51
|
Perniss A, Liu S, Boonen B, Keshavarz M, Ruppert AL, Timm T, Pfeil U, Soultanova A, Kusumakshi S, Delventhal L, Aydin Ö, Pyrski M, Deckmann K, Hain T, Schmidt N, Ewers C, Günther A, Lochnit G, Chubanov V, Gudermann T, Oberwinkler J, Klein J, Mikoshiba K, Leinders-Zufall T, Offermanns S, Schütz B, Boehm U, Zufall F, Bufe B, Kummer W. Chemosensory Cell-Derived Acetylcholine Drives Tracheal Mucociliary Clearance in Response to Virulence-Associated Formyl Peptides. Immunity 2020; 52:683-699.e11. [DOI: 10.1016/j.immuni.2020.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 12/25/2019] [Accepted: 03/13/2020] [Indexed: 12/24/2022]
|
52
|
Gopallawa I, Freund JR, Lee RJ. Bitter taste receptors stimulate phagocytosis in human macrophages through calcium, nitric oxide, and cyclic-GMP signaling. Cell Mol Life Sci 2020; 78:271-286. [PMID: 32172302 DOI: 10.1007/s00018-020-03494-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/30/2020] [Accepted: 02/24/2020] [Indexed: 01/22/2023]
Abstract
Bitter taste receptors (T2Rs) are GPCRs involved in detection of bitter compounds by type 2 taste cells of the tongue, but are also expressed in other tissues throughout the body, including the airways, gastrointestinal tract, and brain. These T2Rs can be activated by several bacterial products and regulate innate immune responses in several cell types. Expression of T2Rs has been demonstrated in immune cells like neutrophils; however, the molecular details of their signaling are unknown. We examined mechanisms of T2R signaling in primary human monocyte-derived unprimed (M0) macrophages (M[Formula: see text]s) using live cell imaging techniques. Known bitter compounds and bacterial T2R agonists activated low-level calcium signals through a pertussis toxin (PTX)-sensitive, phospholipase C-dependent, and inositol trisphosphate receptor-dependent calcium release pathway. These calcium signals activated low-level nitric oxide (NO) production via endothelial and neuronal NO synthase (NOS) isoforms. NO production increased cellular cGMP and enhanced acute phagocytosis ~ threefold over 30-60 min via protein kinase G. In parallel with calcium elevation, T2R activation lowered cAMP, also through a PTX-sensitive pathway. The cAMP decrease also contributed to enhanced phagocytosis. Moreover, a co-culture model with airway epithelial cells demonstrated that NO produced by epithelial cells can also acutely enhance M[Formula: see text] phagocytosis. Together, these data define M[Formula: see text] T2R signal transduction and support an immune recognition role for T2Rs in M[Formula: see text] cell physiology.
Collapse
Affiliation(s)
- Indiwari Gopallawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Hospital of the University of Pennsylvania, University of Pennsylvania Perelman School of Medicine, Ravdin, 5th Floor, Suite A , 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Jenna R Freund
- Department of Otorhinolaryngology, Head and Neck Surgery, Hospital of the University of Pennsylvania, University of Pennsylvania Perelman School of Medicine, Ravdin, 5th Floor, Suite A , 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Robert J Lee
- Department of Otorhinolaryngology, Head and Neck Surgery, Hospital of the University of Pennsylvania, University of Pennsylvania Perelman School of Medicine, Ravdin, 5th Floor, Suite A , 3400 Spruce Street, Philadelphia, PA, 19104, USA. .,Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA.
| |
Collapse
|
53
|
Schneider C, O'Leary CE, Locksley RM. Regulation of immune responses by tuft cells. Nat Rev Immunol 2020; 19:584-593. [PMID: 31114038 DOI: 10.1038/s41577-019-0176-x] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Tuft cells are rare, secretory epithelial cells that generated scant immunological interest until contemporaneous reports in 2016 linked tuft cells with type 2 immunity in the small intestine. Tuft cells have the capacity to produce an unusual spectrum of biological effector molecules, including IL-25, eicosanoids implicated in allergy (such as cysteinyl leukotrienes and prostaglandin D2) and the neurotransmitter acetylcholine. In most cases, the extracellular signals controlling tuft cell effector function are unknown, but signal transduction is thought to proceed via canonical, G protein-coupled receptor-dependent pathways involving components of the signalling pathway used by type II taste bud cells to sense sweet, bitter and umami compounds. Tuft cells are ideally positioned as chemosensory sentinels that can detect and relay information from diverse luminal substances via what appear to be stereotyped outputs to initiate both positive and aversive responses through populations of immune and neuronal cells. Despite recent insights, numerous questions remain regarding tuft cell lineage, diversity and effector mechanisms and how tuft cells interface with the immunological niche in the tissues where they reside.
Collapse
Affiliation(s)
- Christoph Schneider
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Claire E O'Leary
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Richard M Locksley
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA. .,Department of Microbiology & Immunology, University of California-San Francisco, San Francisco, CA, USA. .,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
54
|
Widmayer P, Partsch V, Pospiech J, Kusumakshi S, Boehm U, Breer H. Distinct Cell Types With the Bitter Receptor Tas2r126 in Different Compartments of the Stomach. Front Physiol 2020; 11:32. [PMID: 32116750 PMCID: PMC7019106 DOI: 10.3389/fphys.2020.00032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/15/2020] [Indexed: 12/16/2022] Open
Abstract
Cells expressing bitter taste receptors (T2Rs or Tas2rs) in extraoral tissues are considered to be chemosensory cells mediating protective responses to potentially harmful or even antiinflammatory or antimicrobial compounds. In a previous study the activity of the Tas2R143/Tas2R135/Tas2r126 cluster promoter in the stomach was monitored using a Cre-reporter mouse line. Reporter gene expression and Tas2r126 mRNA were found in brush cells located at the distal wall of the gastric groove. In this study, we explored whether brush cells and epithelial cells of the stomach in fact contain the Tas2r126 receptor protein. Using immunohistochemistry, we demonstrate the presence of Tas2r126 immunoreactivity in different cell populations in the glandular stomach, in a subset of brush cells at the gastric groove and in unique glandular units as well as in certain enteroendocrine cells. In brush cells at the gastric groove, a strong immunofluorescence signal for the Tas2r126 receptor was observed at the most apical region of the cells, i.e., the microvillar tuft. In addition, we found a high density of Tas2r126-positive brush cells in the unique glandular units. These invaginations are located distally to the groove, open directly into the furrow and are enwrapped by smoothelin-immunoreactive muscles. In the corpus, Tas2r126 immunoreactivity was found in histamine-producing ECL cells and in ghrelin-producing X/A-like cells, the main enteroendcrine cells of this compartment. In the antrum, Tas2r126 labeling was observed in serotonin-storing EC cells and ghrelin cells, both representing only minor populations of enteroendocrine cells in this compartment. In conclusion, our data provide evidence for the presence of the Tas2r126 receptor protein in distinct cell types in the epithelium lining the mouse stomach which render the stomach responsive to agonists for bitter receptors.
