51
|
Mitochondrial Redox Signaling and Oxidative Stress in Kidney Diseases. Biomolecules 2021; 11:biom11081144. [PMID: 34439810 PMCID: PMC8391472 DOI: 10.3390/biom11081144] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are essential organelles in physiology and kidney diseases, because they produce cellular energy required to perform their function. During mitochondrial metabolism, reactive oxygen species (ROS) are produced. ROS function as secondary messengers, inducing redox-sensitive post-translational modifications (PTM) in proteins and activating or deactivating different cell signaling pathways. However, in kidney diseases, ROS overproduction causes oxidative stress (OS), inducing mitochondrial dysfunction and altering its metabolism and dynamics. The latter processes are closely related to changes in the cell redox-sensitive signaling pathways, causing inflammation and apoptosis cell death. Although mitochondrial metabolism, ROS production, and OS have been studied in kidney diseases, the role of redox signaling pathways in mitochondria has not been addressed. This review focuses on altering the metabolism and dynamics of mitochondria through the dysregulation of redox-sensitive signaling pathways in kidney diseases.
Collapse
|
52
|
Arulkumaran N, Pollen SJ, Tidswell R, Gaupp C, Peters VBM, Stanzani G, Snow TAC, Duchen MR, Singer M. Selective mitochondrial antioxidant MitoTEMPO reduces renal dysfunction and systemic inflammation in experimental sepsis. Br J Anaesth 2021; 127:577-586. [PMID: 34332740 DOI: 10.1016/j.bja.2021.05.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/04/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Excess mitochondrial reactive oxygen species (mROS) in sepsis is associated with organ failure, in part by generating inflammation through the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome. We determined the impact of a mitochondrial-targeted antioxidant (MitoTEMPO) on mitochondrial dysfunction in renal proximal tubular epithelial cells, peritoneal immune cell function ex vivo, and organ dysfunction in a rat model of sepsis. METHODS The effects of MitoTEMPO were assessed ex vivo using adenosine triphosphate and lipopolysaccharide-stimulated rat peritoneal immune cells and fresh rat kidney slices exposed to serum from septic rats. We assessed mROS production and phagocytotic capacity (flow cytometry), mitochondrial functionality (multiphoton imaging, respirometry), and NLRP3 inflammasome activation in cell culture. The effect of MitoTEMPO on organ dysfunction was evaluated in a rat model of faecal peritonitis. RESULTS MitoTEMPO decreased septic serum-induced mROS (P<0.001) and maintained normal reduced nicotinamide adenine dinucleotide redox state (P=0.02) and mitochondrial membrane potential (P<0.001) in renal proximal tubular epithelial cells ex vivo. In lipopolysaccharide-stimulated peritoneal immune cells, MitoTEMPO abrogated the increase in mROS (P=0.006) and interleukin-1β (IL-1β) (P=0.03) without affecting non-mitochondrial oxygen consumption or the phagocytotic-induced respiratory burst (P>0.05). In vivo, compared with untreated septic animals, MitoTEMPO reduced systemic IL-1β (P=0.01), reduced renal oxidative stress as determined by urine isoprostane levels (P=0.04), and ameliorated renal dysfunction (reduced serum urea (P<0.001) and creatinine (P=0.05). CONCLUSIONS Reduction of mROS by a mitochondria-targeted antioxidant reduced IL-1β, and protected mitochondrial, cellular, and organ functionality after septic insults.
Collapse
Affiliation(s)
- Nishkantha Arulkumaran
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK.
| | - Sean J Pollen
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Robert Tidswell
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Charlotte Gaupp
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Vera B M Peters
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Giacomo Stanzani
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Timothy A C Snow
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Michael R Duchen
- Department of Cell and Development Biology, University College London, London, UK
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| |
Collapse
|
53
|
Soria-Castro R, Alfaro-Doblado ÁR, Rodríguez-López G, Campillo-Navarro M, Meneses-Preza YG, Galán-Salinas A, Alvarez-Jimenez V, Yam-Puc JC, Munguía-Fuentes R, Domínguez-Flores A, Estrada-Parra S, Pérez-Tapia SM, Chávez-Blanco AD, Chacón-Salinas R. TLR2 Regulates Mast Cell IL-6 and IL-13 Production During Listeria monocytogenes Infection. Front Immunol 2021; 12:650779. [PMID: 34194428 PMCID: PMC8238461 DOI: 10.3389/fimmu.2021.650779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022] Open
Abstract
Listeria monocytogenes (L.m) is efficiently controlled by several cells of the innate immunity, including the Mast Cell (MC). MC is activated by L.m inducing its degranulation, cytokine production and microbicidal mechanisms. TLR2 is required for the optimal control of L.m infection by different cells of the immune system. However, little is known about the MC receptors involved in recognizing this bacterium and whether these interactions mediate MC activation. In this study, we analyzed whether TLR2 is involved in mediating different MC activation responses during L.m infection. We found that despite MC were infected with L.m, they were able to clear the bacterial load. In addition, MC degranulated and produced ROS, TNF-α, IL-1β, IL-6, IL-13 and MCP-1 in response to bacterial infection. Interestingly, L.m induced the activation of signaling proteins: ERK, p38 and NF-κB. When TLR2 was blocked, L.m endocytosis, bactericidal activity, ROS production and mast cell degranulation were not affected. Interestingly, only IL-6 and IL-13 production were affected when TLR2 was inhibited in response to L.m infection. Furthermore, p38 activation depended on TLR2, but not ERK or NF-κB activation. These results indicate that TLR2 mediates only some MC activation pathways during L.m infection, mainly those related to IL-6 and IL-13 production.
