflammation over the unconjugated combination in both murine and human macrophages. In the treatment of human donor monocyte-derived macrophages, the combination of DXM and MMF significantly inhibited inflammatory gene expression downstream of NF-κB and overall performed better than either agent alone. Further, the DXM-MMF conjugate significantly inhibited expression of NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome-associated genes. The potent anti-inflammatory activity of the DXM-MMF conjugate in human macrophages indicates that it may have benefits in the treatment of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Christopher J Genito
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Meital Eckshtain-Levi
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zayda L Piedra-Quintero
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sai Archana Krovi
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Abriana Kroboth
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Rebeca T Stiepel
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mireia Guerau-de-Arellano
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kristy M Ainslie
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
58
|
Wu Q, Yu X, Li J, Sun S, Tu Y. Metabolic regulation in the immune response to cancer. Cancer Commun (Lond) 2021; 41:661-694. [PMID: 34145990 PMCID: PMC8360644 DOI: 10.1002/cac2.12182] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/25/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic reprogramming in tumor‐immune interactions is emerging as a key factor affecting pro‐inflammatory carcinogenic effects and anticancer immune responses. Therefore, dysregulated metabolites and their regulators affect both cancer progression and therapeutic response. Here, we describe the molecular mechanisms through which microenvironmental, systemic, and microbial metabolites potentially influence the host immune response to mediate malignant progression and therapeutic intervention. We summarized the primary interplaying factors that constitute metabolism, immunological reactions, and cancer with a focus on mechanistic aspects. Finally, we discussed the possibility of metabolic interventions at multiple levels to enhance the efficacy of immunotherapeutic and conventional approaches for future anticancer treatments.
Collapse
Affiliation(s)
- Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Yi Tu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| |
Collapse
|
59
|
Sauerland M, Mertes R, Morozzi C, Eggler AL, Gamon LF, Davies MJ. Kinetic assessment of Michael addition reactions of alpha, beta-unsaturated carbonyl compounds to amino acid and protein thiols. Free Radic Biol Med 2021; 169:1-11. [PMID: 33819622 DOI: 10.1016/j.freeradbiomed.2021.03.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022]
Abstract
Humans have extensive adverse exposure to alpha,beta-unsaturated carbonyl compounds (ABuCs) as these are major toxins in smoke and exhaust fumes, as well as products of lipid peroxidation. In contrast, another ABuC, dimethylfumarate, is used to treat psoriasis and multiple sclerosis. ABuCs undergo Michael adduction with amine, imidazole and thiol groups, with reaction at Cys residues predominating. Here we report rate constants, k2, for ABuCs (acrolein, crotonaldehyde, dimethylfumarate, cyclohex-1-en-2-one, cyclopent-1-en-2-one) with Cys residues present on N-Ac-Cys, GSH, bovine serum albumin, creatine kinase, papain, glyceraldehyde-3-phosphate dehydrogenase, and both wild-type and the C151S mutant of Keap-1. k2 values for N-Ac-Cys and GSH vary by > 250-fold, indicating a marked ABuC structure dependence, with acrolein the most reactive. There is also considerable variation in k2 between protein Cys groups, with these significantly greater than for GSH. A linear inverse correlation for acrolein with the thiol pKa indicates that the thiolate anion is the reactive species. The modest k2 for GSH rationalizes the detection of protein adducts of ABuCs in cells. The k2 values for dimethylfumarate also vary markedly, with the Cys151 residue on Keap-1 being particularly reactive, with the C151S mutant giving a much lower k2 value. The data for crotonaldehyde, dimethylfumarate, and cyclohex-1-en-2-one show little correlation with the Cys pKa values, indicating that steric/electronic interactions, rather than Cys ionization are important. These data indicate that protein Cys residues, and particularly Cys151 on Keap-1, react readily with dimethylfumarate, and this may help rationalize the use of this compound as a therapeutic agent.
Collapse
Affiliation(s)
- Max Sauerland
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Ralf Mertes
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Chiara Morozzi
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Aimee L Eggler
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA
| | - Luke F Gamon
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
60
|
Guan I, Williams K, Pan J, Liu X. New Cysteine Covalent Modification Strategies Enable Advancement of Proteome‐wide Selectivity of Kinase Modulators. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ivy Guan
- School of Chemistry The Heart Research Institute The University of Sydney Sydney New South Wales 2006 Australia
| | - Kayla Williams
- School of Chemistry The University of Sydney Sydney New South Wales 2006 Australia
| | - Jolyn Pan
- Faculty of Science & Engineering The University of Waikato 124 Hillcrest Road, Hillcrest Hamilton 3216 New Zealand
| | - Xuyu Liu
- School of Chemistry The Heart Research Institute The University of Sydney Sydney New South Wales 2006 Australia
| |
Collapse
|
61
|
Freeborn RA, Rockwell CE. The role of Nrf2 in autoimmunity and infectious disease: Therapeutic possibilities. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 91:61-110. [PMID: 34099113 DOI: 10.1016/bs.apha.2020.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Nrf2 is a cytoprotective transcription factor which is involved in ameliorating oxidative stress and toxic insults. Recently, an immunomodulatory role for Nrf2 has gained appreciation as it has been shown to protect cells and hosts alike in a variety of immune and inflammatory disorders. However, Nrf2 utilizes numerous distinct pathways to elicit its immunomodulatory effects. In this review, we summarize the literature discussing the roles of Nrf2 in autoimmunity and infectious diseases with a goal of understanding the potential to therapeutically target Nrf2.
Collapse
Affiliation(s)
- Robert A Freeborn
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Cheryl E Rockwell
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States; Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
62
|
|
63
|
Kiely-Collins H, Winter GE, Bernardes GJL. The role of reversible and irreversible covalent chemistry in targeted protein degradation. Cell Chem Biol 2021; 28:952-968. [PMID: 33789091 DOI: 10.1016/j.chembiol.2021.03.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/30/2021] [Accepted: 03/09/2021] [Indexed: 12/15/2022]
Abstract
Proteolysis-targeting chimeras (PROTACs) that degrade disease-causing proteins by hijacking the endogenous ubiquitin-proteasome system have emerged as an exciting and transformative technology in both chemical biology and drug discovery. Currently, the majority of PROTACs use reversible non-covalent ligands for both the target protein of interest (POI) and E3 ligase. In this review, we explore the burgeoning role of reversible and irreversible covalent chemistry in targeted protein degradation. We highlight the key advantages of targeted covalent inhibitors, whether as the target POI or E3 ligase ligand, such as their ability to enhance the selectivity of PROTACs, enable access to more of the "undruggable" proteome and expand the repertoire of recruited E3 ligases.