Collapse
Affiliation(s)
- Patricia Widmayer
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Vanessa Partsch
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Jonas Pospiech
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Soumya Kusumakshi
- Experimental Pharmacology, Center for Molecular Signaling, School of Medicine, Saarland University, Homburg, Germany
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling, School of Medicine, Saarland University, Homburg, Germany
| | - Heinz Breer
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
55
|
Wang Q, Liszt KI, Depoortere I. Extra-oral bitter taste receptors: New targets against obesity? Peptides 2020; 127:170284. [PMID: 32092303 DOI: 10.1016/j.peptides.2020.170284] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/10/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022]
Abstract
Taste perception on the tongue is essential to help us to identify nutritious or potential toxic food substances. Emerging evidence has demonstrated the expression and function of bitter taste receptors (TAS2Rs) in a wide range of extra-oral tissues. In particular, TAS2Rs in gastrointestinal enteroendocrine cells control the secretion of appetite regulating gut hormones and influence hunger and food intake. Furthermore, these effects may be reinforced by the presence of TAS2Rs on intestinal smooth muscle cells, adipocytes and the brain. This review summarises how activation of extra-oral TAS2Rs can influence appetite and body weight control and how obesity impacts the expression and function of TAS2Rs. Region-selective targeting of bitter taste receptors may be promising targets for the treatment of obesity.
Collapse
Affiliation(s)
- Qiaoling Wang
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Kathrin I Liszt
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Inge Depoortere
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium.
| |
Collapse
|
56
|
Development of a cognitive function marker based on D-amino acid proportions using new chiral tandem LC-MS/MS systems. Sci Rep 2020; 10:804. [PMID: 31965028 PMCID: PMC6972825 DOI: 10.1038/s41598-020-57878-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
The incidence of dementia, a clinical symptom characterized by severe cognitive decline, is increasing worldwide. Predictive biomarkers are therefore required for early identification and management. D-amino acids in the brain contribute to cognitive function and are suggested as useful biomarkers for diagnosing dementia risk. To clarify their relationship with human cognitive decline, we developed an identification method of chiral metabolomics for detecting slight differences in chiral amino acid amounts. Chiral tandem liquid chromatography-tandem mass spectrometry systems were applied for sensitive and selective amino acid species along with chiral species determination based on anion and zwitterion exchange mechanisms. In a comprehensive health cohort (cross-sectional study), we measured blood chiral amino acid levels from 305 women (65–80 years old) classified into Control, Mild-cognitive-Impairment (MCI), and Dementia groups using the Mini-Mental State Examination. MCI exhibited higher D-Pro (D-Pro/(D-Pro + L-Pro)) proportion vs the Control group, suggesting this proportion as a useful biomarker for MCI. Biomarker accuracy was improved in combination with D-Ser proportion. Receiver operating characteristics analysis of the Control vs. MCI proportion obtained area under the curve (0.80) with 70% sensitivity and 84% specificity at the optimal cutoff value (0.30). Thus, dementia monitoring can be improved by including trace D-amino acids measurements.
Collapse
|
57
|
D-amino acids in foods. Appl Microbiol Biotechnol 2019; 104:555-574. [PMID: 31832715 DOI: 10.1007/s00253-019-10264-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
With the only exception of glycine, all amino acids exist in two specular structures which are mirror images of each other, called D-(dextro) and L-(levo) enantiomers. During evolution, L-amino acids were preferred for protein synthesis and main metabolism; however, the D-amino acids (D-AAs) acquired different and specific functions in different organisms (from playing a structural role in the peptidoglycan of the bacterial cell wall to modulating neurotransmission in mammalian brain). With the advent of sophisticated and sensitive analytical techniques, it was established during the past few decades that many foods contain considerable amounts of D-AAs: we consume more than 100 mg of D-AAs every day. D-AAs are present in a variety of foodstuffs, where they fulfill a relevant role in producing differences in taste and flavor and in their antimicrobial and antiaging properties from the corresponding L-enantiomers. In this review, we report on the derivation of D-AAs in foods, mainly originating from the starting materials, fermentation processes, racemization during food processing, or contamination. We then focus on leading-edge methods to identify and quantify D-AAs in foods. Finally, current knowledge concerning the effect of D-AAs on the nutritional state and human health is summarized, highlighting some positive and negative effects. Notwithstanding recent progress in D-AA research, the relationships between presence and nutritional value of D-AAs in foods represent a main scientific issue with interesting economic impact in the near future.
Collapse
|
58
|
Interactions between taste receptors and the gastrointestinal microbiome in inflammatory bowel disease. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2019. [DOI: 10.1016/j.jnim.2019.100106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
59
|
Suzuki M, Gonda Y, Yamada M, Vandebroek AA, Mita M, Hamase K, Yasui M, Sasabe J. Serum D-serine accumulation after proximal renal tubular damage involves neutral amino acid transporter Asc-1. Sci Rep 2019; 9:16705. [PMID: 31723194 PMCID: PMC6853873 DOI: 10.1038/s41598-019-53302-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/30/2019] [Indexed: 01/09/2023] Open
Abstract
Chiral separation has revealed enantio-specific changes in blood and urinary levels of amino acids in kidney diseases. Blood D-/L-serine ratio has been identified to have a correlation with creatinine-based kidney function. However, the mechanism of distinctive behavior in serine enantiomers is not well understood. This study was performed to investigate the role of renal tubules in derangement of serine enantiomers using a mouse model of cisplatin-induced tubular injury. Cisplatin treatment resulted in tubular damage histologically restricted to the proximal tubules and showed a significant increase of serum D-/L-serine ratio with positive correlations to serum creatinine and blood urine nitrogen (BUN). The increased D-/L-serine ratio did not associate with activity of a D-serine degrading enzyme, D-amino acid oxidase, in the kidney. Screening transcriptions of neutral amino acid transporters revealed that Asc-1, found in renal tubules and collecting ducts, was significantly increased after cisplatin-treatment, which correlates with serum D-serine increase. In vitro study using a kidney cell line showed that Asc-1 is induced by cisplatin and mediated influx of D-serine preferably to L-serine. Collectively, these results suggest that cisplatin-induced damage of proximal tubules accompanies Asc-1 induction in tubules and collecting ducts and leads to serum D-serine accumulation.
