51
|
Rather RA, Bhagat M, Singh SK. Oncogenic BRAF, endoplasmic reticulum stress, and autophagy: Crosstalk and therapeutic targets in cutaneous melanoma. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2020; 785:108321. [PMID: 32800272 DOI: 10.1016/j.mrrev.2020.108321] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 01/07/2023]
Abstract
BRAF is a member of the RAF family of serine/threonine-specific protein kinases. Oncogenic BRAF, in particular, BRAF V600E, can disturb the normal protein folding machinery in the endoplasmic reticulum (ER) leading to accumulation of unfolded/misfolded proteins in the ER lumen, a condition known as endoplasmic reticulum (ER) stress. To alleviate such conditions, ER-stressed cells have developed a highly robust and adaptable signaling network known as unfolded protein response (UPR). UPR is ordinarily a cytoprotective response and usually operates through the induction of autophagy, an intracellular lysosomal degradation pathway that directs damaged proteins, protein aggregates, and damaged organelles for bulk degradation and recycling. Both ER stress and autophagy are involved in the progression and chemoresistance of melanoma. Melanoma, which arises as a result of malignant transformation of melanocytes, exhibits exceptionally high therapeutic resistance. Many mechanisms of therapeutic resistance have been identified in individual melanoma patients and in preclinical BRAF-driven melanoma models. Recently, it has been recognized that oncogenic BRAF interacts with GRP78 and removes its inhibitory influence on the three fundamental ER stress sensors of UPR, PERK, IRE1α, and ATF6. Dissociation of GRP78 from these ER stress sensors prompts UPR that subsequently activates cytoprotective autophagy. Thus, pharmacological inhibition of BRAF-induced ER stress-mediated autophagy can potentially resensitize BRAF mutant melanoma tumors to apoptosis. However, the underlying molecular mechanism of how oncogenic BRAF elevates the basal level of ER stress-mediated autophagy in melanoma tumors is not well characterized. A better understanding of the crosstalk between oncogenic BRAF, ER stress and autophagy may provide a rationale for improving existing cancer therapies and identify novel targets for therapeutic intervention of melanoma.
Collapse
Affiliation(s)
- Rafiq A Rather
- School of Biotechnology, University of Jammu, Jammu and Kashmir, 180006, India.
| | - Madhulika Bhagat
- School of Biotechnology, University of Jammu, Jammu and Kashmir, 180006, India
| | - Shashank K Singh
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| |
Collapse
|
52
|
Frangež Ž, Fernández-Marrero Y, Stojkov D, Seyed Jafari SM, Hunger RE, Djonov V, Riether C, Simon HU. BIF-1 inhibits both mitochondrial and glycolytic ATP production: its downregulation promotes melanoma growth. Oncogene 2020; 39:4944-4955. [PMID: 32493957 DOI: 10.1038/s41388-020-1339-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 11/09/2022]
Abstract
Endophilin B1, also known as BAX-interacting protein 1 (BIF-1), is part of the endophilin B protein family, and is a multifunctional protein involved in the regulation of apoptosis, autophagy, and mitochondrial morphology. The role of BIF-1 in cancer is controversial since previous reports indicated to both tumor-promoting and tumor-suppressive roles, perhaps depending on the cancer cell type. In the present study, we report that BIF-1 is significantly downregulated in both primary and metastatic melanomas, and that patients with high levels of BIF-1 expression exhibited a better overall survival. Depleting BIF-1 using CRISPR/Cas9 technology in melanoma cells resulted in higher proliferation rates both in vitro and in vivo, a finding that was associated with increased ATP production, metabolic acidification, and mitochondrial respiration. We also observed mitochondrial hyperpolarization, but no increase in the mitochondrial content of BIF-1-knockout melanoma cells. In contrast, such knockout melanoma cells were equally sensitive to anticancer drug- or UV irradiation-induced cell death, and exhibited similar autophagic activities as compared with control cells. Taken together, it appears that downregulation of BIF-1 contributes to tumorigenesis in cutaneous melanoma by upregulating mitochondrial respiration and metabolism, independent of its effect on apoptosis and autophagy.
Collapse
Affiliation(s)
- Živa Frangež
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | | | - Darko Stojkov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - S Morteza Seyed Jafari
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Robert E Hunger
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Carsten Riether
- Tumor Immunology, Department for Biomedical Research, University of Bern, Bern, Switzerland.,Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland. .,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia.
| |
Collapse
|
53
|
Liu H, He Z, Germič N, Ademi H, Frangež Ž, Felser A, Peng S, Riether C, Djonov V, Nuoffer JM, Bovet C, Mlinarič-Raščan I, Zlobec I, Fiedler M, Perren A, Simon HU. ATG12 deficiency leads to tumor cell oncosis owing to diminished mitochondrial biogenesis and reduced cellular bioenergetics. Cell Death Differ 2020; 27:1965-1980. [PMID: 31844253 PMCID: PMC7244572 DOI: 10.1038/s41418-019-0476-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023] Open
Abstract
In contrast to the "Warburg effect" or aerobic glycolysis earlier generalized as a phenomenon in cancer cells, more and more recent evidence indicates that functional mitochondria are pivotal for ensuring the energy supply of cancer cells. Here, we report that cancer cells with reduced autophagy-related protein 12 (ATG12) expression undergo an oncotic cell death, a phenotype distinct from that seen in ATG5-deficient cells described before. In addition, using untargeted metabolomics with ATG12-deficient cancer cells, we observed a global reduction in cellular bioenergetic pathways, such as β-oxidation (FAO), glycolysis, and tricarboxylic acid cycle activity, as well as a decrease in mitochondrial respiration as monitored with Seahorse experiments. Analyzing the biogenesis of mitochondria by quantifying mitochondrial DNA content together with several mitochondrion-localizing proteins indicated a reduction in mitochondrial biogenesis in ATG12-deficient cancer cells, which also showed reduced hexokinase II expression and the upregulation of uncoupling protein 2. ATG12, which we observed in normal cells to be partially localized in mitochondria, is upregulated in multiple types of solid tumors in comparison with normal tissues. Strikingly, mouse xenografts of ATG12-deficient cells grew significantly slower as compared with vector control cells. Collectively, our work has revealed a previously unreported role for ATG12 in regulating mitochondrial biogenesis and cellular energy metabolism and points up an essential role for mitochondria as a failsafe mechanism in the growth and survival of glycolysis-dependent cancer cells. Inducing oncosis by imposing an ATG12 deficiency in solid tumors might represent an anticancer therapy preferable to conventional caspase-dependent apoptosis that often leads to undesirable consequences, such as incomplete cancer cell killing and a silencing of the host immune system.
Collapse
Affiliation(s)
- He Liu
- Institute of Pharmacology, University of Bern, Inselspital, CH-3010, Bern, Switzerland
| | - Zhaoyue He
- Institute of Pharmacology, University of Bern, Inselspital, CH-3010, Bern, Switzerland
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
| | - Nina Germič
- Institute of Pharmacology, University of Bern, Inselspital, CH-3010, Bern, Switzerland
| | - Hyrijie Ademi
- Institute of Pharmacology, University of Bern, Inselspital, CH-3010, Bern, Switzerland
| | - Živa Frangež
- Institute of Pharmacology, University of Bern, Inselspital, CH-3010, Bern, Switzerland
| | - Andrea Felser
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
| | - Shuang Peng
- Institute of Pharmacology, University of Bern, Inselspital, CH-3010, Bern, Switzerland
| | - Carsten Riether
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, CH-3012, Bern, Switzerland
| | - Jean-Marc Nuoffer
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
- Pediatric Endocrinology and Diabetology and Metabolism, University Children's Hospital Bern, CH-3010, Bern, Switzerland
| | - Cédric Bovet
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
| | | | - Inti Zlobec
- Institute of Pathology, University of Bern, CH-3008, Bern, Switzerland
| | - Martin Fiedler
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, CH-3010, Bern, Switzerland
| | - Aurel Perren
- Institute of Pathology, University of Bern, CH-3008, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Inselspital, CH-3010, Bern, Switzerland.
- Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia.
| |
Collapse
|
54
|
Patra S, Mishra SR, Behera BP, Mahapatra KK, Panigrahi DP, Bhol CS, Praharaj PP, Sethi G, Patra SK, Bhutia SK. Autophagy-modulating phytochemicals in cancer therapeutics: Current evidences and future perspectives. Semin Cancer Biol 2020; 80:205-217. [PMID: 32450139 DOI: 10.1016/j.semcancer.2020.05.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/08/2023]
Abstract
Autophagy is an intracellular catabolic self-cannibalism that eliminates dysfunctional cytoplasmic cargos by the fusion of cargo-containing autophagosomes with lysosomes to maintain cyto-homeostasis. Autophagy sustains a dynamic interlink between cytoprotective and cytostatic function during malignant transformation in a context-dependent manner. The antioxidant and immunomodulatory phyto-products govern autophagy and autophagy-associated signaling pathways to combat cellular incompetence during malignant transformation. Moreover, in a close cellular signaling circuit, autophagy regulates aberrant epigenetic modulation and inflammation, which limits tumor metastasis. Thus, manipulating autophagy for induction of cell death and associated regulatory phenomena will embark on a new strategy for tumor suppression with wide therapeutic implications. Despite the prodigious availability of lead pharmacophores in nature, the central autophagy regulating entities, their explicit target, as well as pre-clinical and clinical assessment remains a major question to be answered. In addition to this, the stage-specific regulation of autophagy and mode of action with natural products in regulating the key autophagic molecules, control of tumor-specific pathways in relation to modulation of autophagic network specify therapeutic target in caner. Moreover, the molecular pathway specificity and enhanced efficacy of the pre-existing chemotherapeutic agents in co-treatment with these phytochemicals hold high prevalence for target specific cancer therapeutics. Hence, the multi-specific role of phytochemicals in a cellular and tumor context dependent manner raises immense curiosity for investigating of novel therapeutic avenues. In this perspective, this review discusses about diverse implicit mechanisms deployed by the bioactive compounds in diagnosis and therapeutics approach during cancer progression with special insight into autophagic regulation.
Collapse
Affiliation(s)
- Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Soumya R Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Bishnu P Behera
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Kewal K Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Debasna P Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Chandra S Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Prakash P Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Samir K Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Sujit K Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India.
| |
Collapse
|
55
|
Synergies in exosomes and autophagy pathways for cellular homeostasis and metastasis of tumor cells. Cell Biosci 2020; 10:64. [PMID: 32426106 PMCID: PMC7218515 DOI: 10.1186/s13578-020-00426-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Background Eukaryotic cells demonstrate two tightly linked vesicular transport systems, comprising intracellular vesicle transport and extracellular vesicle transport system. Intracellular transport vesicles can translocate biomolecules between compartments inside the cell, for example, proteins from the rough endoplasmic reticulum to the Golgi apparatus. Whereas, the secreted vesicles so-called extracellular vesicles facilitate the transport of biomolecules, for example, nucleic acids, proteins and lipids between cells. Vesicles can be formed during the process of endocytosis or/and autophagy and not only act as mediators of intra- and inter-cellular communication but also represent pathological conditions of cells or tissues. Methods In this review, we searched articles in PubMed, published between 2000 and 2020, with following terms: autophagy, autophagocytosis, transport vesicles, lysosomes, endosomes, exocytosis, exosomes, alone or in different combinations. The biological functions that were selected based on relevancy to our topic include cellular homeostasis and tumorigenesis. Results The searched literature shows that there is a high degree of synergies between exosome biogenesis and autophagy, which encompass endocytosis and endosomes, lysosomes, exocytosis and exosomes, autophagocytosis, autophagosomes and amphisomes. These transport systems not only maintain cellular homeostasis but also operate synergically against fluctuations in the external and internal environment such as during tumorigenesis and metastasis. Additionally, exosomal and autophagic proteins may serve as cancer diagnosis approaches. Conclusion Exosomal and autophagy pathways play pivotal roles in homeostasis and metastasis of tumor cells. Understanding the crosstalk between endomembrane organelles and vesicular trafficking may expand our insight into cooperative functions of exosomal and autophagy pathways during disease progression and may help to develop effective therapies against lysosomal diseases including cancers and beyond.
