51
|
Rühl J, Citterio C, Engelmann C, Haigh T, Dzionek A, Dreyer J, Khanna R, Taylor GS, Wilson JB, Leung CS, Münz C. Heterologous prime-boost vaccination protects against EBV antigen-expressing lymphomas. J Clin Invest 2019; 129:2071-2087. [PMID: 31042161 DOI: 10.1172/jci125364] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/05/2019] [Indexed: 02/06/2023] Open
Abstract
The Epstein-Barr virus (EBV) is one of the predominant tumor viruses in humans, but so far no therapeutic or prophylactic vaccination against this transforming pathogen is available. We demonstrated that heterologous prime-boost vaccination with the nuclear antigen 1 of EBV (EBNA1), either targeted to the DEC205 receptor on DCs or expressed from a recombinant modified vaccinia virus Ankara (MVA) vector, improved priming of antigen-specific CD4+ T cell help. This help supported the expansion and maintenance of EBNA1-specific CD8+ T cells that are most efficiently primed by recombinant adenoviruses that encode EBNA1. These combined CD4+ and CD8+ T cell responses protected against EBNA1-expressing T and B cell lymphomas, including lymphoproliferations that emerged spontaneously after EBNA1 expression. In particular, the heterologous EBNA1-expressing adenovirus, boosted by EBNA1-encoding MVA vaccination, demonstrated protection as a prophylactic and therapeutic treatment for the respective lymphoma challenges. Our study shows that such heterologous prime-boost vaccinations against EBV-associated malignancies as well as symptomatic primary EBV infection should be further explored for clinical development.
Collapse
Affiliation(s)
- Julia Rühl
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Carmen Citterio
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Christine Engelmann
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Tracey Haigh
- Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, United Kingdom
| | | | - Johannes Dreyer
- Institute for Pathology, Unfallkrankenhaus Berlin, Berlin, Germany
| | - Rajiv Khanna
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory, Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Graham S Taylor
- Cancer Immunology and Immunotherapy Centre, University of Birmingham, Birmingham, United Kingdom
| | - Joanna B Wilson
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Carol S Leung
- University of Oxford, Nuffield Department of Medicine, Ludwig Institute for Cancer Research, Oxford, United Kingdom
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
52
|
Sharma S, Rouce RH. Are we there yet? The never-ending quest for an Epstein-Barr virus vaccine. J Clin Invest 2019; 129:1836-1838. [PMID: 30985295 DOI: 10.1172/jci128370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Epstein-Barr virus (EBV) is estimated to infect a large part of the population and is associated with a variety of human tumors; therefore, EBV is an important target for vaccine development. In this issue of the JCI, Rühl et al. developed a promising heterologous prime-boost vaccination strategy for EBV-associated malignancies and symptomatic primary infection. The authors show that two prime-boost regimens, using either dendritic cells or an adenovirus approach targeting nuclear antigen EBNA1 followed by a modified vaccinia virus Ankara (MVA) booster, induced significant T cell-mediated, EBV-specific immune control and Ab production. These findings suggest that administration of heterologous prime-boost vaccinations targeting EBNA1 may result in potent CD4+ and CD8+ T cell-mediated EBV immune control and may be a promising clinical approach.
Collapse
|
53
|
Abstract
The development of highly effective and durable vaccines against the human malaria parasites Plasmodium falciparum and P. vivax remains a key priority. Decades of endeavor have taught that achieving this goal will be challenging; however, recent innovation in malaria vaccine research and a diverse pipeline of novel vaccine candidates for clinical assessment provides optimism. With first-generation pre-erythrocytic vaccines aiming for licensure in the coming years, it is important to reflect on how next-generation approaches can improve on their success. Here we review the latest vaccine approaches that seek to prevent malaria infection, disease, and transmission and highlight some of the major underlying immunological and molecular mechanisms of protection. The synthesis of rational antigen selection, immunogen design, and immunization strategies to induce quantitatively and qualitatively improved immune effector mechanisms offers promise for achieving sustained high-level protection.
Collapse
|
54
|
Walk J, Stok JE, Sauerwein RW. Can Patrolling Liver-Resident T Cells Control Human Malaria Parasite Development? Trends Immunol 2019; 40:186-196. [PMID: 30713008 DOI: 10.1016/j.it.2019.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/08/2019] [Accepted: 01/13/2019] [Indexed: 12/23/2022]
Abstract
Recently, a population of non-recirculating, tissue-resident memory CD8+ T cells has been identified; cells that seems to act as key sentinels for invading microorganisms with enhanced effector functions. In malaria, the liver represents the first site for parasite development before a definite infection is established in circulating red blood cells. Here, we discuss the evidence obtained from animal models on several diseases and hypothesize that liver-resident memory CD8+ T cells (hepatic TRM) play a critical role in providing protective liver-stage immunity against Plasmodium malaria parasites. Although observations in human malaria trials are limited to peripheral blood, we propose recommendations for the translation of some of these findings to human malaria research.
Collapse
Affiliation(s)
- Jona Walk
- Department of Medical Microbiology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Jorn E Stok
- University Medical Center Utrecht, PO Box 85500, Utrecht, The Netherlands
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
55
|
Wilson KL, Flanagan KL, Prakash MD, Plebanski M. Malaria vaccines in the eradication era: current status and future perspectives. Expert Rev Vaccines 2019; 18:133-151. [PMID: 30601095 DOI: 10.1080/14760584.2019.1561289] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The challenge to eradicate malaria is an enormous task that will not be achieved by current control measures, thus an efficacious and long-lasting malaria vaccine is required. The licensing of RTS, S/AS01 is a step forward in providing some protection, but a malaria vaccine that protects across multiple transmission seasons is still needed. To achieve this, inducing beneficial immune responses while minimising deleterious non-targeted effects will be essential. AREAS COVERED This article discusses the current challenges and advances in malaria vaccine development and reviews recent human clinical trials for each stage of infection. Pubmed and ScienceDirect were searched, focusing on cell mediated immunity and how T cell subsets might be targeted in future vaccines using novel adjuvants and emerging vaccine technologies. EXPERT COMMENTARY Despite decades of research there is no highly effective licensed malaria vaccine. However, there is cause for optimism as new adjuvants and vaccine systems emerge, and our understanding of correlates of protection increases, especially regarding cellular immunity. The new field of heterologous (non-specific) effects of vaccines also highlights the broader consequences of immunization. Importantly, the WHO led Malaria Vaccine Technology Roadmap illustrates that there is a political will among the global health community to make it happen.
Collapse
Affiliation(s)
- K L Wilson
- a Department of Immunology and Pathology, Faculty of Medicine, Nursing and Health Sciences , Monash University , Melbourne , Australia.,b School of Health and Biomedical Sciences , RMIT University , Bundoora , Australia
| | - K L Flanagan
- a Department of Immunology and Pathology, Faculty of Medicine, Nursing and Health Sciences , Monash University , Melbourne , Australia.,b School of Health and Biomedical Sciences , RMIT University , Bundoora , Australia.,c School of Medicine, Faculty of Health Sciences , University of Tasmania , Launceston , Australia
| | - M D Prakash
- b School of Health and Biomedical Sciences , RMIT University , Bundoora , Australia
| | - M Plebanski
- b School of Health and Biomedical Sciences , RMIT University , Bundoora , Australia
| |
Collapse
|
56
|
Hansen SG, Womack J, Scholz I, Renner A, Edgel KA, Xu G, Ford JC, Grey M, St Laurent B, Turner JM, Planer S, Legasse AW, Richie TL, Aguiar JC, Axthelm MK, Villasante ED, Weiss W, Edlefsen PT, Picker LJ, Früh K. Cytomegalovirus vectors expressing Plasmodium knowlesi antigens induce immune responses that delay parasitemia upon sporozoite challenge. PLoS One 2019; 14:e0210252. [PMID: 30673723 PMCID: PMC6343944 DOI: 10.1371/journal.pone.0210252] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
The development of a sterilizing vaccine against malaria remains one of the highest priorities for global health research. While sporozoite vaccines targeting the pre-erythrocytic stage show great promise, it has not been possible to maintain efficacy long-term, likely due to an inability of these vaccines to maintain effector memory T cell responses in the liver. Vaccines based on human cytomegalovirus (HCMV) might overcome this limitation since vectors based on rhesus CMV (RhCMV), the homologous virus in rhesus macaques (RM), elicit and indefinitely maintain high frequency, non-exhausted effector memory T cells in extralymphoid tissues, including the liver. Moreover, RhCMV strain 68-1 elicits CD8+ T cells broadly recognizing unconventional epitopes exclusively restricted by MHC-II and MHC-E. To evaluate the potential of these unique immune responses to protect against malaria, we expressed four Plasmodium knowlesi (Pk) antigens (CSP, AMA1, SSP2/TRAP, MSP1c) in RhCMV 68-1 or in Rh189-deleted 68-1, which additionally elicits canonical MHC-Ia-restricted CD8+ T cells. Upon inoculation of RM with either of these Pk Ag expressing RhCMV vaccines, we obtained T cell responses to each of the four Pk antigens. Upon challenge with Pk sporozoites we observed a delayed appearance of blood stage parasites in vaccinated RM consistent with a 75-80% reduction of parasite release from the liver. Moreover, the Rh189-deleted RhCMV/Pk vectors elicited sterile protection in one RM. Once in the blood, parasite growth was not affected. In contrast to T cell responses induced by Pk infection, RhCMV vectors maintained sustained T cell responses to all four malaria antigens in the liver post-challenge. The delayed appearance of blood stage parasites is thus likely due to a T cell-mediated inhibition of liver stage parasite development. As such, this vaccine approach can be used to efficiently test new T cell antigens, improve current vaccines targeting the liver stage and complement vaccines targeting erythrocytic antigens.
Collapse
Affiliation(s)
- Scott G Hansen
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Jennie Womack
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
| | - Isabel Scholz
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
| | - Andrea Renner
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Kimberly A Edgel
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Guangwu Xu
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
| | - Julia C Ford
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
| | - Mikayla Grey
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
| | - Brandyce St Laurent
- National Institutes of Health, Laboratory of Malaria and Vector Research, Malaria Pathogenesis and Human Immunity Unit, Rockville, MD, United States of America
| | - John M Turner
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Shannon Planer
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Al W Legasse
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Thomas L Richie
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Joao C Aguiar
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Michael K Axthelm
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Eileen D Villasante
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Walter Weiss
- US Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Paul T Edlefsen
- Statistical Center for HIV/AIDS Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Louis J Picker
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| | - Klaus Früh
- Oregon Health & Science University, Vaccine & Gene Therapy Institute, Beaverton, OR, United States of America
- Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR, United States of America
| |
Collapse
|
57
|
A probabilistic model of pre-erythrocytic malaria vaccine combination in mice. PLoS One 2019; 14:e0209028. [PMID: 30625136 PMCID: PMC6326473 DOI: 10.1371/journal.pone.0209028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 11/27/2018] [Indexed: 11/19/2022] Open
Abstract
Malaria remains one the world’s most deadly infectious diseases, with almost half a million deaths and over 150 million clinical cases each year. An effective vaccine would contribute enormously to malaria control and will almost certainly be required for eventual eradication of the disease. However, the leading malaria vaccine candidate, RTS,S, shows only 30–50% efficacy under field conditions, making it less cost-effective than long-lasting insecticide treated bed nets. Other subunit malaria vaccine candidates, including TRAP-based vaccines, show no better protective efficacy. This has led to increased interest in combining subunit malaria vaccines as a means of enhancing protective efficacy. Mathematical models of the effect of combining such vaccines on protective efficacy can help inform optimal vaccine strategies and decision-making at all stages of the clinical process. So far, however, no such model has been developed for pre-clinical murine studies, the stage at which all candidate antigens and combinations begin evaluation. To address this gap, this paper develops a mathematical model of vaccine combination adapted to murine malaria studies. The model is based on simple probabilistic assumptions which put the model on a firmer theoretical footing than previous clinical models, which rather than deriving a relationship between immune responses and protective efficacy posit the relationship to be either exponential or Hill curves. Data from pre-clinical murine malaria studies are used to derive values for unknowns in the model which in turn allows simulations of vaccine combination efficacy and suggests optimal strategies to pursue. Finally, the ability of the model to shed light on fundamental biological variables of murine malaria such as the blood stage growth rate and sporozoite infectivity is explored.
Collapse
|
58
|
Beeson JG, Kurtovic L, Dobaño C, Opi DH, Chan JA, Feng G, Good MF, Reiling L, Boyle MJ. Challenges and strategies for developing efficacious and long-lasting malaria vaccines. Sci Transl Med 2019; 11:11/474/eaau1458. [DOI: 10.1126/scitranslmed.aau1458] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/05/2018] [Accepted: 11/02/2018] [Indexed: 12/24/2022]
Abstract
Although there has been major recent progress in malaria vaccine development, substantial challenges remain for achieving highly efficacious and durable vaccines against Plasmodium falciparum and Plasmodium vivax malaria. Greater knowledge of mechanisms and key targets of immunity are needed to accomplish this goal, together with new strategies for generating potent, long-lasting, functional immunity against multiple antigens. Implementation considerations in endemic areas will ultimately affect vaccine effectiveness, so innovations to simplify and enhance delivery are also needed. Whereas challenges remain, recent exciting progress and emerging knowledge promise hope for the future of malaria vaccines.