Collapse
Affiliation(s)
- Masataka Suzuki
- Keio University School of Medicine, Department of Pharmacology, Tokyo, 160-8582, Japan
| | - Yusuke Gonda
- Keio University School of Medicine, Department of Pharmacology, Tokyo, 160-8582, Japan
| | - Marina Yamada
- Nippon Sport Science University, Faculty of Medical Science, Kanagawa, 227-0033, Japan
| | - Arno A Vandebroek
- Keio University School of Medicine, Department of Pharmacology, Tokyo, 160-8582, Japan
| | - Masashi Mita
- KAGAMI Lab, Shiseido Co., Ltd., 1-6-2 Higashi-shimbashi, Minato-ku, Tokyo, 105-8310, Japan
| | - Kenji Hamase
- Kyushu University, Graduate School of Pharmaceutical Sciences, Fukuoka, 812-8582, Japan
| | - Masato Yasui
- Keio University School of Medicine, Department of Pharmacology, Tokyo, 160-8582, Japan
| | - Jumpei Sasabe
- Keio University School of Medicine, Department of Pharmacology, Tokyo, 160-8582, Japan.
| |
Collapse
|
60
|
Ting HA, von Moltke J. The Immune Function of Tuft Cells at Gut Mucosal Surfaces and Beyond. THE JOURNAL OF IMMUNOLOGY 2019; 202:1321-1329. [PMID: 30782851 DOI: 10.4049/jimmunol.1801069] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/21/2018] [Indexed: 12/25/2022]
Abstract
Tuft cells were first discovered in epithelial barriers decades ago, but their function remained unclear until recently. In the last 2 years, a series of studies has provided important advances that link tuft cells to infectious diseases and the host immune responses. Broadly, a model has emerged in which tuft cells use chemosensing to monitor their surroundings and translate environmental signals into effector functions that regulate immune responses in the underlying tissue. In this article, we review the current understanding of tuft cell immune function in the intestines, airways, and thymus. In particular, we discuss the role of tuft cells in type 2 immunity, norovirus infection, and thymocyte development. Despite recent advances, many fundamental questions about the function of tuft cells in immunity remain to be answered.
Collapse
Affiliation(s)
- Hung-An Ting
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109
| | - Jakob von Moltke
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109
| |
Collapse
|
61
|
Abstract
Olfactory and taste receptors are expressed primarily in the nasal olfactory epithelium and gustatory taste bud cells, where they transmit real-time sensory signals to the brain. However, they are also expressed in multiple extra-nasal and extra-oral tissues, being implicated in diverse biological processes including sperm chemotaxis, muscle regeneration, bronchoconstriction and bronchodilatation, inflammation, appetite regulation and energy metabolism. Elucidation of the physiological roles of these ectopic receptors is revealing potential therapeutic and diagnostic applications in conditions including wounds, hair loss, asthma, obesity and cancers. This Review outlines current understanding of the diverse functions of ectopic olfactory and taste receptors and assesses their potential to be therapeutically exploited.
Collapse
|
62
|
Kumpitsch C, Koskinen K, Schöpf V, Moissl-Eichinger C. The microbiome of the upper respiratory tract in health and disease. BMC Biol 2019; 17:87. [PMID: 31699101 PMCID: PMC6836414 DOI: 10.1186/s12915-019-0703-z] [Citation(s) in RCA: 258] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 02/08/2023] Open
Abstract
The human upper respiratory tract (URT) offers a variety of niches for microbial colonization. Local microbial communities are shaped by the different characteristics of the specific location within the URT, but also by the interaction with both external and intrinsic factors, such as ageing, diseases, immune responses, olfactory function, and lifestyle habits such as smoking. We summarize here the current knowledge about the URT microbiome in health and disease, discuss methodological issues, and consider the potential of the nasal microbiome to be used for medical diagnostics and as a target for therapy.
Collapse
Affiliation(s)
- Christina Kumpitsch
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Kaisa Koskinen
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Veronika Schöpf
- Institute of Psychology, University of Graz, Universitaetsplatz 2, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
- Present address: Medical University Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Christine Moissl-Eichinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
63
|
Daghfous G, Auclair F, Blumenthal F, Suntres T, Lamarre-Bourret J, Mansouri M, Zielinski B, Dubuc R. Sensory cutaneous papillae in the sea lamprey (Petromyzon marinus L.): I. Neuroanatomy and physiology. J Comp Neurol 2019; 528:664-686. [PMID: 31605382 DOI: 10.1002/cne.24787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022]
Abstract
Molecules present in an animal's environment can indicate the presence of predators, food, or sexual partners and consequently, induce migratory, reproductive, foraging, or escape behaviors. Three sensory systems, the olfactory, gustatory, and solitary chemosensory cell (SCC) systems detect chemical stimuli in vertebrates. While a great deal of research has focused on the olfactory and gustatory system over the years, it is only recently that significant attention has been devoted to the SCC system. The SCCs are microvillous cells that were first discovered on the skin of fish, and later in amphibians, reptiles, and mammals. Lampreys also possess SCCs that are particularly numerous on cutaneous papillae. However, little is known regarding their precise distribution, innervation, and function. Here, we show that sea lampreys (Petromyzon marinus L.) have cutaneous papillae located around the oral disk, nostril, gill pores, and on the dorsal fins and that SCCs are particularly numerous on these papillae. Tract-tracing experiments demonstrated that the oral and nasal papillae are innervated by the trigeminal nerve, the gill pore papillae are innervated by branchial nerves, and the dorsal fin papillae are innervated by spinal nerves. We also characterized the response profile of gill pore papillae to some chemicals and showed that trout-derived chemicals, amino acids, and a bile acid produced potent responses. Together with a companion study (Suntres et al., Journal of Comparative Neurology, this issue), our results provide new insights on the function and evolution of the SCC system in vertebrates.
Collapse
Affiliation(s)
- Gheylen Daghfous
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada.,Groupe de Recherche en Activité Physique Adaptée, Département des Sciences de l'Activité Physique, Université du Québec à Montréal, Montréal, Québec, Canada
| | - François Auclair
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - Felix Blumenthal
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - Tina Suntres
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Jessica Lamarre-Bourret
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - Masoud Mansouri
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - Barbara Zielinski
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada.,Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - Réjean Dubuc
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada.,Groupe de Recherche en Activité Physique Adaptée, Département des Sciences de l'Activité Physique, Université du Québec à Montréal, Montréal, Québec, Canada
| |
Collapse
|
64
|
Zheng X, Tizzano M, Redding K, He J, Peng X, Jiang P, Xu X, Zhou X, Margolskee RF. Gingival solitary chemosensory cells are immune sentinels for periodontitis. Nat Commun 2019; 10:4496. [PMID: 31582750 PMCID: PMC6776549 DOI: 10.1038/s41467-019-12505-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 09/13/2019] [Indexed: 02/05/2023] Open
Abstract
Solitary chemosensory cells (SCCs) are epithelial sentinels that utilize bitter Tas2r receptors and coupled taste transduction elements to detect pathogenic bacterial metabolites, triggering host defenses to control the infection. Here we report that SCCs are present in mouse gingival junctional epithelium, where they express several Tas2rs and the taste signaling components α-gustducin (Gnat3), TrpM5, and Plcβ2. Gnat3-/- mice have altered commensal oral microbiota and accelerated naturally occurring alveolar bone loss. In ligature-induced periodontitis, knockout of taste signaling molecules or genetic absence of gingival SCCs (gSCCs) increases the bacterial load, reduces bacterial diversity, and renders the microbiota more pathogenic, leading to greater alveolar bone loss. Topical treatment with bitter denatonium to activate gSCCs upregulates the expression of antimicrobial peptides and ameliorates ligature-induced periodontitis in wild-type but not in Gnat3-/- mice. We conclude that gSCCs may provide a promising target for treating periodontitis by harnessing innate immunity to regulate the oral microbiome.