Collapse
|
56
|
Gu Y, Han J, Jiang C, Zhang Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res Rev 2020; 59:101036. [PMID: 32105850 DOI: 10.1016/j.arr.2020.101036] [Citation(s) in RCA: 359] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022]
Abstract
Aging is a major cause of many degenerative diseases. The most intuitive consequence of aging is mainly manifested on the skin, resulting in cumulative changes in skin structure, function and appearance, such as increased wrinkles, laxity, elastosis, telangiectasia, and aberrant pigmentation of the skin. Unlike other organs of the human body, skin is not only inevitably affected by the intrinsic aging process, but also affected by various extrinsic environmental factors to accelerate aging, especially ultraviolet (UV) radiation. Skin aging is a highly complex and not fully understood process, and the lack of universal biomarkers for the definitive detection and evaluation of aging is also a major research challenge. Oxidative stress induced by the accumulation of reactive oxygen species (ROS) can lead to lipid, protein, nucleic acid and organelle damage, thus leading to the occurrence of cellular senescence, which is one of the core mechanisms mediating skin aging. Autophagy can maintain cellular homeostasis when faced with different stress conditions and is one of the survival mechanisms of cell resistance to intrinsic and extrinsic stress. Autophagy and aging have many features in common and may be associated with skin aging mediated by different factors. Here, we summarize the changes and biomarkers of skin aging, and discuss the effects of oxidative stress and autophagy on skin aging.
Collapse
|
57
|
Kiruthiga C, Devi KP, Nabavi SM, Bishayee A. Autophagy: A Potential Therapeutic Target of Polyphenols in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12030562. [PMID: 32121322 PMCID: PMC7139730 DOI: 10.3390/cancers12030562] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a conserved biological phenomenon that maintains cellular homeostasis through the clearing of damaged cellular components under cellular stress and offers the cell building blocks for cellular survival. Aberrations in autophagy subsidize to various human pathologies, such as dementia, cardiovascular diseases, leishmaniosis, influenza, hepatic diseases, and cancer, including hepatocellular carcinoma (HCC). HCC is the fifth common mortal type of liver cancer globally, with an inhomogeneous topographical distribution and highest incidence tripled in men than women. Existing treatment procedures with liver cancer patients result in variable success rates and poor prognosis due to their drug resistance and toxicity. One of the pathophysiological mechanisms that are targeted during the development of anti-liver cancer drugs is autophagy. Generally, overactivated autophagy may lead to a non-apoptotic form of programmed cell death (PCD) or autophagic cell death or type II PCD. Emerging evidence suggests that manipulation of autophagy could induce type II PCD in cancer cells, acting as a potential tumor suppressor. Hence, altering autophagic signaling offers new hope for the development of novel drugs for the therapy of resistant cancer cells. Natural polyphenolic compounds, including flavonoids and non-flavonoids, execute their anticarcinogenic mechanism through upregulating tumor suppressors and autophagy by modulating canonical (Beclin-1-dependent) and non-canonical (Beclin-1-independent) signaling pathways. Additionally, there is evidence signifying that plant polyphenols target angiogenesis and metastasis in HCC via interference with multiple intracellular signals and decrease the risk against HCC. The current review offers a comprehensive understanding of how natural polyphenolic compounds exhibit their anti-HCC effects through regulation of autophagy, the non-apoptotic mode of cell death.
Collapse
Affiliation(s)
- Chandramohan Kiruthiga
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi 630 003, Tamil Nadu, India;
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University (Science Campus), Karaikudi 630 003, Tamil Nadu, India;
- Correspondence: (K.P.D.); or (A.B.); Tel.: +91-4565223325 (K.P.D.); +1-941-782-5950 (A.B.)
| | - Seyed M. Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran;
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
- Correspondence: (K.P.D.); or (A.B.); Tel.: +91-4565223325 (K.P.D.); +1-941-782-5950 (A.B.)
| |
Collapse
|
58
|
Machine learning with autophagy-related proteins for discriminating renal cell carcinoma subtypes. Sci Rep 2020; 10:720. [PMID: 31959887 PMCID: PMC6971298 DOI: 10.1038/s41598-020-57670-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
Machine learning techniques have been previously applied for classification of tumors based largely on morphological features of tumor cells recognized in H&E images. Here, we tested the possibility of using numeric data acquired from software-based quantification of certain marker proteins, i.e. key autophagy proteins (ATGs), obtained from immunohistochemical (IHC) images of renal cell carcinomas (RCC). Using IHC staining and automated image quantification with a tissue microarray (TMA) of RCC, we found ATG1, ATG5 and microtubule-associated proteins 1A/1B light chain 3B (LC3B) were significantly reduced, suggesting a reduction in the basal level of autophagy with RCC. Notably, the levels of the ATG proteins expressed did not correspond to the mRNA levels expressed in these tissues. Applying a supervised machine learning algorithm, the K-Nearest Neighbor (KNN), to our quantified numeric data revealed that LC3B provided a strong measure for discriminating clear cell RCC (ccRCC). ATG5 and sequestosome-1 (SQSTM1/p62) could be used for classification of chromophobe RCC (crRCC). The quantitation of particular combinations of ATG1, ATG16L1, ATG5, LC3B and p62, all of which measure the basal level of autophagy, were able to discriminate among normal tissue, crRCC and ccRCC, suggesting that the basal level of autophagy would be a potentially useful parameter for RCC discrimination. In addition to our observation that the basal level of autophagy is reduced in RCC, our workflow from quantitative IHC analysis to machine learning could be considered as a potential complementary tool for the classification of RCC subtypes and also for other types of tumors for which precision medicine requires a characterization.
Collapse
|
59
|
Lee JS, Jang EH, Woo HA, Lee K. Regulation of Autophagy Is a Novel Tumorigenesis-Related Activity of Multifunctional Translationally Controlled Tumor Protein. Cells 2020; 9:cells9010257. [PMID: 31968668 PMCID: PMC7017196 DOI: 10.3390/cells9010257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022] Open
Abstract
Translationally controlled tumor protein (TCTP) is highly conserved in eukaryotic organisms and plays multiple roles regulating cellular growth and homeostasis. Because of its anti-apoptotic activity and its role in the regulation of cancer metastasis, TCTP has become a promising target for cancer therapy. Moreover, growing evidence points to its clinical role in cancer prognosis. How TCTP regulates cellular growth in cancer has been widely studied, but how it regulates cellular homeostasis has received relatively little attention. This review discusses how TCTP is related to cancer and its potential as a target in cancer therapeutics, including its novel role in the regulation of autophagy. Regulation of autophagy is essential for cell recycling and scavenging cellular materials to sustain cell survival under the metabolic stress that cancer cells undergo during their aggressive proliferation.
Collapse
|
60
|
Di Leo L, Bodemeyer V, De Zio D. The Complex Role of Autophagy in Melanoma Evolution: New Perspectives From Mouse Models. Front Oncol 2020; 9:1506. [PMID: 31998652 PMCID: PMC6966767 DOI: 10.3389/fonc.2019.01506] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022] Open
Abstract
Despite tremendous efforts in the last decade to improve treatments, melanoma still represents a major therapeutic challenge and overall survival of patients remains poor. Therefore, identifying new targets to counteract melanoma is needed. In this scenario, autophagy, the “self-eating” process of the cell, has recently arisen as new potential candidate in melanoma. Alongside its role as a recycling mechanism for dysfunctional and damaged cell components, autophagy also clearly sits at a crossroad with metabolism, thereby orchestrating cell proliferation, bioenergetics and metabolic rewiring, all hallmarks of cancer cells. In this regard, autophagy, both in tumor and host, has been flagged as an essential player in melanomagenesis and progression. To pave the way to a better understanding of such a complex interplay, the use of genetically engineered mouse models (GEMMs), as well as syngeneic mouse models, has been undoubtedly crucial. Herein, we will explore the latest discoveries in the field, with particular focus on the potential of these models in unraveling the contribution of autophagy in melanoma, along with the therapeutic advantages that may arise.
Collapse
Affiliation(s)
- Luca Di Leo
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Valérie Bodemeyer
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Daniela De Zio
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| |
Collapse
|
61
|
Differential activation of the mTOR/autophagy pathway predicts cognitive performance in APP/PS1 mice. Neurobiol Aging 2019; 83:105-113. [DOI: 10.1016/j.neurobiolaging.2019.08.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/19/2019] [Accepted: 08/17/2019] [Indexed: 12/16/2022]
|
62
|
Lin TY, Chan HH, Chen SH, Sarvagalla S, Chen PS, Coumar MS, Cheng SM, Chang YC, Lin CH, Leung E, Cheung CHA. BIRC5/Survivin is a novel ATG12-ATG5 conjugate interactor and an autophagy-induced DNA damage suppressor in human cancer and mouse embryonic fibroblast cells. Autophagy 2019; 16:1296-1313. [PMID: 31612776 PMCID: PMC7469615 DOI: 10.1080/15548627.2019.1671643] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BIRC5/Survivin is known as a dual cellular functions protein that directly regulates both apoptosis and mitosis in embryonic cells during embryogenesis and in cancer cells during tumorigenesis and tumor metastasis. However, BIRC5 has seldom been demonstrated as a direct macroautophagy/autophagy regulator in cells. ATG7 expression and ATG12-ATG5-ATG16L1 complex formation are crucial for the phagophore elongation during autophagy in mammalian cells. In this study, we observed that the protein expression levels of BIRC5 and ATG7 were inversely correlated, whereas the expression levels of BIRC5 and SQSTM1/p62 were positively correlated in normal breast tissues and tumor tissues. Mechanistically, we found that BIRC5 negatively modulates the protein stability of ATG7 and physically binds to the ATG12-ATG5 conjugate, preventing the formation of the ATG12-ATG5-ATG16L1 protein complex in human cancer (MDA-MB-231, MCF7, and A549) and mouse embryonic fibroblast (MEF) cells. We also observed a concurrent physical dissociation between BIRC5 and ATG12-ATG5 (but not CASP3/caspase-3) and upregulation of autophagy in MDA-MB-231 and A549 cells under serum-deprived conditions. Importantly, despite the fact that upregulation of autophagy is widely thought to promote DNA repair in cells under genotoxic stress, we found that BIRC5 maintains DNA integrity through autophagy negative-modulations in both human cancer and MEF cells under non-stressed conditions. In conclusion, our study reveals a novel role of BIRC5 in cancer cells as a direct regulator of autophagy. BIRC5 may act as a "bridging molecule", which regulates the interplay between mitosis, apoptosis, and autophagy in embryonic and cancer cells. ABBREVIATIONS ACTA1: actin; ATG: autophagy related; BIRC: baculoviral inhibitor of apoptosis repeat-containing; BAF: bafilomycin A1; CQ: chloroquine; CASP3: caspase 3; HSPB1/Hsp27: heat shock protein family B (small) member 1/heat shock protein 27; IAPs: inhibitors of apoptosis proteins; IP: immunoprecipitation; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PLA: proximity ligation assay; SQSTM1/p62: sequestosome 1; siRNA: small interfering RNA.