Collapse
Affiliation(s)
- Hannah Kiely-Collins
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Gonçalo J L Bernardes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Instituto de Medicina Molecular, Faculdade de Medicina de Universidad de Lisboa, Avenida Prof. Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
64
|
Mondal D, Narwani D, Notta S, Ghaffar D, Mardhekar N, Quadri SSA. Oxidative stress and redox signaling in CRPC progression: therapeutic potential of clinically-tested Nrf2-activators. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:96-124. [PMID: 35582006 PMCID: PMC9019181 DOI: 10.20517/cdr.2020.71] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022]
Abstract
Androgen deprivation therapy (ADT) is the mainstay regimen in patients with androgen-dependent prostate cancer (PCa). However, the selection of androgen-independent cancer cells leads to castrate resistant prostate cancer (CRPC). The aggressive phenotype of CRPC cells underscores the need to elucidate mechanisms and therapeutic strategies to suppress CRPC outgrowth. Despite ADT, the activation of androgen receptor (AR) transcription factor continues via crosstalk with parallel signaling pathways. Understanding of how these signaling cascades are initiated and amplified post-ADT is lacking. Hormone deprivation can increase oxidative stress and the resultant reactive oxygen species (ROS) may activate both AR and non-AR signaling. Moreover, ROS-induced inflammatory cytokines may further amplify these redox signaling pathways to augment AR function. However, clinical trials using ROS quenching small molecule antioxidants have not suppressed CRPC progression, suggesting that more potent and persistent suppression of redox signaling in CRPC cells will be needed. The transcription factor Nrf2 increases the expression of numerous antioxidant enzymes and downregulates the function of inflammatory transcription factors, e.g., nuclear factor kappa B. We documented that Nrf2 overexpression can suppress AR-mediated transcription in CRPC cell lines. Furthermore, two Nrf2 activating agents, sulforaphane (a phytochemical) and bardoxolone-methyl (a drug in clinical trial) suppress AR levels and sensitize CRPC cells to anti-androgens. These observations implicate the benefits of potent Nrf2-activators to suppress the lethal signaling cascades that lead to CRPC outgrowth. This review article will address the redox signaling networks that augment AR signaling during PCa progression to CRPC, and the possible utility of Nrf2-activating agents as an adjunct to ADT.
Collapse
Affiliation(s)
- Debasis Mondal
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Devin Narwani
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Shahnawaz Notta
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Dawood Ghaffar
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Nikhil Mardhekar
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| | - Syed S A Quadri
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Knoxville, TN 37932, USA
| |
Collapse
|
65
|
Baxter PS, Márkus NM, Dando O, He X, Al-Mubarak BR, Qiu J, Hardingham GE. Targeted de-repression of neuronal Nrf2 inhibits α-synuclein accumulation. Cell Death Dis 2021; 12:218. [PMID: 33637689 PMCID: PMC7910424 DOI: 10.1038/s41419-021-03507-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022]
Abstract
Many neurodegenerative diseases are associated with neuronal misfolded protein accumulation, indicating a need for proteostasis-promoting strategies. Here we show that de-repressing the transcription factor Nrf2, epigenetically shut-off in early neuronal development, can prevent protein aggregate accumulation. Using a paradigm of α-synuclein accumulation and clearance, we find that the classical electrophilic Nrf2 activator tBHQ promotes endogenous Nrf2-dependent α-synuclein clearance in astrocytes, but not cortical neurons, which mount no Nrf2-dependent transcriptional response. Moreover, due to neuronal Nrf2 shut-off and consequent weak antioxidant defences, electrophilic tBHQ actually induces oxidative neurotoxicity, via Nrf2-independent Jun induction. However, we find that epigenetic de-repression of neuronal Nrf2 enables them to respond to Nrf2 activators to drive α-synuclein clearance. Moreover, activation of neuronal Nrf2 expression using gRNA-targeted dCas9-based transcriptional activation complexes is sufficient to trigger Nrf2-dependent α-synuclein clearance. Thus, targeting reversal of the developmental shut-off of Nrf2 in forebrain neurons may alter neurodegenerative disease trajectory by boosting proteostasis.
Collapse
Affiliation(s)
- Paul S Baxter
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.
| | - Nóra M Márkus
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Owen Dando
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Xin He
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Bashayer R Al-Mubarak
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Jing Qiu
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Giles E Hardingham
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.
- Deanery of Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
66
|
Chen K, Wu S, Ye S, Huang H, Zhou Y, Zhou H, Wu S, Mao Y, Shangguan F, Lan L, Chen B. Dimethyl Fumarate Induces Metabolic Crisie to Suppress Pancreatic Carcinoma. Front Pharmacol 2021; 12:617714. [PMID: 33692690 PMCID: PMC7937954 DOI: 10.3389/fphar.2021.617714] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/15/2021] [Indexed: 01/22/2023] Open
Abstract
Dimethyl fumarate (DMF) is an approved drug used in the treatment of multiple sclerosis (MS) and psoriasis therapy. Multiple studies have demonstrated other pharmacological activities of DMF such as an anti-cancer agent. In particular, studies have shown that DMF can modulate the NRF2/HO1/NQO1 antioxidant signal pathway and inactivate NF-κB to suppress the growth of colon and breast cancer cells, and induce cell death. In this study, we aimed to evaluate the anti-tumor activities of DMF in pancreatic cancer (PC) focusing on cell death as the predominant mechanism of response. We showed that both mitochondrial respiration and aerobic glycolysis were severely depressed following treatment with DMF and the effects could be abrogated by treatment with L-cysteine and N-acetyl-L-cysteine (NAC). Importantly, we verified that DMF induced metabolic crisis and that cell death was not related to alterations in ROS. Our data implied that MTHFD1 could be a potential downstream target of DMF identified by molecular docking analysis. Finally, we confirmed that MTHFD1 is up-regulated in PC and overexpression of MTHFD1 was negatively related to outcomes of PC patients. Our data indicate that DMF induces metabolic crisie to suppress cell growth and could be a potential novel therapy in the treatment of PC.
Collapse
Affiliation(s)
- Kaiyuan Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shanshan Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Laboratory of Precision Medical Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sisi Ye
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Laboratory of Precision Medical Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huimin Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongfei Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shijia Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yefan Mao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fugen Shangguan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Linhua Lan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
67
|
Haas P, Muralidharan M, Krogan NJ, Kaake RM, Hüttenhain R. Proteomic Approaches to Study SARS-CoV-2 Biology and COVID-19 Pathology. J Proteome Res 2021; 20:1133-1152. [PMID: 33464917 PMCID: PMC7839417 DOI: 10.1021/acs.jproteome.0c00764] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Indexed: 12/17/2022]
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), was declared a pandemic infection in March 2020. As of December 2020, two COVID-19 vaccines have been authorized for emergency use by the U.S. Food and Drug Administration, but there are no effective drugs to treat COVID-19, and pandemic mitigation efforts like physical distancing have had acute social and economic consequences. In this perspective, we discuss how the proteomic research community can leverage technologies and expertise to address the pandemic by investigating four key areas of study in SARS-CoV-2 biology. Specifically, we discuss how (1) mass spectrometry-based structural techniques can overcome limitations and complement traditional structural approaches to inform the dynamic structure of SARS-CoV-2 proteins, complexes, and virions; (2) virus-host protein-protein interaction mapping can identify the cellular machinery required for SARS-CoV-2 replication; (3) global protein abundance and post-translational modification profiling can characterize signaling pathways that are rewired during infection; and (4) proteomic technologies can aid in biomarker identification, diagnostics, and drug development in order to monitor COVID-19 pathology and investigate treatment strategies. Systems-level high-throughput capabilities of proteomic technologies can yield important insights into SARS-CoV-2 biology that are urgently needed during the pandemic, and more broadly, can inform coronavirus virology and host biology.
Collapse
Affiliation(s)
- Paige Haas
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Monita Muralidharan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nevan J. Krogan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robyn M. Kaake
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruth Hüttenhain
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
68
|
Choi I, Son H, Baek JH. Tricarboxylic Acid (TCA) Cycle Intermediates: Regulators of Immune Responses. Life (Basel) 2021; 11:69. [PMID: 33477822 PMCID: PMC7832849 DOI: 10.3390/life11010069] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
The tricarboxylic acid cycle (TCA) is a series of chemical reactions used in aerobic organisms to generate energy via the oxidation of acetylcoenzyme A (CoA) derived from carbohydrates, fatty acids and proteins. In the eukaryotic system, the TCA cycle occurs completely in mitochondria, while the intermediates of the TCA cycle are retained inside mitochondria due to their polarity and hydrophilicity. Under cell stress conditions, mitochondria can become disrupted and release their contents, which act as danger signals in the cytosol. Of note, the TCA cycle intermediates may also leak from dysfunctioning mitochondria and regulate cellular processes. Increasing evidence shows that the metabolites of the TCA cycle are substantially involved in the regulation of immune responses. In this review, we aimed to provide a comprehensive systematic overview of the molecular mechanisms of each TCA cycle intermediate that may play key roles in regulating cellular immunity in cell stress and discuss its implication for immune activation and suppression.