Collapse
Affiliation(s)
- Xin Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China
- Monell Chemical Senses Center, Philadelphia, PA, 19104, USA
| | - Marco Tizzano
- Monell Chemical Senses Center, Philadelphia, PA, 19104, USA
| | - Kevin Redding
- Monell Chemical Senses Center, Philadelphia, PA, 19104, USA
| | - Jinzhi He
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China
| | - Peihua Jiang
- Monell Chemical Senses Center, Philadelphia, PA, 19104, USA
| | - Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China.
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, China.
| | | |
Collapse
|
65
|
Carey RM, Lee RJ. Taste Receptors in Upper Airway Innate Immunity. Nutrients 2019; 11:nu11092017. [PMID: 31466230 PMCID: PMC6770031 DOI: 10.3390/nu11092017] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Taste receptors, first identified on the tongue, are best known for their role in guiding our dietary preferences. The expression of taste receptors for umami, sweet, and bitter have been demonstrated in tissues outside of the oral cavity, including in the airway, brain, gastrointestinal tract, and reproductive organs. The extra-oral taste receptor chemosensory pathways and the endogenous taste receptor ligands are generally unknown, but there is increasing data suggesting that taste receptors are involved in regulating some aspects of innate immunity, and may potentially control the composition of the nasal microbiome in healthy individuals or patients with upper respiratory diseases like chronic rhinosinusitis (CRS). For this reason, taste receptors may serve as potential therapeutic targets, providing alternatives to conventional antibiotics. This review focuses on the physiology of sweet (T1R) and bitter (T2R) taste receptors in the airway and their activation by secreted bacterial products. There is particular focus on T2R38 in sinonasal ciliated cells, as well as the sweet and bitter receptors found on specialized sinonasal solitary chemosensory cells. Additionally, this review explores the impact of genetic variations in these receptors on the differential susceptibility of patients to upper airway infections, such as CRS.
Collapse
Affiliation(s)
- Ryan M Carey
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert J Lee
- Department of Otorhinolaryngology and Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
66
|
Lasconi C, Pifferi S, Hernandez-Clavijo A, Merigo F, Cecchini MP, Gonzalez-Velandia KY, Agostinelli E, Sbarbati A, Menini A. Bitter tastants and artificial sweeteners activate a subset of epithelial cells in acute tissue slices of the rat trachea. Sci Rep 2019; 9:8834. [PMID: 31222082 PMCID: PMC6586933 DOI: 10.1038/s41598-019-45456-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
Bitter and sweet receptors (T2Rs and T1Rs) are expressed in many extra-oral tissues including upper and lower airways. To investigate if bitter tastants and artificial sweeteners could activate physiological responses in tracheal epithelial cells we performed confocal Ca2+ imaging recordings on acute tracheal slices. We stimulated the cells with denatonium benzoate, a T2R agonist, and with the artificial sweeteners sucralose, saccharin and acesulfame-K. To test cell viability we measured responses to ATP. We found that 39% of the epithelial cells responding to ATP also responded to bitter stimulation with denatonium benzoate. Moreover, artificial sweeteners activated different percentages of the cells, ranging from 5% for sucralose to 26% for saccharin, and 27% for acesulfame-K. By using carbenoxolone, a gap junction blocker, we excluded that responses were mainly mediated by Ca2+ waves through cell-to-cell junctions. Pharmacological experiments showed that both denatonium and artificial sweeteners induced a PLC-mediated release of Ca2+ from internal stores. In addition, bitter tastants and artificial sweeteners activated a partially overlapping subpopulation of tracheal epithelial cells. Our results provide new evidence that a subset of ATP-responsive tracheal epithelial cells from rat are activated by both bitter tastants and artificial sweeteners.
Collapse
Affiliation(s)
- Chiara Lasconi
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, School of Medicine, Verona, Italy
| | - Simone Pifferi
- Neurobiology Group, SISSA, International School for Advanced Studies, Trieste, Italy.
| | | | - Flavia Merigo
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, School of Medicine, Verona, Italy
| | - Maria Paola Cecchini
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, School of Medicine, Verona, Italy.
| | | | - Emilio Agostinelli
- Neurobiology Group, SISSA, International School for Advanced Studies, Trieste, Italy
| | - Andrea Sbarbati
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, School of Medicine, Verona, Italy
| | - Anna Menini
- Neurobiology Group, SISSA, International School for Advanced Studies, Trieste, Italy
| |
Collapse
|
67
|
Rane CK, Jackson SR, Pastore CF, Zhao G, Weiner AI, Patel NN, Herbert DR, Cohen NA, Vaughan AE. Development of solitary chemosensory cells in the distal lung after severe influenza injury. Am J Physiol Lung Cell Mol Physiol 2019; 316:L1141-L1149. [PMID: 30908939 PMCID: PMC6620670 DOI: 10.1152/ajplung.00032.2019] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 12/24/2022] Open
Abstract
H1N1 influenza virus infection induces dramatic and permanent alveolar remodeling mediated by p63+ progenitor cell expansion in both mice and some patients with acute respiratory distress syndrome. This persistent lung epithelial dysplasia is accompanied by chronic inflammation, but the driver(s) of this pathology are unknown. This work identified de novo appearance of solitary chemosensory cells (SCCs), as defined by the tuft cell marker doublecortin-like kinase 1, in post-influenza lungs, arising in close proximity with the dysplastic epithelium, whereas uninjured lungs are devoid of SCCs. Interestingly, fate mapping demonstrated that these cells are derived from p63-expressing lineage-negative progenitors, the same cell of origin as the dysplastic epithelium. Direct activation of SCCs with denatonium + succinate increased plasma extravasation specifically in post-influenza virus-injured lungs. Thus we demonstrate the previously unrecognized development and activity of SCCs in the lung following influenza virus infection, implicating SCCs as a central feature of dysplastic remodeling.