Collapse
Affiliation(s)
- Tzu-Yu Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University , Tainan, Taiwan
| | - Hsiu-Han Chan
- Department of Pharmacology, College of Medicine, National Cheng Kung University , Tainan, Taiwan
| | - Shang-Hung Chen
- National Institute of Cancer Research, National Health Research Institutes , Tainan, Taiwan.,Division of Hematology and Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University , Tainan, Taiwan
| | - Sailu Sarvagalla
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University , Puducherry, India
| | - Pai-Sheng Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University , Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University , Tainan, Taiwan
| | - Mohane Selvaraj Coumar
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University , Puducherry, India
| | - Siao Muk Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University , Tainan, Taiwan
| | - Yung-Chieh Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University , Tainan, Taiwan
| | - Chun-Hui Lin
- Department of Pharmacology, College of Medicine, National Cheng Kung University , Tainan, Taiwan
| | - Euphemia Leung
- Auckland Cancer Society Research Centre and Department of Molecular Medicine and Pathology, University of Auckland , Auckland, New Zealand
| | - Chun Hei Antonio Cheung
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University , Tainan, Taiwan.,Department of Pharmacology, College of Medicine, National Cheng Kung University , Tainan, Taiwan
| |
Collapse
|
63
|
Vara-Perez M, Maes H, Van Dingenen S, Agostinis P. BNIP3 contributes to the glutamine-driven aggressive behavior of melanoma cells. Biol Chem 2019; 400:187-193. [PMID: 29924728 DOI: 10.1515/hsz-2018-0208] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/15/2018] [Indexed: 02/04/2023]
Abstract
Aerobic glycolysis ('Warburg effect') is used by cancer cells to fuel tumor growth. Interestingly, metastatic melanoma cells rely on glutaminolysis rather than aerobic glycolysis for their bioenergetic needs through the tricarboxylic acid (TCA) cycle. Here, we compared the effects of glucose or glutamine on melanoma cell proliferation, migration and oxidative phosphorylation in vitro. We found that glutamine-driven melanoma cell's aggressive traits positively correlated with increased expression of HIF1α and its pro-autophagic target BNIP3. BNIP3 silencing reduced glutamine-mediated effects on melanoma cell growth, migration and bioenergetics. Hence, BNIP3 is a vital component of the mitochondria quality control required for glutamine-driven melanoma aggressiveness.
Collapse
Affiliation(s)
- Monica Vara-Perez
- Cell Death Research and Therapy (CDRT) Laboratory, Department of Cellular and Molecular Medicine, O&N1 Building from Campus Gasthuisberg, KU Leuven University of Leuven, Herenstraat 49, B-3000 Leuven, Belgium
| | - Hannelore Maes
- Cell Death Research and Therapy (CDRT) Laboratory, Department of Cellular and Molecular Medicine, O&N1 Building from Campus Gasthuisberg, KU Leuven University of Leuven, Herenstraat 49, B-3000 Leuven, Belgium
| | - Sarah Van Dingenen
- Cell Death Research and Therapy (CDRT) Laboratory, Department of Cellular and Molecular Medicine, O&N1 Building from Campus Gasthuisberg, KU Leuven University of Leuven, Herenstraat 49, B-3000 Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy (CDRT) Laboratory, Department of Cellular and Molecular Medicine, O&N1 Building from Campus Gasthuisberg, KU Leuven University of Leuven, Herenstraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
64
|
Abstract
Malignant melanoma is the most aggressive and notorious skin cancer, and metastatic disease is associated with very poor long-term survival outcomes. Although metastatic melanoma patients with oncogenic mutations in the BRAF gene initially respond well to the treatment with specific BRAF inhibitors, most of them will eventually develop resistance to this targeted therapy. As a highly conserved catabolic process, autophagy is responsible for the maintenance of cellular homeostasis and cell survival, and is involved in multiple diseases, including cancer. Recent study results have indicated that autophagy might play a decisive role in the resistance to BRAF inhibitors in BRAF-mutated melanomas. In this review, we will discuss how autophagy is up-regulated by BRAF inhibitors, and how autophagy induces the resistance to these agents.
Collapse
|
65
|
ATG5 cancer mutations and alternative mRNA splicing reveal a conjugation switch that regulates ATG12-ATG5-ATG16L1 complex assembly and autophagy. Cell Discov 2019; 5:42. [PMID: 31636955 PMCID: PMC6796855 DOI: 10.1038/s41421-019-0110-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 06/26/2019] [Accepted: 06/30/2019] [Indexed: 02/08/2023] Open
Abstract
Autophagy is critical for maintaining cellular homeostasis during times of stress, and is thought to play important roles in both tumorigenesis and tumor cell survival. Formation of autophagosomes, which mediate delivery of cytoplasmic cargo to lysosomes, requires multiple autophagy-related (ATG) protein complexes, including the ATG12–ATG5-ATG16L1 complex. Herein, we report that a molecular ATG5 “conjugation switch”, comprised of competing ATG12 and ubiquitin conjugation reactions, integrates ATG12–ATG5-ATG16L1 complex assembly with protein quality control of its otherwise highly unstable subunits. This conjugation switch is tightly regulated by ATG16L1, which binds to free ATG5 and mutually protects both proteins from ubiquitin conjugation and proteasomal degradation, thereby instead promoting the irreversible conjugation of ATG12 to ATG5. The resulting ATG12–ATG5 conjugate, in turn, displays enhanced affinity for ATG16L1 and thus fully stabilizes the ATG12–ATG5-ATG16L1 complex. Most importantly, we find in multiple tumor types that ATG5 somatic mutations and alternative mRNA splicing specifically disrupt the ATG16L1-binding pocket in ATG5 and impair the essential ATG5-ATG16L1 interactions that are initially required for ATG12–ATG5 conjugation. Finally, we provide evidence that ATG16L2, which is overexpressed in several cancers relative to ATG16L1, hijacks the conjugation switch by competing with ATG16L1 for binding to ATG5. While ATG16L2 stabilizes ATG5 and enables ATG12–ATG5 conjugation, this endogenous dominant-negative inhibitor simultaneously displaces ATG16L1, resulting in its proteasomal degradation and a block in autophagy. Thus, collectively, our findings provide novel insights into ATG12–ATG5-ATG16L1 complex assembly and reveal multiple mechanisms wherein dysregulation of the ATG5 conjugation switch inhibits autophagy.
Collapse
|
66
|
Cell-intrinsic survival signals. The role of autophagy in metastatic dissemination and tumor cell dormancy. Semin Cancer Biol 2019; 60:28-40. [PMID: 31400500 DOI: 10.1016/j.semcancer.2019.07.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
Abstract
Metastasis is the main cause of cancer-related deaths. Disseminated tumor cells (DTCs), which seed metastasis, can remain undetected in a dormant state for decades after treatment of the primary tumor and their persistence is the main cause of late relapse and death in a substantial proportion of cancer patients. Understanding the mechanisms underlying the survival of dormant DTCs is of utmost importance to develop new therapies that effectively kill DTCs while in a quiescent state, therefore preventing metastatic disease and minimizing the chance of future relapses. Besides key interactions with the local microenvironment, dormant DTCs must integrate survival mechanisms to remain viable for long periods of time. Here, the pro-survival role of autophagy in tumor cell dissemination and dormant DTC maintenance are discussed, as well as the implications of the current knowledge for future research efforts.
Collapse
|
67
|
Eckhart L, Tschachler E, Gruber F. Autophagic Control of Skin Aging. Front Cell Dev Biol 2019; 7:143. [PMID: 31417903 PMCID: PMC6682604 DOI: 10.3389/fcell.2019.00143] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
The skin forms the barrier to the environment. Maintenance of this barrier during aging requires orchestrated responses to variable types of stress, the continuous renewal of the epithelial compartment, and the homeostasis of long-lived cell types. Recent experimental evidence suggests that autophagy is critically involved in skin homeostasis and skin aging is associated with and partially caused by defects of autophagy. In the outer skin epithelium, autophagy is constitutively active during cornification of keratinocytes and increases the resistance to environmental stress. Experimental suppression of autophagy in the absence of stress is tolerated by the rapidly renewing epidermal epithelium, whereas long-lived skin cells such as melanocytes, Merkel cells and secretory cells of sweat glands depend on autophagy for cellular homeostasis and normal execution of their functions during aging. Yet other important roles of autophagy have been identified in the dermis where senescence of mesenchymal cells and alterations of the extracellular matrix (ECM) are hallmarks of aging. Here, we review the evidence for cell type-specific roles of autophagy in the skin and their differential contributions to aging.
Collapse
Affiliation(s)
- Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Florian Gruber
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria
| |
Collapse
|
68
|
Guo Y, Zhang X, Wu T, Hu X, Su J, Chen X. Autophagy in Skin Diseases. Dermatology 2019; 235:380-389. [PMID: 31269494 DOI: 10.1159/000500470] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/15/2019] [Indexed: 11/19/2022] Open
Abstract
Autophagy, or self-eating, is an evolutionarily conserved process in which cytosol and organelles are sequestered within double-membrane vesicles that deliver the contents to the lysosome/vacuole for the degradation and recycling of cytoplasmic components in eukaryotes. It is well recognized that autophagy plays an important role in maintaining cellular homeostasis under physiological and pathophysiological con-ditions and the upregulation of autophagy may serve as an adaptive process to provide nutrients and energy when under stresses. Recently, studies have illustrated that autophagy is intricately related to skin diseases. This review provides a brief synopsis of the process of autophagy and aims to elucidate the roles of autophagy in different skin diseases and to highlight the need for increased research in the field.
Collapse
Affiliation(s)
- Yeye Guo
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
| | - Xu Zhang
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
| | - Tianhao Wu
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
| | - Xing Hu
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
| | - Juan Su
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China, .,Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China,
| | - Xiang Chen
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Central South University, Changsha, China
| |
Collapse
|
69
|
Nuta GC, Gilad Y, Gershoni M, Sznajderman A, Schlesinger T, Bialik S, Eisenstein M, Pietrokovski S, Kimchi A. A cancer associated somatic mutation in LC3B attenuates its binding to E1-like ATG7 protein and subsequent lipidation. Autophagy 2019; 15:438-452. [PMID: 30238850 PMCID: PMC6351123 DOI: 10.1080/15548627.2018.1525476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/30/2018] [Accepted: 09/14/2018] [Indexed: 02/01/2023] Open
Abstract
Macroautophagy/autophagy is a conserved catabolic process that maintains cellular homeostasis under basal growth and stress conditions. In cancer, autophagy can either prevent or promote tumor growth, at early or advanced stages, respectively. We screened public databases to identify autophagy-related somatic mutations in cancer, using a computational approach to identify cancer mutational target sites, employing exact statistics. The top significant hit was a missense mutation (Y113C) in the MAP1LC3B/LC3B (microtubule associated protein 1 light chain 3 beta) protein, which occurred at a significant frequency in cancer, and was detected in early stages in primary tumors of patients with known tumor lineage. The mutation reduced the formation of GFP-LC3B puncta and attenuated LC3B lipidation during Torin1-induced autophagy. Its effect on the direct physical interaction of LC3B with each of the 4 proteins that control its maturation or lipidation was tested by applying a protein-fragment complementation assay and co-immunoprecipitation experiments. Interactions with ATG4A and ATG4B proteases were reduced, yet without perturbing the cleavage of mutant LC3B. Most importantly, the mutation significantly reduced the interaction with the E1-like enzyme ATG7, but not the direct interaction with the E2-like enzyme ATG3, suggesting a selective perturbation in the binding of LC3B to some of its partner proteins. Structure analysis and molecular dynamics simulations of LC3B protein and its mutant suggest that the mutation changes the conformation of a loop that has several contact sites with ATG4B and the ATG7 homodimer. We suggest that this loss-of-function mutation, which attenuates autophagy, may promote early stages of cancer development.
Collapse
Affiliation(s)
- Gal Chaim Nuta
- Departments of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yuval Gilad
- Departments of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Moran Gershoni
- Departments of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Arielle Sznajderman
- Departments of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tomer Schlesinger
- Departments of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Shani Bialik
- Departments of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Miriam Eisenstein
- Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Shmuel Pietrokovski
- Departments of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Kimchi
- Departments of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
70
|
Yoon K, Kim N, Park Y, Kim BK, Park JH, Shin CM, Lee DH, Surh YJ. Correlation between macrophage migration inhibitory factor and autophagy in Helicobacter pylori-associated gastric carcinogenesis. PLoS One 2019; 14:e0211736. [PMID: 30742638 PMCID: PMC6370197 DOI: 10.1371/journal.pone.0211736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/18/2019] [Indexed: 02/06/2023] Open
Abstract
The role of macrophage migration inhibitory factor (MIF) and autophagy in gastric cancer is not clear. We determined H. pylori infection status of the subjects and investigated the expression of MIF and autophagy markers (Atg5, LC3A and LC3B) in human gastric tissue at baseline. Then H. pylori eradication was done for H. pylori positive patients and MIF and Atg5 levels were investigated on each follow-up for both H. pylori-eradicated and H. pylori negative patients. Baseline tissue mRNA expression of MIF, Atg5, LC3A and LC3B was measured by real-time PCR in 453 patients (control 165, gastric dysplasia 82, and gastric cancer 206). Three hundred three patients (66.9%) had H. pylori infection at the time of enrollment. Only within H. pylori-positive group, MIF level was significantly elevated in patients with cancer than in control or dysplasia groups (P<0.05). LC3A and LC3B levels also showed significant differences within H. pylori-positive subgroups. H. pylori-positive dysplasia subgroup showed significantly lower (LC3A) (P<0.05) and higher (LC3B) mRNA levels (P<0.05) than in other subgroups. On follow-up, within H. pylori-eradicated group, Atg5 expression increased sequentially from control to dysplasia and cancer subgroups. Multiple linear regression showed autophagy markers (LC3A, LC3B, and Atg5) directly predicted MIF level (adjusted R2 = 0.492, P<0.001). Serial follow-up showed longitudinal increase in Atg5 level in general, with constantly higher levels in H. pylori-eradicated group than in -negative group. Intestinal metaplasia (IM) group initially showed higher Atg5 expression than the IM-negative group. However, it was reversed between the groups eventually because of the lower rate of increase in IM group. These results suggest a role of MIF and autophagy markers and their interaction in H. pylori-associated gastric carcinogenesis.