Collapse
Affiliation(s)
| | | | - Jea-Hyun Baek
- School of Life Science, Handong Global University, Pohang, Gyeongbuk 37554, Korea; (I.C.); (H.S.)
| |
Collapse
|
69
|
Timpani CA, Rybalka E. Calming the (Cytokine) Storm: Dimethyl Fumarate as a Therapeutic Candidate for COVID-19. Pharmaceuticals (Basel) 2020; 14:15. [PMID: 33375288 PMCID: PMC7824470 DOI: 10.3390/ph14010015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
COVID-19 has rapidly spread worldwide and incidences of hospitalisation from respiratory distress are significant. While a vaccine is in the pipeline, there is urgency for therapeutic options to address the immune dysregulation, hyperinflammation and oxidative stress that can lead to death. Given the shared pathogenesis of severe cases of COVID-19 with aspects of multiple sclerosis and psoriasis, we propose dimethyl fumarate as a viable treatment option. Currently approved for multiple sclerosis and psoriasis, dimethyl fumarate is an immunomodulatory, anti-inflammatory and anti-oxidative drug that could be rapidly implemented into the clinic to calm the cytokine storm which drives severe COVID-19.
Collapse
Affiliation(s)
- Cara A. Timpani
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
- Australian Institute for Musculoskeletal Science, St Albans, VIC 3021, Australia
| | - Emma Rybalka
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
- Australian Institute for Musculoskeletal Science, St Albans, VIC 3021, Australia
| |
Collapse
|
70
|
Schirle M, Jenkins JL. Contemporary Techniques for Target Deconvolution and Mode of Action Elucidation. PHENOTYPIC DRUG DISCOVERY 2020. [DOI: 10.1039/9781839160721-00083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The elucidation of the cellular efficacy target and mechanism of action of a screening hit remain key steps in phenotypic drug discovery. A large number of experimental and in silico approaches have been introduced to address these questions and are being discussed in this chapter with a focus on recent developments. In addition to practical considerations such as throughput and technological requirements, these approaches differ conceptually in the specific compound characteristic that they are focusing on, including physical and functional interactions, cellular response patterns as well as structural features. As a result, different approaches often provide complementary information and we describe a multipronged strategy that is frequently key to successful identification of the efficacy target but also other epistatic nodes and off-targets that together shape the overall cellular effect of a bioactive compound.
Collapse
Affiliation(s)
- Markus Schirle
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research Cambridge MA 02139 USA
| | - Jeremy L. Jenkins
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research Cambridge MA 02139 USA
| |
Collapse
|
71
|
Ebrahimi KH, Gilbert-Jaramillo J, James WS, McCullagh JSO. Interferon-stimulated gene products as regulators of central carbon metabolism. FEBS J 2020; 288:3715-3726. [PMID: 33185982 PMCID: PMC8359365 DOI: 10.1111/febs.15625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
In response to viral infections, the innate immune system rapidly activates expression of several interferon-stimulated genes (ISGs), whose protein and metabolic products are believed to directly interfere with the viral life cycle. Here, we argue that biochemical reactions performed by two specific protein products of ISGs modulate central carbon metabolism to support a broad-spectrum antiviral response. We demonstrate that the metabolites generated by metalloenzymes nitric oxide synthase and the radical S-adenosylmethionine (SAM) enzyme RSAD2 inhibit the activity of the housekeeping and glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH). We discuss that this inhibition is likely to stimulate a range of metabolic and signalling processes to support a broad-spectrum immune response. Based on these analyses, we propose that inhibiting GAPDH in individuals with deteriorated cellular innate immune response like elderly might help in treating viral diseases such as COVID-19.
Collapse
Affiliation(s)
- Kourosh H Ebrahimi
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, UK
| | - Javier Gilbert-Jaramillo
- Sir William Dunn School of Pathology, University of Oxford, UK.,Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| | - William S James
- Sir William Dunn School of Pathology, University of Oxford, UK
| | - James S O McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, UK
| |
Collapse
|
72
|
O’Brien J, Wendell SG. Electrophile Modulation of Inflammation: A Two-Hit Approach. Metabolites 2020; 10:metabo10110453. [PMID: 33182676 PMCID: PMC7696920 DOI: 10.3390/metabo10110453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Electrophilic small molecules have gained significant attention over the last decade in the field of covalent drug discovery. Long recognized as mediators of the inflammatory process, recent evidence suggests that electrophiles may modulate the immune response through the regulation of metabolic networks. These molecules function as pleiotropic signaling mediators capable of reversibly reacting with nucleophilic biomolecules, most notably at reactive cysteines. More specifically, electrophiles target critical cysteines in redox regulatory proteins to activate protective pathways such as the nuclear factor erythroid 2-related factor 2-Kelch-like ECH-associated protein 1 (Nrf2-Keap1) antioxidant signaling pathway while also inhibiting Nuclear Factor κB (NF-κB). During inflammatory states, reactive species broadly alter cell signaling through the oxidation of lipids, amino acids, and nucleic acids, effectively propagating the inflammatory sequence. Subsequent changes in metabolic signaling inform immune cell maturation and effector function. Therapeutic strategies targeting inflammatory pathologies leverage electrophilic drug compounds, in part, because of their documented effect on the redox balance of the cell. With mounting evidence demonstrating the link between redox signaling and metabolism, electrophiles represent ideal therapeutic candidates for the treatment of inflammatory conditions. Through their pleiotropic signaling activity, electrophiles may be used strategically to both directly and indirectly target immune cell metabolism.
Collapse
|
73
|
He F, Antonucci L, Karin M. NRF2 as a regulator of cell metabolism and inflammation in cancer. Carcinogenesis 2020; 41:405-416. [PMID: 32347301 DOI: 10.1093/carcin/bgaa039] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/11/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a master transcriptional regulator of genes whose products defend our cells for toxic and oxidative insults. Although NRF2 activation may reduce cancer risk by suppressing oxidative stress and tumor-promoting inflammation, many cancers exhibit elevated NRF2 activity either due to mutations that disrupt the negative control of NRF2 activity or other factors. Importantly, NRF2 activation is associated with poor prognosis and NRF2 has turned out to be a key activator of cancer-supportive anabolic metabolism. In this review, we summarize the diverse roles played by NRF2 in cancer focusing on metabolic reprogramming and tumor-promoting inflammation.
Collapse
Affiliation(s)
- Feng He
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, San Diego, La Jolla, CA, USA
| | - Laura Antonucci
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, San Diego, La Jolla, CA, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, San Diego, La Jolla, CA, USA.,Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
74
|
Zhang Y, Qin W, Wang C. Discovery of post-translational modifications in immunometabolism by chemical proteomics. Curr Opin Biotechnol 2020; 68:37-43. [PMID: 33113497 DOI: 10.1016/j.copbio.2020.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Abstract
Metabolic reprogramming of macrophages during immune activation can generate diversified types of small molecule metabolites, which in turn induce post-translational modifications (PTMs) on proteins. Understanding the functional implications of these modifications requires precise identification of them from complex biological samples. We herein review recent progress in systematic discovery of immunometabolite PTMs by chemical proteomics.