Collapse
Affiliation(s)
- Chetan K Rane
- School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Sergio R Jackson
- School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Christopher F Pastore
- School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Gan Zhao
- School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Aaron I Weiner
- School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Neil N Patel
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
| | - De'Broski R Herbert
- School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Noam A Cohen
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania
- Monell Chemical Senses Center , Philadelphia, Pennsylvania
- Philadelphia Veterans Affairs Medical Center Surgical Service , Philadelphia, Pennsylvania
| | - Andrew E Vaughan
- School of Veterinary Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- Institute for Regenerative Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
68
|
Wang Q, Liszt KI, Deloose E, Canovai E, Thijs T, Farré R, Ceulemans LJ, Lannoo M, Tack J, Depoortere I. Obesity alters adrenergic and chemosensory signaling pathways that regulate ghrelin secretion in the human gut. FASEB J 2019; 33:4907-4920. [PMID: 30629462 DOI: 10.1096/fj.201801661rr] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chemosensory signaling in organs such as the mouth and gut contributes to the mechanisms that control metabolism. We investigated the chemosensory pathways that regulate secretion of the hunger hormone ghrelin in response to neurotransmitters, bitter and sweet tastants at the cellular level in the human gut mucosa, and the disturbances in this regulatory pathway induced by obesity. Obesity impaired ghrelin protein production and adrenalin-induced ghrelin secretion in fundic cells, which was counterbalanced by somatostatin. Bitter agonists selective for taste receptor type 2 (TAS2Rs), TAS2R5 and TAS2R10 stimulated ghrelin secretion in fundic cells. The stimulatory effect of the broadly tuned bitter agonist, denatonium benzoate, was selectively blunted by obesity in the small intestine but not in the fundus. Luminal glucose concentrations inhibited ghrelin secretion via sodium-dependent glucose cotransporter and taste receptor type 1 member 3. Obesity altered the sensitivity of the ghrelin cell to glucose in the small intestine but not in the fundus. Sweet taste receptor activation inhibited bitter taste signaling of the ghrelin cell. In conclusion, obesity impairs the sympathetic drive that controls ghrelin release in the fundus and affects the sensitivity of the ghrelin cell to bitter and sweet stimuli in the small intestine but not in the fundus. Region-selective targeting of gut taste receptors in obesity is indicated.-Wang, Q., Liszt, K. I., Deloose, E., Canovai, E., Thijs, T., Farré, R., Ceulemans, L. J., Lannoo, M., Tack, J., Depoortere, I. Obesity alters adrenergic and chemosensory signaling pathways that regulate ghrelin secretion in the human gut.
Collapse
Affiliation(s)
- Qiaoling Wang
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Kathrin I Liszt
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Eveline Deloose
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Emilio Canovai
- Department of Abdominal Surgery and Transplant Coordination, University Hospitals Leuven, Leuven, Belgium; and
| | - Theo Thijs
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Ricard Farré
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- Department of Abdominal Surgery and Transplant Coordination, University Hospitals Leuven, Leuven, Belgium; and
| | - Matthias Lannoo
- Department of Abdominal Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Inge Depoortere
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| |
Collapse
|
69
|
Abstract
Many odors activate the intranasal chemosensory trigeminal system where they produce cooling and other somatic sensations such as tingling, burning, or stinging. Specific trigeminal receptors are involved in the mediation of these sensations. Importantly, the trigeminal system also mediates sensitivity to airflow. The intranasal trigeminal and the olfactory system are closely connected. With regard to central nervous processing, it is most interesting that trigeminal stimuli can activate the piriform cortex, which is typically viewed as the primary olfactory cortex. This suggests that interactions between the two systems may form at a relatively early stage of processing. For example, there is evidence showing that acquired olfactory loss leads to reduced trigeminal sensitivity, probably on account of the lack of interaction in the central nervous system. Decreased trigeminal sensitivity may also be responsible for changes in airflow perception, leading to the impression of congested nasal airways.
Collapse
Affiliation(s)
- Thomas Hummel
- Department of Otorhinolaryngology, Smell and Taste Clinic, Technische Universität Dresden, Dresden, Germany.
| | - Johannes Frasnelli
- Université du Québec à Trois-Rivières, Department of Anatomy, Trois-Rivières, QC, Canada
| |
Collapse
|
70
|
O'Leary CE, Schneider C, Locksley RM. Tuft Cells-Systemically Dispersed Sensory Epithelia Integrating Immune and Neural Circuitry. Annu Rev Immunol 2018; 37:47-72. [PMID: 30379593 DOI: 10.1146/annurev-immunol-042718-041505] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tuft cells-rare solitary chemosensory cells in mucosal epithelia-are undergoing intense scientific scrutiny fueled by recent discovery of unsuspected connections to type 2 immunity. These cells constitute a conduit by which ligands from the external space are sensed via taste-like signaling pathways to generate outputs unique among epithelial cells: the cytokine IL-25, eicosanoids associated with allergic immunity, and the neurotransmitter acetylcholine. The classic type II taste cell transcription factor POU2F3 is lineage defining, suggesting a conceptualization of these cells as widely distributed environmental sensors with effector functions interfacing type 2 immunity and neural circuits. Increasingly refined single-cell analytics have revealed diversity among tuft cells that extends from nasal epithelia and type II taste cells to ex-Aire-expressing medullary thymic cells and small-intestine cells that mediate tissue remodeling in response to colonizing helminths and protists.
Collapse
Affiliation(s)
- Claire E O'Leary
- Department of Medicine, University of California, San Francisco, California 94143, USA; , ,
| | - Christoph Schneider
- Department of Medicine, University of California, San Francisco, California 94143, USA; , ,
| | - Richard M Locksley
- Department of Medicine, University of California, San Francisco, California 94143, USA; , , .,Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA.,University of California, San Francisco, Howard Hughes Medical Institute, San Francisco, California 94143, USA
| |
Collapse
|
71
|
Earl JP, Adappa ND, Krol J, Bhat AS, Balashov S, Ehrlich RL, Palmer JN, Workman AD, Blasetti M, Sen B, Hammond J, Cohen NA, Ehrlich GD, Mell JC. Species-level bacterial community profiling of the healthy sinonasal microbiome using Pacific Biosciences sequencing of full-length 16S rRNA genes. MICROBIOME 2018; 6:190. [PMID: 30352611 PMCID: PMC6199724 DOI: 10.1186/s40168-018-0569-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 10/02/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Pan-bacterial 16S rRNA microbiome surveys performed with massively parallel DNA sequencing technologies have transformed community microbiological studies. Current 16S profiling methods, however, fail to provide sufficient taxonomic resolution and accuracy to adequately perform species-level associative studies for specific conditions. This is due to the amplification and sequencing of only short 16S rRNA gene regions, typically providing for only family- or genus-level taxonomy. Moreover, sequencing errors often inflate the number of taxa present. Pacific Biosciences' (PacBio's) long-read technology in particular suffers from high error rates per base. Herein, we present a microbiome analysis pipeline that takes advantage of PacBio circular consensus sequencing (CCS) technology to sequence and error correct full-length bacterial 16S rRNA genes, which provides high-fidelity species-level microbiome data. RESULTS Analysis of a mock community with 20 bacterial species demonstrated 100% specificity and sensitivity with regard to taxonomic classification. Examination of a 250-plus species mock community demonstrated correct species-level classification of > 90% of taxa, and relative abundances were accurately captured. The majority of the remaining taxa were demonstrated to be multiply, incorrectly, or incompletely classified. Using this methodology, we examined the microgeographic variation present among the microbiomes of six sinonasal sites, by both swab and biopsy, from the anterior nasal cavity to the sphenoid sinus from 12 subjects undergoing trans-sphenoidal hypophysectomy. We found greater variation among subjects than among sites within a subject, although significant within-individual differences were also observed. Propiniobacterium acnes (recently renamed Cutibacterium acnes) was the predominant species throughout, but was found at distinct relative abundances by site. CONCLUSIONS Our microbial composition analysis pipeline for single-molecule real-time 16S rRNA gene sequencing (MCSMRT, https://github.com/jpearl01/mcsmrt ) overcomes deficits of standard marker gene-based microbiome analyses by using CCS of entire 16S rRNA genes to provide increased taxonomic and phylogenetic resolution. Extensions of this approach to other marker genes could help refine taxonomic assignments of microbial species and improve reference databases, as well as strengthen the specificity of associations between microbial communities and dysbiotic states.