Collapse
Affiliation(s)
- Kichul Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- * E-mail:
| | - Youngmi Park
- Medical Research Collaborating Center, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Bo Kyung Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji Hyun Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| |
Collapse
|
71
|
Ramesh J, Ronsard L, Gao A, Venugopal B. Autophagy Intertwines with Different Diseases-Recent Strategies for Therapeutic Approaches. Diseases 2019; 7:diseases7010015. [PMID: 30717078 PMCID: PMC6473623 DOI: 10.3390/diseases7010015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a regular and substantial “clear-out process” that occurs within the cell and that gets rid of debris that accumulates in membrane-enclosed vacuoles by using enzyme-rich lysosomes, which are filled with acids that degrade the contents of the vacuoles. This machinery is well-connected with many prevalent diseases, including cancer, HIV, and Parkinson’s disease. Considering that autophagy is well-known for its significant connections with a number of well-known fatal diseases, a thorough knowledge of the current findings in the field is essential in developing therapies to control the progression rate of diseases. Thus, this review summarizes the critical events comprising autophagy in the cellular system and the significance of its key molecules in manifesting this pathway in various diseases for down- or upregulation. We collectively reviewed the role of autophagy in various diseases, mainly neurodegenerative diseases, cancer, inflammatory diseases, and renal disorders. Here, some collective reports on autophagy showed that this process might serve as a dual performer: either protector or contributor to certain diseases. The aim of this review is to help researchers to understand the role of autophagy-regulating genes encoding functional open reading frames (ORFs) and its connection with diseases, which will eventually drive better understanding of both the progression and suppression of different diseases at various stages. This review also focuses on certain novel therapeutic strategies which have been published in the recent years based on targeting autophagy key proteins and its interconnecting signaling cascades.
Collapse
Affiliation(s)
- Janani Ramesh
- Department of Medical Biochemistry, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113, India.
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Larance Ronsard
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02140, USA.
| | - Anthony Gao
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Bhuvarahamurthy Venugopal
- Department of Medical Biochemistry, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113, India.
| |
Collapse
|
72
|
Verykiou S, Alexander M, Edwards N, Plummer R, Chaudhry B, Lovat PE, Hill DS. Harnessing autophagy to overcome mitogen-activated protein kinase kinase inhibitor-induced resistance in metastatic melanoma. Br J Dermatol 2018; 180:346-356. [PMID: 30339727 PMCID: PMC7816093 DOI: 10.1111/bjd.17333] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Patients with malignant melanoma often relapse after treatment with BRAF and/or mitogen-activated protein kinase kinase (MEK) inhibitors (MEKi) owing to development of drug resistance. OBJECTIVES To establish the temporal pattern of CD271 regulation during development of resistance by melanoma to trametinib, and determine the association between development of resistance to trametinib and induction of prosurvival autophagy. METHODS Immunohistochemistry for CD271 and p62 was performed on human naevi and primary malignant melanoma tumours. Western blotting was used to analyse expression of CD271, p62 and LC3 in melanoma subpopulations. Flow cytometry and immunofluorescence microscopy was used to evaluate trametinib-induced cell death and CD271 expression. MTS viability assays and zebrafish xenografts were used to evaluate the effect of CD271 and autophagy modulation on trametinib-resistant melanoma cell survival and invasion, respectively. RESULTS CD271 and autophagic signalling are increased in stage III primary melanomas vs. benign naevi. In vitro studies demonstrate MEKi of BRAF-mutant melanoma induced cytotoxic autophagy, followed by the emergence of CD271-expressing subpopulations. Trametinib-induced CD271 reduced autophagic flux, leading to activation of prosurvival autophagy and development of MEKi resistance. Treatment of CD271-expressing melanoma subpopulations with RNA interference and small-molecule inhibitors to CD271 reduced the development of MEKi resistance, while clinically applicable autophagy modulatory agents - including Δ9-tetrahydrocannabinol and Vps34 - reduced survival of MEKi-resistant melanoma cells. Combined MEK/autophagy inhibition also reduced the invasive and metastatic potential of MEKi-resistant cells in an in vivo zebrafish xenograft. CONCLUSIONS These results highlight a novel mechanism of MEKi-induced drug resistance and suggest that targeting autophagy may be a translatable approach to resensitize drug-resistant melanoma cells to the cytotoxic effects of MEKi.
Collapse
Affiliation(s)
- S Verykiou
- Institute of Cellular Medicine, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, U.K.,Northern Institute for Cancer Research, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, U.K
| | - M Alexander
- Institute of Cellular Medicine, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, U.K
| | - N Edwards
- Institute of Cellular Medicine, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, U.K
| | - R Plummer
- Northern Institute for Cancer Research, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, U.K
| | - B Chaudhry
- Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, U.K
| | - P E Lovat
- Institute of Cellular Medicine, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, U.K.,Northern Institute for Cancer Research, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, U.K
| | - D S Hill
- Institute of Cellular Medicine, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, U.K.,Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, U.K
| |
Collapse
|
73
|
Yun CW, Lee SH. The Roles of Autophagy in Cancer. Int J Mol Sci 2018; 19:ijms19113466. [PMID: 30400561 PMCID: PMC6274804 DOI: 10.3390/ijms19113466] [Citation(s) in RCA: 673] [Impact Index Per Article: 96.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an intracellular degradative process that occurs under several stressful conditions, including organelle damage, the presence of abnormal proteins, and nutrient deprivation. The mechanism of autophagy initiates the formation of autophagosomes that capture degraded components and then fuse with lysosomes to recycle these components. The modulation of autophagy plays dual roles in tumor suppression and promotion in many cancers. In addition, autophagy regulates the properties of cancer stem-cells by contributing to the maintenance of stemness, the induction of recurrence, and the development of resistance to anticancer reagents. Although some autophagy modulators, such as rapamycin and chloroquine, are used to regulate autophagy in anticancer therapy, since this process also plays roles in both tumor suppression and promotion, the precise mechanism of autophagy in cancer requires further study. In this review, we will summarize the mechanism of autophagy under stressful conditions and its roles in tumor suppression and promotion in cancer and in cancer stem-cells. Furthermore, we discuss how autophagy is a promising potential therapeutic target in cancer treatment.
Collapse
Affiliation(s)
- Chul Won Yun
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea.
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea.
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 31538, Korea.
| |
Collapse
|
74
|
Liu H, He Z, Bode P, Moch H, Simon HU. Downregulation of Autophagy-Related Proteins 1, 5, and 16 in Testicular Germ Cell Tumors Parallels Lowered LC3B and Elevated p62 Levels, Suggesting Reduced Basal Autophagy. Front Oncol 2018; 8:366. [PMID: 30245976 PMCID: PMC6137693 DOI: 10.3389/fonc.2018.00366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/17/2018] [Indexed: 12/03/2022] Open
Abstract
Autophagy is a cellular “self-digestion” process known to be essential for various physiological and pathological pathways, including cancer, where its role appears to be context-dependent. In this work, we aimed to investigate the level of autophagy by evaluating the expression of key autophagy-related proteins (ATGs) in testicular germ cell tumors (TGCT) for which autophagy has been rarely investigated. We decided to use an immunohistochemical (IHC) staining approach employing a tissue microarray (TMA). Software-based evaluation of the integrated optical densities (IODs) of these proteins indicated a significant downregulation of ATG1, ATG5, and ATG16L1. Accordingly, reduced levels of microtubule-associated proteins 1A/1B light chain 3B (LC3B) were found to parallel increases in sequestosome-1 (SQSTM1 or p62), a protein normally degraded via autophagy, suggesting an in vivo reduction in autophagy with TGCT. Thus, our work provides evidence for a tumor suppressive function of autophagy in the development of TGCT and supports the concept of a context-dependent role of autophagy in tumorigenesis which is tumor type-dependent.
Collapse
Affiliation(s)
- He Liu
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Zhaoyue He
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Peter Bode
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| |
Collapse
|
75
|
Zhao GS, Gao ZR, Zhang Q, Tang XF, Lv YF, Zhang ZS, Zhang Y, Tan QL, Peng DB, Jiang DM, Guo QN. TSSC3 promotes autophagy via inactivating the Src-mediated PI3K/Akt/mTOR pathway to suppress tumorigenesis and metastasis in osteosarcoma, and predicts a favorable prognosis. J Exp Clin Cancer Res 2018; 37:188. [PMID: 30092789 PMCID: PMC6085607 DOI: 10.1186/s13046-018-0856-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/24/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Over the last two or three decades, the pace of development of treatments for osteosarcoma tends has been slow. Novel effective therapies for osteosarcoma are still lacking. Previously, we reported that tumor-suppressing STF cDNA 3 (TSSC3) functions as an imprinted tumor suppressor gene in osteosarcoma; however, the underlying mechanism by which TSSC3 suppresses the tumorigenesis and metastasis remain unclear. METHODS We investigated the dynamic expression patterns of TSSC3 and autophagy-related proteins (autophagy related 5 (ATG5) and P62) in 33 human benign bone tumors and 58 osteosarcoma tissues using immunohistochemistry. We further investigated the correlations between TSSC3 and autophagy in osteosarcoma using western blotting and transmission electronic microscopy. CCK-8, Edu, and clone formation assays; wound healing and Transwell assays; PCR; immunohistochemistry; immunofluorescence; and western blotting were used to investigated the responses in TSSC3-overexpressing osteosarcoma cell lines, and in xenografts and metastasis in vivo models, with or without autophagy deficiency caused by chloroquine or ATG5 silencing. RESULTS We found that ATG5 expression correlated positively with TSSC3 expression in human osteosarcoma tissues. We demonstrated that TSSC3 was an independent prognostic marker for overall survival in osteosarcoma, and positive ATG5 expression associated with positive TSSC3 expression suggested a favorable prognosis for patients. Then, we showed that TSSC3 overexpression enhanced autophagy via inactivating the Src-mediated PI3K/Akt/mTOR pathway in osteosarcoma. Further results suggested autophagy contributed to TSSC3-induced suppression of tumorigenesis and metastasis in osteosarcoma in vitro and in vivo models. CONCLUSIONS Our findings highlighted, for the first time, the importance of autophagy as an underlying mechanism in TSSC3-induced antitumor effects in osteosarcoma. We also revealed that TSSC3-associated positive ATG5 expression might be a potential predictor of favorable prognosis in patients with osteosarcoma.