Collapse
Affiliation(s)
- Rodolfo Soria-Castro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Ángel R. Alfaro-Doblado
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Gloria Rodríguez-López
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Marcia Campillo-Navarro
- Research Coordination, Centro Médico Nacional 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Yatsiri G. Meneses-Preza
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Adrian Galán-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Violeta Alvarez-Jimenez
- Unidad de Citometría de Flujo, Lab de Biología Molecular y Bioseguridad Nivel 3, Centro Médico Naval, Secretaría de Marina (SEMAR), Mexico City, Mexico
| | - Juan C. Yam-Puc
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rosario Munguía-Fuentes
- Departamento de Ciencias Básicas, Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional (UPIITA-IPN), Mexico City, Mexico
| | - Adriana Domínguez-Flores
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Sonia M. Pérez-Tapia
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - Alma D. Chávez-Blanco
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), México City, Mexico
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| |
Collapse
|
54
|
Scherlinger M, Tsokos GC. Reactive oxygen species: The Yin and Yang in (auto-)immunity. Autoimmun Rev 2021; 20:102869. [PMID: 34118461 DOI: 10.1016/j.autrev.2021.102869] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS) are produced by immune cells in response to antigens. They are produced mostly in the mitochondria and their levels are tightly controlled by a series of metabolic processes. ROS are necessary for the development of the immune response but the role of ROS in the development of autoimmune disease needs further clarification. Early clinical information points to the beneficial role of supplementation of antioxidant agents or the reduction of ROS production. We review recent information in the field in an effort to identify areas more studies are needed.
Collapse
Affiliation(s)
- Marc Scherlinger
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Centre National de Référence des Maladies Auto-Immunes et Systémiques Rares, Est/Sud-Ouest (RESO), France; Service de rhumatologie, Centre Hospitalier Universitaire de Strasbourg, 1 avenue Molière, 67098 Strasbourg, France.
| | - George C Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
55
|
Dumas A, Knaus UG. Raising the 'Good' Oxidants for Immune Protection. Front Immunol 2021; 12:698042. [PMID: 34149739 PMCID: PMC8213335 DOI: 10.3389/fimmu.2021.698042] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Redox medicine is a new therapeutic concept targeting reactive oxygen species (ROS) and secondary reaction products for health benefit. The concomitant function of ROS as intracellular second messengers and extracellular mediators governing physiological redox signaling, and as damaging radicals instigating or perpetuating various pathophysiological conditions will require selective strategies for therapeutic intervention. In addition, the reactivity and quantity of the oxidant species generated, its source and cellular location in a defined disease context need to be considered to achieve the desired outcome. In inflammatory diseases associated with oxidative damage and tissue injury, ROS source specific inhibitors may provide more benefit than generalized removal of ROS. Contemporary approaches in immunity will also include the preservation or even elevation of certain oxygen metabolites to restore or improve ROS driven physiological functions including more effective redox signaling and cell-microenvironment communication, and to induce mucosal barrier integrity, eubiosis and repair processes. Increasing oxidants by host-directed immunomodulation or by exogenous supplementation seems especially promising for improving host defense. Here, we summarize examples of beneficial ROS in immune homeostasis, infection, and acute inflammatory disease, and address emerging therapeutic strategies for ROS augmentation to induce and strengthen protective host immunity.
Collapse
Affiliation(s)
- Alexia Dumas
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
56
|
Du J, Zhang A, Li J, Liu X, Wu S, Wang B, Wang Y, Jia H. Doxorubicin-Induced Cognitive Impairment: The Mechanistic Insights. Front Oncol 2021; 11:673340. [PMID: 34055643 PMCID: PMC8158153 DOI: 10.3389/fonc.2021.673340] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
Chemotherapy can significantly prolong the survival of patients with breast cancer; Nevertheless, the majority of patients receiving chemotherapy such as doxorubicin may have cognitive deficits that manifest as impairments in learning, reasoning, attention, and memory. The phenomenon of chemotherapy-induced cognitive decline is termed as chemotherapy-related cognitive impairment (CRCI) or chemo-brain. Doxorubicin (DOX), a commonly used drug in adjuvant chemotherapy for patients with breast cancer, has been reported to induce chemo-brain through a variety of mechanisms including DNA damage, oxidative stress, inflammation, dysregulation of apoptosis and autophagy, changes in neurotransmitter levels, mitochondrial dysfunction, glial cell interactions, neurogenesis inhibition, and epigenetic factors. These mechanisms do not operate independently but are inter-related, coordinately contributing to the development of chemo-brain. Here we review the relationships of these mechanisms and pathways in attempt to provide mechanistic insights into the doxorubicin-induced cognitive impairment.