Collapse
Affiliation(s)
- Yanling Zhang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Wei Qin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering,Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
75
|
Dello Russo C, Scott KA, Pirmohamed M. Dimethyl fumarate induced lymphopenia in multiple sclerosis: A review of the literature. Pharmacol Ther 2020; 219:107710. [PMID: 33091427 DOI: 10.1016/j.pharmthera.2020.107710] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
Dimethyl fumarate (DMF) is a first line medication for multiple sclerosis. It has a favourable safety profile, however, there is concern regarding the occurrence of moderate-severe and sustained lymphopenia and the associated risk of progressive multifocal leukoencephalopathy. We carried out an extensive literature review to understand the molecular mechanisms underlying this adverse reaction. Dynamic changes in certain components of the immune system are likely to be important for the therapeutic effects of DMF, including depletion of memory T cells and decrease in activated T cells together with expansion of naïve T cells. Similar modifications were reported for the B cell components. CD8+ T cells are particularly susceptible to DMF-induced cell death, with marked reductions observed in lymphopenic subjects. The reasons underlying such increased sensitivity are not known, nor it is known how expansion of other lymphocyte subsets occurs. Understanding the molecular mechanisms underlying DMF action is challenging: in vivo DMF is rapidly metabolized to monomethyl fumarate (MMF), a less potent immunomodulator in vitro. Pharmacokinetics indicate that MMF is the main active species in vivo. However, the relative importance of DMF and MMF in toxicity remains unclear, with evidence presented in favour of either of the compounds as toxic species. Pharmacogenetic studies to identify genetic predictors of DMF-induced lymphopenia are limited, with inconclusive results. A role of the gut microbiome in the pharmacological effects of DMF is emerging. It is clear that further investigations are necessary to understand the mechanisms of DMF-induced lymphopenia and devise preventive strategies. Periodic monitoring of absolute lymphocyte counts, currently performed in clinical practise, allows for the early detection of lymphopenia as a risk-minimization strategy.
Collapse
Affiliation(s)
- Cinzia Dello Russo
- MRC Centre for Drug Safety Science and Wolfson Centre for Personalised Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, UK; Dept. of Healthcare Surveillance and Bioethics, Section of Pharmacology, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Kathryn Anne Scott
- MRC Centre for Drug Safety Science and Wolfson Centre for Personalised Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, UK
| | - Munir Pirmohamed
- MRC Centre for Drug Safety Science and Wolfson Centre for Personalised Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, UK.
| |
Collapse
|
76
|
Vinogradova EV, Zhang X, Remillard D, Lazar DC, Suciu RM, Wang Y, Bianco G, Yamashita Y, Crowley VM, Schafroth MA, Yokoyama M, Konrad DB, Lum KM, Simon GM, Kemper EK, Lazear MR, Yin S, Blewett MM, Dix MM, Nguyen N, Shokhirev MN, Chin EN, Lairson LL, Melillo B, Schreiber SL, Forli S, Teijaro JR, Cravatt BF. An Activity-Guided Map of Electrophile-Cysteine Interactions in Primary Human T Cells. Cell 2020; 182:1009-1026.e29. [PMID: 32730809 PMCID: PMC7775622 DOI: 10.1016/j.cell.2020.07.001] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/14/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022]
Abstract
Electrophilic compounds originating from nature or chemical synthesis have profound effects on immune cells. These compounds are thought to act by cysteine modification to alter the functions of immune-relevant proteins; however, our understanding of electrophile-sensitive cysteines in the human immune proteome remains limited. Here, we present a global map of cysteines in primary human T cells that are susceptible to covalent modification by electrophilic small molecules. More than 3,000 covalently liganded cysteines were found on functionally and structurally diverse proteins, including many that play fundamental roles in immunology. We further show that electrophilic compounds can impair T cell activation by distinct mechanisms involving the direct functional perturbation and/or degradation of proteins. Our findings reveal a rich content of ligandable cysteines in human T cells and point to electrophilic small molecules as a fertile source for chemical probes and ultimately therapeutics that modulate immunological processes and their associated disorders.
Collapse
Affiliation(s)
| | - Xiaoyu Zhang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David Remillard
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel C Lazar
- Department of Immunology and Infectious Disease, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Radu M Suciu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yujia Wang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Giulia Bianco
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yu Yamashita
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; Medicinal Chemistry Research Laboratories, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kawauchi-cho, Tokushima 771-0192, Japan
| | - Vincent M Crowley
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael A Schafroth
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Minoru Yokoyama
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David B Konrad
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kenneth M Lum
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabriel M Simon
- Vividion Therapeutics, 5820 Nancy Ridge Drive, San Diego, CA 92121, USA
| | - Esther K Kemper
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael R Lazear
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sifei Yin
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Megan M Blewett
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Melissa M Dix
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nhan Nguyen
- Department of Immunology and Infectious Disease, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Emily N Chin
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Luke L Lairson
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bruno Melillo
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02138, USA
| | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02138, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Teijaro
- Department of Immunology and Infectious Disease, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
77
|
Benns HJ, Wincott CJ, Tate EW, Child MA. Activity- and reactivity-based proteomics: Recent technological advances and applications in drug discovery. Curr Opin Chem Biol 2020; 60:20-29. [PMID: 32768892 DOI: 10.1016/j.cbpa.2020.06.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
Activity-based protein profiling (ABPP) is recognized as a powerful and versatile chemoproteomic technology in drug discovery. Central to ABPP is the use of activity-based probes to report the activity of specific enzymes or reactivity of amino acid types in complex biological systems. Over the last two decades, ABPP has facilitated the identification of new drug targets and discovery of lead compounds in human and infectious disease. Furthermore, as part of a sustained global effort to illuminate the druggable proteome, the repertoire of target classes addressable with activity-based probes has vastly expanded in recent years. Here, we provide an overview of ABPP and summarise the major technological advances with an emphasis on probe development.
Collapse
Affiliation(s)
- Henry James Benns
- Department of Life Sciences, London, UK; Department of Chemistry, Imperial College London, London, UK
| | | | | | | |
Collapse
|
78
|
Sulaimani J, Cluxton D, Clowry J, Petrasca A, Molloy O, Moran B, Sweeney C, Malara A, McNicholas N, McGuigan C, Kirby B, Fletcher J. Dimethyl fumarate modulates the Treg–Th17 cell axis in patients with psoriasis*. Br J Dermatol 2020; 184:495-503. [DOI: 10.1111/bjd.19229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2020] [Indexed: 12/13/2022]
Affiliation(s)
- J. Sulaimani
- School of Biochemistry and ImmunologyTrinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
| | - D. Cluxton
- School of Biochemistry and ImmunologyTrinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
| | - J. Clowry
- Dermatology Research Education and Research CentreSt. Vincent's University HospitalDublin 4 Ireland
| | - A. Petrasca
- School of Biochemistry and ImmunologyTrinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
| | - O.E. Molloy
- Dermatology Research Education and Research CentreSt. Vincent's University HospitalDublin 4 Ireland
| | - B. Moran
- School of Biochemistry and ImmunologyTrinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
| | - C.M. Sweeney
- Dermatology Research Education and Research CentreSt. Vincent's University HospitalDublin 4 Ireland
| | - A. Malara
- Dermatology Research Education and Research CentreSt. Vincent's University HospitalDublin 4 Ireland
| | - N. McNicholas
- Department of Neurology St. Vincent's University Hospital Dublin 4 Ireland
| | - C. McGuigan
- Department of Neurology St. Vincent's University Hospital Dublin 4 Ireland
| | - B. Kirby
- Department of Dermatology St. Vincent's University Hospital Dublin 4 Ireland
| | - J.M. Fletcher
- School of Biochemistry and ImmunologyTrinity Biomedical Sciences InstituteTrinity College Dublin Dublin Ireland
- School of Medicine Trinity Biomedical Sciences Institute Trinity College Dublin Dublin Ireland
| |
Collapse
|
79
|
Jepsen S, Jiang S. Two Dietary Metabolites Fuel Salmonella Colonization. Trends Microbiol 2020; 28:701-703. [PMID: 32653110 DOI: 10.1016/j.tim.2020.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 10/23/2022]
Abstract
Nguyen et al. used transposon sequencing analysis and competitive colonization assays to describe how aspartate/malate can trigger initial Salmonella Typhimurium gut-lumen colonization in mice, providing insight into the significance of certain key metabolites beyond the realm of Salmonella life. Metabolite-driven diagnostic and anti-infective strategies for preventing salmonellosis could rapidly emerge from this work.