Collapse
|
59
|
Tan J, Piccoli L, Lanzavecchia A. The Antibody Response to Plasmodium falciparum: Cues for Vaccine Design and the Discovery of Receptor-Based Antibodies. Annu Rev Immunol 2018; 37:225-246. [PMID: 30566366 DOI: 10.1146/annurev-immunol-042617-053301] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plasmodium falciparum remains a serious public health problem and a continuous challenge for the immune system due to the complexity and diversity of the pathogen. Recent advances from several laboratories in the characterization of the antibody response to the parasite have led to the identification of critical targets for protection and revealed a new mechanism of diversification based on the insertion of host receptors into immunoglobulin genes, leading to the production of receptor-based antibodies. These advances have opened new possibilities for vaccine design and passive antibody therapies to provide sterilizing immunity and control blood-stage parasites.
Collapse
Affiliation(s)
- Joshua Tan
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland; .,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom.,Current affiliation: National Institute of Allergy and Infectious Diseases, Rockville, Maryland 20852, USA
| | - Luca Piccoli
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland;
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland; .,VIR Biotechnology, San Francisco, California 94158, USA
| |
Collapse
|
60
|
Tiono AB, Nébié I, Anagnostou N, Coulibaly AS, Bowyer G, Lam E, Bougouma EC, Ouedraogo A, Yaro JBB, Barry A, Roberts R, Rampling T, Bliss C, Hodgson S, Lawrie A, Ouedraogo A, Imoukhuede EB, Ewer KJ, Viebig NK, Diarra A, Leroy O, Bejon P, Hill AVS, Sirima SB. First field efficacy trial of the ChAd63 MVA ME-TRAP vectored malaria vaccine candidate in 5-17 months old infants and children. PLoS One 2018; 13:e0208328. [PMID: 30540808 PMCID: PMC6291132 DOI: 10.1371/journal.pone.0208328] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/13/2018] [Indexed: 01/21/2023] Open
Abstract
Background Heterologous prime boost immunization with chimpanzee adenovirus 63 (ChAd63) and Modified Vaccinia Virus Ankara (MVA) vectored vaccines is a strategy previously shown to provide substantial protective efficacy against P. falciparum infection in United Kingdom adult Phase IIa sporozoite challenge studies (approximately 20–25% sterile protection with similar numbers showing clear delay in time to patency), and greater point efficacy in a trial in Kenyan adults. Methodology We conducted the first Phase IIb clinical trial assessing the safety, immunogenicity and efficacy of ChAd63 MVA ME-TRAP in 700 healthy malaria exposed children aged 5–17 months in a highly endemic malaria transmission area of Burkina Faso. Results ChAd63 MVA ME-TRAP was shown to be safe and immunogenic but induced only moderate T cell responses (median 326 SFU/106 PBMC (95% CI 290–387)) many fold lower than in previous trials. No significant efficacy was observed against clinical malaria during the follow up period, with efficacy against the primary endpoint estimate by proportional analysis being 13.8% (95%CI -42.4 to 47.9) at sixth month post MVA ME-TRAP and 3.1% (95%CI -15.0 to 18.3; p = 0.72) by Cox regression. Conclusions This study has confirmed ChAd63 MVA ME-TRAP is a safe and immunogenic vaccine regimen in children and infants with prior exposure to malaria. But no significant protective efficacy was observed in this very highly malaria-endemic setting. Trial registration ClinicalTrials.gov NCT01635647. Pactr.org PACTR201208000404131.
Collapse
Affiliation(s)
- Alfred B. Tiono
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Issa Nébié
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Nicholas Anagnostou
- The Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Aboubacar S. Coulibaly
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Georgina Bowyer
- The Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Erika Lam
- The Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Edith C. Bougouma
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Alphonse Ouedraogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Jean Baptist B. Yaro
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Aïssata Barry
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Rachel Roberts
- The Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Tommy Rampling
- The Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Carly Bliss
- The Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Susanne Hodgson
- The Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Alison Lawrie
- The Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Amidou Ouedraogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | | | - Katie J. Ewer
- The Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicola K. Viebig
- European Vaccine Initiative, Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - Amidou Diarra
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Odile Leroy
- European Vaccine Initiative, Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - Philip Bejon
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Adrian V. S. Hill
- The Jenner Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Sodiomon B. Sirima
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
- * E-mail:
| |
Collapse
|
61
|
Frimpong A, Kusi KA, Ofori MF, Ndifon W. Novel Strategies for Malaria Vaccine Design. Front Immunol 2018; 9:2769. [PMID: 30555463 PMCID: PMC6281765 DOI: 10.3389/fimmu.2018.02769] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022] Open
Abstract
The quest for a licensed effective vaccine against malaria remains a global priority. Even though classical vaccine design strategies have been successful for some viral and bacterial pathogens, little success has been achieved for Plasmodium falciparum, which causes the deadliest form of malaria due to its diversity and ability to evade host immune responses. Nevertheless, recent advances in vaccinology through high throughput discovery of immune correlates of protection, lymphocyte repertoire sequencing and structural design of immunogens, provide a comprehensive approach to identifying and designing a highly efficacious vaccine for malaria. In this review, we discuss novel vaccine approaches that can be employed in malaria vaccine design.
Collapse
Affiliation(s)
- Augustina Frimpong
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.,Immunology Department, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.,African Institute for Mathematical Sciences, Cape Coast, Ghana
| | - Kwadwo Asamoah Kusi
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.,Immunology Department, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Michael Fokuo Ofori
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.,Immunology Department, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Wilfred Ndifon
- African Institute for Mathematical Sciences, Cape Coast, Ghana.,African Institute for Mathematical Sciences, University of Stellenbosch, Cape Town, South Africa
| |
Collapse
|
62
|
Cockburn IA, Seder RA. Malaria prevention: from immunological concepts to effective vaccines and protective antibodies. Nat Immunol 2018; 19:1199-1211. [PMID: 30333613 DOI: 10.1038/s41590-018-0228-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/31/2018] [Indexed: 02/08/2023]
Abstract
Development of a malaria vaccine remains a critical priority to decrease clinical disease and mortality and facilitate eradication. Accordingly, RTS,S, a protein-subunit vaccine, has completed phase III clinical trials and confers ~30% protection against clinical infection over 4 years. Whole-attenuated-sporozoite and viral-subunit vaccines induce between 20% and 100% protection against controlled human malaria infection, but there is limited published evidence to date for durable, high-level efficacy (>50%) against natural exposure. Importantly, fundamental scientific advances related to the potency, durability, breadth and location of immune responses will be required for improving vaccine efficacy with these and other vaccine approaches. In this Review, we focus on the current understanding of immunological mechanisms of protection from animal models and human vaccine studies, and on how these data should inform the development of next-generation vaccines. Furthermore, we introduce the concept of using passive immunization with monoclonal antibodies as a new approach to prevent and eliminate malaria.
Collapse
Affiliation(s)
- Ian A Cockburn
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
63
|
Halbroth BR, Sebastian S, Poyntz HC, Bregu M, Cottingham MG, Hill AVS, Spencer AJ. Development of a Molecular Adjuvant to Enhance Antigen-Specific CD8 + T Cell Responses. Sci Rep 2018; 8:15020. [PMID: 30301933 PMCID: PMC6177389 DOI: 10.1038/s41598-018-33375-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/27/2018] [Indexed: 12/26/2022] Open
Abstract
Despite promising progress in malaria vaccine development, an efficacious subunit vaccine against P. falciparum remains to be licensed and deployed. This study aimed to improve on the immunogenicity of the leading liver-stage vaccine candidate (ChAd63-MVA ME-TRAP), known to confer protection by eliciting high levels of antigen-specific CD8+ T cells. We previously showed fusion of ME-TRAP to the human MHC class II invariant chain (Ii) could enhance CD8+ T cell responses in non-human primates, but did not progress to clinical testing due to potential risk of auto-immunity by vaccination of humans with a self-antigen. Initial immunogenicity analyses of ME-TRAP fused to subdomains of the Ii showed that the Ii transmembrane domain alone can enhance CD8+ T cell responses. Subsequently, truncated Ii sequences with low homology to human Ii were developed and shown to enhance CD8+ T cell responses. By systematically mutating the TM domain sequence, multimerization of the Ii chain was shown to be important for immune enhancement. We subsequently identified several proteins from a variety of microbial pathogens with similar characteristics, that also enhance the CD8+ T cell response and could therefore be used in viral vector vaccines when potent cell mediated immunity is required.
Collapse
Affiliation(s)
- Benedict R Halbroth
- The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford, United Kingdom.
| | - Sarah Sebastian
- The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford, United Kingdom
| | - Hazel C Poyntz
- The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford, United Kingdom
| | - Migena Bregu
- The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford, United Kingdom
| | - Matthew G Cottingham
- The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford, United Kingdom
| | - Adrian V S Hill
- The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford, United Kingdom
| | - Alexandra J Spencer
- The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford, United Kingdom.
| |
Collapse
|
64
|
Rampling T, Ewer KJ, Bowyer G, Edwards NJ, Wright D, Sridhar S, Payne R, Powlson J, Bliss C, Venkatraman N, Poulton ID, de Graaf H, Gbesemete D, Grobbelaar A, Davies H, Roberts R, Angus B, Ivinson K, Weltzin R, Rajkumar BY, Wille-Reece U, Lee C, Ockenhouse C, Sinden RE, Gerry SC, Lawrie AM, Vekemans J, Morelle D, Lievens M, Ballou RW, Lewis DJM, Cooke GS, Faust SN, Gilbert S, Hill AVS. Safety and efficacy of novel malaria vaccine regimens of RTS,S/AS01B alone, or with concomitant ChAd63-MVA-vectored vaccines expressing ME-TRAP. NPJ Vaccines 2018; 3:49. [PMID: 30323956 PMCID: PMC6177476 DOI: 10.1038/s41541-018-0084-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 08/07/2018] [Accepted: 09/04/2018] [Indexed: 11/08/2022] Open
Abstract
We assessed a combination multi-stage malaria vaccine schedule in which RTS,S/AS01B was given concomitantly with viral vectors expressing multiple-epitope thrombospondin-related adhesion protein (ME-TRAP) in a 0-month, 1-month, and 2-month schedule. RTS,S/AS01B was given as either three full doses or with a fractional (1/5th) third dose. Efficacy was assessed by controlled human malaria infection (CHMI). Safety and immunogenicity of the vaccine regimen was also assessed. Forty-one malaria-naive adults received RTS,S/AS01B at 0, 4 and 8 weeks, either alone (Groups 1 and 2) or with ChAd63 ME-TRAP at week 0, and modified vaccinia Ankara (MVA) ME-TRAP at weeks 4 and 8 (Groups 3 and 4). Groups 2 and 4 received a fractional (1/5th) dose of RTS,S/AS01B at week 8. CHMI was delivered by mosquito bite 11 weeks after first vaccination. Vaccine efficacy was 6/8 (75%), 8/9 (88.9%), 6/10 (60%), and 5/9 (55.6%) of subjects in Groups 1, 2, 3, and 4, respectively. Immunological analysis indicated significant reductions in anti-circumsporozoite protein antibodies and TRAP-specific T cells at CHMI in the combination vaccine groups. This reduced immunogenicity was only observed after concomitant administration of the third dose of RTS,S/AS01B with the second dose of MVA ME-TRAP. The second dose of the MVA vector with a four-week interval caused significantly higher anti-vector immunity than the first and may have been the cause of immunological interference. Co-administration of ChAd63/MVA ME-TRAP with RTS,S/AS01B led to reduced immunogenicity and efficacy, indicating the need for evaluation of alternative schedules or immunization sites in attempts to generate optimal efficacy.