Collapse
Affiliation(s)
- Jiajia Du
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Aoxue Zhang
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Department of First Clinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Xin Liu
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuai Wu
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Bin Wang
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Hongyan Jia
- Department of Breast Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
57
|
Timblin GA, Tharp KM, Ford B, Winchester JM, Wang J, Zhu S, Khan RI, Louie SK, Iavarone AT, Ten Hoeve J, Nomura DK, Stahl A, Saijo K. Mitohormesis reprogrammes macrophage metabolism to enforce tolerance. Nat Metab 2021; 3:618-635. [PMID: 34031590 PMCID: PMC8162914 DOI: 10.1038/s42255-021-00392-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 04/15/2021] [Indexed: 02/03/2023]
Abstract
Macrophages generate mitochondrial reactive oxygen species and mitochondrial reactive electrophilic species as antimicrobials during Toll-like receptor (TLR)-dependent inflammatory responses. Whether mitochondrial stress caused by these molecules impacts macrophage function is unknown. Here, we demonstrate that both pharmacologically driven and lipopolysaccharide (LPS)-driven mitochondrial stress in macrophages triggers a stress response called mitohormesis. LPS-driven mitohormetic stress adaptations occur as macrophages transition from an LPS-responsive to LPS-tolerant state wherein stimulus-induced pro-inflammatory gene transcription is impaired, suggesting tolerance is a product of mitohormesis. Indeed, like LPS, hydroxyoestrogen-triggered mitohormesis suppresses mitochondrial oxidative metabolism and acetyl-CoA production needed for histone acetylation and pro-inflammatory gene transcription, and is sufficient to enforce an LPS-tolerant state. Thus, mitochondrial reactive oxygen species and mitochondrial reactive electrophilic species are TLR-dependent signalling molecules that trigger mitohormesis as a negative feedback mechanism to restrain inflammation via tolerance. Moreover, bypassing TLR signalling and pharmacologically triggering mitohormesis represents a new anti-inflammatory strategy that co-opts this stress response to impair epigenetic support of pro-inflammatory gene transcription by mitochondria.
Collapse
Affiliation(s)
- Greg A Timblin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA.
| | - Kevin M Tharp
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Breanna Ford
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies and Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Janet M Winchester
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Jerome Wang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Stella Zhu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Rida I Khan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Shannon K Louie
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Anthony T Iavarone
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, Berkeley, CA, USA
| | - Johanna Ten Hoeve
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging and UCLA Metabolomics Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Daniel K Nomura
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies and Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Andreas Stahl
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Kaoru Saijo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
58
|
Moghadam ZM, Henneke P, Kolter J. From Flies to Men: ROS and the NADPH Oxidase in Phagocytes. Front Cell Dev Biol 2021; 9:628991. [PMID: 33842458 PMCID: PMC8033005 DOI: 10.3389/fcell.2021.628991] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
The cellular formation of reactive oxygen species (ROS) represents an evolutionary ancient antimicrobial defense system against microorganisms. The NADPH oxidases (NOX), which are predominantly localized to endosomes, and the electron transport chain in mitochondria are the major sources of ROS. Like any powerful immunological process, ROS formation has costs, in particular collateral tissue damage of the host. Moreover, microorganisms have developed defense mechanisms against ROS, an example for an arms race between species. Thus, although NOX orthologs have been identified in organisms as diverse as plants, fruit flies, rodents, and humans, ROS functions have developed and diversified to affect a multitude of cellular properties, i.e., far beyond direct antimicrobial activity. Here, we focus on the development of NOX in phagocytic cells, where the so-called respiratory burst in phagolysosomes contributes to the elimination of ingested microorganisms. Yet, NOX participates in cellular signaling in a cell-intrinsic and -extrinsic manner, e.g., via the release of ROS into the extracellular space. Accordingly, in humans, the inherited deficiency of NOX components is characterized by infections with bacteria and fungi and a seemingly independently dysregulated inflammatory response. Since ROS have both antimicrobial and immunomodulatory properties, their tight regulation in space and time is required for an efficient and well-balanced immune response, which allows for the reestablishment of tissue homeostasis. In addition, distinct NOX homologs expressed by non-phagocytic cells and mitochondrial ROS are interlinked with phagocytic NOX functions and thus affect the overall redox state of the tissue and the cellular activity in a complex fashion. Overall, the systematic and comparative analysis of cellular ROS functions in organisms of lower complexity provides clues for understanding the contribution of ROS and ROS deficiency to human health and disease.
Collapse
Affiliation(s)
- Zohreh Mansoori Moghadam
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Philipp Henneke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Pediatrics and Adolescent Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - Julia Kolter
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
59
|
Hatinguais R, Pradhan A, Brown GD, Brown AJP, Warris A, Shekhova E. Mitochondrial Reactive Oxygen Species Regulate Immune Responses of Macrophages to Aspergillus fumigatus. Front Immunol 2021; 12:641495. [PMID: 33841423 PMCID: PMC8026890 DOI: 10.3389/fimmu.2021.641495] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/09/2021] [Indexed: 12/21/2022] Open
Abstract
Reactive Oxygen Species (ROS) are highly reactive molecules that can induce oxidative stress. For instance, the oxidative burst of immune cells is well known for its ability to inhibit the growth of invading pathogens. However, ROS also mediate redox signalling, which is important for the regulation of antimicrobial immunity. Here, we report a crucial role of mitochondrial ROS (mitoROS) in antifungal responses of macrophages. We show that mitoROS production rises in murine macrophages exposed to swollen conidia of the fungal pathogen Aspergillus fumigatus compared to untreated macrophages, or those treated with resting conidia. Furthermore, the exposure of macrophages to swollen conidia increases the activity of complex II of the respiratory chain and raises mitochondrial membrane potential. These alterations in mitochondria of infected macrophages suggest that mitoROS are produced via reverse electron transport (RET). Significantly, preventing mitoROS generation via RET by treatment with rotenone, or a suppressor of site IQ electron leak, S1QEL1.1, lowers the production of pro-inflammatory cytokines TNF-α and IL-1β in macrophages exposed to swollen conidia of A. fumigatus. Rotenone and S1QEL1.1 also reduces the fungicidal activity of macrophages against swollen conidia. Moreover, we have established that elevated recruitment of NADPH oxidase 2 (NOX2, also called gp91phox) to the phagosomal membrane occurs prior to the increase in mitoROS generation. Using macrophages from gp91phox-/- mice, we have further demonstrated that NOX2 is required to regulate cytokine secretion by RET-associated mitoROS in response to infection with swollen conidia. Taken together, these observations demonstrate the importance of RET-mediated mitoROS production in macrophages infected with A. fumigatus.