Collapse
Affiliation(s)
- Sara Jepsen
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Shuai Jiang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| |
Collapse
|
80
|
Zambaldo C, Vinogradova EV, Qi X, Iaconelli J, Suciu RM, Koh M, Senkane K, Chadwick SR, Sanchez BB, Chen JS, Chatterjee AK, Liu P, Schultz PG, Cravatt BF, Bollong MJ. 2-Sulfonylpyridines as Tunable, Cysteine-Reactive Electrophiles. J Am Chem Soc 2020; 142:8972-8979. [PMID: 32302104 DOI: 10.1021/jacs.0c02721] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The emerging use of covalent ligands as chemical probes and drugs would benefit from an expanded repertoire of cysteine-reactive electrophiles for efficient and diverse targeting of the proteome. Here we use the endogenous electrophile sensor of mammalian cells, the KEAP1-NRF2 pathway, to discover cysteine-reactive electrophilic fragments from a reporter-based screen for NRF2 activation. This strategy identified a series of 2-sulfonylpyridines that selectively react with biological thiols via nucleophilic aromatic substitution (SNAr). By tuning the electrophilicity and appended recognition elements, we demonstrate the potential of the 2-sulfonylpyridine reactive group with the discovery of a selective covalent modifier of adenosine deaminase (ADA). Targeting a cysteine distal to the active site, this molecule attenuates the enzymatic activity of ADA and inhibits proliferation of lymphocytic cells. This study introduces a modular and tunable SNAr-based reactive group for targeting reactive cysteines in the human proteome and illustrates the pharmacological utility of this electrophilic series.
Collapse
Affiliation(s)
- Claudio Zambaldo
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Ekaterina V Vinogradova
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Xiaotian Qi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jonathan Iaconelli
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Radu M Suciu
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Minseob Koh
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Kristine Senkane
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Stormi R Chadwick
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Brittany B Sanchez
- Automated Synthesis Facility, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jason S Chen
- Automated Synthesis Facility, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Arnab K Chatterjee
- California Institute for Biomedical Research (Calibr), La Jolla, California 92037, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peter G Schultz
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Michael J Bollong
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
81
|
Bergholtz SE, Briney CA, Najera SS, Perez M, Linehan WM, Meier JL. An Oncometabolite Isomer Rapidly Induces a Pathophysiological Protein Modification. ACS Chem Biol 2020; 15:856-861. [PMID: 32250583 DOI: 10.1021/acschembio.0c00044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metabolites regulate protein function via covalent and noncovalent interactions. However, manipulating these interactions in living cells remains a major challenge. Here, we report a chemical strategy for inducing cysteine S-succination, a nonenzymatic post-translational modification derived from the oncometabolite fumarate. Using a combination of antibody-based detection and kinetic assays, we benchmark the in vitro and cellular reactivity of two novel S-succination "agonists," maleate and 2-bromosuccinate. Cellular assays reveal maleate to be a more potent and less toxic inducer of S-succination, which can activate KEAP1-NRF2 signaling in living cells. By enabling the cellular reconstitution of an oncometabolite-protein interaction with physiochemical accuracy and minimal toxicity, this study provides a methodological basis for better understanding the signaling role of metabolites in disease.
Collapse
Affiliation(s)
- Sarah E. Bergholtz
- Chemical Biology Laboratory, National Cancer Institute, Frederick Maryland 21702, United States
| | - Chloe A. Briney
- Chemical Biology Laboratory, National Cancer Institute, Frederick Maryland 21702, United States
| | - Susana S. Najera
- Chemical Biology Laboratory, National Cancer Institute, Frederick Maryland 21702, United States
- Urologic Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States
| | - Minervo Perez
- Chemical Biology Laboratory, National Cancer Institute, Frederick Maryland 21702, United States
| | - W. Marston Linehan
- Urologic Oncology Branch, National Cancer Institute, Bethesda, Maryland, United States
| | - Jordan L. Meier
- Chemical Biology Laboratory, National Cancer Institute, Frederick Maryland 21702, United States
| |
Collapse
|
82
|
Parker CG, Pratt MR. Click Chemistry in Proteomic Investigations. Cell 2020; 180:605-632. [PMID: 32059777 PMCID: PMC7087397 DOI: 10.1016/j.cell.2020.01.025] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 01/20/2023]
Abstract
Despite advances in genetic and proteomic techniques, a complete portrait of the proteome and its complement of dynamic interactions and modifications remains a lofty, and as of yet, unrealized, objective. Specifically, traditional biological and analytical approaches have not been able to address key questions relating to the interactions of proteins with small molecules, including drugs, drug candidates, metabolites, or protein post-translational modifications (PTMs). Fortunately, chemists have bridged this experimental gap through the creation of bioorthogonal reactions. These reactions allow for the incorporation of chemical groups with highly selective reactivity into small molecules or protein modifications without perturbing their biological function, enabling the selective installation of an analysis tag for downstream investigations. The introduction of chemical strategies to parse and enrich subsets of the "functional" proteome has empowered mass spectrometry (MS)-based methods to delve more deeply and precisely into the biochemical state of cells and its perturbations by small molecules. In this Primer, we discuss how one of the most versatile bioorthogonal reactions, "click chemistry", has been exploited to overcome limitations of biological approaches to enable the selective marking and functional investigation of critical protein-small-molecule interactions and PTMs in native biological environments.
Collapse
Affiliation(s)
- Christopher G Parker
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA.
| | - Matthew R Pratt
- Departments of Chemistry and Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
83
|
Poganik JR, Aye Y. Electrophile Signaling and Emerging Immuno- and Neuro-modulatory Electrophilic Pharmaceuticals. Front Aging Neurosci 2020; 12:1. [PMID: 32116644 PMCID: PMC7019031 DOI: 10.3389/fnagi.2020.00001] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022] Open
Abstract
With a lipid-rich environment and elevated oxygen consumption, the central nervous system (CNS) is subject to intricate regulation by lipid-derived electrophiles (LDEs). Investigations into oxidative damage and chronic LDE generation in neural disorders have spurred the development of tools that can detect and catalog the gamut of LDE-adducted proteins. Despite these advances, deconstructing the precise consequences of individual protein-specific LDE modifications remained largely impossible until recently. In this perspective, we first overview emerging toolsets that can decode electrophile-signaling events in a protein/context-specific manner, and how the accumulating mechanistic insights brought about by these tools have begun to offer new means to modulate pathways relevant to multiple sclerosis (MS). By surveying the latest data surrounding the blockbuster MS drug dimethyl fumarate that functions through LDE-signaling-like mechanisms, we further provide a vision for how chemical biology tools probing electrophile signaling may be leveraged toward novel interventions in CNS disease.