Collapse
Affiliation(s)
- Tommy Rampling
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ UK
| | - Katie J. Ewer
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ UK
| | - Georgina Bowyer
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ UK
| | - Nick J. Edwards
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ UK
| | - Danny Wright
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ UK
| | - Saranya Sridhar
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ UK
| | - Ruth Payne
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ UK
| | | | - Carly Bliss
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ UK
| | | | - Ian D. Poulton
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ UK
| | - Hans de Graaf
- NIHR Wellcome Trust Clinical Research Facility, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Diane Gbesemete
- NIHR Wellcome Trust Clinical Research Facility, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Amy Grobbelaar
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ UK
| | - Huw Davies
- Department of Medicine, Division of Infectious Diseases, University of California, Irvine, CA 92697 USA
| | - Rachel Roberts
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ UK
| | - Brian Angus
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ UK
| | | | - Rich Weltzin
- PATH Malaria Vaccine Initiative, Washington, DC USA
| | | | | | - Cynthia Lee
- PATH Malaria Vaccine Initiative, Washington, DC USA
| | | | - Robert E. Sinden
- Department of Life Sciences, Imperial College London, London, UK
| | - Stephen C. Gerry
- Centre for Statistics in Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | - David J. M. Lewis
- Clinical Research Centre, University of Surrey, Guildford, GU2 7XP UK
| | - Graham S. Cooke
- Infectious Diseases Section, Faculty of Medicine, Department of Medicine, Imperial College London, London, UK
| | - Saul N. Faust
- NIHR Wellcome Trust Clinical Research Facility, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Sarah Gilbert
- The Jenner Institute, University of Oxford, Oxford, OX3 7DQ UK
| | | |
Collapse
|
65
|
Gola A, Silman D, Walters AA, Sridhar S, Uderhardt S, Salman AM, Halbroth BR, Bellamy D, Bowyer G, Powlson J, Baker M, Venkatraman N, Poulton I, Berrie E, Roberts R, Lawrie AM, Angus B, Khan SM, Janse CJ, Ewer KJ, Germain RN, Spencer AJ, Hill AVS. Prime and target immunization protects against liver-stage malaria in mice. Sci Transl Med 2018; 10:10/460/eaap9128. [DOI: 10.1126/scitranslmed.aap9128] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/08/2018] [Accepted: 08/20/2018] [Indexed: 12/24/2022]
Abstract
Despite recent advances in treatment and vector control, malaria is still a leading cause of death, emphasizing the need for an effective vaccine. The malaria life cycle can be subdivided into three stages: the invasion and growth within liver hepatocytes (pre-erythrocytic stage), the blood stage (erythrocytic stage), and, finally, the sexual stage (occurring within the mosquito vector). Antigen (Ag)-specific CD8+ T cells are effectively induced by heterologous prime-boost viral vector immunization and known to correlate with liver-stage protection. However, liver-stage malaria vaccines have struggled to generate and maintain the high numbers of Plasmodium-specific circulating T cells necessary to confer sterile protection. We describe an alternative “prime and target” vaccination strategy aimed specifically at inducing high numbers of tissue-resident memory T cells present in the liver at the time of hepatic infection. This approach bypasses the need for very high numbers of circulating T cells and markedly increases the efficacy of subunit immunization against liver-stage malaria with clinically relevant Ags and clinically tested viral vectors in murine challenge models. Translation to clinical use has begun, with encouraging results from a pilot safety and feasibility trial of intravenous chimpanzee adenovirus vaccination in humans. This work highlights the value of a prime-target approach for immunization against malaria and suggests that this strategy may represent a more general approach for prophylaxis or immunotherapy of other liver infections and diseases.
Collapse
|
66
|
McCall MBB, Kremsner PG, Mordmüller B. Correlating efficacy and immunogenicity in malaria vaccine trials. Semin Immunol 2018; 39:52-64. [PMID: 30219621 DOI: 10.1016/j.smim.2018.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022]
Abstract
The availability of an effective and appropriately implemented malaria vaccine would form a crucial cornerstone of public health efforts to fight this disease. Despite many decades of research, however, no malaria vaccine has yet shown satisfactory protective efficacy or been rolled-out. Validated immunological substitute endpoints have the potential to accelerate clinical vaccine development by reducing the required complexity, size, duration and cost of clinical trials. Besides facilitating clinical development of existing vaccine candidates, understanding immunological mechanisms of protection may drive the development of fundamentally new vaccination approaches. In this review we focus on correlates of protection in malaria vaccine development: Does immunogenicity predict malaria vaccine efficacy and why is this question particularly difficult? Have immunological correlates accelerated malaria vaccine development in the past and will they facilitate it in the future? Does Controlled Human Malaria Infection represent a valid model for identifying such immunological correlates, or a correlate of protection against naturally-acquired malaria in itself?
Collapse
Affiliation(s)
- Matthew B B McCall
- Institut für Tropenmedizin, Universität Tübingen and Deutsches Zentrum für Infektionsforschung, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.
| | - Peter G Kremsner
- Institut für Tropenmedizin, Universität Tübingen and Deutsches Zentrum für Infektionsforschung, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Benjamin Mordmüller
- Institut für Tropenmedizin, Universität Tübingen and Deutsches Zentrum für Infektionsforschung, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| |
Collapse
|
67
|
Bowyer G, Grobbelaar A, Rampling T, Venkatraman N, Morelle D, Ballou RW, Hill AVS, Ewer KJ. CXCR3 + T Follicular Helper Cells Induced by Co-Administration of RTS,S/AS01B and Viral-Vectored Vaccines Are Associated With Reduced Immunogenicity and Efficacy Against Malaria. Front Immunol 2018; 9:1660. [PMID: 30090099 PMCID: PMC6068239 DOI: 10.3389/fimmu.2018.01660] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/04/2018] [Indexed: 12/11/2022] Open
Abstract
A malaria vaccine strategy targeting multiple lifecycle stages may be required to achieve a high level of efficacy. In two Phase IIa clinical trials, we tested immunogenicity and efficacy of RTS,S/AS01B administered alone, in a staggered regimen with viral-vectored vaccines or co-administered with viral-vectored vaccines. RTS,S/AS01B induces high titers of antibody against sporozoites and viral-vectored vaccines ChAd63 ME-TRAP and MVA ME-TRAP induce potent T cell responses against infected hepatocytes. By combining these two strategies, we aimed to improve efficacy by inducing immune responses targeting multiple parasite antigens. Vaccination with RTS,S/AS01B alone or in a staggered regimen with viral vectors produced strong immune responses and demonstrated high levels of protection against controlled human malaria infection. However, concomitant administration of these vaccines significantly reduced humoral immunogenicity and protective efficacy. Strong Th1-biased cytokine responses induced by MVA ME-TRAP were associated with a skew in circulating T follicular helper cells toward a CXCR3+ phenotype and a reduction in antibody quantity and quality. This study illustrates that while a multistage-targeting vaccine strategy could provide high-level efficacy, the regimen design will require careful optimization.
Collapse
Affiliation(s)
- Georgina Bowyer
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Amy Grobbelaar
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Tommy Rampling
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | | | - Adrian V S Hill
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Katie J Ewer
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
68
|
Sherrard-Smith E, Sala KA, Betancourt M, Upton LM, Angrisano F, Morin MJ, Ghani AC, Churcher TS, Blagborough AM. Synergy in anti-malarial pre-erythrocytic and transmission-blocking antibodies is achieved by reducing parasite density. eLife 2018; 7:35213. [PMID: 29914622 PMCID: PMC6008048 DOI: 10.7554/elife.35213] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/18/2018] [Indexed: 01/05/2023] Open
Abstract
Anti-malarial pre-erythrocytic vaccines (PEV) target transmission by inhibiting human infection but are currently partially protective. It has been posited, but never demonstrated, that co-administering transmission-blocking vaccines (TBV) would enhance malaria control. We hypothesized a mechanism that TBV could reduce parasite density in the mosquito salivary glands, thereby enhancing PEV efficacy. This was tested using a multigenerational population assay, passaging Plasmodium berghei to Anopheles stephensi mosquitoes. A combined efficacy of 90.8% (86.7-94.2%) was observed in the PEV +TBV antibody group, higher than the estimated efficacy of 83.3% (95% CrI 79.1-87.0%) if the two antibodies acted independently. Higher PEV efficacy at lower mosquito parasite loads was observed, comprising the first direct evidence that co-administering anti-sporozoite and anti-transmission interventions act synergistically, enhancing PEV efficacy across a range of TBV doses and transmission intensities. Combining partially effective vaccines of differing anti-parasitic classes is a pragmatic, powerful way to accelerate malaria elimination efforts.
Collapse
Affiliation(s)
- Ellie Sherrard-Smith
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Katarzyna A Sala
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Leanna M Upton
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Fiona Angrisano
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Azra C Ghani
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Thomas S Churcher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | | |
Collapse
|
69
|
Update on Tumor Neoantigens and Their Utility: Why It Is Good to Be Different. Trends Immunol 2018; 39:536-548. [PMID: 29751996 DOI: 10.1016/j.it.2018.04.005] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 12/18/2022]
Abstract
Antitumor rejection by the immune system is a complex process that is regulated by several factors. Among these factors are the quality and quantity of mutational events that occur in cancer cells. Perhaps one of the most important types of mutations that influence antitumor immunity is the neoantigen, that is, a non-self-antigen that arises as a result of somatic mutation. Recent work has demonstrated that neoantigens hold significant promise for developing new diagnostic and therapeutic modalities. Therapeutic targeting of neoantigens is important for achieving benefit following therapy with immune checkpoint blockade agents or for cancer vaccines targeting mutations. Here, we review our understanding of neoantigens and discuss new developments in the quest to use them in cancer immunotherapy.
Collapse
|
70
|
Recombinant Chimpanzee Adenovirus Vaccine AdC7-M/E Protects against Zika Virus Infection and Testis Damage. J Virol 2018; 92:JVI.01722-17. [PMID: 29298885 DOI: 10.1128/jvi.01722-17] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/08/2017] [Indexed: 12/22/2022] Open
Abstract
The recent outbreak of Zika virus (ZIKV) has emerged as a global health concern. ZIKV can persist in human semen and be transmitted by sexual contact, as well as by mosquitoes, as seen for classical arboviruses. We along with others have previously demonstrated that ZIKV infection leads to testis damage and infertility in mouse models. So far, no prophylactics or therapeutics are available; therefore, vaccine development is urgently demanded. Recombinant chimpanzee adenovirus has been explored as the preferred vaccine vector for many pathogens due to the low preexisting immunity against the vector among the human population. Here, we developed a ZIKV vaccine based on recombinant chimpanzee adenovirus type 7 (AdC7) expressing ZIKV M/E glycoproteins. A single vaccination of AdC7-M/E was sufficient to elicit potent neutralizing antibodies and protective immunity against ZIKV in both immunocompetent and immunodeficient mice. Moreover, vaccinated mice rapidly developed neutralizing antibody with high titers within 1 week postvaccination, and the elicited antiserum could cross-neutralize heterologous ZIKV strains. Additionally, ZIKV M- and E-specific T cell responses were robustly induced by AdC7-M/E. Moreover, one-dose inoculation of AdC7-M/E conferred mouse sterilizing immunity to eliminate viremia and viral burden in tissues against ZIKV challenge. Further investigations showed that vaccination with AdC7-M/E completely protected against ZIKV-induced testicular damage. These data demonstrate that AdC7-M/E is highly effective and represents a promising vaccine candidate for ZIKV control.IMPORTANCE Zika virus (ZIKV) is a pathogenic flavivirus that causes severe clinical consequences, including congenital malformations in fetuses and Guillain-Barré syndrome in adults. Vaccine development is a high priority for ZIKV control. In this study, to avoid preexisting anti-vector immunity in humans, a rare serotype chimpanzee adenovirus (AdC7) expressing the ZIKV M/E glycoproteins was used for ZIKV vaccine development. Impressively, AdC7-M/E exhibited exceptional performance as a ZIKV vaccine, as follows: (i) protective efficacy by a single vaccination, (ii) rapid development of a robust humoral response, (iii) durable immune responses, (iv) robust T cell responses, and (v) sterilizing immunity achieved by a single vaccination. These advantages of AdC7-M/E strongly support its potential application as a promising ZIKV vaccine in the clinic.
Collapse
|
71
|
Bliss CM, Bowyer G, Anagnostou NA, Havelock T, Snudden CM, Davies H, de Cassan SC, Grobbelaar A, Lawrie AM, Venkatraman N, Poulton ID, Roberts R, Mange PB, Choudhary P, Faust SN, Colloca S, Gilbert SC, Nicosia A, Hill AVS, Ewer KJ. Assessment of novel vaccination regimens using viral vectored liver stage malaria vaccines encoding ME-TRAP. Sci Rep 2018; 8:3390. [PMID: 29467399 PMCID: PMC5821890 DOI: 10.1038/s41598-018-21630-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/07/2018] [Indexed: 11/18/2022] Open
Abstract
Heterologous prime-boost vaccination with viral vectors simian adenovirus 63 (ChAd63) and Modified Vaccinia Ankara (MVA) induces potent T cell and antibody responses in humans. The 8-week regimen demonstrates significant efficacy against malaria when expressing the pre-erythrocytic malaria antigen Thrombospondin-Related Adhesion Protein fused to a multiple epitope string (ME-TRAP). We tested these vaccines in 7 new 4- and 8- week interval schedules to evaluate safety and immunogenicity of multiple ChAd63 ME-TRAP priming vaccinations (denoted A), multiple MVA ME-TRAP boosts (denoted M) and alternating vectors. All regimens exhibited acceptable reactogenicity and CD8+ T cell immunogenicity was enhanced with a 4-week interval (AM) and with incorporation of additional ChAd63 ME-TRAP vaccination at 4- or 8-weeks (AAM or A_A_M). Induction of TRAP antibodies was comparable between schedules. T cell immunity against the ChAd63 hexon did not affect T cell responses to the vaccine insert, however pre-vaccination ChAd63-specific T cells correlated with reduced TRAP antibodies. Vaccine-induced antibodies against MVA did not affect TRAP antibody induction, and correlated positively with ME-TRAP-specific T cells. This study identifies potentially more effective immunisation regimens to assess in Phase IIa trials and demonstrates a degree of flexibility with the timing of vectored vaccine administration, aiding incorporation into existing vaccination programmes.