Collapse
Affiliation(s)
| | | | | | | | | | - Elena Shekhova
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
60
|
Bastounis EE, Serrano-Alcalde F, Radhakrishnan P, Engström P, Gómez-Benito MJ, Oswald MS, Yeh YT, Smith JG, Welch MD, García-Aznar JM, Theriot JA. Mechanical competition triggered by innate immune signaling drives the collective extrusion of bacterially infected epithelial cells. Dev Cell 2021; 56:443-460.e11. [PMID: 33621492 PMCID: PMC7982222 DOI: 10.1016/j.devcel.2021.01.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/02/2020] [Accepted: 01/20/2021] [Indexed: 02/06/2023]
Abstract
Intracellular pathogens alter their host cells' mechanics to promote dissemination through tissues. Conversely, host cells may respond to the presence of pathogens by altering their mechanics to limit infection. Here, we monitored epithelial cell monolayers infected with intracellular bacterial pathogens, Listeria monocytogenes or Rickettsia parkeri, over days. Under conditions in which these pathogens trigger innate immune signaling through NF-κB and use actin-based motility to spread non-lytically intercellularly, we found that infected cell domains formed three-dimensional mounds. These mounds resulted from uninfected cells moving toward the infection site, collectively squeezing the softer and less contractile infected cells upward and ejecting them from the monolayer. Bacteria in mounds were less able to spread laterally in the monolayer, limiting the growth of the infection focus, while extruded infected cells underwent cell death. Thus, the coordinated forceful action of uninfected cells actively eliminates large domains of infected cells, consistent with this collective cell response representing an innate immunity-driven process.
Collapse
Affiliation(s)
- Effie E Bastounis
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | | | - Prathima Radhakrishnan
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Patrik Engström
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - María J Gómez-Benito
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza 50009, Spain
| | - Mackenzi S Oswald
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Yi-Ting Yeh
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jason G Smith
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Matthew D Welch
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - José M García-Aznar
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza 50009, Spain
| | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
61
|
Functions of ROS in Macrophages and Antimicrobial Immunity. Antioxidants (Basel) 2021; 10:antiox10020313. [PMID: 33669824 PMCID: PMC7923022 DOI: 10.3390/antiox10020313] [Citation(s) in RCA: 312] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are a chemically defined group of reactive molecules derived from molecular oxygen. ROS are involved in a plethora of processes in cells in all domains of life, ranging from bacteria, plants and animals, including humans. The importance of ROS for macrophage-mediated immunity is unquestioned. Their functions comprise direct antimicrobial activity against bacteria and parasites as well as redox-regulation of immune signaling and induction of inflammasome activation. However, only a few studies have performed in-depth ROS analyses and even fewer have identified the precise redox-regulated target molecules. In this review, we will give a brief introduction to ROS and their sources in macrophages, summarize the versatile roles of ROS in direct and indirect antimicrobial immune defense, and provide an overview of commonly used ROS probes, scavengers and inhibitors.
Collapse
|
62
|
Li H, Zhou X, Huang Y, Liao B, Cheng L, Ren B. Reactive Oxygen Species in Pathogen Clearance: The Killing Mechanisms, the Adaption Response, and the Side Effects. Front Microbiol 2021; 11:622534. [PMID: 33613470 PMCID: PMC7889972 DOI: 10.3389/fmicb.2020.622534] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/28/2020] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS) are attractive weapons in both antibiotic-mediated killing and host-mediated killing. However, the involvement of ROS in antibiotic-mediated killing and complexities in host environments challenge the paradigm. In the case of bacterial pathogens, the examples of some certain pathogens thriving under ROS conditions prompt us to focus on the adaption mechanism that pathogens evolve to cope with ROS. Based on these, we here summarized the mechanisms of ROS-mediated killing of either antibiotics or the host, the examples of bacterial adaption that successful pathogens evolved to defend or thrive under ROS conditions, and the potential side effects of ROS in pathogen clearance. A brief section for new antibacterial strategies centered around ROS was also addressed.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuyao Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Binyou Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
63
|
Chelombitko MA, Chernyak BV, Fedorov AV, Zinovkin RA, Razin E, Paruchuru LB. Corrigendum: The Role Played by Mitochondria in FcϵRI-Dependent Mast Cell Activation. Front Immunol 2020; 11:620293. [PMID: 33362803 PMCID: PMC7761169 DOI: 10.3389/fimmu.2020.620293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/10/2020] [Indexed: 11/13/2022] Open
Abstract
[This corrects the article .].