Collapse
Affiliation(s)
- Jesse R Poganik
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
84
|
Tsukidate T, Li Q, Hang HC. Targeted and proteome-wide analysis of metabolite-protein interactions. Curr Opin Chem Biol 2020; 54:19-27. [PMID: 31790852 PMCID: PMC7131882 DOI: 10.1016/j.cbpa.2019.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/09/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022]
Abstract
Understanding the molecular mechanisms of endogenous and environmental metabolites is crucial for basic biology and drug discovery. With the genome, proteome, and metabolome of many organisms being readily available, researchers now have the opportunity to dissect how key metabolites regulate complex cellular pathways in vivo. Nonetheless, characterizing the specific and functional protein targets of key metabolites associated with specific cellular phenotypes remains a major challenge. Innovations in chemical biology are now poised to address this fundamental limitation in physiology and disease. In this review, we highlight recent advances in chemoproteomics for targeted and proteome-wide analysis of metabolite-protein interactions that have enabled the discovery of unpredicted metabolite-protein interactions and facilitated the development of new small molecule therapeutics.
Collapse
Affiliation(s)
- Taku Tsukidate
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY, 10065, United States
| | - Qiang Li
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY, 10065, United States
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY, 10065, United States.
| |
Collapse
|
85
|
Abstract
Multiple sclerosis (MS) is associated with changes in the metabolome. Numerous studies employing varying metabolomics platforms have examined a range of biological material ranging from brain tissue to urine and demonstrated consistently alterations in multiple metabolic pathways in MS. We review not only the studies that describe the ability of metabolomics to differentiate MS patients from healthy controls and other neurological disease but also discuss the potential of metabolomics-based methods to build predictive models that are able to stage disease, monitor progression, and select the most appropriate therapy. The increasing number of impressive claims for the capacity of metabolomics to distinguish between different types of demyelinating disease suggests that the provision of such tests may be close at hand. Besides the ability to provide potential diagnostic and prognostic biomarkers, metabolomics also provides us with unique insights into the pathophysiology of the disease and helps identify metabolic pathways that may be potential therapeutic targets. Future studies will integrate metabolomics data with other omics techniques to provide further insight into the source of these metabolic abnormalities and help with identification of the most promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Pavan Bhargava
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
86
|
Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun 2020; 11:102. [PMID: 31900386 PMCID: PMC6941980 DOI: 10.1038/s41467-019-13668-3] [Citation(s) in RCA: 1528] [Impact Index Per Article: 305.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 11/14/2019] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are signaling organelles that regulate a wide variety of cellular functions and can dictate cell fate. Multiple mechanisms contribute to communicate mitochondrial fitness to the rest of the cell. Recent evidence confers a new role for TCA cycle intermediates, generally thought to be important for biosynthetic purposes, as signaling molecules with functions controlling chromatin modifications, DNA methylation, the hypoxic response, and immunity. This review summarizes the mechanisms by which the abundance of different TCA cycle metabolites controls cellular function and fate in different contexts. We will focus on how these metabolites mediated signaling can affect physiology and disease. Mitochondrial metabolites contribute to more than biosynthesis, and it is clear that they influence multiple cellular functions in a variety of ways. Here, Martínez-Reyes and Chandel review key metabolites and describe their effects on processes involved in physiology and disease including chromatin dynamics, immunity, and hypoxia.
Collapse
|
87
|
Qin W, Yang F, Wang C. Chemoproteomic profiling of protein-metabolite interactions. Curr Opin Chem Biol 2019; 54:28-36. [PMID: 31812894 DOI: 10.1016/j.cbpa.2019.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/23/2019] [Accepted: 11/03/2019] [Indexed: 12/29/2022]
Abstract
Small molecule metabolites play important roles in regulating protein functions, which are acted through either covalent non-enzymatic post-translational modifications or non-covalent binding interactions. Chemical proteomic strategies can help delineate global landscapes of cellular protein-metabolite interactions and provide molecular insights about their mechanisms of action. In this review, we summarized the recent progress in developments and applications of chemoproteomic strategies to profile protein-metabolite interactions.
Collapse
Affiliation(s)
- Wei Qin
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, China; Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Fan Yang
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, China; Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, China; College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, China; Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
88
|
Herrmann AK, Wüllner V, Moos S, Graf J, Chen J, Kieseier B, Kurschus FC, Albrecht P, Vangheluwe P, Methner A. Dimethyl fumarate alters intracellular Ca 2+ handling in immune cells by redox-mediated pleiotropic effects. Free Radic Biol Med 2019; 141:338-347. [PMID: 31279969 DOI: 10.1016/j.freeradbiomed.2019.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/26/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022]
Abstract
Dimethyl fumarate (DMF) is widely used to treat the human autoimmune diseases multiple sclerosis (MS) and psoriasis. DMF causes short-term oxidative stress and activates the antioxidant response via the transcription factor Nrf2 but its immunosuppressive effect is not well understood. Immune cell activation depends on calcium signaling which itself is influenced by the cellular redox state. We therefore measured calcium, reactive oxygen species levels and glutathione content in lymphocytes from immunized mice before onset of experimental autoimmune encephalomyelitis, in peripheral blood mononuclear cells from MS patients treated with DMF, and in mouse splenocytes treated ex vivo with DMF. This demonstrated altered redox states and increased lymphocytic calcium levels in all model systems. DMF caused an immediate influx of calcium from the extracellular space, long-term increased cytosolic calcium levels and reduced calcium stored in intracellular stores. The DMF-elicited current had the electrophysiological characteristics of a transient receptor potential channel and the intracellular calcium levels were normalized by antagonists of TRPA1. Interestingly, the sarco/endoplasmic reticulum Ca2+-ATPase SERCA2b was downregulated but more active due to glutathionylation of the redox-sensitive cysteine 674. DMF therefore causes pleiotropic changes in cellular calcium homeostasis which are likely caused by redox-sensitive post-translational modifications. These changes probably contribute to its immunosuppressive effects.
Collapse
Affiliation(s)
- Ann-Kathrin Herrmann
- Institute of Molecular Medicine, University Medical Center of the Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Verena Wüllner
- Institute of Molecular Medicine, University Medical Center of the Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Sonja Moos
- Institute of Molecular Medicine, University Medical Center of the Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Jonas Graf
- Dept. of Neurology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jialin Chen
- Dept. of Cellular and Molecular Medicine, KU Leuven, Leudven, Belgium
| | - Bernd Kieseier
- Dept. of Neurology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Florian C Kurschus
- Institute of Molecular Medicine, University Medical Center of the Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Philipp Albrecht
- Dept. of Neurology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Peter Vangheluwe
- Dept. of Cellular and Molecular Medicine, KU Leuven, Leudven, Belgium
| | - Axel Methner
- Institute of Molecular Medicine, University Medical Center of the Johannes Gutenberg-Universität Mainz, Mainz, Germany.
| |
Collapse
|
89
|
Borne AL, Huang T, McCloud RL, Pachaiyappan B, Bullock TNJ, Hsu KL. Deciphering T Cell Immunometabolism with Activity-Based Protein Profiling. Curr Top Microbiol Immunol 2019; 420:175-210. [PMID: 30128827 PMCID: PMC7134364 DOI: 10.1007/82_2018_124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
As a major sentinel of adaptive immunity, T cells seek and destroy diseased cells using antigen recognition to achieve molecular specificity. Strategies to block checkpoint inhibition of T cell activity and thus reawaken the patient's antitumor immune responses are rapidly becoming standard of care for treatment of diverse cancers. Adoptive transfer of patient T cells genetically engineered with tumor-targeting capabilities is redefining the field of personalized medicines. The diverse opportunities for exploiting T cell biology in the clinic have prompted new efforts to expand the scope of targets amenable to immuno-oncology. Given the complex spatiotemporal regulation of T cell function and fate, new technologies capable of global molecular profiling in vivo are needed to guide selection of appropriate T cell targets and subsets. In this chapter, we describe the use of activity-based protein profiling (ABPP) to illuminate different aspects of T cell metabolism and signaling as fertile starting points for investigation. We highlight the merits of ABPP methods to enable target, inhibitor, and biochemical pathway discovery of T cells in the burgeoning field of immuno-oncology.