Collapse
Affiliation(s)
- Carly M Bliss
- The Jenner Institute, University of Oxford, Oxford, UK.
| | | | | | - Tom Havelock
- NIHR Wellcome Trust Clinical Research Facility, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - Huw Davies
- Department of Medicine, Division of Infectious Diseases, University of California, Irvine, CA, USA
| | | | | | | | | | - Ian D Poulton
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | - Pooja B Mange
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | - Saul N Faust
- NIHR Wellcome Trust Clinical Research Facility, University of Southampton, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | | | - Alfredo Nicosia
- ReiThera (formerly Okairos), 00144, Rome, Italy
- CEINGE, Via Comunale Margherita, 484-538, 80131, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Katie J Ewer
- The Jenner Institute, University of Oxford, Oxford, UK
| |
Collapse
|
72
|
Mogeni P, Williams TN, Omedo I, Kimani D, Ngoi JM, Mwacharo J, Morter R, Nyundo C, Wambua J, Nyangweso G, Kapulu M, Fegan G, Bejon P. Detecting Malaria Hotspots: A Comparison of Rapid Diagnostic Test, Microscopy, and Polymerase Chain Reaction. J Infect Dis 2017; 216:1091-1098. [PMID: 28973672 PMCID: PMC5853881 DOI: 10.1093/infdis/jix321] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/06/2017] [Indexed: 12/21/2022] Open
Abstract
Background Malaria control strategies need to respond to geographical hotspots of transmission. Detection of hotspots depends on the sensitivity of the diagnostic tool used. Methods We conducted cross-sectional surveys in 3 sites within Kilifi County, Kenya, that had variable transmission intensities. Rapid diagnostic test (RDT), microscopy, and polymerase chain reaction (PCR) were used to detect asymptomatic parasitemia, and hotspots were detected using the spatial scan statistic. Results Eight thousand five hundred eighty-one study participants were surveyed in 3 sites. There were statistically significant malaria hotspots by RDT, microscopy, and PCR for all sites except by microscopy in 1 low transmission site. Pooled data analysis of hotspots by PCR overlapped with hotspots by microscopy at a moderate setting but not at 2 lower transmission settings. However, variations in degree of overlap were noted when data were analyzed by year. Hotspots by RDT were predictive of PCR/microscopy at the moderate setting, but not at the 2 low transmission settings. We observed long-term stability of hotspots by PCR and microscopy but not RDT. Conclusion Malaria control programs may consider PCR testing to guide asymptomatic malaria hotspot detection once the prevalence of infection falls.
Collapse
Affiliation(s)
| | - Thomas N Williams
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,Faculty of Medicine, Imperial College London
| | - Irene Omedo
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Joyce M Ngoi
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Richard Morter
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,The Jenner Institute, Nuffield Department of Medicine, University of Oxford
| | | | | | | | - Melissa Kapulu
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford
| | - Gregory Fegan
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,Swansea Trials Unit, Swansea University Medical School, Swansea, United Kingdom
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford
| |
Collapse
|
73
|
Abstract
The unprecedented challenges of developing effective vaccines against intracellular pathogens such as HIV, malaria, and tuberculosis have resulted in more rational approaches to vaccine development. Apart from the recent advances in the design and selection of improved epitopes and adjuvants, there are also ongoing efforts to optimize delivery platforms. The unprecedented challenges of developing effective vaccines against intracellular pathogens such as HIV, malaria, and tuberculosis have resulted in more rational approaches to vaccine development. Apart from the recent advances in the design and selection of improved epitopes and adjuvants, there are also ongoing efforts to optimize delivery platforms. Viral vectors are the best-characterized delivery tools because of their intrinsic adjuvant capability, unique cellular tropism, and ability to trigger robust adaptive immune responses. However, a known limitation of viral vectors is preexisting immunity, and ongoing efforts are aimed at developing novel vector platforms with lower seroprevalence. It is also becoming increasingly clear that different vectors, even those derived from phylogenetically similar viruses, can elicit substantially distinct immune responses, in terms of quantity, quality, and location, which can ultimately affect immune protection. This review provides a summary of the status of viral vector development for HIV vaccines, with a particular focus on novel viral vectors and the types of adaptive immune responses that they induce.
Collapse
|
74
|
An in vitro assay to measure antibody-mediated inhibition of P. berghei sporozoite invasion against P. falciparum antigens. Sci Rep 2017; 7:17011. [PMID: 29209029 PMCID: PMC5717233 DOI: 10.1038/s41598-017-17274-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/21/2017] [Indexed: 02/02/2023] Open
Abstract
A large research effort is currently underway to find an effective and affordable malaria vaccine. Tools that enable the rapid evaluation of protective immune responses are essential to vaccine development as they can provide selection criteria to rank order vaccine candidates. In this study we have revisited the Inhibition of Sporozoite Invasion (ISI) assay to assess the ability of antibodies to inhibit sporozoite infection of hepatocytes. By using GFP expressing sporozoites of the rodent parasite P. berghei we are able to robustly quantify parasite infection of hepatocyte cell lines by flow cytometry. In conjunction with recently produced transgenic P. berghei parasites that express P. falciparum sporozoite antigens, we have been able to use this assay to measure antibody mediated inhibition of sporozoite invasion against one of the lead malaria antigens P. falciparum CSP. By combining chimeric rodent parasites expressing P. falciparum antigens and a flow cytometric readout of infection, we are able to robustly assess vaccine-induced antibodies, from mice, rhesus macaques and human clinical trials, for their functional ability to block sporozoite invasion of hepatocytes.
Collapse
|
75
|
Ewer K, Sebastian S, Spencer AJ, Gilbert S, Hill AVS, Lambe T. Chimpanzee adenoviral vectors as vaccines for outbreak pathogens. Hum Vaccin Immunother 2017; 13:3020-3032. [PMID: 29083948 PMCID: PMC5718829 DOI: 10.1080/21645515.2017.1383575] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022] Open
Abstract
The 2014-15 Ebola outbreak in West Africa highlighted the potential for large disease outbreaks caused by emerging pathogens and has generated considerable focus on preparedness for future epidemics. Here we discuss drivers, strategies and practical considerations for developing vaccines against outbreak pathogens. Chimpanzee adenoviral (ChAd) vectors have been developed as vaccine candidates for multiple infectious diseases and prostate cancer. ChAd vectors are safe and induce antigen-specific cellular and humoral immunity in all age groups, as well as circumventing the problem of pre-existing immunity encountered with human Ad vectors. For these reasons, such viral vectors provide an attractive platform for stockpiling vaccines for emergency deployment in response to a threatened outbreak of an emerging pathogen. Work is already underway to develop vaccines against a number of other outbreak pathogens and we will also review progress on these approaches here, particularly for Lassa fever, Nipah and MERS.
Collapse
Affiliation(s)
- Katie Ewer
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Headington, Oxford, UK
| | - Sarah Sebastian
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Headington, Oxford, UK
| | - Alexandra J. Spencer
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Headington, Oxford, UK
| | - Sarah Gilbert
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Headington, Oxford, UK
| | - Adrian V. S. Hill
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Headington, Oxford, UK
| | - Teresa Lambe
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Headington, Oxford, UK
| |
Collapse
|
76
|
Mensah VA, Roetynck S, Kanteh EK, Bowyer G, Ndaw A, Oko F, Bliss CM, Jagne YJ, Cortese R, Nicosia A, Roberts R, D’Alessio F, Leroy O, Faye B, Kampmann B, Cisse B, Bojang K, Gerry S, Viebig NK, Lawrie AM, Clarke E, Imoukhuede EB, Ewer KJ, Hill AVS, Afolabi MO. Safety and Immunogenicity of Malaria Vectored Vaccines Given with Routine Expanded Program on Immunization Vaccines in Gambian Infants and Neonates: A Randomized Controlled Trial. Front Immunol 2017; 8:1551. [PMID: 29213269 PMCID: PMC5702785 DOI: 10.3389/fimmu.2017.01551] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/31/2017] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Heterologous prime-boost vaccination with chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) encoding multiple epitope string thrombospondin-related adhesion protein (ME-TRAP) has shown acceptable safety and promising immunogenicity in African adult and pediatric populations. If licensed, this vaccine could be given to infants receiving routine childhood immunizations. We therefore evaluated responses to ChAd63 MVA ME-TRAP when co-administered with routine Expanded Program on Immunization (EPI) vaccines. METHODS We enrolled 65 Gambian infants and neonates, aged 16, 8, or 1 week at first vaccination and randomized them to receive either ME-TRAP and EPI vaccines or EPI vaccines only. Safety was assessed by the description of vaccine-related adverse events (AEs). Immunogenicity was evaluated using IFNγ enzyme-linked immunospot, whole-blood flow cytometry, and anti-TRAP IgG ELISA. Serology was performed to confirm all infants achieved protective titers to EPI vaccines. RESULTS The vaccines were well tolerated in all age groups with no vaccine-related serious AEs. High-level TRAP-specific IgG and T cell responses were generated after boosting with MVA. CD8+ T cell responses, previously found to correlate with protection, were induced in all groups. Antibody responses to EPI vaccines were not altered significantly. CONCLUSION Malaria vectored prime-boost vaccines co-administered with routine childhood immunizations were well tolerated. Potent humoral and cellular immunity induced by ChAd63 MVA ME-TRAP did not reduce the immunogenicity of co-administered EPI vaccines, supporting further evaluation of this regimen in infant populations. CLINICAL TRIAL REGISTRATION The clinical trial was registered on http://Clinicaltrials.gov (NCT02083887) and the Pan-African Clinical Trials Registry (PACTR201402000749217).
Collapse
Affiliation(s)
| | | | | | - Georgina Bowyer
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
| | - Amy Ndaw
- Université Cheikh Anta Diop, Dakar, Senegal
| | - Francis Oko
- Medical Research Council Unit, Fajara, Gambia
| | - Carly M. Bliss
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
| | | | | | - Alfredo Nicosia
- ReiThera, Rome, Italy
- CEINGE, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Rachel Roberts
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, Churchill Hospital, Oxford, United Kingdom
| | - Flavia D’Alessio
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Odile Leroy
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | | | - Beate Kampmann
- Medical Research Council Unit, Fajara, Gambia
- Centre for International Child Health, Imperial College London, London, United Kingdom
| | | | | | - Stephen Gerry
- Centre for Statistics in Medicine, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Nicola K. Viebig
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Heidelberg, Germany
| | - Alison M. Lawrie
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, Churchill Hospital, Oxford, United Kingdom
| | - Ed Clarke
- Medical Research Council Unit, Fajara, Gambia
| | - Egeruan B. Imoukhuede
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, Churchill Hospital, Oxford, United Kingdom
| | - Katie J. Ewer
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
| | - Adrian V. S. Hill
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, Churchill Hospital, Oxford, United Kingdom
| | | |
Collapse
|
77
|
Vitelli A, Folgori A, Scarselli E, Colloca S, Capone S, Nicosia A. Chimpanzee adenoviral vectors as vaccines - challenges to move the technology into the fast lane. Expert Rev Vaccines 2017; 16:1241-1252. [PMID: 29047309 DOI: 10.1080/14760584.2017.1394842] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION In recent years, replication-defective chimpanzee-derived adenoviruses have been extensively evaluated as genetic vaccines. These vectors share desirable properties with human adenoviruses like the broad tissue tropism and the ease of large-scale manufacturing. Additionally, chimpanzee adenoviruses have the advantage to overcome the negative impact of pre-existing anti-human adenovirus immunity. Areas covered: Here the authors review current pre-clinical research and clinical trials that utilize chimpanzee-derived adenoviral vectors as vaccines. A wealth of studies are ongoing to evaluate different vector backbones and administration routes with the aim of improving immune responses. The challenges associated with the identification of an optimal chimpanzee vector and immunization strategies for different immunological outcomes will be discussed. Expert commentary: The demonstration that chimpanzee adenoviruses can be safely used in humans has paved the way to the use of a whole new array of vectors of different serotypes. However, so far no predictive signature of vector immunity in humans has been identified. The high magnitude of T cell responses elicited by chimpanzee adenoviruses has allowed dissecting the qualitative aspects that may be important for protective immunity. Ultimately, only the results from the most clinically advanced products will help establish the efficacy of the vaccine vector platform in the field of disease prevention.