Collapse
Affiliation(s)
- Maria A Chelombitko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Boris V Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Artem V Fedorov
- Department of Cell Biology and Histology, Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Roman A Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ehud Razin
- Department of Biochemistry and Molecular Biology, School of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lakhsmi Bhargavi Paruchuru
- Department of Biochemistry and Molecular Biology, School of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
64
|
Moreno Fernández-Ayala DJ, Navas P, López-Lluch G. Age-related mitochondrial dysfunction as a key factor in COVID-19 disease. Exp Gerontol 2020; 142:111147. [PMID: 33171276 PMCID: PMC7648491 DOI: 10.1016/j.exger.2020.111147] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 causes a severe pneumonia (COVID-19) that affects essentially elderly people. In COVID-19, macrophage infiltration into the lung causes a rapid and intense cytokine storm leading finally to a multi-organ failure and death. Comorbidities such as metabolic syndrome, obesity, type 2 diabetes, lung and cardiovascular diseases, all of them age-associated diseases, increase the severity and lethality of COVID-19. Mitochondrial dysfunction is one of the hallmarks of aging and COVID-19 risk factors. Dysfunctional mitochondria is associated with defective immunological response to viral infections and chronic inflammation. This review discuss how mitochondrial dysfunction is associated with defective immune response in aging and different age-related diseases, and with many of the comorbidities associated with poor prognosis in the progression of COVID-19. We suggest here that chronic inflammation caused by mitochondrial dysfunction is responsible of the explosive release of inflammatory cytokines causing severe pneumonia, multi-organ failure and finally death in COVID-19 patients. Preventive treatments based on therapies improving mitochondrial turnover, dynamics and activity would be essential to protect against COVID-19 severity.
Collapse
Affiliation(s)
- Daniel J Moreno Fernández-Ayala
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain
| | - Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, 41013 Sevilla, Spain.
| |
Collapse
|
65
|
English J, Son JM, Cardamone MD, Lee C, Perissi V. Decoding the rosetta stone of mitonuclear communication. Pharmacol Res 2020; 161:105161. [PMID: 32846213 PMCID: PMC7755734 DOI: 10.1016/j.phrs.2020.105161] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/04/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
Cellular homeostasis in eukaryotic cells requires synchronized coordination of multiple organelles. A key role in this stage is played by mitochondria, which have recently emerged as highly interconnected and multifunctional hubs that process and coordinate diverse cellular functions. Beyond producing ATP, mitochondria generate key metabolites and are central to apoptotic and metabolic signaling pathways. Because most mitochondrial proteins are encoded in the nuclear genome, the biogenesis of new mitochondria and the maintenance of mitochondrial functions and flexibility critically depend upon effective mitonuclear communication. This review addresses the complex network of signaling molecules and pathways allowing mitochondria-nuclear communication and coordinated regulation of their independent but interconnected genomes, and discusses the extent to which dynamic communication between the two organelles has evolved for mutual benefit and for the overall maintenance of cellular and organismal fitness.
Collapse
Affiliation(s)
- Justin English
- Department of Biochemistry, Boston University, Boston, MA, 02115, USA; Graduate Program in Biomolecular Pharmacology, Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, MA, 02115, USA
| | - Jyung Mean Son
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; USC Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA; Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, South Korea
| | - Valentina Perissi
- Department of Biochemistry, Boston University, Boston, MA, 02115, USA.
| |
Collapse
|
66
|
Chelombitko MA, Chernyak BV, Fedorov AV, Zinovkin RA, Razin E, Paruchuru LB. The Role Played by Mitochondria in FcεRI-Dependent Mast Cell Activation. Front Immunol 2020; 11:584210. [PMID: 33178217 PMCID: PMC7596649 DOI: 10.3389/fimmu.2020.584210] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/20/2020] [Indexed: 11/13/2022] Open
Abstract
Mast cells play a key role in the regulation of innate and adaptive immunity and are involved in pathogenesis of many inflammatory and allergic diseases. The most studied mechanism of mast cell activation is mediated by the interaction of antigens with immunoglobulin E (IgE) and a subsequent binding with the high-affinity receptor Fc epsilon RI (FcεRI). Increasing evidences indicated that mitochondria are actively involved in the FcεRI-dependent activation of this type of cells. Here, we discuss changes in energy metabolism and mitochondrial dynamics during IgE-antigen stimulation of mast cells. We reviewed the recent data with regards to the role played by mitochondrial membrane potential, mitochondrial calcium ions (Ca2+) influx and reactive oxygen species (ROS) in mast cell FcεRI-dependent activation. Additionally, in the present review we have discussed the crucial role played by the pyruvate dehydrogenase (PDH) complex, transcription factors signal transducer and activator of transcription 3 (STAT3) and microphthalmia-associated transcription factor (MITF) in the development and function of mast cells. These two transcription factors besides their nuclear localization were also found to translocate in to the mitochondria and functions as direct modulators of mitochondrial activity. Studying the role played by mast cell mitochondria following their activation is essential for expanding our basic knowledge about mast cell physiological functions and would help to design mitochondria-targeted anti-allergic and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Maria A. Chelombitko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Artem V. Fedorov
- Department of Cell Biology and Histology, Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Roman A. Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ehud Razin
- Department of Biochemistry and Molecular Biology, School of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lakhsmi Bhargavi Paruchuru
- Department of Biochemistry and Molecular Biology, School of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
67
|
Sun L, Wang X, Saredy J, Yuan Z, Yang X, Wang H. Innate-adaptive immunity interplay and redox regulation in immune response. Redox Biol 2020; 37:101759. [PMID: 33086106 PMCID: PMC7575795 DOI: 10.1016/j.redox.2020.101759] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Innate and adaptive immune cell activation and infiltration is the key characteristic of tissue inflammation. The innate immune system is the front line of host defense in which innate immune cells are activated by danger signals, including pathogen- and danger-associated molecular pattern, and metabolite-associated danger signal. Innate immunity activation can directly contribute to tissue inflammation or immune resolution by phagocytosis and secretion of biologically active molecules, or indirectly via antigen-presenting cell (APC) activation-mediated adaptive immune responses. This review article describes the cellular and molecular interplay of innate-adaptive immune systems. Three major mechanisms are emphasized in this article for their role in facilitating innate-adaptive immunity interplay. 1) APC can be formed from classical and conditional innate immune cells to bridge innate-adaptive immune response. 2) Immune checkpoint molecular pairs connect innate and adaptive immune cells to direct one-way and two-way immune checkpoint reactions. 3) Metabolic reprogramming during immune responses leads to excessive cytosolic and mitochondrial reactive oxygen species (ROS) production. Increased NADPH oxidase-derived extracellular and intracellular ROS are mostly responsible for oxidative stress, which contributes to functional changes in immune cells. Further understanding of innate-adaptive immunity interplay and its underlying molecular basis would lead to the identification of therapeutic targets for immunological and inflammatory disease.