Collapse
Affiliation(s)
- Guo-sheng Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 People’s Republic of China
- Bone and Trauma Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120 People’s Republic of China
| | - Zi-ran Gao
- Department of Pathology, Xinqiao Hospital, The Third Military Medical University, Chongqing, 400037 People’s Republic of China
| | - Qiao Zhang
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 People’s Republic of China
| | - Xue-feng Tang
- Department of Pathology, Xinqiao Hospital, The Third Military Medical University, Chongqing, 400037 People’s Republic of China
| | - Yang-fan Lv
- Department of Pathology, Xinqiao Hospital, The Third Military Medical University, Chongqing, 400037 People’s Republic of China
| | - Zhao-si Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 People’s Republic of China
| | - Yuan Zhang
- Department of Orthopaedics, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 People’s Republic of China
| | - Qiu-lin Tan
- Department of Pathology, Xinqiao Hospital, The Third Military Medical University, Chongqing, 400037 People’s Republic of China
| | - Dong-bin Peng
- Department of Pathology, Xinqiao Hospital, The Third Military Medical University, Chongqing, 400037 People’s Republic of China
| | - Dian-ming Jiang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 People’s Republic of China
- Bone and Trauma Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120 People’s Republic of China
| | - Qiao-Nan Guo
- Department of Pathology, Xinqiao Hospital, The Third Military Medical University, Chongqing, 400037 People’s Republic of China
| |
Collapse
|
76
|
Sun Z, Zheng L, Liu X, Xing W, Liu X. Sinomenine inhibits the growth of melanoma by enhancement of autophagy via PI3K/AKT/mTOR inhibition. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2413-2421. [PMID: 30122899 PMCID: PMC6084074 DOI: 10.2147/dddt.s155798] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Melanoma is a common skin tumor in adults with high metastasis and mortality rates. Thus, finding a better effective approach to treat melanoma has become very urgent. Sinomenine (SIN), the major active compound of Sinomenium acutum, has shown antitumorigenic activities in certain cancers. However, its role in melanoma remains unclear. Purpose This study aimed to explore the effects of SIN on melanoma in vitro and in vivo, in addition to exploring the underlying mechanism. Methods Mouse melanoma cell B16-F10 treated by SIN was analyzed by CCK8 assay and flow cytometry. Melanoma xenograft model was then established by subcutaneously injection with B16-F10 cells. Tumor growth was measured by immunohistochemistry. To further investigate the relative mechanism, the autophagy and PI3K/Akt/mTOR pathway were examined by immunofluorescence and Western blot. Results Our results revealed that SIN dose dependently inhibited the proliferation of B16-F10 cells in vitro and attenuated melanoma growth in vivo. In addition, SIN treatment promoted the apoptosis of B16-F10 cells in a dose-dependent manner, as demonstrated by the increase in apoptotic cells, Bax/Bcl-2 ratio, and caspase-3 activity. Moreover, preconditioning with SIN dramatically enhanced autophagy activity by increasing Beclin-1 and LC3II/LC3I expression, in addition to decreasing p62 expression and augmenting the number of LC3 puncta, in B16-F10 cells. More importantly, autophagy inhibitor chloroquine partly abolished SIN’s effects on cell growth and apoptosis. Furthermore, our results showed that SIN-triggered activation of autophagy was mediated by PI3K/Akt/mTOR signaling pathway. Conclusion Our study has identified a novel function of SIN and provided a molecular basis for potential applications of SIN in the treatment of melanoma and other cancers.
Collapse
Affiliation(s)
- Zheng Sun
- Department of Dermatology and Venereology, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Lingling Zheng
- Department of Dermatology and Venereology, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xujun Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Wenlong Xing
- Department of Cardiovasology, Beijing Chinese Medicine Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xinhai Liu
- Department of Plastic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China,
| |
Collapse
|
77
|
Qiu J, Li X, He Y, Sun D, Li W, Xin Y. Distinct subgroup of the Ras family member 3 (DIRAS3) expression impairs metastasis and induces autophagy of gastric cancer cells in mice. J Cancer Res Clin Oncol 2018; 144:1869-1886. [PMID: 30043279 PMCID: PMC6153597 DOI: 10.1007/s00432-018-2708-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/16/2018] [Indexed: 11/17/2022]
Abstract
Purpose Distinct subgroup of the Ras family member 3 (DIRAS3), also called Aplasia Ras homolog member I, is a tumor suppressor gene that induces autophagy in several cancer cell lines. Methods This study analyzed DIRAS3, and markers of autophagy (p62, and LC3B-II) in surgically resected GC samples from 420 patients. The promotion of autophagy by DIRAS3 in gastric cancer (GC) cells was explored, which might explain its inhibitory role in gastric cancer cells. Results DIRAS3 expression in GC was positively correlated with LC3B-II amount, and negatively with metastasis; DIRAS3 and p62 levels were independent prognostic factors in GC. Overexpression of DIRAS3 in BGC-823 cells induced autophagy, led to decreased proliferation, cell cycle arrest in G0/G1 phase, increased apoptosis, and impaired migration and invasion. While knockdown of DIRAS3 promoted proliferation and migration in MKN-45 cells. Overexpression of DIRAS3 in BGC-823 cells elevated autophagy levels in subcutaneous xenograft and inhibited tumor growth in mice; the hematogenous liver and lung metastasis of cancer cells were also suppressed. Conclusions In conclusion, the results suggest DIRAS3 may play a role in affecting proliferation and metastatic potential of GC cells, which may be associated with its involvement in autophagy regulation.
Collapse
Affiliation(s)
- Jingping Qiu
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, China
| | - Xiaoting Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yingjian He
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Dan Sun
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, China
| | - Wenhui Li
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, China
| | - Yan Xin
- Laboratory of Gastrointestinal Onco-Pathology, Cancer Institute and General Surgery Institute, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
78
|
Sil P, Wong SW, Martinez J. More Than Skin Deep: Autophagy Is Vital for Skin Barrier Function. Front Immunol 2018; 9:1376. [PMID: 29988591 PMCID: PMC6026682 DOI: 10.3389/fimmu.2018.01376] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/04/2018] [Indexed: 12/30/2022] Open
Abstract
The skin is a highly organized first line of defense that stretches up to 1.8 m2 and is home to more than a million commensal bacteria. The microenvironment of skin is driven by factors such as pH, temperature, moisture, sebum level, oxidative stress, diet, resident immune cells, and infectious exposure. The skin has a high turnover of cells as it continually bares itself to environmental stresses. Notwithstanding these limitations, it has devised strategies to adapt as a nutrient-scarce site. To perform its protective function efficiently, it relies on mechanisms to continuously remove dead cells without alarming the immune system, actively purging the dying/senescent cells by immunotolerant efferocytosis. Both canonical (starvation-induced, reactive oxygen species, stress, and environmental insults) and non-canonical (selective) autophagy in the skin have evolved to perform astute due-diligence and housekeeping in a quiescent fashion for survival, cellular functioning, homeostasis, and immune tolerance. The autophagic “homeostatic rheostat” works tirelessly to uphold the delicate balance in immunoregulation and tolerance. If this equilibrium is upset, the immune system can wreak havoc and initiate pathogenesis. Out of all the organs, the skin remains under-studied in the context of autophagy. Here, we touch upon some of the salient features of autophagy active in the skin.
Collapse
Affiliation(s)
- Payel Sil
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Sing-Wai Wong
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States.,Oral and Craniofacial Biomedicine Curriculum, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States
| |
Collapse
|
79
|
Roles of autophagy in controlling stem cell identity: a perspective of self-renewal and differentiation. Cell Tissue Res 2018; 374:205-216. [DOI: 10.1007/s00441-018-2829-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/04/2018] [Indexed: 01/14/2023]
|
80
|
Cruickshank B, Giacomantonio M, Marcato P, McFarland S, Pol J, Gujar S. Dying to Be Noticed: Epigenetic Regulation of Immunogenic Cell Death for Cancer Immunotherapy. Front Immunol 2018; 9:654. [PMID: 29666625 PMCID: PMC5891575 DOI: 10.3389/fimmu.2018.00654] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/16/2018] [Indexed: 12/13/2022] Open
Abstract
Immunogenic cell death (ICD) activates both innate and adaptive arms of the immune system during apoptotic cancer cell death. With respect to cancer immunotherapy, the process of ICD elicits enhanced adjuvanticity and antigenicity from dying cancer cells and consequently, promotes the development of clinically desired antitumor immunity. Cancer ICD requires the presentation of various "hallmarks" of immunomodulation, which include the cell-surface translocation of calreticulin, production of type I interferons, and release of high-mobility group box-1 and ATP, which through their compatible actions induce an immune response against cancer cells. Interestingly, recent reports investigating the use of epigenetic modifying drugs as anticancer therapeutics have identified several connections to ICD hallmarks. Epigenetic modifiers have a direct effect on cell viability and appear to fundamentally change the immunogenic properties of cancer cells, by actively subverting tumor microenvironment-associated immunoevasion and aiding in the development of an antitumor immune response. In this review, we critically discuss the current evidence that identifies direct links between epigenetic modifications and ICD hallmarks, and put forward an otherwise poorly understood role for epigenetic drugs as ICD inducers. We further discuss potential therapeutic innovations that aim to induce ICD during epigenetic drug therapy, generating highly efficacious cancer immunotherapies.
Collapse
Affiliation(s)
| | | | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Sherri McFarland
- Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, United States
- Department of Chemistry, Acadia University, Wolfville, NS, Canada
| | - Jonathan Pol
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Centre for Innovative and Collaborative Health Services Research, IWK Health Centre, Halifax, NS, Canada
| |
Collapse
|
81
|
Mortezavi A, Salemi S, Rupp NJ, Rüschoff JH, Hermanns T, Poyet C, Randazzo M, Simon HU, Moch H, Sulser T, Wild P, Eberli D. Negative LC3b immunoreactivity in cancer cells is an independent prognostic predictor of prostate cancer specific death. Oncotarget 2018; 8:31765-31774. [PMID: 28423666 PMCID: PMC5458246 DOI: 10.18632/oncotarget.15986] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 02/20/2017] [Indexed: 01/07/2023] Open
Abstract
Background Autophagy is a catabolic cellular process used for degradation of cytoplasmic organelles and preservation of cell viability. In this study we aimed to analyse the level of autophagy markers in benign and malignant prostate tissue and to evaluate the prognostic properties for patients with prostate cancer (PCa). Results LC3b expression was significantly upregulated in PCa, especially in metastatic and castration-resistant PCa samples compared to benign prostate tissue (p<0.001). Evaluation of expression in malignant radical prostatectomy specimens revealed an inverse association with preoperative serum PSA levels (p=0.02) and Gleason Score (p=0.07). LC3b immunoreactivity was identified as a novel predictor of PCa specific death after radical prostatectomy, independent of Gleason score, tumour stage, and surgical margin status in a multivariable cox regression analysis (hazard ratio 0.09, 95% confidence interval 0.01-0.69, p=0.021). A significant association of ATG-5 and Beclin 1 with LC3b expression could be noticed (p<0.001), but no link with other clincopathologic parameters was observed. Materials and Methods A Tissue microarray containing 468 formalin-fixed, paraffin-embedded prostate tissue cores was stained immunohistochemically for major autophagy proteins LC3b, ATG5 and Beclin 1. Immunoreactivity was semiquantitatively scored and correlated with pathologic and clinical parameters, including tumour stage, Gleason score, preoperative PSA level, biochemical recurrence rate and survival. The median clinical follow-up was 132 months. Conclusion LC3b was significantly overexpressed in malignant compared to benign prostate tissue. However, positive LC3b immunoreactivity in PCa, as a marker of increased autophagy, was independently associated with a reduced disease-specific mortality.
Collapse
Affiliation(s)
- Ashkan Mortezavi
- Department of Urology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Souzan Salemi
- Department of Urology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Niels J Rupp
- Institute of Surgical Pathology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Jan Hendrik Rüschoff
- Institute of Surgical Pathology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Thomas Hermanns
- Department of Urology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Cedric Poyet
- Department of Urology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Marco Randazzo
- Department of Urology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, Inselspital, University of Bern, 3010 Bern, Switzerland
| | - Holger Moch
- Institute of Surgical Pathology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Tullio Sulser
- Department of Urology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Peter Wild
- Institute of Surgical Pathology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Daniel Eberli
- Department of Urology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
82
|
Abstract
Mammalian cells harness autophagy to eliminate physiological byproducts of metabolism and cope with microenvironmental perturbations. Moreover, autophagy connects cellular adaptation with extracellular circuitries that impinge on immunity and metabolism. As it links transformed and non-transformed components of the tumour microenvironment, such an autophagic network is important for cancer initiation, progression and response to therapy. Here, we discuss the mechanisms whereby the autophagic network interfaces with multiple aspects of malignant disease.