Collapse
Affiliation(s)
| | | | | | | | | | - Alfredo Nicosia
- a ReiThera , Rome , Italy.,c CEINGE , Naples , Italy.,d Department of Molecular Medicine and Medical Biotechnology , University of Naples Federico II , Naples , Italy
| |
Collapse
|
78
|
Venkatraman N, Anagnostou N, Bliss C, Bowyer G, Wright D, Lövgren-Bengtsson K, Roberts R, Poulton I, Lawrie A, Ewer K, V S Hill A. Safety and immunogenicity of heterologous prime-boost immunization with viral-vectored malaria vaccines adjuvanted with Matrix-M™. Vaccine 2017; 35:6208-6217. [PMID: 28941620 DOI: 10.1016/j.vaccine.2017.09.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/09/2017] [Accepted: 09/07/2017] [Indexed: 12/19/2022]
Abstract
The use of viral vectors in heterologous prime-boost regimens to induce potent T cell responses in addition to humoral immunity is a promising vaccination strategy in the fight against malaria. We conducted an open-label, first-in-human, controlled Phase I study evaluating the safety and immunogenicity of Matrix-M adjuvanted vaccination with a chimpanzee adenovirus serotype 63 (ChAd63) prime followed by a modified vaccinia Ankara (MVA) boost eight weeks later, both encoding the malaria ME-TRAP antigenic sequence (a multiple epitope string fused to thrombospondin-related adhesion protein). Twenty-two healthy adults were vaccinated intramuscularly with either ChAd63-MVA ME-TRAP alone (n=6) or adjuvanted with 25μg (n=8) or 50μg (n=8) Matrix-M. Vaccinations appeared to be safe and generally well tolerated, with the majority of local and systemic adverse events being mild in nature. The addition of Matrix-M to the vaccine did not increase local reactogenicity; however, systemic adverse events were reported more frequently by volunteers who received adjuvanted vaccine in comparison to the control group. T cell ELISpot responses peaked at 7-days post boost vaccination with MVA ME-TRAP in all three groups. TRAP-specific IgG responses were highest at 28-days post boost with MVA ME-TRAP in all three groups. There were no differences in cellular and humoral immunogenicity at any of the time points between the control group and the adjuvanted groups. We demonstrate that Matrix-M can be safely used in combination with ChAd63-MVA ME-TRAP heterologous prime-boost immunization without any reduction in cellular or humoral immunogenicity. Clinical Trials Registration NCT01669512.
Collapse
Affiliation(s)
- Navin Venkatraman
- Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7DQ, UK; Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, United Kingdom.
| | - Nicholas Anagnostou
- Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7DQ, UK; Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, United Kingdom
| | - Carly Bliss
- Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7DQ, UK
| | - Georgina Bowyer
- Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7DQ, UK
| | - Danny Wright
- Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7DQ, UK
| | | | - Rachel Roberts
- Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7DQ, UK; Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, United Kingdom
| | - Ian Poulton
- Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7DQ, UK; Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, United Kingdom
| | - Alison Lawrie
- Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7DQ, UK; Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Old Road, Headington, Oxford OX3 7LJ, United Kingdom
| | - Katie Ewer
- Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7DQ, UK
| | - Adrian V S Hill
- Jenner Institute, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX3 7DQ, UK
| |
Collapse
|
79
|
Nazeri S, Zakeri S, Mehrizi AA, Djadid ND. Naturally acquired immune responses to thrombospondin-related adhesion protein (TRAP) of Plasmodium vivax in patients from areas of unstable malaria transmission. Acta Trop 2017; 173:45-54. [PMID: 28549910 DOI: 10.1016/j.actatropica.2017.05.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/20/2017] [Accepted: 05/20/2017] [Indexed: 10/19/2022]
Abstract
A key tool for the control, elimination, and eradication of Plasmodium vivax is the development of an effective vaccine. The thrombospondin-related adhesion protein (TRAP) is one of the major sporozoite antigens that plays an important role in the invasion of mosquito salivary glands and hepatocytes by sporozoites. The main goal of this study was to evaluate the naturally acquired antibodies to the P. vivax TRAP (PvTRAP) in patients from malaria-endemic areas of Iran (n=116), Afghanistan (n=50), and Pakistan (n=50). The PvTRAP gene was expressed in Escherichia coli Rosetta (DE3)-pET23a and used as antigen in enzyme-linked immunosorbent assay (ELISA). The profile of immunoglobulin G (IgG) isotype and the avidity of IgG, IgG1, and IgG3 to PvTRAP, as well as the association between anti-PvTRAP isotype responses and host age were evaluated. Only 42.24% of Iranian, 38% of Afghani, and 44% of Pakistani patients infected with P. vivax had positive anti-PvTRAP IgG, and the prevalence of responders in the three countries did not differ significantly (P>0.05). Moreover, the prevalence of IgG1 and IgG3 antibody responses to PvTRAP showed no significant correlation with age (P>0.05). Individuals exposed to vivax malaria in the unstable malaria transmission areas are able to produce antibodies to the TRAP antigen at all ages in response to P. vivax infections. Finally, the presence of mature IgG1 and IgG3 antibodies with high to intermediate avidity against PvTRAP antigen (>60%) provide more information to understand the interactions between the host and P. vivax parasite. In summary, the present study provides data that support the rational development of an effective pre-erythrocytic stage vaccine based on PvTRAP antigen.
Collapse
|
80
|
Bruder JT, Chen P, Ekberg G, Smith EC, Lazarski CA, Myers BA, Bolton J, Sedegah M, Villasante E, Richie TL, King CR, Aguiar JC, Doolan DL, Brough DE. Profiling the Targets of Protective CD8 + T Cell Responses to Infection. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 7:20-31. [PMID: 28948187 PMCID: PMC5602877 DOI: 10.1016/j.omtm.2017.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 08/14/2017] [Indexed: 11/22/2022]
Abstract
T cells are critical effectors of host immunity that target intracellular pathogens, such as the causative agents of HIV, tuberculosis, and malaria. The development of vaccines that induce effective cell-mediated immunity against such pathogens has proved challenging; for tuberculosis and malaria, many of the antigens targeted by protective T cells are not known. Here, we report a novel approach for screening large numbers of antigens as potential targets of T cells. Malaria provides an excellent model to test this antigen discovery platform because T cells are critical mediators of protection following immunization with live sporozoite vaccines and the specific antigen targets are unknown. We generated an adenovirus array by cloning 312 highly expressed pre-erythrocytic Plasmodium yoelii antigens into adenovirus vectors using high-throughput methodologies. The array was screened to identify antigen-specific CD8+ T cells induced by a live sporozoite vaccine regimen known to provide high levels of sterile protection mediated by CD8+ T cells. We identified 69 antigens that were targeted by CD8+ T cells induced by this vaccine regimen. The antigen that recalled the highest frequency of CD8+ T cells, PY02605, induced protective responses in mice, demonstrating proof of principle for this approach in identifying antigens for vaccine development.
Collapse
Affiliation(s)
- Joseph T. Bruder
- GenVec, Inc., 910 Clopper Road, Suite 220N, Gaithersburg, MD 20878, USA
- Corresponding author: Joseph T. Bruder, Summit Consulting, 567 Chestertown Street, Gaithersburg, MD 20878, USA.
| | - Ping Chen
- GenVec, Inc., 910 Clopper Road, Suite 220N, Gaithersburg, MD 20878, USA
| | - Greg Ekberg
- GenVec, Inc., 910 Clopper Road, Suite 220N, Gaithersburg, MD 20878, USA
| | - Emily C. Smith
- Malaria Department, Naval Medical Research Center (NMRC), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | | | - Bennett A. Myers
- GenVec, Inc., 910 Clopper Road, Suite 220N, Gaithersburg, MD 20878, USA
| | - Jessica Bolton
- Malaria Department, Naval Medical Research Center (NMRC), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD 20817, USA
| | - Martha Sedegah
- Malaria Department, Naval Medical Research Center (NMRC), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Eileen Villasante
- Malaria Department, Naval Medical Research Center (NMRC), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Thomas L. Richie
- Malaria Department, Naval Medical Research Center (NMRC), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - C. Richter King
- GenVec, Inc., 910 Clopper Road, Suite 220N, Gaithersburg, MD 20878, USA
| | - Joao C. Aguiar
- Malaria Department, Naval Medical Research Center (NMRC), 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
- Camris International, 3 Bethesda Metro Center, 16th Floor, Bethesda, MD 20814, USA
| | - Denise L. Doolan
- Australian Institute of Tropical Health and Medicine, James Cook University, McGregor Road, Cairns, QLD 4870, Australia
| | - Douglas E. Brough
- GenVec, Inc., 910 Clopper Road, Suite 220N, Gaithersburg, MD 20878, USA
| |
Collapse
|
81
|
Limbach K, Stefaniak M, Chen P, Patterson NB, Liao G, Weng S, Krepkiy S, Ekberg G, Torano H, Ettyreddy D, Gowda K, Sonawane S, Belmonte A, Abot E, Sedegah M, Hollingdale MR, Moormann A, Vulule J, Villasante E, Richie TL, Brough DE, Bruder JT. New gorilla adenovirus vaccine vectors induce potent immune responses and protection in a mouse malaria model. Malar J 2017; 16:263. [PMID: 28673287 PMCID: PMC5496260 DOI: 10.1186/s12936-017-1911-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/26/2017] [Indexed: 11/23/2022] Open
Abstract
Background A DNA-human Ad5 (HuAd5) prime-boost malaria vaccine has been shown to protect volunteers against a controlled human malaria infection. The potency of this vaccine, however, appeared to be affected by the presence of pre-existing immunity against the HuAd5 vector. Since HuAd5 seroprevalence is very high in malaria-endemic areas of the world, HuAd5 may not be the most appropriate malaria vaccine vector. This report describes the evaluation of the seroprevalence, immunogenicity and efficacy of three newly identified gorilla adenoviruses, GC44, GC45 and GC46, as potential malaria vaccine vectors. Results The seroprevalence of GC44, GC45 and GC46 is very low, and the three vectors are not efficiently neutralized by human sera from Kenya and Ghana, two countries where malaria is endemic. In mice, a single administration of GC44, GC45 and GC46 vectors expressing a murine malaria gene, Plasmodium yoelii circumsporozoite protein (PyCSP), induced robust PyCSP-specific T cell and antibody responses that were at least as high as a comparable HuAd5-PyCSP vector. Efficacy studies in a murine malaria model indicated that a prime-boost regimen with DNA-PyCSP and GC-PyCSP vectors can protect mice against a malaria challenge. Moreover, these studies indicated that a DNA-GC46-PyCSP vaccine regimen was significantly more efficacious than a DNA-HuAd5-PyCSP regimen. Conclusion These data suggest that these gorilla-based adenovectors have key performance characteristics for an effective malaria vaccine. The superior performance of GC46 over HuAd5 highlights its potential for clinical development. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1911-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keith Limbach
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Maureen Stefaniak
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Ping Chen
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Noelle B Patterson
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Grant Liao
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Shaojie Weng
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Svetlana Krepkiy
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Greg Ekberg
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Holly Torano
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Damodar Ettyreddy
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Kalpana Gowda
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Sharvari Sonawane
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Arnel Belmonte
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Esteban Abot
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Martha Sedegah
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Michael R Hollingdale
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., 6720A Rockledge Drive, Suite 100, Bethesda, MD, USA
| | - Ann Moormann
- University of Massachusetts Medical School, Worcester, MA, USA
| | - John Vulule
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Eileen Villasante
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Thomas L Richie
- Malaria Department, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD, USA
| | - Douglas E Brough
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA
| | - Joseph T Bruder
- GenVec Incorporated, 910 Clopper Road, Suite 220N, Gaithersburg, MD, USA.
| |
Collapse
|
82
|
Bliss CM, Drammeh A, Bowyer G, Sanou GS, Jagne YJ, Ouedraogo O, Edwards NJ, Tarama C, Ouedraogo N, Ouedraogo M, Njie-Jobe J, Diarra A, Afolabi MO, Tiono AB, Yaro JB, Adetifa UJ, Hodgson SH, Anagnostou NA, Roberts R, Duncan CJA, Cortese R, Viebig NK, Leroy O, Lawrie AM, Flanagan KL, Kampmann B, Imoukhuede EB, Sirima SB, Bojang K, Hill AVS, Nébié I, Ewer KJ. Viral Vector Malaria Vaccines Induce High-Level T Cell and Antibody Responses in West African Children and Infants. Mol Ther 2017; 25:547-559. [PMID: 28153101 PMCID: PMC5368405 DOI: 10.1016/j.ymthe.2016.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/15/2016] [Accepted: 11/15/2016] [Indexed: 12/31/2022] Open
Abstract
Heterologous prime-boosting with viral vectors encoding the pre-erythrocytic antigen thrombospondin-related adhesion protein fused to a multiple epitope string (ME-TRAP) induces CD8+ T cell-mediated immunity to malaria sporozoite challenge in European malaria-naive and Kenyan semi-immune adults. This approach has yet to be evaluated in children and infants. We assessed this vaccine strategy among 138 Gambian and Burkinabe children in four cohorts: 2- to 6-year olds in The Gambia, 5- to 17-month-olds in Burkina Faso, and 5- to 12-month-olds and 10-week-olds in The Gambia. We assessed induction of cellular immunity, taking into account the distinctive hematological status of young infants, and characterized the antibody response to vaccination. T cell responses peaked 7 days after boosting with modified vaccinia virus Ankara (MVA), with highest responses in infants aged 10 weeks at priming. Incorporating lymphocyte count into the calculation of T cell responses facilitated a more physiologically relevant comparison of cellular immunity across different age groups. Both CD8+ and CD4+ T cells secreted cytokines. Induced antibodies were up to 20-fold higher in all groups compared with Gambian and United Kingdom (UK) adults, with comparable or higher avidity. This immunization regimen elicited strong immune responses, particularly in young infants, supporting future evaluation of efficacy in this key target age group for a malaria vaccine.