Collapse
Affiliation(s)
- Lizhe Sun
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Xianwei Wang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Jason Saredy
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Zuyi Yuan
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA; Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA; Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
68
|
Prestes EB, Alves LS, Rodrigues DAS, Dutra FF, Fernandez PL, Paiva CN, Kagan JC, Bozza MT. Mitochondrial Reactive Oxygen Species Participate in Signaling Triggered by Heme in Macrophages and upon Hemolysis. THE JOURNAL OF IMMUNOLOGY 2020; 205:2795-2805. [PMID: 33037139 DOI: 10.4049/jimmunol.1900886] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/07/2020] [Indexed: 12/17/2022]
Abstract
Hemolysis causes an increase of intravascular heme, oxidative damage, and inflammation in which macrophages play a critical role. In these cells, heme can act as a prototypical damage-associated molecular pattern, inducing TLR4-dependent cytokine production through the MyD88 pathway, independently of TRIF. Heme promotes reactive oxygen species (ROS) generation independently of TLR4. ROS and TNF production contribute to heme-induced necroptosis and inflammasome activation; however, the role of ROS in proinflammatory signaling and cytokine production remains unknown. In this study, we demonstrate that heme activates at least three signaling pathways that contribute to a robust MAPK phosphorylation and cytokine expression in mouse macrophages. Although heme did not induce a detectable Myddosome formation, the TLR4/MyD88 axis was important for phosphorylation of p38 and secretion of cytokines. ROS generation and spleen tyrosine kinase (Syk) activation induced by heme were critical for most proinflammatory signaling pathways, as the antioxidant N-acetyl-l-cysteine and a Syk inhibitor differentially blocked heme-induced ROS, MAPK phosphorylation, and cytokine production in macrophages. Early generated mitochondrial ROS induced by heme was Syk dependent, selectively promoted the phosphorylation of ERK1/2 without affecting JNK or p38, and contributed to CXCL1 and TNF production. Finally, lethality caused by sterile hemolysis in mice required TLR4, TNFR1, and mitochondrial ROS, supporting the rationale to target these pathways to mitigate tissue damage of hemolytic disorders.
Collapse
Affiliation(s)
- Elisa B Prestes
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Letícia S Alves
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Danielle A S Rodrigues
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Fabianno F Dutra
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Patricia L Fernandez
- Centro de Biología Molecular y Celular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, 0843-01103 Panama City, Panama; and
| | - Claudia N Paiva
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Marcelo T Bozza
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil;
| |
Collapse
|
69
|
The Influence of Reactive Oxygen Species in the Immune System and Pathogenesis of Multiple Sclerosis. Autoimmune Dis 2020; 2020:5793817. [PMID: 32789026 PMCID: PMC7334772 DOI: 10.1155/2020/5793817] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/14/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023] Open
Abstract
Multiple roles have been indicated for reactive oxygen species (ROS) in the immune system in recent years. ROS have been extensively studied due to their ability to damage DNA and other subcellular structures. Noticeably, they have been identified as a pivotal second messenger for T-cell receptor signaling and T-cell activation and participate in antigen cross-presentation and chemotaxis. As an agent with direct toxic effects on cells, ROS lead to the initiation of the autoimmune response. Moreover, ROS levels are regulated by antioxidant systems, which include enzymatic and nonenzymatic antioxidants. Enzymatic antioxidants include superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase. Nonenzymatic antioxidants contain vitamins C, A, and E, glutathione, and thioredoxin. Particularly, cellular antioxidant systems have important functions in maintaining the redox system homeostasis. This review will discuss the significant roles of ROS generation and antioxidant systems under normal conditions, in the immune system, and pathogenesis of multiple sclerosis.
Collapse
|
70
|
Wolf A, Herb M, Schramm M, Langmann T. The TSPO-NOX1 axis controls phagocyte-triggered pathological angiogenesis in the eye. Nat Commun 2020; 11:2709. [PMID: 32483169 PMCID: PMC7264151 DOI: 10.1038/s41467-020-16400-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
Aberrant immune responses including reactive phagocytes are implicated in the etiology of age-related macular degeneration (AMD), a major cause of blindness in the elderly. The translocator protein (18 kDa) (TSPO) is described as a biomarker for reactive gliosis, but its biological functions in retinal diseases remain elusive. Here, we report that tamoxifen-induced conditional deletion of TSPO in resident microglia using Cx3cr1CreERT2:TSPOfl/fl mice or targeting the protein with the synthetic ligand XBD173 prevents reactivity of phagocytes in the laser-induced mouse model of neovascular AMD. Concomitantly, the subsequent neoangiogenesis and vascular leakage are prevented by TSPO knockout or XBD173 treatment. Using different NADPH oxidase-deficient mice, we show that TSPO is a key regulator of NOX1-dependent neurotoxic ROS production in the retina. These data define a distinct role for TSPO in retinal phagocyte reactivity and highlight the protein as a drug target for immunomodulatory and antioxidant therapies for AMD.