Collapse
|
83
|
Lee E, Wei Y, Zou Z, Tucker K, Rakheja D, Levine B, Amatruda JF. Genetic inhibition of autophagy promotes p53 loss-of-heterozygosity and tumorigenesis. Oncotarget 2018; 7:67919-67933. [PMID: 27655644 PMCID: PMC5356529 DOI: 10.18632/oncotarget.12084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 08/30/2016] [Indexed: 12/13/2022] Open
Abstract
Autophagy is an evolutionarily conserved lysosomal degradation pathway that plays an essential role in enabling eukaryotic organisms to adapt to nutrient deprivation and other forms of environmental stress. In metazoan organisms, autophagy is essential for differentiation and normal development; however, whether the autophagy pathway promotes or inhibits tumorigenesis is controversial, and the possible mechanisms linking defective autophagy to cancer remain unclear. To determine if autophagy is important for tumor suppression, we inhibited autophagy in transgenic zebrafish via stable, tissue-specific expression of a dominant-negative autophagy protein Atg5K130R. In heterozygous tp53 mutants, expression of dominant-negative atg5K130R increased tumor incidence and decreased tumor latency compared to non-transgenic heterozygous tp53 mutant controls. In a tp53-deficient background, Tg(mitfa:atg5K130R) mutantsdeveloped malignant peripheral nerve sheath tumors (MPNSTs), neuroendocrine tumors and small-cell tumors. Expression of a Sox10-dependent GFP transgene in the tumors demonstrated their origin from neural crest cells, lending support to a model in which mitfa-expressing cells can arise from sox10+ Schwann cell precursors. Tumors from the transgenic animals exhibited increased DNA damage and loss-of-heterozygosity of tp53. Taken together, our data indicate that genetic inhibition of autophagy promotes tumorigenesis in tp53 mutant zebrafish, and suggest a possible role for autophagy in the regulation of genome stability during oncogenesis.
Collapse
Affiliation(s)
- Eunmyong Lee
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yongjie Wei
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zhongju Zou
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kathryn Tucker
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Beth Levine
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - James F Amatruda
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
84
|
Han Y, Fan S, Qin T, Yang J, Sun Y, Lu Y, Mao J, Li L. Role of autophagy in breast cancer and breast cancer stem cells (Review). Int J Oncol 2018; 52:1057-1070. [PMID: 29436618 DOI: 10.3892/ijo.2018.4270] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/09/2018] [Indexed: 11/05/2022] Open
Abstract
Autophagy is a key catabolic process, in which cytosolic cargo is engulfed by the formation of a double membrane and then degraded through the fusing of autophagosomes with lysosomes. Autophagy is a constitutively active, evolutionarily conserved, catabolic process important for the maintenance of homeostasis in cellular stress responses and cell survival. Although the mechanisms of autophagy have not yet been fully elucidated, emerging evidence suggests that it plays a dual role in breast cancer and in maintaining the activity of breast cancer stem cells (CSCs). However, it may play a complex role in breast CSC therapy. Breast CSCs, a population of cells with the ability to self-renew, differentiate, and initiate and sustain tumor growth, play an essential role in cancer recurrence, anticancer resistance and metastasis. In addition, the elucidation of the association between autophagy and apoptosis in the tumor context is crucial in order to better address appropriate therapy strategies. In the present review, a summary of the mechanisms and roles of autophagy in breast cancer and CSCs is presented. The potential value of such autophagy modulators in the development of novel breast cancer therapies is discussed.
Collapse
Affiliation(s)
- Yanyan Han
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Shujun Fan
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Tao Qin
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Jinfeng Yang
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Yan Sun
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Ying Lu
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Jun Mao
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| | - Lianhong Li
- Department of Pathology, Dalian Medical University, Liaoning 116044, P.R. China
| |
Collapse
|
85
|
Chen YM, Liu Y, Wei HY, Lv KZ, Fu PF. Large intergenic non-coding RNA-ROR reverses gemcitabine-induced autophagy and apoptosis in breast cancer cells. Oncotarget 2018; 7:59604-59617. [PMID: 27449099 PMCID: PMC5312334 DOI: 10.18632/oncotarget.10730] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/30/2016] [Indexed: 12/19/2022] Open
Abstract
The purpose of this study was to elucidate the potential role of long intergenic non-protein coding RNA, regulator of reprogramming (linc-ROR) in gemcitabine (Gem)-induced autophagy and apoptosis in breast cancer cells. MDA-MB-231 cells were treated with short hairpin RNA (shRNA) to knockdown Linc-ROR expression in the presence of Gem. Gem treatment alone decreased cell survival and increased both apoptosis and autophagy. Gem treatment also increased the expression of LC3-II, Beclin 1, NOTCH1 and Bcl-2, but decreased expression of p62 and p53. Untreated MDA-MB-231 cell lines strongly expressed linc-ROR, but linc-ROR knockdown decreased cell viability and expression of p62 and p53 while increasing apoptosis. Linc-ROR knockdown also increased LC3-II/β-actin, Beclin 1, NOTCH1, and Bcl-2 expression, as well as the number of autophagic vesicles in MDA-MB-231 cells. Linc-ROR negatively regulated miR-34a expression by inhibiting histone H3 acetylation in the miR-34a promoter. We conclude that linc-ROR suppresses Gem-induced autophagy and apoptosis in breast cancer cells by silencing miR-34a expression.
Collapse
Affiliation(s)
- Yao-Min Chen
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou 310000, P.R. China
| | - Yu Liu
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou 310000, P.R. China
| | - Hai-Yan Wei
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou 310000, P.R. China
| | - Ke-Zhen Lv
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou 310000, P.R. China
| | - Pei-Fen Fu
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou 310000, P.R. China
| |
Collapse
|
86
|
Li M, Ma F, Wang J, Li Q, Zhang P, Yuan P, Luo Y, Cai R, Fan Y, Chen S, Li Q, Xu B. Genetic polymorphisms of autophagy-related gene 5 (ATG5) rs473543 predict different disease-free survivals of triple-negative breast cancer patients receiving anthracycline- and/or taxane-based adjuvant chemotherapy. CHINESE JOURNAL OF CANCER 2018; 37:4. [PMID: 29382381 PMCID: PMC5791378 DOI: 10.1186/s40880-018-0268-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/01/2017] [Indexed: 12/31/2022]
Abstract
Background Autophagy plays a crucial role in chemotherapy resistance of triple-negative breast cancer (TNBC). Hence, autophagy-related gene 5 (ATG5), an essential molecule involved in autophagy regulation, is presumably associated with recurrence of TNBC. This study was aimed to investigate the potential influence of single-nucleotide polymorphisms in ATG5 on the disease-free survival (DFS) of early-stage TNBC patients treated with anthracycline- and/or taxane-based chemotherapy. Methods We genotyped ATG5 SNP rs473543 in a cohort of 316 TNBC patients treated with anthracycline- and/or taxane-based chemotherapy using the sequenom’s MassARRAY system. Kaplan–Meier survival analysis and Cox proportional hazard regression analysis were used to analyze the association between ATG5 rs473543 genotypes and the clinical outcome of TNBC patients. Results Three genotypes, AA, GA, and GG, were detected in the rs473543 of ATG5 gene. The distribution of ATG5 rs473543 genotypes was significantly different between patients with and without recurrence (P = 0.024). Kaplan–Meier survival analysis showed that patients carrying A allele of ATG5 rs473543 had an increased risk of recurrence and shorter DFS compared with those carrying the variant genotype GG in rs473543 (P = 0.034). In addition, after adjusting for clinical factors, multivariate Cox regression analyses revealed that the AA/GA genotype of rs473543 was an independent predictor for DFS (hazard risk [HR], 1.73; 95% confidence interval [CI], 1.04–2.87; P = 0.034). In addition, DFS was shorter in node-negative patients with the presence of A allele (AA/GA) than in those with the absence of A allele (P = 0.027). Conclusion ATG5 rs473543 genotypes may serve as a potential marker for predicting recurrence of early-stage TNBC patients who received anthracycline-and/or taxane-based regimens as adjuvant chemotherapy.
Collapse
Affiliation(s)
- Meiying Li
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Jiayu Wang
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Qing Li
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Pin Zhang
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Peng Yuan
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Yang Luo
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Ruigang Cai
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Ying Fan
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Shanshan Chen
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Qiao Li
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, P. R. China.
| |
Collapse
|
87
|
Sample A, He YY. Mechanisms and prevention of UV-induced melanoma. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2018; 34:13-24. [PMID: 28703311 PMCID: PMC5760354 DOI: 10.1111/phpp.12329] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/06/2017] [Indexed: 02/06/2023]
Abstract
Melanoma is the deadliest form of skin cancer and its incidence is rising, creating a costly and significant clinical problem. Exposure to ultraviolet (UV) radiation, namely UVA (315-400 nm) and UVB (280-315 nm), is a major risk factor for melanoma development. Cumulative UV radiation exposure from sunlight or tanning beds contributes to UV-induced DNA damage, oxidative stress, and inflammation in the skin. A number of factors, including hair color, skin type, genetic background, location, and history of tanning, determine the skin's response to UV radiation. In melanocytes, dysregulation of this UV radiation response can lead to melanoma. Given the complex origins of melanoma, it is difficult to develop curative therapies and universally effective preventative strategies. Here, we describe and discuss the mechanisms of UV-induced skin damage responsible for inducing melanomagenesis, and explore options for therapeutic and preventative interventions.
Collapse
Affiliation(s)
- Ashley Sample
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL
- Committee on Cancer Biology, University of Chicago, Chicago, IL
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL
- Committee on Cancer Biology, University of Chicago, Chicago, IL
| |
Collapse
|
88
|
Wang L, Guo W, Ma J, Dai W, Liu L, Guo S, Chen J, Wang H, Yang Y, Yi X, Wang G, Gao T, Zhu G, Li C. Aberrant SIRT6 expression contributes to melanoma growth: Role of the autophagy paradox and IGF-AKT signaling. Autophagy 2017; 14:518-533. [PMID: 29215322 DOI: 10.1080/15548627.2017.1384886] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Melanoma is among the most life-threatening cancers. The pathogenesis of melanoma has not been fully elucidated. Recently, dysregulated macroautophagy/autophagy has been found to play a critical but inconsistent role in modulating melanoma growth at different stages, with the regulatory mechanism unclear. The histone deacetylase SIRT6 (sirtuin 6) is a known autophagy regulator, and its involvement in cancer development has been reported. Therefore, we sought to determine the role of SIRT6 in melanoma growth and detect its possible link with autophagy in the current study. We initially observed that the expression of SIRT6 decreased in primary melanoma but increased in metastatic melanoma compared with melanocytic nevus. Notably, the expression of SIRT6 was significantly correlated with the expression of autophagy biomarkers including MAP1LC3/LC3 and SQSTM1/p62. Furthermore, SIRT6 suppressed the growth of primary melanoma but promoted metastatic melanoma development in an autophagy-dependent way in vitro. Moreover, SIRT6 exerted its regulation on melanoma growth via the IGF-AKT signaling pathway, and the intervention of AKT could partly reverse the effects of SIRT6 on melanoma growth by regulating autophagy. At last, we determined the effects of SIRT6 on melanoma development in vivo. Taken together, our findings demonstrate that the bimodal expression of SIRT6 at different melanoma stages plays a critical role in regulating melanoma growth through an autophagy-dependent manner, which indicates the potential of SIRT6 to be a biomarker and a therapeutic target in melanoma.