Collapse
Affiliation(s)
- Carly M Bliss
- The Jenner Institute Laboratories, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | | | - Georgina Bowyer
- The Jenner Institute Laboratories, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Guillaume S Sanou
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, 01 BP 2208 Ouagadougou, Burkina Faso
| | | | - Oumarou Ouedraogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, 01 BP 2208 Ouagadougou, Burkina Faso
| | - Nick J Edwards
- The Jenner Institute Laboratories, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Casimir Tarama
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, 01 BP 2208 Ouagadougou, Burkina Faso
| | - Nicolas Ouedraogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, 01 BP 2208 Ouagadougou, Burkina Faso
| | - Mireille Ouedraogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, 01 BP 2208 Ouagadougou, Burkina Faso
| | | | - Amidou Diarra
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, 01 BP 2208 Ouagadougou, Burkina Faso
| | | | - Alfred B Tiono
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, 01 BP 2208 Ouagadougou, Burkina Faso
| | - Jean Baptiste Yaro
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, 01 BP 2208 Ouagadougou, Burkina Faso
| | | | - Susanne H Hodgson
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, Churchill Hospital, Oxford OX3 7LE, UK
| | - Nicholas A Anagnostou
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, Churchill Hospital, Oxford OX3 7LE, UK
| | - Rachel Roberts
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, Churchill Hospital, Oxford OX3 7LE, UK
| | - Christopher J A Duncan
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, Churchill Hospital, Oxford OX3 7LE, UK
| | | | - Nicola K Viebig
- European Vaccine Initiative, Universitäts Klinikum Heidelberg, Voßstr. 2, 69115 Heidelberg, Germany
| | - Odile Leroy
- European Vaccine Initiative, Universitäts Klinikum Heidelberg, Voßstr. 2, 69115 Heidelberg, Germany
| | - Alison M Lawrie
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, Churchill Hospital, Oxford OX3 7LE, UK
| | | | - Beate Kampmann
- Medical Research Council Unit, Fajara, The Gambia; Department of Paediatrics, Imperial College London SW7 2AZ, UK
| | - Egeruan B Imoukhuede
- Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, Churchill Hospital, Oxford OX3 7LE, UK
| | - Sodiomon B Sirima
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, 01 BP 2208 Ouagadougou, Burkina Faso
| | | | - Adrian V S Hill
- The Jenner Institute Laboratories, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK; Centre for Clinical Vaccinology and Tropical Medicine, The Jenner Institute, Churchill Hospital, Oxford OX3 7LE, UK
| | - Issa Nébié
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, 01 BP 2208 Ouagadougou, Burkina Faso
| | - Katie J Ewer
- The Jenner Institute Laboratories, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK.
| |
Collapse
|
83
|
Virus-Like Particle (VLP) Plus Microcrystalline Tyrosine (MCT) Adjuvants Enhance Vaccine Efficacy Improving T and B Cell Immunogenicity and Protection against Plasmodium berghei/vivax. Vaccines (Basel) 2017; 5:vaccines5020010. [PMID: 28468322 PMCID: PMC5492007 DOI: 10.3390/vaccines5020010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 02/01/2023] Open
Abstract
Vaccination is the most effective prophylactic tool against infectious diseases. Despite continued efforts to control malaria, the disease still generally represents a significant unmet medical need. Microcrystalline tyrosine (MCT) is a well described depot used in licensed allergy immunotherapy products and in clinical development. However, its proof of concept in prophylactic vaccines has only recently been explored. MCT has never been used in combination with virus-like particles (VLPs), which are considered to be one of the most potent inducers of cellular and humoral immune responses in mice and humans. In the current study we assessed the potential of MCT to serve as an adjuvant in the development of a vaccine against malaria either alone or combined with VLP using Plasmodium vivax thrombospondin-related adhesive protein (TRAP) as a target antigen. We chemically coupled PvTRAP to VLPs derived from the cucumber mosaic virus fused to a universal T-cell epitope of the tetanus toxin (CMVtt), formulated with MCT and compared the induced immune responses to PvTRAP formulated in PBS or Alum. The protective capacity of the various formulations was assessed using Plasmodium berghei expressing PvTRAP. All vaccine formulations using adjuvants and/or VLP increased humoral immunogenicity for PvTRAP compared to the antigen alone. The most proficient responder was the group of mice immunized with the vaccine formulated with PvTRAP-VLP + MCT. The VLP-based vaccine formulated in MCT also induced the strongest T cell response and conferred best protection against challenge with recombinant Plasmodium berghei. Thus, the combination of VLP with MCT may take advantage of the properties of each component and appears to be an alternative biodegradable depot adjuvant for development of novel prophylactic vaccines.
Collapse
|
84
|
Collins KA, Snaith R, Cottingham MG, Gilbert SC, Hill AVS. Enhancing protective immunity to malaria with a highly immunogenic virus-like particle vaccine. Sci Rep 2017; 7:46621. [PMID: 28422178 PMCID: PMC5395940 DOI: 10.1038/srep46621] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/03/2017] [Indexed: 12/11/2022] Open
Abstract
The leading malaria vaccine in development is the circumsporozoite protein (CSP)-based particle vaccine, RTS,S, which targets the pre-erythrocytic stage of Plasmodium falciparum infection. It induces modest levels of protective efficacy, thought to be mediated primarily by CSP-specific antibodies. We aimed to enhance vaccine efficacy by generating a more immunogenic CSP-based particle vaccine and therefore developed a next-generation RTS,S-like vaccine, called R21. The major improvement is that in contrast to RTS,S, R21 particles are formed from a single CSP-hepatitis B surface antigen (HBsAg) fusion protein, and this leads to a vaccine composed of a much higher proportion of CSP than in RTS,S. We demonstrate that in BALB/c mice R21 is immunogenic at very low doses and when administered with the adjuvants Abisco-100 and Matrix-M it elicits sterile protection against transgenic sporozoite challenge. Concurrent induction of potent cellular and humoral immune responses was also achieved by combining R21 with TRAP-based viral vectors and protective efficacy was significantly enhanced. In addition, in contrast to RTS,S, only a minimal antibody response to the HBsAg carrier was induced. These studies identify an anti-sporozoite vaccine component that may improve upon the current leading malaria vaccine RTS,S. R21 is now under evaluation in Phase 1/2a clinical trials.
Collapse
Affiliation(s)
- Katharine A. Collins
- The Jenner Institute Laboratories, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Rebecca Snaith
- The Jenner Institute Laboratories, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Matthew G. Cottingham
- The Jenner Institute Laboratories, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Sarah C. Gilbert
- The Jenner Institute Laboratories, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Adrian V. S. Hill
- The Jenner Institute Laboratories, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| |
Collapse
|
85
|
A Plasmodium vivax Plasmid DNA- and Adenovirus-Vectored Malaria Vaccine Encoding Blood-Stage Antigens AMA1 and MSP1 42 in a Prime/Boost Heterologous Immunization Regimen Partially Protects Aotus Monkeys against Blood-Stage Challenge. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00539-16. [PMID: 28179404 DOI: 10.1128/cvi.00539-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/06/2017] [Indexed: 01/30/2023]
Abstract
Malaria is caused by parasites of the genus Plasmodium, which are transmitted to humans by the bites of Anopheles mosquitoes. After the elimination of Plasmodium falciparum, it is predicted that Plasmodium vivax will remain an important cause of morbidity and mortality outside Africa, stressing the importance of developing a vaccine against P. vivax malaria. In this study, we assessed the immunogenicity and protective efficacy of two P. vivax antigens, apical membrane antigen 1 (AMA1) and the 42-kDa C-terminal fragment of merozoite surface protein 1 (MSP142) in a plasmid recombinant DNA prime/adenoviral (Ad) vector boost regimen in Aotus monkeys. Groups of 4 to 5 monkeys were immunized with plasmid DNA alone, Ad alone, prime/boost regimens with each antigen, prime/boost regimens with both antigens, and empty vector controls and then subjected to blood-stage challenge. The heterologous immunization regimen with the antigen pair was more protective than either antigen alone or both antigens delivered with a single vaccine platform, on the basis of their ability to induce the longest prepatent period and the longest time to the peak level of parasitemia, the lowest peak and mean levels of parasitemia, the smallest area under the parasitemia curve, and the highest self-cure rate. Overall, prechallenge MSP142 antibody titers strongly correlated with a decreased parasite burden. Nevertheless, a significant proportion of immunized animals developed anemia. In conclusion, the P. vivax plasmid DNA/Ad serotype 5 vaccine encoding blood-stage parasite antigens AMA1 and MSP142 in a heterologous prime/boost immunization regimen provided significant protection against blood-stage challenge in Aotus monkeys, indicating the suitability of these antigens and this regimen for further development.
Collapse
|
86
|
Assessment of the Plasmodium falciparum Preerythrocytic Antigen UIS3 as a Potential Candidate for a Malaria Vaccine. Infect Immun 2017; 85:IAI.00641-16. [PMID: 28031267 PMCID: PMC5328496 DOI: 10.1128/iai.00641-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/20/2016] [Indexed: 01/03/2023] Open
Abstract
Efforts are under way to improve the efficacy of subunit malaria vaccines through assessments of new adjuvants, vaccination platforms, and antigens. In this study, we further assessed the Plasmodium falciparum antigen upregulated in infective sporozoites 3 (PfUIS3) as a vaccine candidate. PfUIS3 was expressed in the viral vectors chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) and used to immunize mice in a prime-boost regimen. We previously demonstrated that this regimen could provide partial protection against challenge with chimeric P. berghei parasites expressing PfUIS3. We now show that ChAd63-MVA PfUIS3 can also provide partial cross-species protection against challenge with wild-type P. berghei parasites. We also show that PfUIS3-specific cellular memory responses could be recalled in human volunteers exposed to P. falciparum parasites in a controlled human malaria infection study. When ChAd63-MVA PfUIS3 was coadministered with the vaccine candidate P. falciparum thrombospondin-related adhesion protein (PfTRAP) expressed in the ChAd63-MVA system, there was no significant change in immunogenicity to either vaccine. However, when mice were challenged with double chimeric P. berghei-P. falciparum parasites expressing both PfUIS3 and PfTRAP, vaccine efficacy was improved to 100% sterile protection. This synergistic effect was evident only when the two vaccines were mixed and administered at the same site. We have therefore demonstrated that vaccination with PfUIS3 can induce a consistent delay in patent parasitemia across mouse strains and against chimeric parasites expressing PfUIS3 as well as wild-type P. berghei; when this vaccine is combined with another partially protective regimen (ChAd63-MVA PfTRAP), complete protection is induced.