Collapse
Affiliation(s)
- Anne Wolf
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, D-50931, Cologne, Germany
| | - Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, D-50931, Cologne, Germany
| | - Michael Schramm
- Institute for Medical Microbiology, Immunology and Hygiene, D-50931, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, D-50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, D-50931, Cologne, Germany.
| |
Collapse
|
71
|
|
72
|
Jeffrey MP, MacPherson CW, Mathieu O, Tompkins TA, Green-Johnson JM. Secretome-Mediated Interactions with Intestinal Epithelial Cells: A Role for Secretome Components from Lactobacillus rhamnosus R0011 in the Attenuation of Salmonella enterica Serovar Typhimurium Secretome and TNF-α-Induced Proinflammatory Responses. THE JOURNAL OF IMMUNOLOGY 2020; 204:2523-2534. [PMID: 32238458 DOI: 10.4049/jimmunol.1901440] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/26/2020] [Indexed: 12/13/2022]
Abstract
Recent evidence suggests that lactic acid bacteria communicate with host cells via secretome components to influence immune responses but less is known about gut-pathogen secretomes, impact of lactic acid bacteria secretomes on host-pathogen interactions, and the mechanisms underlying these interactions. Genome-wide microarrays and cytokine profiling were used to interrogate the impact of the Lactobacillus rhamnosus R0011 secretome (LrS) on TNF-α and Salmonella enterica subsp. enterica serovar Typhimurium secretome (STS)-induced outcomes in human intestinal epithelial cells. The LrS attenuated both TNF-α- and STS-induced gene expression involved in NF-κB and MAPK activation, as well as expression of genes involved in other immune-related signaling pathways. Specifically, the LrS induced the expression of dual specificity phosphatase 1 (DUSP1), activating transcription factor 3 (ATF3), and tribbles pseudokinase 3 (TRIB3), negative regulators of innate immune signaling, in HT-29 intestinal epithelial cells challenged with TNF-α or STS. TNF-α- and STS-induced acetylation of H3 and H4 histones was attenuated by the LrS, as was the production of TNF-α- and STS-induced proinflammatory cytokines and chemokines. Interestingly, the LrS induced production of macrophage migration inhibitory factor (MIF), a cytokine involved in host-microbe interactions at the gut interface. We propose that the LrS attenuates proinflammatory mediator expression through increased transcription of negative regulators of innate immune activity and changes in global H3 and H4 histone acetylation. To our knowledge, these findings provide novel insights into the complex multifaceted mechanisms of action behind secretome-mediated interdomain communication at the gut-mucosal interface.
Collapse
Affiliation(s)
- Michael P Jeffrey
- Applied Bioscience Graduate Program and the Faculty of Science, Ontario Technical University, Oshawa, Ontario L1G 0C5, Canada; and
| | - Chad W MacPherson
- Rosell Institute for Microbiome and Probiotics, Montreal, Quebec H4P 2R2, Canada
| | - Olivier Mathieu
- Rosell Institute for Microbiome and Probiotics, Montreal, Quebec H4P 2R2, Canada
| | - Thomas A Tompkins
- Rosell Institute for Microbiome and Probiotics, Montreal, Quebec H4P 2R2, Canada
| | - Julia M Green-Johnson
- Applied Bioscience Graduate Program and the Faculty of Science, Ontario Technical University, Oshawa, Ontario L1G 0C5, Canada; and
| |
Collapse
|
73
|
Henriquez-Olguin C, Meneses-Valdes R, Jensen TE. Compartmentalized muscle redox signals controlling exercise metabolism - Current state, future challenges. Redox Biol 2020; 35:101473. [PMID: 32122793 PMCID: PMC7284909 DOI: 10.1016/j.redox.2020.101473] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Exercise imposes cellular stress on contracting skeletal muscle fibers, forcing them to complete molecular adaptations to maintain homeostasis. There is mounting evidence that redox signaling by reactive oxygen species (ROS) is vital for skeletal muscle exercise adaptations across many different exercise modalities. The study of redox signaling is moving towards a growing appreciation that these ROS do not signal in a global unspecific way, but rather elicit their effects in distinct subcellular compartments. This short review will first outline the sources of ROS in exercising skeletal muscle and then discuss some examples of exercise adaptations, which are evidenced to be regulated by compartmentalized redox signaling. We speculate that knowledge of these redox pathways might one day allow targeted manipulation to increase redox-signaling in specific compartments to augment the exercise-hormetic response in health and disease.
Collapse
Affiliation(s)
- Carlos Henriquez-Olguin
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Roberto Meneses-Valdes
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Integrated Physiology Unit, Laboratory of Exercise Sciences, MEDS Clinic, Santiago, Chile
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
74
|
Bhatta A, Atianand M, Jiang Z, Crabtree J, Blin J, Fitzgerald KA. A Mitochondrial Micropeptide Is Required for Activation of the Nlrp3 Inflammasome. THE JOURNAL OF IMMUNOLOGY 2019; 204:428-437. [PMID: 31836654 DOI: 10.4049/jimmunol.1900791] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/10/2019] [Indexed: 01/01/2023]
Abstract
Functional peptides encoded by short open reading frames are emerging as important mediators of fundamental biological processes. In this study, we identified a micropeptide produced from a putative long noncoding RNA (lncRNAs) that is important in controlling innate immunity. By studying lncRNAs in mice macrophages, we identified lncRNA 1810058I24Rik, which was downregulated in both human and murine myeloid cells exposed to LPS as well as other TLR ligands and inflammatory cytokines. Analysis of lncRNA 1810058I24Rik subcellular localization revealed that this transcript was localized in the cytosol, prompting us to evaluate its coding potential. In vitro translation with 35S-labeled methionine resulted in translation of a 47 aa micropeptide. Microscopy and subcellular fractionation studies in macrophages demonstrated endogenous expression of this peptide on the mitochondrion. We thus named this gene mitochondrial micropeptide-47 (Mm47). Crispr-Cas9-mediated deletion of Mm47, as well as small interfering RNA studies in mice primary macrophages, showed that the transcriptional response downstream of TLR4 was intact in cells lacking Mm47. In contrast, Mm47-deficient or knockdown cells were compromised for Nlrp3 inflammasome responses. Activation of Nlrc4 or Aim2 inflammasomes were intact in cells lacking Mm47. This study therefore identifies, to our knowledge, a novel mitochondrial micropeptide Mm47 that is required for the activation of the Nlrp3 inflammasome. This work further highlights the functional activity of short open reading frame-encoded peptides and underscores their importance in innate immunity.