Collapse
Affiliation(s)
- Joshua P. Earl
- Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102 USA
| | - Nithin D. Adappa
- Veteran’s Administration Medical Center, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 5 Ravdin, Philadelphia, PA 19104-4283 USA
| | - Jaroslaw Krol
- Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102 USA
| | - Archana S. Bhat
- Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102 USA
| | - Sergey Balashov
- Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102 USA
| | - Rachel L. Ehrlich
- Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102 USA
| | - James N. Palmer
- Veteran’s Administration Medical Center, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 5 Ravdin, Philadelphia, PA 19104-4283 USA
| | - Alan D. Workman
- Veteran’s Administration Medical Center, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 5 Ravdin, Philadelphia, PA 19104-4283 USA
| | - Mariel Blasetti
- Veteran’s Administration Medical Center, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 5 Ravdin, Philadelphia, PA 19104-4283 USA
| | - Bhaswati Sen
- Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102 USA
| | - Jocelyn Hammond
- Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102 USA
| | - Noam A. Cohen
- Veteran’s Administration Medical Center, Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, 5 Ravdin, Philadelphia, PA 19104-4283 USA
| | - Garth D. Ehrlich
- Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102 USA
| | - Joshua Chang Mell
- Department of Microbiology & Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102 USA
| |
Collapse
|
72
|
Maina IW, Workman AD, Cohen NA. The role of bitter and sweet taste receptors in upper airway innate immunity: Recent advances and future directions. World J Otorhinolaryngol Head Neck Surg 2018; 4:200-208. [PMID: 30506052 PMCID: PMC6251955 DOI: 10.1016/j.wjorl.2018.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 07/18/2018] [Indexed: 01/02/2023] Open
Abstract
Bitter (T2R) and sweet (T1R) taste receptors have been implicated in sinonasal innate immunity and in the pathophysiology of chronic rhinosinusitis (CRS). Taste receptors are expressed on several sinonasal cell types including ciliated epithelial cells and solitary chemosensory cells. Bitter agonists released by pathogenic microbes elicit a T2R dependent signaling cascade which induces the release of bactericidal nitric oxide, increases mucociliary clearance, and promotes secretion of antimicrobial peptides. Genetic variation conferred by polymorphisms in T2R related genes is associated with differential CRS susceptibility, symptomatology and post-treatment outcomes. More recently, based on our understanding of T1R and T2R function, investigators have discovered novel potential therapeutics in T2R agonists and T1R antagonists. This review will discuss bitter and sweet taste receptor function in sinonasal immunity, explore the emerging diagnostic and therapeutic implications stemming from the most recent findings, and suggest directions for future research.
Collapse
Affiliation(s)
- Ivy W Maina
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alan D Workman
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Noam A Cohen
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA, 19104, USA.,Monell Chemical Senses Center, Philadelphia, PA, 19104, USA
| |
Collapse
|
73
|
Kohanski MA, Workman AD, Patel NN, Hung LY, Shtraks JP, Chen B, Blasetti M, Doghramji L, Kennedy DW, Adappa ND, Palmer JN, Herbert DR, Cohen NA. Solitary chemosensory cells are a primary epithelial source of IL-25 in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2018; 142:460-469.e7. [PMID: 29778504 PMCID: PMC9057652 DOI: 10.1016/j.jaci.2018.03.019] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/11/2018] [Accepted: 03/16/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND IL-25 can function as an early signal for the respiratory type 2 response characteristic of allergic asthma and chronic rhinosinusitis with nasal polyps (CRSwNP). In the mouse gut, tuft cells are the epithelial source of IL-25. However, the source of human airway epithelial IL-25 has remained elusive. OBJECTIVE In this study we sought to determine whether the solitary chemosensory cell (SCC) is the predominant source of IL-25 in the sinonasal epithelium. METHOD Flow cytometry and immunofluorescence for SCCs and IL-25 were used to interrogate polyp and turbinate tissue from patients with CRSwNP. Mucus was collected during acute inflammatory exacerbations from patients with CRSwNP or chronic rhinosinusitis without nasal polyps and IL-25 levels determined by using ELISA. Lastly, sinonasal epithelial cultures derived from polyp and turbinate tissue were stimulated with IL-13 and analyzed for SCC proliferation and IL-25 production. RESULTS This study demonstrates that a discrete cell type, likely an SCC, characterized by expression of the taste-associated G protein gustducin and the intestinal tuft cell marker doublecortin-like kinase 1, is the predominant source of IL-25 in the human upper airway. Additionally, we show that patients with CRSwNP have increased numbers of SCCs in nasal polyp tissue and that in vitro IL-13 exposure both increased proliferation and induced apical secretion of IL-25 into the mucosal layer. CONCLUSIONS Inflammatory sinus polyps but not adjacent turbinate tissue show expansion of the SCC population, which is the source of epithelial IL-25.
Collapse
Affiliation(s)
- Michael A Kohanski
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pa
| | - Alan D Workman
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pa
| | - Neil N Patel
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pa
| | - Li-Yin Hung
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Julie P Shtraks
- Department of Otolaryngology-Head and Neck Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pa
| | - Bei Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pa; Philadelphia Veterans Affairs Medical Center, Philadelphia, Pa
| | - Mariel Blasetti
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pa
| | - Laurel Doghramji
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pa
| | - David W Kennedy
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pa
| | - Nithin D Adappa
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pa
| | - James N Palmer
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pa
| | - De'Broski R Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Noam A Cohen
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Rhinology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pa; Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pa; Monell Chemical Senses Center, Philadelphia, Pa.
| |
Collapse
|
74
|
The Role of Taste Receptors in Airway Innate Immune Defense. SINUSITIS 2018. [DOI: 10.3390/sinusitis3020006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
75
|
Distinctive Roles of D-Amino Acids in the Homochiral World: Chirality of Amino Acids Modulates Mammalian Physiology and Pathology. Keio J Med 2018; 68:1-16. [PMID: 29794368 DOI: 10.2302/kjm.2018-0001-ir] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Living organisms enantioselectively employ L-amino acids as the molecular architecture of protein synthesized in the ribosome. Although L-amino acids are dominantly utilized in most biological processes, accumulating evidence points to the distinctive roles of D-amino acids in non-ribosomal physiology. Among the three domains of life, bacteria have the greatest capacity to produce a wide variety of D-amino acids. In contrast, archaea and eukaryotes are thought generally to synthesize only two kinds of D-amino acids: D-serine and D-aspartate. In mammals, D-serine is critical for neurotransmission as an endogenous coagonist of N-methyl D-aspartate receptors. Additionally, D-aspartate is associated with neurogenesis and endocrine systems. Furthermore, recognition of D-amino acids originating in bacteria is linked to systemic and mucosal innate immunity. Among the roles played by D-amino acids in human pathology, the dysfunction of neurotransmission mediated by D-serine is implicated in psychiatric and neurological disorders. Non-enzymatic conversion of L-aspartate or L-serine residues to their D-configurations is involved in age-associated protein degeneration. Moreover, the measurement of plasma or urinary D-/L-serine or D-/L-aspartate levels may have diagnostic or prognostic value in the treatment of kidney diseases. This review aims to summarize current understanding of D-amino-acid-associated biology with a major focus on mammalian physiology and pathology.