Collapse
|
87
|
Safety and efficacy of PfSPZ Vaccine against Plasmodium falciparum via direct venous inoculation in healthy malaria-exposed adults in Mali: a randomised, double-blind phase 1 trial. THE LANCET. INFECTIOUS DISEASES 2017; 17:498-509. [PMID: 28216244 DOI: 10.1016/s1473-3099(17)30104-4] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/04/2017] [Accepted: 01/12/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Plasmodium falciparum sporozite (PfSPZ) Vaccine is a metabolically active, non-replicating, whole malaria sporozoite vaccine that has been reported to be safe and protective against P falciparum controlled human malaria infection in malaria-naive individuals. We aimed to assess the safety and protective efficacy of PfSPZ Vaccine against naturally acquired P falciparum in malaria-experienced adults in Mali. METHODS After an open-label dose-escalation study in a pilot safety cohort, we did a double-blind, randomised, placebo-controlled trial based in Donéguébougou and surrounding villages in Mali. We recruited 18-35-year-old healthy adults who were randomly assigned (1:1) in a double-blind manner, with stratification by village and block randomisation, to receive either five doses of 2·7 × 105 PfSPZ or normal saline at days 0, 28, 56, 84, and 140 during the dry season (January to July inclusive). Participants and investigators were masked to group assignments, which were unmasked at the final study visit, 6 months after receipt of the last vaccination. Participants received combined artemether and lumefantrine (four tablets, each containing 20 mg artemether and 120 mg lumefantrine, given twice per day over 3 days for a total of six doses) to eliminate P falciparum before the first and last vaccinations. We collected blood smears every 2 weeks and during any illness for 24 weeks after the fifth vaccination. The primary outcome was the safety and tolerability of the vaccine, assessed as local and systemic reactogenicity and adverse events. The sample size was calculated for the exploratory efficacy endpoint of time to first P falciparum infection beginning 28 days after the fifth vaccination. The safety analysis included all participants who received at least one dose of investigational product, whereas the efficacy analyses included only participants who received all five vaccinations. This trial is registered at ClinicalTrials.gov, number NCT01988636. FINDINGS Between Jan 18 and Feb 24, 2014, we enrolled 93 participants into the main study cohort with 46 participants assigned PfSPZ Vaccine and 47 assigned placebo, all of whom were evaluable for safety. We detected no significant differences in local or systemic adverse events or laboratory abnormalities between the PfSPZ Vaccine and placebo groups, and only grade 1 (mild) local or systemic adverse events occurred in both groups. The most common solicited systemic adverse event in the vaccine and placebo groups was headache (three [7%] people in the vaccine group vs four [9%] in the placebo group) followed by fatigue (one [2%] person in the placebo group), fever (one [2%] person in the placebo group), and myalgia (one [2%] person in each group). The exploratory efficacy analysis included 41 participants from the vaccine group and 40 from the placebo group. Of these participants, 37 (93%) from the placebo group and 27 (66%) from the vaccine group developed P falciparum infection. The hazard ratio for vaccine efficacy was 0·517 (95% CI 0·313-0·856) by time-to-infection analysis (log-rank p=0·01), and 0·712 (0·528-0·918) by proportional analysis (p=0·006). INTERPRETATION PfSPZ Vaccine was well tolerated and safe. PfSPZ Vaccine showed significant protection in African adults against P falciparum infection throughout an entire malaria season. FUNDING US National Institutes of Health Intramural Research Program, Sanaria.
Collapse
|
88
|
Spencer AJ, Longley RJ, Gola A, Ulaszewska M, Lambe T, Hill AVS. The Threshold of Protection from Liver-Stage Malaria Relies on a Fine Balance between the Number of Infected Hepatocytes and Effector CD8 + T Cells Present in the Liver. THE JOURNAL OF IMMUNOLOGY 2017; 198:2006-2016. [PMID: 28087668 PMCID: PMC5318841 DOI: 10.4049/jimmunol.1601209] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/16/2016] [Indexed: 12/20/2022]
Abstract
Since the demonstration of sterile protection afforded by injection of irradiated sporozoites, CD8+ T cells have been shown to play a significant role in protection from liver-stage malaria. This is, however, dependent on the presence of an extremely high number of circulating effector cells, thought to be necessary to scan, locate, and kill infected hepatocytes in the short time that parasites are present in the liver. We used an adoptive transfer model to elucidate the kinetics of the effector CD8+ T cell response in the liver following Plasmodium berghei sporozoite challenge. Although effector CD8+ T cells require <24 h to find, locate, and kill infected hepatocytes, active migration of Ag-specific CD8+ T cells into the liver was not observed during the 2-d liver stage of infection, as divided cells were only detected from day 3 postchallenge. However, the percentage of donor cells recruited into division was shown to indicate the level of Ag presentation from infected hepatocytes. By titrating the number of transferred Ag-specific effector CD8+ T cells and sporozoites, we demonstrate that achieving protection toward liver-stage malaria is reliant on CD8+ T cells being able to locate infected hepatocytes, resulting in a protection threshold dependent on a fine balance between the number of infected hepatocytes and CD8+ T cells present in the liver. With such a fine balance determining protection, achieving a high number of CD8+ T cells will be critical to the success of a cell-mediated vaccine against liver-stage malaria.
Collapse
Affiliation(s)
| | - Rhea J Longley
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Anita Gola
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Marta Ulaszewska
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Teresa Lambe
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Adrian V S Hill
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
89
|
Matthiessen L, Lång H, Klimathianaki M, Hanrahan F, Kerstiëns B, Martini A, Draghia-Akli R. European strategy for vaccine development against infectious diseases. Vaccine 2016; 35 Suppl 1:A20-A23. [PMID: 28017443 DOI: 10.1016/j.vaccine.2016.10.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 01/04/2023]
Abstract
Immunisation efforts save millions of lives every year, but vaccines hold the potential to deliver even greater health benefits for mankind. Vaccine research and development is highly complex, and it requires concerted public funding efforts to support. In this paper we discuss EU funding priorities and the resulting recent advancements in European vaccine research, and we lay out the EU strategy for aiding promising vaccine candidates to successfully reach the market.
Collapse
Affiliation(s)
- Line Matthiessen
- Directorate-General for Research and Innovation, European Commission, Brussels, Belgium.
| | - Hannu Lång
- Directorate-General for Research and Innovation, European Commission, Brussels, Belgium
| | - Maria Klimathianaki
- Directorate-General for Research and Innovation, European Commission, Brussels, Belgium
| | - Finnian Hanrahan
- Directorate-General for Research and Innovation, European Commission, Brussels, Belgium
| | - Barbara Kerstiëns
- Directorate-General for Research and Innovation, European Commission, Brussels, Belgium
| | - Alessandra Martini
- Directorate-General for Research and Innovation, European Commission, Brussels, Belgium
| | - Ruxandra Draghia-Akli
- Directorate-General for Research and Innovation, European Commission, Brussels, Belgium
| |
Collapse
|
90
|
Safety, Immunogenicity and Efficacy of Prime-Boost Vaccination with ChAd63 and MVA Encoding ME-TRAP against Plasmodium falciparum Infection in Adults in Senegal. PLoS One 2016; 11:e0167951. [PMID: 27978537 PMCID: PMC5158312 DOI: 10.1371/journal.pone.0167951] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 11/22/2016] [Indexed: 12/27/2022] Open
Abstract
Malaria transmission is in decline in some parts of Africa, partly due to the scaling up of control measures. If the goal of elimination is to be achieved, additional control measures including an effective and durable vaccine will be required. Studies utilising the prime-boost approach to deliver viral vectors encoding the pre-erythrocytic antigen ME-TRAP (multiple epitope thrombospondin-related adhesion protein) have shown promising safety, immunogenicity and efficacy in sporozoite challenge studies. More recently, a study in Kenyan adults, similar to that reported here, showed substantial efficacy against P. falciparum infection. One hundred and twenty healthy male volunteers, living in a malaria endemic area of Senegal were randomised to receive either the Chimpanzee adenovirus (ChAd63) ME-TRAP as prime vaccination, followed eight weeks later by modified vaccinia Ankara (MVA) also encoding ME-TRAP as booster, or two doses of anti-rabies vaccine as a comparator. Prior to follow-up, antimalarials were administered to clear parasitaemia and then participants were monitored by PCR for malaria infection for eight weeks. The primary endpoint was time-to-infection with P. falciparum malaria, determined by two consecutive positive PCR results. Secondary endpoints included adverse event reporting, measures of cellular and humoral immunogenicity and a meta-analysis of combined vaccine efficacy with the parallel study in Kenyan adults.We show that this pre-erythrocytic malaria vaccine is safe and induces significant immunogenicity, with a peak T-cell response at seven days after boosting of 932 Spot Forming Cells (SFC)/106 Peripheral Blood Mononuclear Cells(PBMC) compared to 57 SFC/ 106 PBMCs in the control group. However, a vaccine efficacy was not observed: 12 of 57 ME-TRAP vaccinees became PCR positive during the intensive monitoring period as compared to 13 of the 58 controls (P = 0.80). This trial confirms that vaccine efficacy against malaria infection in adults may be rapidly assessed using this efficient and cost-effective clinical trial design. Further efficacy evaluation of this vectored candidate vaccine approach in other malaria transmission settings and age-de-escalation into the main target age groups for a malaria vaccine is in progress.
Collapse
|
91
|
Stoler J, Awandare GA. Febrile illness diagnostics and the malaria-industrial complex: a socio-environmental perspective. BMC Infect Dis 2016; 16:683. [PMID: 27855644 PMCID: PMC5114833 DOI: 10.1186/s12879-016-2025-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/14/2016] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Global prioritization of single-disease eradication programs over improvements to basic diagnostic capacity in the Global South have left the world unprepared for epidemics of chikungunya, Ebola, Zika, and whatever lies on the horizon. The medical establishment is slowly realizing that in many parts of sub-Saharan Africa (SSA), particularly urban areas, up to a third of patients suffering from acute fever do not receive a correct diagnosis of their infection. MAIN BODY Malaria is the most common diagnosis for febrile patients in low-resource health care settings, and malaria misdiagnosis has soared due to the institutionalization of malaria as the primary febrile illness of SSA by international development organizations and national malaria control programs. This has inadvertently created a "malaria-industrial complex" and historically obstructed our complete understanding of the continent's complex communicable disease epidemiology, which is currently dominated by a mélange of undiagnosed febrile illnesses. We synthesize interdisciplinary literature from Ghana to highlight the complexity of communicable disease care in SSA from biomedical, social, and environmental perspectives, and suggest a way forward. CONCLUSION A socio-environmental approach to acute febrile illness etiology, diagnostics, and management would lead to substantial health gains in Africa, including more efficient malaria control. Such an approach would also improve global preparedness for future epidemics of emerging pathogens such as chikungunya, Ebola, and Zika, all of which originated in SSA with limited baseline understanding of their epidemiology despite clinical recognition of these viruses for many decades. Impending ACT resistance, new vaccine delays, and climate change all beckon our attention to proper diagnosis of fevers in order to maximize limited health care resources.
Collapse
Affiliation(s)
- Justin Stoler
- Department of Geography and Regional Studies, University of Miami, Coral Gables, FL USA
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL USA
- Abess Center for Ecosystem Science and Policy, University of Miami, Coral Gables, FL USA
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana
| |
Collapse
|
92
|
Embregts CWE, Forlenza M. Oral vaccination of fish: Lessons from humans and veterinary species. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:118-37. [PMID: 27018298 DOI: 10.1016/j.dci.2016.03.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 03/17/2016] [Indexed: 05/08/2023]
Abstract
The limited number of oral vaccines currently approved for use in humans and veterinary species clearly illustrates that development of efficacious and safe oral vaccines has been a challenge not only for fish immunologists. The insufficient efficacy of oral vaccines is partly due to antigen breakdown in the harsh gastric environment, but also to the high tolerogenic gut environment and to inadequate vaccine design. In this review we discuss current approaches used to develop oral vaccines for mass vaccination of farmed fish species. Furthermore, using various examples from the human and veterinary vaccine development, we propose additional approaches to fish vaccine design also considering recent advances in fish mucosal immunology and novel molecular tools. Finally, we discuss the pros and cons of using the zebrafish as a pre-screening animal model to potentially speed up vaccine design and testing for aquaculture fish species.
Collapse
Affiliation(s)
- Carmen W E Embregts
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Maria Forlenza
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
93
|
Kalra A, Edula JR, Gupta PK, Pandey AK, Chauhan VS. Antigenicity of a Bacterially Expressed Triple Chimeric Antigen of Plasmodium falciparum AARP, MSP-311 and MSP-119: PfAMSP-Fu35. PLoS One 2016; 11:e0165720. [PMID: 27798691 PMCID: PMC5087855 DOI: 10.1371/journal.pone.0165720] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/17/2016] [Indexed: 01/18/2023] Open
Abstract
Development of fusion chimeras as potential vaccine candidates is considered as an attractive strategy to generate effective immune responses to more than one antigen using a single construct. Here, we described the design, production, purification and antigenicity of a fusion chimera (PfAMSP-Fu35), comprised of immunologically relevant regions of three vaccine target malaria antigens, PfAARP, PfMSP-3 and PfMSP-1. The recombinant PfAMSP-Fu35 is expressed as a soluble protein and purified to homogeneity with ease at a yield of ~ 7 mg L-1. Conformational integrity of the C-terminal fragment of PfMSP-1, PfMSP-119 was retained in the fusion chimera as shown by ELISA with conformation sensitive monoclonal antibodies. High titre antibodies were raised to the fusion protein and to all the three individual components in mice and rabbits upon immunization with fusion chimera in two different adjuvant formulations. The sera against PfAMSP-Fu35 recognized native parasite proteins corresponding to the three components of the fusion chimera. As shown by invasion inhibition assay and antibody mediated cellular inhibition assay, antibodies purified from the PfAMSP-Fu35 immunized serum successfully and efficiently inhibited parasite invasion in P. falciparum 3D7 in vitro both directly and in monocyte dependent manner. However, the invasion inhibitory activity of anti-AMSP-Fu35 antibody is not significantly enhanced as expected as compared to a previously described two component fusion chimera, MSP-Fu24. Therefore, it may not be of much merit to consider AMSP-Fu35 as a vaccine candidate for preclinical development.