Collapse
Affiliation(s)
- Liwen Wang
- a Department of Dermatology , Xijing hospital, Fourth Military Medical University , Xi'an , Shannxi , China
| | - Weinan Guo
- a Department of Dermatology , Xijing hospital, Fourth Military Medical University , Xi'an , Shannxi , China
| | - Jinyuan Ma
- a Department of Dermatology , Xijing hospital, Fourth Military Medical University , Xi'an , Shannxi , China
| | - Wei Dai
- a Department of Dermatology , Xijing hospital, Fourth Military Medical University , Xi'an , Shannxi , China
| | - Lin Liu
- a Department of Dermatology , Xijing hospital, Fourth Military Medical University , Xi'an , Shannxi , China
| | - Sen Guo
- a Department of Dermatology , Xijing hospital, Fourth Military Medical University , Xi'an , Shannxi , China
| | - Jiaxi Chen
- a Department of Dermatology , Xijing hospital, Fourth Military Medical University , Xi'an , Shannxi , China
| | - Huina Wang
- a Department of Dermatology , Xijing hospital, Fourth Military Medical University , Xi'an , Shannxi , China
| | - Yuqi Yang
- a Department of Dermatology , Xijing hospital, Fourth Military Medical University , Xi'an , Shannxi , China
| | - Xiuli Yi
- a Department of Dermatology , Xijing hospital, Fourth Military Medical University , Xi'an , Shannxi , China
| | - Gang Wang
- a Department of Dermatology , Xijing hospital, Fourth Military Medical University , Xi'an , Shannxi , China
| | - Tianwen Gao
- a Department of Dermatology , Xijing hospital, Fourth Military Medical University , Xi'an , Shannxi , China
| | - Guannan Zhu
- a Department of Dermatology , Xijing hospital, Fourth Military Medical University , Xi'an , Shannxi , China
| | - Chunying Li
- a Department of Dermatology , Xijing hospital, Fourth Military Medical University , Xi'an , Shannxi , China
| |
Collapse
|
89
|
Luan W, Qian Y, Ni X, Chanda TK, Xia Y, Wang J, Yan Y, Xu B. Polygonatum odoratum lectin promotes BECN1 expression and induces autophagy in malignant melanoma by regulation of miR1290. Onco Targets Ther 2017; 10:4569-4577. [PMID: 29066911 PMCID: PMC5604572 DOI: 10.2147/ott.s147406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Autophagy is not only a survival response to growth-factor or nutrient deprivation but also an important mechanism for tumor-cell suicide, including melanoma. Polygonatum odoratum lectin (POL) displays apoptosis- and autophagy-inducing effects in many human tumors. POL also inhibits the growth of melanoma cells, but its role and molecular mechanism in malignant melanoma remain unclear. In this study, we found that POL suppressed proliferation and induced autophagy in melanoma cells. miR1290 was upregulated and inhibited autophagy in melanoma. BECN1 is the direct functional effector of miR1290. Furthermore, we found that POL promoted BECN1 expression though inhibition of miR1290, thus inducing melanoma-cell autophagy. This finding elucidates a new role and mechanism for POL in melanoma, and provides a potential antineoplastic agent for melanoma treatment.
Collapse
Affiliation(s)
| | | | - Xin Ni
- Department of Gastroenterology
| | | | - Yun Xia
- Department of Plastic Surgery
| | | | - Yulan Yan
- Department of Respiratory Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Bin Xu
- Department of Plastic Surgery
| |
Collapse
|
90
|
Yang PW, Hsieh MS, Chang YH, Huang PM, Lee JM. Genetic polymorphisms of ATG5 predict survival and recurrence in patients with early-stage esophageal squamous cell carcinoma. Oncotarget 2017; 8:91494-91504. [PMID: 29207660 PMCID: PMC5710940 DOI: 10.18632/oncotarget.20793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/27/2017] [Indexed: 01/08/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a deadly disease with high risk of tumor recurrence even among patients with an early pathologic stage of tumor. In the current study, we investigate the association between 20 SNPs of the ATG5 gene and prognosis of patients with early-stage ESCC. A total of 305 patients diagnosed with early-stage ESCC were enrolled in the study and randomly assigned to a training set (n=93) or replication set (n=212). The genotypes of candidate SNPs (single nucleotide polymorphisms) within ATG5 were analyzed and correlated with the prognosis of ESCC patients. We repeatedly demonstrated that 3 SNPs in ATG5, rs1322178, rs3804329, and rs671116, were significantly correlated with the prognosis of patients with early-stage ESCC (HR[95 % CI]=2.01[1.19-3.40], p=0.009 for ATG5: rs1322178; HR[95 % CI]=1.88 [1.08-3.26], p=0.025 for ATG5:rs3804329; HR[95 % CI]=1.73[1.24-2.42], p=0.001 for ATG5:rs671116, in combined group). Both rs1322178 and rs3804329 can predict early distant metastasis of patients. Furthermore, increased expression of ATG5 was observed in ESCC tumor tissue as compared to adjacent normal tissue. Moreover, higher levels of ATG5 expression in both normal and tumor tissues exhibited a trend to correlate with poor prognosis of patients. However, the expression of ATG5 did not correlate with these 3 relevant prognostic SNPs. We concluded that hereditary genetic polymorphisms and gene expression of ATG5 can serve as prognostic predictors of patients with early-stage ESCC.
Collapse
Affiliation(s)
- Pei-Wen Yang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Min-Shu Hsieh
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Han Chang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Ming Huang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jang-Ming Lee
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
91
|
Ndoye A, Budina-Kolomets A, Kugel CH, Webster MR, Kaur A, Behera R, Rebecca VW, Li L, Brafford PA, Liu Q, Gopal YNV, Davies MA, Mills GB, Xu X, Wu H, Herlyn M, Nicastri MC, Winkler JD, Soengas MS, Amaravadi RK, Murphy ME, Weeraratna AT. ATG5 Mediates a Positive Feedback Loop between Wnt Signaling and Autophagy in Melanoma. Cancer Res 2017; 77:5873-5885. [PMID: 28887323 DOI: 10.1158/0008-5472.can-17-0907] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/21/2017] [Accepted: 08/30/2017] [Indexed: 12/13/2022]
Abstract
Autophagy mediates resistance to various anticancer agents. In melanoma, resistance to targeted therapy has been linked to expression of Wnt5A, an intrinsic inhibitor of β-catenin, which also promotes invasion. In this study, we assessed the interplay between Wnt5A and autophagy by combining expression studies in human clinical biopsies with functional analyses in cell lines and mouse models. Melanoma cells with high Wnt5A and low β-catenin displayed increased basal autophagy. Genetic blockade of autophagy revealed an unexpected feedback loop whereby knocking down the autophagy factor ATG5 in Wnt5Ahigh cells decreased Wnt5A and increased β-catenin. To define the physiologic relevance of this loop, melanoma cells with different Wnt status were treated in vitro and in vivo with the potent lysosomotropic compound Lys05. Wnt5Ahigh cells were less sensitive to Lys05 and could be reverted by inducing β-catenin activity. Our results suggest the efficacy of autophagy inhibitors might be improved by taking the Wnt signature of melanoma cells into account. Cancer Res; 77(21); 5873-85. ©2017 AACR.
Collapse
Affiliation(s)
- Abibatou Ndoye
- The Wistar Institute Melanoma Research Center, Philadelphia, Pennsylvania.,The University of the Sciences, Philadelphia, Pennsylvania
| | - Anna Budina-Kolomets
- The Wistar Institute Melanoma Research Center, Philadelphia, Pennsylvania.,The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Curtis H Kugel
- The Wistar Institute Melanoma Research Center, Philadelphia, Pennsylvania
| | - Marie R Webster
- The Wistar Institute Melanoma Research Center, Philadelphia, Pennsylvania
| | - Amanpreet Kaur
- The Wistar Institute Melanoma Research Center, Philadelphia, Pennsylvania.,The University of the Sciences, Philadelphia, Pennsylvania
| | - Reeti Behera
- The Wistar Institute Melanoma Research Center, Philadelphia, Pennsylvania
| | - Vito W Rebecca
- The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ling Li
- The Wistar Institute Melanoma Research Center, Philadelphia, Pennsylvania
| | | | - Qin Liu
- The Wistar Institute Melanoma Research Center, Philadelphia, Pennsylvania
| | | | - Michael A Davies
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gordon B Mills
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaowei Xu
- The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hong Wu
- Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Meenhard Herlyn
- The Wistar Institute Melanoma Research Center, Philadelphia, Pennsylvania
| | | | | | - Maria S Soengas
- Melanoma Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Maureen E Murphy
- The Wistar Institute Melanoma Research Center, Philadelphia, Pennsylvania
| | | |
Collapse
|
92
|
Ravanan P, Srikumar IF, Talwar P. Autophagy: The spotlight for cellular stress responses. Life Sci 2017; 188:53-67. [PMID: 28866100 DOI: 10.1016/j.lfs.2017.08.029] [Citation(s) in RCA: 458] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/05/2017] [Accepted: 08/28/2017] [Indexed: 02/06/2023]
Abstract
Autophagy is an essential cellular mechanism which plays "housekeeping" role in normal physiological processes including removing of long lived, aggregated and misfolded proteins, clearing damaged organelles, growth regulation and aging. Autophagy is also involved in a variety of biological functions like development, cellular differentiation, defense against pathogens and nutritional starvation. The integration of autophagy into these biological functions and other stress responses is determined by the transcriptional factors that undertake the regulatory mechanism. This review discusses the machinery of autophagy, the molecular web that connects autophagy to various stress responses like inflammation, hypoxia, ER stress, and various other pathologic conditions. Defects in autophagy regulation play a central role in number of diseases, including neurodegenerative diseases, cancer, pathogen infection and metabolic diseases. Similarly, inhibiting autophagy would contribute in the treatment of cancer. However, understanding the biology of autophagy regulation requires pharmacologically active compounds which modulate the autophagy process. Inducers of autophagy are currently receiving considerable attention as autophagy upregulation may be a therapeutic benefit for certain neurodegenerative diseases (via removal of protein aggregates) while the inhibitors are being investigated for the treatment of cancers. Both induction and inhibition of autophagy have been proven to be beneficial in the treatment of cancer. This dual role of autophagy in cancers is now getting uncovered by the advancement in the research findings and development of effective autophagy modulators.
Collapse
Affiliation(s)
- Palaniyandi Ravanan
- Apoptosis and Cell Survival Research Laboratory, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu-632014, India.
| | - Ida Florance Srikumar
- Apoptosis and Cell Survival Research Laboratory, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu-632014, India
| | - Priti Talwar
- Apoptosis and Cell Survival Research Laboratory, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu-632014, India
| |
Collapse
|
93
|
Li Z, Ma J, Liu L, Liu X, Wang P, Liu Y, Li Z, Zheng J, Chen J, Tao W, Xue Y. Endothelial-Monocyte Activating Polypeptide II Suppresses the In Vitro Glioblastoma-Induced Angiogenesis by Inducing Autophagy. Front Mol Neurosci 2017; 10:208. [PMID: 28701921 PMCID: PMC5488748 DOI: 10.3389/fnmol.2017.00208] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 06/14/2017] [Indexed: 12/18/2022] Open
Abstract
The obstacle in delivering therapeutics to glioblastoma (GBM) is tumor-induced angiogenesis which leads to the formation of abnormal vessels and a dysfunctional blood-tumor barrier. Here, we elucidated the effect of endothelial-monocyte activating polypeptide II (EMAP II) on the GBM-induced angiogenesis as well as its potential mechanisms. Our results proved that EMAP II inhibited the viability, mitochondrial membrane potential, migration and tube formation of GBM-induced endothelial cells (GECs) by inducing cell autophagy, demonstrated by cell viability assay, JC-1 staining assay, transwell assay and tube formation assay, respectively. Cell autophagy was induced by EMAP II through the observation of autophagic vacuoles formation and the up-regulation of microtubule-associated protein-1 light chain-3 (LC3)-II and p62/SQSTM1 expression, demonstrated by transmission electron microscopy analysis, immunofluorescence assay and Western blot assay. The activity of PI3K/AKT/mTOR signal pathway could be inhibited by the EMAP II treatment. Furthermore, unfolded protein response (UPR)-related proteins (GRP78, eIF2α, and CHOP) were up-regulated by EMAP II, which suggest that GECs exposed to EMAP II experienced endoplasmic reticulum stress. Further, mechanistic investigations found that EMAP II reduced the miR-96 expression which could directly target the 3'-UTR of these UPR-related proteins, and over-expression of miR-96 inhibited LC3 and p62/SQSTM1 expression by down-regulating these UPR-related proteins in GECs. Moreover, the combination of EMAP II with miR-96 inhibitor showed the inhibitory effect on the viability, migration, and in vitro tube formation of GECs, which are critical for angiogenesis. Taken together, we have demonstrated the fact that EMAP II resulted in the decreased GBM-induced angiogenesis by inducing autophagy, which might contribute to establishing potential strategies for human GBM treatment.