Collapse
|
76
|
Sasabe J, Suzuki M. Emerging Role of D-Amino Acid Metabolism in the Innate Defense. Front Microbiol 2018; 9:933. [PMID: 29867842 PMCID: PMC5954117 DOI: 10.3389/fmicb.2018.00933] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/23/2018] [Indexed: 12/30/2022] Open
Abstract
Mammalian innate and adaptive immune systems use the pattern recognition receptors, such as toll-like receptors, to detect conserved bacterial and viral components. Bacteria synthesize diverse D-amino acids while eukaryotes and archaea generally produce two D-amino acids, raising the possibility that many of bacterial D-amino acids are bacteria-specific metabolites. Although D-amino acids have not been identified to bind to any known pattern recognition receptors, D-amino acids are enantioselectively recognized by some other receptors and enzymes including a flavoenzyme D-amino acid oxidase (DAO) in mammals. At host-microbe interfaces in the neutrophils and intestinal mucosa, DAO catalyzes oxidation of bacterial D-amino acids, such as D-alanine, and generates H2O2, which is linked to antimicrobial activity. Intestinal DAO also modifies the composition of microbiota through modulation of growth for some bacteria that are dependent on host nutrition. Furthermore, regulation and recognition of D-amino acids in mammals have additional meanings at various host-microbe interfaces; D-phenylalanine and D-tryptophan regulate chemotaxis of neutrophils through a G-coupled protein receptor, D-serine has a bacteriostatic role in the urinary tract, D-phenylalanine and D-leucine inhibit innate immunity through the sweet taste receptor in the upper airway, and D-tryptophan modulates immune tolerance in the lower airway. This mini-review highlights recent evidence supporting the hypothesis that D-amino acids are utilized as inter-kingdom communication at host-microbe interface to modulate bacterial colonization and host defense.
Collapse
Affiliation(s)
- Jumpei Sasabe
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan
| | - Masataka Suzuki
- Department of Pharmacology, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
77
|
Cystathionine β-lyase is involved in d-amino acid metabolism. Biochem J 2018; 475:1397-1410. [PMID: 29592871 DOI: 10.1042/bcj20180039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 01/07/2023]
Abstract
Non-canonical d-amino acids play important roles in bacteria including control of peptidoglycan metabolism and biofilm disassembly. Bacteria appear to produce non-canonical d-amino acids to adapt to various environmental changes, and understanding the biosynthetic pathways is important. We identified novel amino acid racemases possessing the ability to produce non-canonical d-amino acids in Escherichia coli and Bacillus subtilis in our previous study, whereas the biosynthetic pathways of these d-amino acids still remain unclear. In the present study, we demonstrated that two cystathionine β-lyases (MetC and MalY) from E. coli produce non-canonical d-amino acids including non-proteinogenic amino acids. Furthermore, MetC displayed d- and l-serine (Ser) dehydratase activity. We characterised amino acid racemase, Ser dehydratase and cysteine lyase activities, and all were higher for MetC. Interestingly, all three activities were at a comparable level for MetC, although optimal conditions for each reaction were distinct. These results indicate that MetC and MalY are multifunctional enzymes involved in l-methionine metabolism and the production of d-amino acids, as well as d- and l-Ser metabolism. To our knowledge, this is the first evidence that cystathionine β-lyase is a multifunctional enzyme with three different activities.
Collapse
|
78
|
Aliashkevich A, Alvarez L, Cava F. New Insights Into the Mechanisms and Biological Roles of D-Amino Acids in Complex Eco-Systems. Front Microbiol 2018; 9:683. [PMID: 29681896 PMCID: PMC5898190 DOI: 10.3389/fmicb.2018.00683] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/22/2018] [Indexed: 01/22/2023] Open
Abstract
In the environment bacteria share their habitat with a great diversity of organisms, from microbes to humans, animals and plants. In these complex communities, the production of extracellular effectors is a common strategy to control the biodiversity by interfering with the growth and/or viability of nearby microbes. One of such effectors relies on the production and release of extracellular D-amino acids which regulate diverse cellular processes such as cell wall biogenesis, biofilm integrity, and spore germination. Non-canonical D-amino acids are mainly produced by broad spectrum racemases (Bsr). Bsr’s promiscuity allows it to generate high concentrations of D-amino acids in environments with variable compositions of L-amino acids. However, it was not clear until recent whether these molecules exhibit divergent functions. Here we review the distinctive biological roles of D-amino acids, their mechanisms of action and their modulatory properties of the biodiversity of complex eco-systems.
Collapse
Affiliation(s)
- Alena Aliashkevich
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Laura Alvarez
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Felipe Cava
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
79
|
Workman AD, Maina IW, Brooks SG, Kohanski MA, Cowart BJ, Mansfield C, Kennedy DW, Palmer JN, Adappa ND, Reed DR, Lee RJ, Cohen NA. The Role of Quinine-Responsive Taste Receptor Family 2 in Airway Immune Defense and Chronic Rhinosinusitis. Front Immunol 2018; 9:624. [PMID: 29643854 PMCID: PMC5882797 DOI: 10.3389/fimmu.2018.00624] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/13/2018] [Indexed: 11/17/2022] Open
Abstract
Background Bitter (T2R) and sweet (T1R) taste receptors in the airway are important in innate immune defense, and variations in taste receptor functionality in one T2R (T2R38) correlate with disease status and disease severity in chronic rhinosinusitis (CRS). Quinine is a bitter compound that is an agonist for several T2Rs also expressed on sinonasal cells, but not for T2R38. Because of this property, quinine may stimulate innate immune defense mechanisms in the airway, and functional differences in quinine perception may be reflective of disease status in CRS. Methods Demographic and taste intensity data were collected prospectively from CRS patients and non-CRS control subjects. Sinonasal tissue from patients undergoing rhinologic surgery was also collected and grown at an air–liquid interface (ALI). Nitric oxide (NO) production and dynamic regulation of ciliary beat frequency in response to quinine stimulation were assessed in vitro. Results Quinine reliably increased ciliary beat frequency and NO production in ALI cultures in a manner consistent with T2R activation (p < 0.01). Quinine taste intensity rating was performed in 328 CRS patients and 287 control subjects demonstrating that CRS with nasal polyps (CRSwNP) patients rated quinine as significantly less intense than did control subjects. Conclusion Quinine stimulates airway innate immune defenses by increasing ciliary beat frequency and stimulating NO production in a manner fitting with T2R activation. Patient variability in quinine sensitivity is observed in taste intensity ratings, and gustatory quinine “insensitivity” is associated with CRSwNP status. Thus, taste tests for quinine may be a biomarker for CRSwNP, and topical quinine has therapeutic potential as a stimulant of innate defenses.