Collapse
Affiliation(s)
- Aakanksha Kalra
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Jyotheeswara Reddy Edula
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Puneet Kumar Gupta
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Alok Kumar Pandey
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Virander S. Chauhan
- Malaria Research Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail: ;
| |
Collapse
|
94
|
Hollingdale MR, Sedegah M, Limbach K. Development of replication-deficient adenovirus malaria vaccines. Expert Rev Vaccines 2016; 16:261-271. [PMID: 27606709 DOI: 10.1080/14760584.2016.1228454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Malaria remains a major threat to endemic populations and travelers, including military personnel to these areas. A malaria vaccine is feasible, as radiation attenuated sporozoites induce nearly 100% efficacy. Areas covered: This review covers current malaria clinical trials using adenoviruses and pre-clinical research. Heterologous prime-boost regimens, including replication-deficient human adenovirus 5 (HuAd5) carrying malaria antigens, are efficacious. However, efficacy appears to be adversely affected by pre-existing anti-HuAd5 antibodies. Current strategies focus on replacing HuAd5 with rarer human adenoviruses or adenoviruses isolated from non-human primates (NHPs). The chimpanzee adenovirus ChAd63 is undergoing evaluation in clinical trials including infants in malaria-endemic areas. Key antigens have been identified and are being used alone, in combination, or with protein subunit vaccines. Gorilla adenoviruses carrying malaria antigens are also currently being evaluated in preclinical models. These replacement adenovirus vectors will be successfully used to develop vaccines against malaria, as well as other infectious diseases. Expert commentary: Simplified prime-boost single shot regimens, dry-coated live vector vaccines or silicon microneedle arrays could be developed for malaria or other vaccines. Replacement vectors with similar or superior immunogenicity have rapidly advanced, and several are now in extensive Phase 2 and beyond in malaria as well as other diseases, notably Ebola.
Collapse
Affiliation(s)
| | - Martha Sedegah
- a Malaria Department , Naval Medical Research Center , Silver Spring , MD , USA
| | - Keith Limbach
- a Malaria Department , Naval Medical Research Center , Silver Spring , MD , USA
| |
Collapse
|
95
|
Comeau JL, Chan J, Macartney KK. New Vaccines on the Horizon. CURRENT PEDIATRICS REPORTS 2016. [DOI: 10.1007/s40124-016-0109-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
96
|
Ewer KJ, Lambe T, Rollier CS, Spencer AJ, Hill AVS, Dorrell L. Viral vectors as vaccine platforms: from immunogenicity to impact. Curr Opin Immunol 2016; 41:47-54. [DOI: 10.1016/j.coi.2016.05.014] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 11/29/2022]
|
97
|
Speake C, Pichugin A, Sahu T, Malkov V, Morrison R, Pei Y, Juompan L, Milman N, Zarling S, Anderson C, Wong-Madden S, Wendler J, Ishizuka A, MacMillen ZW, Garcia V, Kappe SHI, Krzych U, Duffy PE. Identification of Novel Pre-Erythrocytic Malaria Antigen Candidates for Combination Vaccines with Circumsporozoite Protein. PLoS One 2016; 11:e0159449. [PMID: 27434123 PMCID: PMC4951032 DOI: 10.1371/journal.pone.0159449] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 07/01/2016] [Indexed: 12/17/2022] Open
Abstract
Malaria vaccine development has been hampered by the limited availability of antigens identified through conventional discovery approaches, and improvements are needed to enhance the efficacy of the leading vaccine candidate RTS,S that targets the circumsporozoite protein (CSP) of the infective sporozoite. Here we report a transcriptome-based approach to identify novel pre-erythrocytic vaccine antigens that could potentially be used in combination with CSP. We hypothesized that stage-specific upregulated genes would enrich for protective vaccine targets, and used tiling microarray to identify P. falciparum genes transcribed at higher levels during liver stage versus sporozoite or blood stages of development. We prepared DNA vaccines for 21 genes using the predicted orthologues in P. yoelii and P. berghei and tested their efficacy using different delivery methods against pre-erythrocytic malaria in rodent models. In our primary screen using P. yoelii in BALB/c mice, we found that 16 antigens significantly reduced liver stage parasite burden. In our confirmatory screen using P. berghei in C57Bl/6 mice, we confirmed 6 antigens that were protective in both models. Two antigens, when combined with CSP, provided significantly greater protection than CSP alone in both models. Based on the observations reported here, transcriptional patterns of Plasmodium genes can be useful in identifying novel pre-erythrocytic antigens that induce protective immunity alone or in combination with CSP.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/immunology
- Antibodies, Protozoan/therapeutic use
- Antigens, Protozoan/immunology
- Female
- Humans
- Malaria Vaccines/genetics
- Malaria Vaccines/immunology
- Malaria Vaccines/therapeutic use
- Malaria, Falciparum/drug therapy
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Mice
- Mice, Inbred C57BL
- Plasmodium falciparum/immunology
- Plasmodium falciparum/pathogenicity
- Plasmodium yoelii/immunology
- Protozoan Proteins/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/therapeutic use
Collapse
Affiliation(s)
- Cate Speake
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Alexander Pichugin
- Department of Cellular Immunology, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Tejram Sahu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Vlad Malkov
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Robert Morrison
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ying Pei
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Laure Juompan
- Department of Cellular Immunology, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Neta Milman
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Stasya Zarling
- Department of Cellular Immunology, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Charles Anderson
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sharon Wong-Madden
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jason Wendler
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Andrew Ishizuka
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Zachary W. MacMillen
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Valentino Garcia
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Stefan H. I. Kappe
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Urszula Krzych
- Department of Cellular Immunology, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
98
|
Rampling T, Ewer KJ, Bowyer G, Bliss CM, Edwards NJ, Wright D, Payne RO, Venkatraman N, de Barra E, Snudden CM, Poulton ID, de Graaf H, Sukhtankar P, Roberts R, Ivinson K, Weltzin R, Rajkumar BY, Wille-Reece U, Lee CK, Ockenhouse CF, Sinden RE, Gerry S, Lawrie AM, Vekemans J, Morelle D, Lievens M, Ballou RW, Cooke GS, Faust SN, Gilbert S, Hill AVS. Safety and High Level Efficacy of the Combination Malaria Vaccine Regimen of RTS,S/AS01B With Chimpanzee Adenovirus 63 and Modified Vaccinia Ankara Vectored Vaccines Expressing ME-TRAP. J Infect Dis 2016; 214:772-81. [PMID: 27307573 PMCID: PMC4978377 DOI: 10.1093/infdis/jiw244] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/06/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The need for a highly efficacious vaccine against Plasmodium falciparum remains pressing. In this controlled human malaria infection (CHMI) study, we assessed the safety, efficacy and immunogenicity of a schedule combining 2 distinct vaccine types in a staggered immunization regimen: one inducing high-titer antibodies to circumsporozoite protein (RTS,S/AS01B) and the other inducing potent T-cell responses to thrombospondin-related adhesion protein (TRAP) by using a viral vector. METHOD Thirty-seven healthy malaria-naive adults were vaccinated with either a chimpanzee adenovirus 63 and modified vaccinia virus Ankara-vectored vaccine expressing a multiepitope string fused to TRAP and 3 doses of RTS,S/AS01B (group 1; n = 20) or 3 doses of RTS,S/AS01B alone (group 2; n = 17). CHMI was delivered by mosquito bites to 33 vaccinated subjects at week 12 after the first vaccination and to 6 unvaccinated controls. RESULTS No suspected unexpected serious adverse reactions or severe adverse events related to vaccination were reported. Protective vaccine efficacy was observed in 14 of 17 subjects (82.4%) in group 1 and 12 of 16 subjects (75%) in group 2. All control subjects received a diagnosis of blood-stage malaria parasite infection. Both vaccination regimens were immunogenic. Fourteen protected subjects underwent repeat CHMI 6 months after initial CHMI; 7 of 8 (87.5%) in group 1 and 5 of 6 (83.3%) in group 2 remained protected. CONCLUSIONS The high level of sterile efficacy observed in this trial is encouraging for further evaluation of combination approaches using these vaccine types. CLINICAL TRIALS REGISTRATION NCT01883609.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Hans de Graaf
- NIHR Wellcome Trust Clinical Research Facility, University of Southampton and University Hospital Southampton NHS Foundation Trust, United Kingdom
| | - Priya Sukhtankar
- NIHR Wellcome Trust Clinical Research Facility, University of Southampton and University Hospital Southampton NHS Foundation Trust, United Kingdom
| | | | - Karen Ivinson
- PATH Malaria Vaccine Initiative, Seattle, Washington
| | - Rich Weltzin
- PATH Malaria Vaccine Initiative, Seattle, Washington
| | | | | | - Cynthia K Lee
- PATH Malaria Vaccine Initiative, Seattle, Washington
| | | | | | - Stephen Gerry
- Centre for Statistics in Medicine, University of Oxford
| | | | | | | | | | | | - Graham S Cooke
- Infectious Diseases Section, Faculty of Medicine, Department of Medicine, Imperial College London
| | - Saul N Faust
- NIHR Wellcome Trust Clinical Research Facility, University of Southampton and University Hospital Southampton NHS Foundation Trust, United Kingdom
| | | | | |
Collapse
|
99
|
Doll KL, Pewe LL, Kurup SP, Harty JT. Discriminating Protective from Nonprotective Plasmodium-Specific CD8+ T Cell Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:4253-62. [PMID: 27084099 PMCID: PMC4868661 DOI: 10.4049/jimmunol.1600155] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/19/2016] [Indexed: 11/19/2022]
Abstract
Despite decades of research, malaria remains a global health crisis. Current subunit vaccine approaches do not provide efficient long-term, sterilizing immunity against Plasmodium infections in humans. Conversely, whole parasite vaccinations with their larger array of target Ags have conferred long-lasting sterilizing protection to humans. Similar studies in rodent models of malaria reveal that CD8(+) T cells play a critical role in liver-stage immunity after whole parasite vaccination. However, it is unknown whether all CD8(+) T cell specificities elicited by whole parasite vaccination contribute to protection, an issue of great relevance for enhanced subunit vaccination. In this article, we show that robust CD8(+) T cell responses of similar phenotype are mounted after prime-boost immunization against Plasmodium berghei glideosome-associated protein 5041-48-, sporozoite-specific protein 20318-325-, thrombospondin-related adhesion protein (TRAP) 130-138-, or circumsporozoite protein (CSP) 252-260-derived epitopes in mice, but only CSP252-260- and TRAP130-138-specific CD8(+) T cells provide sterilizing immunity and reduce liver parasite burden after sporozoite challenge. Further, CD8(+) T cells specific to sporozoite surface-expressed CSP and TRAP proteins, but not intracellular glideosome-associated protein 50 and sporozoite-specific protein 20, efficiently recognize sporozoite-infected hepatocytes in vitro. These results suggest that: 1) protection-relevant antigenic targets, regardless of their immunogenic potential, must be efficiently presented by infected hepatocytes for CD8(+) T cells to eliminate liver-stage Plasmodium infection; and 2) proteins expressed on the surface of sporozoites may be good target Ags for protective CD8(+) T cells.
Collapse
Affiliation(s)
- Katherine L Doll
- Department of Microbiology, University of Iowa, Iowa City, IA 52242
| | - Lecia L Pewe
- Department of Microbiology, University of Iowa, Iowa City, IA 52242
| | | | - John T Harty
- Department of Microbiology, University of Iowa, Iowa City, IA 52242; Department of Pathology, University of Iowa, Iowa City, IA 52242; and Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
100
|
Naldini L. Gene therapy returns to centre stage. Nature 2016; 526:351-60. [PMID: 26469046 DOI: 10.1038/nature15818] [Citation(s) in RCA: 833] [Impact Index Per Article: 92.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/24/2015] [Indexed: 12/18/2022]
Abstract
Recent clinical trials of gene therapy have shown remarkable therapeutic benefits and an excellent safety record. They provide evidence for the long-sought promise of gene therapy to deliver 'cures' for some otherwise terminal or severely disabling conditions. Behind these advances lie improved vector designs that enable the safe delivery of therapeutic genes to specific cells. Technologies for editing genes and correcting inherited mutations, the engagement of stem cells to regenerate tissues and the effective exploitation of powerful immune responses to fight cancer are also contributing to the revitalization of gene therapy.
Collapse
Affiliation(s)
- Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (TIGET), San Raffaele Scientific Institute, 20132 Milan, Italy.,Vita Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|