Collapse
Affiliation(s)
- Zhiqing Li
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical UniversityShenyang, China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical UniversityShenyang, China
| | - Libo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical UniversityShenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical UniversityShenyang, China
- Liaoning Research Center for Translational Medicine in Nervous System DiseaseShenyang, China
| | - Ping Wang
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical UniversityShenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical UniversityShenyang, China
- Liaoning Research Center for Translational Medicine in Nervous System DiseaseShenyang, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical UniversityShenyang, China
- Liaoning Research Center for Translational Medicine in Nervous System DiseaseShenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical UniversityShenyang, China
- Liaoning Research Center for Translational Medicine in Nervous System DiseaseShenyang, China
| | - Jiajia Chen
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical UniversityShenyang, China
| | - Wei Tao
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical UniversityShenyang, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China
- Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical UniversityShenyang, China
- Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical UniversityShenyang, China
| |
Collapse
|
94
|
Melanocytic nevi and melanoma: unraveling a complex relationship. Oncogene 2017; 36:5771-5792. [PMID: 28604751 DOI: 10.1038/onc.2017.189] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/11/2022]
Abstract
Approximately 33% of melanomas are derived directly from benign, melanocytic nevi. Despite this, the vast majority of melanocytic nevi, which typically form as a result of BRAFV600E-activating mutations, will never progress to melanoma. Herein, we synthesize basic scientific insights and data from mouse models with common observations from clinical practice to comprehensively review melanocytic nevus biology. In particular, we focus on the mechanisms by which growth arrest is established after BRAFV600E mutation. Means by which growth arrest can be overcome and how melanocytic nevi relate to melanoma are also considered. Finally, we present a new conceptual paradigm for understanding the growth arrest of melanocytic nevi in vivo termed stable clonal expansion. This review builds upon the canonical hypothesis of oncogene-induced senescence in growth arrest and tumor suppression in melanocytic nevi and melanoma.
Collapse
|
95
|
Guo W, Wang H, Yang Y, Guo S, Zhang W, Liu Y, Yi X, Ma J, Zhao T, Liu L, Jian Z, Liu L, Wang G, Gao T, Shi Q, Li C. Down-regulated miR-23a Contributes to the Metastasis of Cutaneous Melanoma by Promoting Autophagy. Am J Cancer Res 2017; 7:2231-2249. [PMID: 28740547 PMCID: PMC5505056 DOI: 10.7150/thno.18835] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/31/2017] [Indexed: 12/18/2022] Open
Abstract
Melanoma is among the most aggressive tumors, and the occurrence of metastasis leads to a precipitous drop in the patients' survival. Therefore, identification of metastasis-associated biomarkers and therapeutic targets will contribute a lot to improving melanoma theranostics. Recently, microRNAs (miRNAs) have been implicated in modulating cancer invasion and metastasis, and are proved as potential non-invasive biomarkers in sera for various tumors. Here, we reported miR-23a as a novel metastasis-associated miRNA that played a remarkable role in modulating melanoma invasive and metastatic capacity and was of great value in predicting melanoma metastasis and prognosis. We found that serum miR-23a level was significantly down-regulated in metastatic melanoma patients and highly correlated with poor clinical outcomes. In addition, miR-23a level was also remarkably decreased in metastatic melanoma tissues and cell lines. Furthermore, overexpressed miR-23a suppressed the invasive and migratory property of melanoma cells by abrogating autophagy through directly targeting ATG12. Specially, miR-23a-ATG12 axis attenuated melanoma invasion and migration through autophagy-mediated AMPK-RhoA pathway. Finally, the overexpression of miR-23a prevented melanoma metastasis in vivo. Taken together, our findings demonstrate that the metastasis-associated miR-23a is not only a potential biomarker, but also a valuable therapeutic target for melanoma.
Collapse
|
96
|
Xue G, Kohler R, Tang F, Hynx D, Wang Y, Orso F, Prêtre V, Ritschard R, Hirschmann P, Cron P, Roloff T, Dummer R, Mandalà M, Bichet S, Genoud C, Meyer AG, Muraro MG, Spagnoli GC, Taverna D, Rüegg C, Merghoub T, Massi D, Tang H, Levesque MP, Dirnhofer S, Zippelius A, Hemmings BA, Wicki A. mTORC1/autophagy-regulated MerTK in mutant BRAFV600 melanoma with acquired resistance to BRAF inhibition. Oncotarget 2017; 8:69204-69218. [PMID: 29050198 PMCID: PMC5642473 DOI: 10.18632/oncotarget.18213] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022] Open
Abstract
BRAF inhibitors (BRAFi) and the combination therapy of BRAF and MEK inhibitors (MEKi) were recently approved for therapy of metastatic melanomas harbouring the oncogenic BRAFV600 mutation. Although these therapies have shown pronounced therapeutic efficacy, the limited durability of the response indicates an acquired drug resistance that still remains mechanistically poorly understood at the molecular level. We conducted transcriptome gene profiling in BRAFi-treated melanoma cells and identified that Mer tyrosine kinase (MerTK) is specifically upregulated. MerTK overexpression was demonstrated not only in melanomas resistant to BRAFi monotherapy (5 out of 10 samples from melanoma patients) but also in melanoma resistant to BRAFi+MEKi (1 out of 3), although MEKi alone does not affect MerTK. Mechanistically, BRAFi-induced activation of Zeb2 stimulates MerTK in BRAFV600 melanoma through mTORC1-triggered activation of autophagy. Co-targeting MerTK and BRAFV600 significantly reduced tumour burden in xenografted mice, which was pheno-copied by co-inhibition of autophagy and mutant BRAFV600.
Collapse
Affiliation(s)
- Gongda Xue
- Department of Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Reto Kohler
- Department of Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Fengyuan Tang
- Department of Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Debby Hynx
- Department of Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Yuhua Wang
- Department of Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Francesca Orso
- Molecular Biotechnology Center and Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Vincent Prêtre
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Reto Ritschard
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | | | - Peter Cron
- Department of Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Tim Roloff
- Department of Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | - Mario Mandalà
- Unit of Clinical and Translational Research, Department of Oncology and Hematology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Sandrine Bichet
- Department of Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Christel Genoud
- Department of Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Alexandra G Meyer
- Department of Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Manuele G Muraro
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Giulio C Spagnoli
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Daniela Taverna
- Molecular Biotechnology Center and Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Curzio Rüegg
- Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Taha Merghoub
- Ludwig Center for Cancer Immunotherapy, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Daniela Massi
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Huifang Tang
- Department of Pharmacology, Zhejiang University, School of Basic Medical Sciences, Hangzhou, China
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | | | - Alfred Zippelius
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Brian A Hemmings
- Department of Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Andreas Wicki
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
97
|
Mathiassen SG, De Zio D, Cecconi F. Autophagy and the Cell Cycle: A Complex Landscape. Front Oncol 2017; 7:51. [PMID: 28409123 PMCID: PMC5374984 DOI: 10.3389/fonc.2017.00051] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/10/2017] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a self-degradation pathway, in which cytoplasmic material is sequestered in double-membrane vesicles and delivered to the lysosome for degradation. Under basal conditions, autophagy plays a homeostatic function. However, in response to various stresses, the pathway can be further induced to mediate cytoprotection. Defective autophagy has been linked to a number of human pathologies, including neoplastic transformation, even though autophagy can also sustain the growth of tumor cells in certain contexts. In recent years, a considerable correlation has emerged between autophagy induction and stress-related cell-cycle responses, as well as unexpected roles for autophagy factors and selective autophagic degradation in the process of cell division. These advances have obvious implications for our understanding of the intricate relationship between autophagy and cancer. In this review, we will discuss our current knowledge of the reciprocal regulation connecting the autophagy pathway and cell-cycle progression. Furthermore, key findings involving nonautophagic functions for autophagy-related factors in cell-cycle regulation will be addressed.
Collapse
Affiliation(s)
- Søs Grønbæk Mathiassen
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Daniela De Zio
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Francesco Cecconi
- Cell Stress and Survival Unit, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Biology, University of Rome Tor Vergata, Rome, Italy.,Department of Pediatric Hematology and Oncology, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
98
|
Zhu X, Ji M, Han Y, Guo Y, Zhu W, Gao F, Yang X, Zhang C. PGRMC1-dependent autophagy by hyperoside induces apoptosis and sensitizes ovarian cancer cells to cisplatin treatment. Int J Oncol 2017; 50:835-846. [PMID: 28197632 DOI: 10.3892/ijo.2017.3873] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/12/2016] [Indexed: 11/06/2022] Open
Abstract
Cisplatin treatment some times leads to chemoresistance, which is now acknowledged partially due to the inductive expression of progesterone receptor membrane component (PGRMC)1 in ovarian cancer cells. PGRMC1 enhances autophagy, activates cytochrome p450, and inveigles signaling pathways to promote cell survival and reduce the effect of drug treatments. In this study, we give first line evidence that hyperoside inhibits cell viability, triggers autophagy and apoptosis in ovarian cancer cell lines. Mechanistically, PGRMC1-dependent autophagy was utilized by hyperoside to induce apoptotic cell death. Hyperoside induced the conversion of LC3B-I to LC3B-II and the formation of autophagosomes in ovarian cancer cells. Notably, PGRMC1 colocolized with LC3B‑II, and PGRMC1 overexpression enhanced hyperoside-induced autophagy and apoptosis, while PGRMC1 knockdown abrogated the action. Additionally, AKT signaling and Bcl-2 family were also involved in the hyperoside-induced autophagy and apoptosis. Importantly, in cisplatin-resistant ovarian cancer cells where PGRMC1 was overexpressed, hyperoside sensitized the cells to cisplatin treatment. Together these findings indicate hyperoside functions as a complementary therapy for ovarian cancer patients receiving platinum-based therapy.
Collapse
Affiliation(s)
- Xiaofei Zhu
- Department of Laboratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Mingde Ji
- Department of Laboratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Yue Han
- Department of Gynecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Yuanyuan Guo
- Department of Biochemistry, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Wenqiang Zhu
- Department of Surgical Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Feng Gao
- Department of Laboratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Xuewen Yang
- Department of Laboratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Chunbing Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
99
|
Cristobal-Sarramian A, Radulovic M, Kohlwein S. Methods to Measure Lipophagy in Yeast. Methods Enzymol 2017; 588:395-412. [DOI: 10.1016/bs.mie.2016.09.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
100
|
Demirsoy S, Martin S, Maes H, Agostinis P. Adapt, Recycle, and Move on: Proteostasis and Trafficking Mechanisms in Melanoma. Front Oncol 2016; 6:240. [PMID: 27896217 PMCID: PMC5108812 DOI: 10.3389/fonc.2016.00240] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022] Open
Abstract
Melanoma has emerged as a paradigm of a highly aggressive and plastic cancer, capable to co-opt the tumor stroma in order to adapt to the hostile microenvironment, suppress immunosurveillance mechanisms, and disseminate. In particular, oncogene- and aneuploidy-driven dysregulations of proteostasis in melanoma cells impose a rewiring of central proteostatic processes, such as the heat shock and unfolded protein responses, autophagy, and the endo-lysosomal system, to avoid proteotoxicity. Research over the past decade has indicated that alterations in key nodes of these proteostasis pathways act in conjunction with crucial oncogenic drivers to increase intrinsic adaptations of melanoma cells against proteotoxic stress, modulate the high metabolic demand of these cancer cells and the interface with other stromal cells, through the heightened release of soluble factors or exosomes. Here, we overview and discuss how key proteostasis pathways and vesicular trafficking mechanisms are turned into vital conduits of melanoma progression, by supporting cancer cell's adaptation to the microenvironment, limiting or modulating the ability to respond to therapy and fueling melanoma dissemination.
Collapse
Affiliation(s)
- Seyma Demirsoy
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven , Leuven , Belgium
| | - Shaun Martin
- Laboratory for Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven , Leuven , Belgium
| | - Hannelore Maes
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven , Leuven , Belgium
| | - Patrizia Agostinis
- Laboratory for Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven , Leuven , Belgium
| |
Collapse
|