Collapse
Affiliation(s)
- Ankit Bhatta
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Maninjay Atianand
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Zhaozhao Jiang
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Juliet Crabtree
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Juliana Blin
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605; and
| |
Collapse
|
75
|
Ahmed D, Roy D, Jaworski A, Edwards A, Abizaid A, Kumar A, Golshani A, Cassol E. Differential remodeling of the electron transport chain is required to support TLR3 and TLR4 signaling and cytokine production in macrophages. Sci Rep 2019; 9:18801. [PMID: 31827178 PMCID: PMC6906364 DOI: 10.1038/s41598-019-55295-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022] Open
Abstract
Increasing evidence suggests that mitochondria play a critical role in driving innate immune responses against bacteria and viruses. However, it is unclear if differential reprogramming of mitochondrial function contributes to the fine tuning of pathogen specific immune responses. Here, we found that TLR3 and TLR4 engagement on murine bone marrow derived macrophages was associated with differential remodeling of electron transport chain complex expression. This remodeling was associated with differential accumulation of mitochondrial and cytosolic ROS, which were required to support ligand specific inflammatory and antiviral cytokine production. We also found that the magnitude of TLR3, but not TLR4, responses were modulated by glucose availability. Under conditions of low glucose, TLR3 engagement was associated with increased ETC complex III expression, increased mitochondrial and cytosolic ROS and increased inflammatory and antiviral cytokine production. This amplification was selectively reversed by targeting superoxide production from the outer Q-binding site of the ETC complex III. These results suggest that ligand specific modulation of the ETC may act as a rheostat that fine tunes innate immune responses via mitochondrial ROS production. Modulation of these processes may represent a novel mechanism to modulate the nature as well as the magnitude of antiviral vs. inflammatory immune responses.
Collapse
Affiliation(s)
- Duale Ahmed
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - David Roy
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Allison Jaworski
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Alexander Edwards
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Ashok Kumar
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,The Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Ashkan Golshani
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
76
|
The secRNome of Listeria monocytogenes Harbors Small Noncoding RNAs That Are Potent Inducers of Beta Interferon. mBio 2019; 10:mBio.01223-19. [PMID: 31594810 PMCID: PMC6786865 DOI: 10.1128/mbio.01223-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Interferons are potent and broadly acting cytokines that stimulate cellular responses to nucleic acids of unusual structures or locations. While protective when induced following viral infections, the induction of interferons is detrimental to the host during L. monocytogenes infection. Here, we identify specific sRNAs, secreted by the bacterium, with the capacity to induce type I IFN. Further analysis of the most potent sRNA, rli32, links the ability to induce RIG-I-dependent induction of the type I IFN response to the intracellular growth properties of the bacterium. Our findings emphasize the significance of released RNA for Listeria infection and shed light on a compartmental strategy used by an intracellular pathogen to modulate host responses to its advantage. Cellular sensing of bacterial RNA is increasingly recognized as a determinant of host-pathogen interactions. The intracellular pathogen Listeria monocytogenes induces high levels of type I interferons (alpha/beta interferons [IFN-α/β]) to create a growth-permissive microenvironment during infection. We previously demonstrated that RNAs secreted by L. monocytogenes (comprising the secRNome) are potent inducers of IFN-β. We determined the composition and diversity of the members of the secRNome and found that they are uniquely enriched for noncoding small RNAs (sRNAs). Testing of individual sRNAs for their ability to induce IFN revealed several sRNAs with this property. We examined ril32, an intracellularly expressed sRNA that is highly conserved for the species L. monocytogenes and that was the most potent inducer of IFN-β expression of all the sRNAs tested in this study, in more detail. The rli32-induced IFN-β response is RIG-I (retinoic acid inducible gene I) dependent, and cells primed with rli32 inhibit influenza virus replication. We determined the rli32 motif required for IFN induction. rli32 overproduction promotes intracellular bacterial growth, and a mutant lacking rli32 is restricted for intracellular growth in macrophages. rli32-overproducing bacteria are resistant to H2O2 and exhibit both increased catalase activity and changes in the cell envelope. Comparative transcriptome sequencing (RNA-Seq) analysis indicated that ril32 regulates expression of the lhrC locus, previously shown to be involved in cell envelope stress. Inhibition of IFN-β signaling by ruxolitinib reduced rli32-dependent intracellular bacterial growth, indicating a link between induction of the interferon system and bacterial physiology. rli32 is, to the best of our knowledge, the first secreted individual bacterial sRNA known to trigger the induction of the type I IFN response.
Collapse
|