Collapse
Affiliation(s)
- Adam L Borne
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Tao Huang
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904, USA
| | - Rebecca L McCloud
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904, USA
| | - Boobalan Pachaiyappan
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904, USA
| | - Timothy N J Bullock
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, McCormick Road, P.O. Box 400319, Charlottesville, VA, 22904, USA.
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
90
|
Kulkarni RA, Montgomery DC, Meier JL. Epigenetic regulation by endogenous metabolite pharmacology. Curr Opin Chem Biol 2019; 51:30-39. [PMID: 30884380 PMCID: PMC6698396 DOI: 10.1016/j.cbpa.2019.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023]
Abstract
Altered metabolite levels can drive epigenetic changes critical to development and disease. However, in many cases the specific protein-metabolite interactions that underlie this process remain enigmatic. In this review, we make the case that this fundamental missing information may be discovered by applying the tools of modern drug target validation to study endogenous metabolite pharmacology. We detail examples in which chemical proteomics has been applied to gain new insights into reversible and covalent metabolite signaling mechanisms, using acetyl-CoA and fumarate as case studies. Finally, we provide a brief survey of nascent chemical biology methods whose application to the study of endogenous metabolite pharmacology may further advance the field.
Collapse
Affiliation(s)
- Rhushikesh A Kulkarni
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - David C Montgomery
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Jordan L Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA.
| |
Collapse
|
91
|
S-glycosylation-based cysteine profiling reveals regulation of glycolysis by itaconate. Nat Chem Biol 2019; 15:983-991. [DOI: 10.1038/s41589-019-0323-5] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 06/12/2019] [Indexed: 01/19/2023]
|
92
|
Jaiswal AK, Sandey M, Suryawanshi A, Cattley RC, Mishra A. Dimethyl fumarate abrogates dust mite-induced allergic asthma by altering dendritic cell function. IMMUNITY INFLAMMATION AND DISEASE 2019; 7:201-213. [PMID: 31264384 PMCID: PMC6688084 DOI: 10.1002/iid3.262] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 12/12/2022]
Abstract
Introduction Allergic asthma is the most common inflammatory disease of upper airways. Airway dendritic cells (DCs) are key antigen presenting cells that regulate T helper 2 (Th2)‐dependent allergic inflammation. Recent studies have shown critical role of airway DCs in the induction of Th2‐mediated allergic inflammation and are attractive therapeutic targets in asthma. However, molecular signaling mechanism that regulate DCs function to Th2 immune responses are poorly understood. Here we aim to evaluate the immunomodulatory effect of dimethyl fumarate (DMF), an FDA approved small molecule drug, in the house dust mite (HDM)‐induced experimental model of allergic asthma. Methods DMF was administered intranasally in the challenge period of HDM‐induced murine model of experimental asthma. Airway inflammation, airway hyperreactivity, Th2/Th1 cytokine were assessed. The effect of DMF on DC function was further evaluated by adoptive transfer of HDM‐pulsed DMF treated DCs to wild‐type naïve mice. Results DMF treatment significantly reduced HDM‐induced airway inflammation, mucous cell metaplasia, and airway hyperactivity to inhaled methacholine. Mechanistically, DMF interferes with the migration of lung DCs to draining mediastinal lymph nodes, thereby attenuates the induction of allergic sensitization and Th2 immune response. Notably, adoptive transfer of DMF treated DCs to naïve mice with HDM challenge similarly reduces the features of allergic asthma. Conclusion This identifies a novel function of DMF on DC‐mediated adaptive immune responses in the setting of HDM‐induced airway inflammation. Taken together, our results offer a mechanistic rationale for DMF use to target DCs in local lung environment as antiasthmatic therapy.
Collapse
Affiliation(s)
- Anil K Jaiswal
- The Laboratory of Lung Inflammation, College of Veterinary Medicine, Auburn University, Auburn, Alabama.,Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Maninder Sandey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Russell C Cattley
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Amarjit Mishra
- The Laboratory of Lung Inflammation, College of Veterinary Medicine, Auburn University, Auburn, Alabama.,Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| |
Collapse
|
93
|
Zhang X, Crowley VM, Wucherpfennig TG, Dix MM, Cravatt BF. Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16. Nat Chem Biol 2019; 15:737-746. [PMID: 31209349 PMCID: PMC6592777 DOI: 10.1038/s41589-019-0279-5] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/25/2019] [Indexed: 12/18/2022]
Abstract
Ligand-dependent protein degradation has emerged as a compelling strategy to pharmacologically control the protein content of cells. So far, however, only a limited number of E3 ligases have been found to support this process. Here, we use a chemical proteomic strategy that leverages broadly reactive, cysteine-directed electrophilic fragments coupled to selective ligands for intracellular proteins (for example, SLF for FKBP12, JQ1 for BRD4) to screen for heterobifunctional degrader compounds (or proteolysis targeting chimeras, PROTACs) that operate by covalent adduction of E3 ligases. This approach identified DCAF16-a poorly characterized substrate recognition component of CUL4-DDB1 E3 ubiquitin ligases-as a target of electrophilic PROTACs that promote the nuclear-restricted degradation of proteins. We find that only a modest fraction (~10-40%) of DCAF16 needs to be modified to support protein degradation, pointing to the potential for electrophilic PROTACs to induce neosubstrate degradation without substantially perturbing the function of the participating E3 ligase.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Vincent M Crowley
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Thomas G Wucherpfennig
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Melissa M Dix
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Benjamin F Cravatt
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
94
|
Backus KM, Cao J, Maddox SM. Opportunities and challenges for the development of covalent chemical immunomodulators. Bioorg Med Chem 2019; 27:3421-3439. [PMID: 31204229 DOI: 10.1016/j.bmc.2019.05.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023]
Abstract
Compounds that react irreversibly with cysteines have reemerged as potent and selective tools for altering protein function, serving as chemical probes and even clinically approved drugs. The exquisite sensitivity of human immune cell signaling pathways to oxidative stress indicates the likely, yet still underexploited, general utility of covalent probes for selective chemical immunomodulation. Here, we provide an overview of immunomodulatory cysteines, including identification of electrophilic compounds available to label these residues. We focus our discussion on three protein classes essential for cell signaling, which span the 'druggability' spectrum from amenable to chemical probes (kinases), somewhat druggable (proteases), to inaccessible (phosphatases). Using existing inhibitors as a guide, we identify general strategies to guide the development of covalent probes for selected undruggable classes of proteins and propose the application of such compounds to alter immune cell functions.
Collapse
Affiliation(s)
- Keriann M Backus
- Departments of Biological Chemistry and Chemistry and Biochemistry, University of California Los Angeles, USA.
| | - Jian Cao
- Departments of Biological Chemistry and Chemistry and Biochemistry, University of California Los Angeles, USA
| | - Sean M Maddox
- Departments of Biological Chemistry and Chemistry and Biochemistry, University of California Los Angeles, USA
| |
Collapse
|
95
|
Leibovitch M, Reid NE, Victoria J, Hanic-Joyce PJ, Joyce PBM. Analysis of the pathogenic I326T variant of human tRNA nucleotidyltransferase reveals reduced catalytic activity and thermal stability in vitro linked to a conformational change. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:616-626. [PMID: 30959222 DOI: 10.1016/j.bbapap.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/22/2019] [Accepted: 04/02/2019] [Indexed: 12/22/2022]
Abstract
The I326T mutation in the TRNT1 gene encoding human tRNA nucleotidyltransferase (tRNA-NT) is linked to a relatively mild form of SIFD. Previous work indicated that the I326T variant was unable to incorporate AMP into tRNAs in vitro, however, expression of the mutant allele from a strong heterologous promoter supported in vivo CCA addition to both cytosolic and mitochondrial tRNAs in a yeast strain lacking tRNA-NT. To address this discrepancy, we determined the biochemical and biophysical characteristics of the I326T variant enzyme and the related variant, I326A. Our in vitro analysis revealed that the I326T substitution decreases the thermal stability of the enzyme and causes a ten-fold reduction in enzyme activity. We propose that the structural changes in the I326T variant that lead to these altered parameters result from a rearrangement of helices within the body domain of the protein which can be probed by the inability of the monomeric enzyme to form a covalent dimer in vitro mediated by C373. In addition, we confirm that the effects of the I326T or I326A substitutions are relatively mild in vivo by demonstrating that the mutant alleles support both mitochondrial and cytosolic CCA-addition in yeast.