Collapse
Affiliation(s)
- Alan D Workman
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Ivy W Maina
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Steven G Brooks
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael A Kohanski
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | | | | | - David W Kennedy
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - James N Palmer
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Nithin D Adappa
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Danielle R Reed
- Monell Chemical Senses Center, Philadelphia, PA, United States
| | - Robert J Lee
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, United States.,Department of Physiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Noam A Cohen
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, United States.,Monell Chemical Senses Center, Philadelphia, PA, United States.,Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, United States
| |
Collapse
|
80
|
Freund JR, Lee RJ. Taste receptors in the upper airway. World J Otorhinolaryngol Head Neck Surg 2018; 4:67-76. [PMID: 30035264 PMCID: PMC6051256 DOI: 10.1016/j.wjorl.2018.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/26/2018] [Indexed: 02/08/2023] Open
Abstract
Taste receptors were named for their originally-identified expression on the tongue and role in the sensation of taste (gustation). They are now known to be involved in many chemosensory processes outside the tongue. Expression of the receptors for bitter, sweet, and umami was recently identified in many organs, including the brain, airway, gastrointestinal tract, and reproductive systems. We do not yet know the full roles of these receptors in all of these tissues, nor do we know all of the endogenous ligands that activate them. However, taste receptors are emerging as potentially important therapeutic targets. Moreover, they may mediate some off target effects of drugs, as many medications in common clinical use are known to be bitter. The focus of this review is on recent basic and clinical data describing the expression of bitter (T2R) and sweet (T1R) receptors in the airway and their activation by secreted bacterial compounds. These receptors play important roles in innate immune nitric oxide production and antimicrobial peptide secretion, and may be useful targets for stimulating immune responses in the upper respiratory tract via topical therapies. Moreover, genetic variation in these receptors may play a role in the differential susceptibility of patients to certain types of respiratory infections as well as to differential outcomes in patients with chronic rhinosinusitis (CRS). CRS is a syndrome of chronic upper respiratory infection and inflammation and has a significant detrimental impact on patient quality of life. CRS treatment accounts for approximately 20% of adult antibiotic prescriptions and is thus a large driver of the public health crisis of antibiotic resistance. Taste receptors represent a novel class of therapeutic target to potentially stimulate endogenous immune responses and treat CRS patients without conventional antibiotics.
Collapse
Affiliation(s)
- Jenna R Freund
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert J Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
81
|
Ibrahim D. Glycoconjugates pattern and chemosensory cells in the camel respiratory mucosa: Lectin and immunohistochemical studies. Tissue Cell 2018; 51:84-90. [PMID: 29622093 DOI: 10.1016/j.tice.2018.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 11/15/2022]
Abstract
The glycoconjugates pattern of acidic secretions and distribution of chemosensory cells (SCCs) in the respiratory mucosa of dromedary camels were analyzed so as to identify their functional role. Secretions of the goblet cells and mucous glandular cells were analyzed to evaluate the variety of sugar chains, focusing on the acidic glycoconjugates. Using lectin histochemistry, WGA, STL, DBA, SBA, VVA and RCA-120 intensely bound to the goblet cells. PNA and ECL labeled the goblet cells with moderate intensity. While, s-WGA, UEA-I faintly bound to them. Lectins bound to the glycocalyx: WGA, LEL, STL, DSL, DBA, SBA, VVA, RCA-120, ECL and PHA-L (tetra- and tri-antennary N-glycans). The mucous secretory cells reacted with: WGA, s-WGA, STL, DBA, SBA, ECL and Con A. Glycoconjugates secreted by the camel respiratory mucosa are rich in sialomucins, glucosaminy-lated residuals with some galactosyl/galactosaminylated residues; few L-fucose and mannosylated sugar residues are also included. For identification of SCCs, the camel respiratory mucosa was immunostained with phospholipase C-β2 (PLC-β2), a taste signaling marker. Several PLC-β2 immunoreactive cells were detected in camel respiratory epithelium. Finally, prevalence of sialomucins and SCCs which can respond to noxious chemicals may suggest a vital role in optimizing physiological and pathological reactions in camel respiratory mucosa.
Collapse
Affiliation(s)
- Dalia Ibrahim
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt.
| |
Collapse
|
82
|
Triantafillou V, Workman AD, Kohanski MA, Cohen NA. Taste Receptor Polymorphisms and Immune Response: A Review of Receptor Genotypic-Phenotypic Variations and Their Relevance to Chronic Rhinosinusitis. Front Cell Infect Microbiol 2018; 8:64. [PMID: 29564227 PMCID: PMC5845873 DOI: 10.3389/fcimb.2018.00064] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/21/2018] [Indexed: 01/22/2023] Open
Abstract
Bitter (T2R) and sweet taste (T1R) receptors have emerged as regulators of upper airway immune responses. Genetic variation of these taste receptors additionally confers susceptibility to infection and has been implicated in severity of disease in chronic rhinosinusitis (CRS). Ongoing taste receptor research has identified a variety of biologically active compounds that activate T1R and T2R receptors, increasing our understanding of not only additional receptor isoforms and their function but also how receptor function may contribute to the pathophysiology of CRS. This review will discuss the function of taste receptors in mediating airway immunity with a focus on recently described modulators of receptor function and directions for future research into the potential role of genotypic and phenotypic receptor variation as a predictor of airway disease and response to therapy.
Collapse
Affiliation(s)
- Vasiliki Triantafillou
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Alan D Workman
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael A Kohanski
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Noam A Cohen
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, United States.,Department of Otorhinolaryngology-Head and Neck Surgery, Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, United States
| |
Collapse
|
83
|
Wolf A, Renner B, Tomazic PV, Mueller CA. Gustatory Function in Patients With Chronic Rhinosinusitis. Ann Otol Rhinol Laryngol 2018; 127:229-234. [DOI: 10.1177/0003489418754583] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Axel Wolf
- Medical University of Graz, Department of Otothinolaryngology, Head and Neck Surgery, Graz, Austria
| | - Bertold Renner
- University of Erlangen-Nuernberg, Institute of Experimental and Clinical Pharmacology and Toxicology, Erlangen, Germany
| | - Peter V. Tomazic
- Medical University of Graz, Department of Otothinolaryngology, Head and Neck Surgery, Graz, Austria
| | | |
Collapse
|