Collapse
Affiliation(s)
- M Leibovitch
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada
| | - N E Reid
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada
| | - J Victoria
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada
| | - P J Hanic-Joyce
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada
| | - P B M Joyce
- Department of Chemistry and Biochemistry and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montréal H4B 1R6, Québec, Canada.
| |
Collapse
|
96
|
Abstract
Targeted covalent modification is assuming consolidated importance in drug discovery. In this context, the electrophilic tuning of redox-dependent cell signaling is attracting major interest, as it opens prospect for treating numerous pathologic conditions. Herein, we discuss the rationale and the issues of electrophile-based approaches, focusing on the transcriptional Nrf2-Keap1 pathway as a test case. We also highlight relevant medicinal chemistry strategies researchers have devised to meet the ambitious goal, dwelling on the investigational and therapeutic potential of modulating redox-signaling networks through regulatory cysteine switches.
Collapse
|
97
|
Long MJ, Liu X, Aye Y. Genie in a bottle: controlled release helps tame natural polypharmacology? Curr Opin Chem Biol 2019; 51:48-56. [PMID: 30913473 DOI: 10.1016/j.cbpa.2019.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/02/2019] [Accepted: 02/12/2019] [Indexed: 02/06/2023]
Abstract
Ability to faithfully report drug-target interactions constitutes a major critical parameter in preclinical/clinical settings. Yet the assessment of target engagement remains challenging, particularly for promiscuous and/or polypharmacologic ligands. Drawing from our improved insights into native electrophile signaling and emerging technologies that profile and interrogate these non-enzyme-assisted signaling subsystems, we posit that 'trained' polypharmocologic covalent inhibitors can be designed. Accumulating evidence indicates that electrophile-modified states at fractional occupancy can alter cell fate. Thus, by understanding sensing preferences and ligandable regions favored by the natural electrophilic signals at individual protein-ligand resolution, we can better evaluate target engagement and develop a function-guided understanding of polypharmacology.
Collapse
Affiliation(s)
- Marcus Jc Long
- 47 Pudding Gate, Bishop Burton, Beverley East Riding of Yorkshire, HU17 8QH, UK
| | - Xuyu Liu
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
| | - Yimon Aye
- École Polytechnique Fédérale de Lausanne, Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland.
| |
Collapse
|
98
|
Reactive-cysteine profiling for drug discovery. Curr Opin Chem Biol 2019; 50:29-36. [PMID: 30897495 DOI: 10.1016/j.cbpa.2019.02.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/06/2019] [Accepted: 02/09/2019] [Indexed: 01/10/2023]
Abstract
The recognition that only a small percentage of known human gene products are druggable using traditional modes of non-covalent ligand design, has led to a resurgence in targeted covalent inhibitors. Covalent inhibitors offer advantages over non-covalent inhibitors in engaging otherwise challenging targets. Reactive cysteine residues on proteins are a common target for covalent inhibitors, whereby the high nucleophilicity of the cysteine thiol under physiological conditions provides an ideal anchoring site for electrophilic small molecules. A chemical-proteomic platform, termed isoTOP-ABPP, allows for profiling cysteine reactivity in complex proteomes and is one of many techniques that can aid in two aspects of the covalent-inhibitor development process: (1) to identify functional cysteines that lead to modulation of protein activity through covalent modification; and, (2) to determine cellular targets and evaluate promiscuity of electrophilic fragments, small molecules, and natural products. Herein, we discuss recent advances in isoTOP-ABPP and potential applications of this technology in the drug-discovery pipeline.
Collapse
|
99
|
Zaro BW, Vinogradova EV, Lazar DC, Blewett MM, Suciu RM, Takaya J, Studer S, de la Torre JC, Casanova JL, Cravatt BF, Teijaro JR. Dimethyl Fumarate Disrupts Human Innate Immune Signaling by Targeting the IRAK4-MyD88 Complex. THE JOURNAL OF IMMUNOLOGY 2019; 202:2737-2746. [PMID: 30885957 DOI: 10.4049/jimmunol.1801627] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/26/2019] [Indexed: 12/14/2022]
Abstract
Dimethyl fumarate (DMF) is a prescribed treatment for multiple sclerosis and has also been used to treat psoriasis. The electrophilicity of DMF suggests that its immunosuppressive activity is related to the covalent modification of cysteine residues in the human proteome. Nonetheless, our understanding of the proteins modified by DMF in human immune cells and the functional consequences of these reactions remains incomplete. In this study, we report that DMF inhibits human plasmacytoid dendritic cell function through a mechanism of action that is independent of the major electrophile sensor NRF2. Using chemical proteomics, we instead identify cysteine 13 of the innate immune kinase IRAK4 as a principal cellular target of DMF. We show that DMF blocks IRAK4-MyD88 interactions and IRAK4-mediated cytokine production in a cysteine 13-dependent manner. Our studies thus identify a proteomic hotspot for DMF action that constitutes a druggable protein-protein interface crucial for initiating innate immune responses.
Collapse
Affiliation(s)
- Balyn W Zaro
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | | | - Daniel C Lazar
- Department of Immunology and Infectious Disease, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Megan M Blewett
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Radu M Suciu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Junichiro Takaya
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Sean Studer
- Department of Immunology and Infectious Disease, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Juan Carlos de la Torre
- Department of Immunology and Infectious Disease, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037;
| | - John R Teijaro
- Department of Immunology and Infectious Disease, The Scripps Research Institute, La Jolla, CA 92037; and
| |
Collapse
|
100
|
Long MJC, Urul DA, Aye Y. REX technologies for profiling and decoding the electrophile signaling axes mediated by Rosetta Stone proteins. Methods Enzymol 2019; 633:203-230. [PMID: 32046846 PMCID: PMC7027669 DOI: 10.1016/bs.mie.2019.02.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is now clear that some cysteines on some proteins are highly tuned to react with electrophiles. Based on numerous studies, it is also established that electrophile sensing underpins rewiring of several critical signaling processes. These electrophile-sensing proteins, or privileged first responders (PFRs), are likely critically relevant for drug design. However, identifying PFRs remains a challenging and unsolved problem, despite the development of several high-throughput methods to ID proteins that react with electrophiles. More importantly, we remain unable to rank how different PFRs identified under different conditions relate to one another, in terms of sensing or signaling capacity. Here we evaluate different methods to assay sensing functions of proteins and discuss these methods in the context of developing a "ranking scheme." Based on theoretical and experimental evidence, we propose that T-REX-the only targeted-electrophile delivery tool presently available-is a reliable method to rank PFRs. Finally, we address to what extent electrophile sensing and downstream signaling are correlated. Based on our current data, we observe that such behaviors are indeed correlated. It is our hope that through this manuscript researchers from various arms of the stress signaling fields will focus on developing a quantitative understanding of precision electrophile labeling.
Collapse
Affiliation(s)
| | - Daniel A Urul
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Yimon Aye
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|