51
|
Mussa A, Carli D, Cardaropoli S, Ferrero GB, Resta N. Lateralized and Segmental Overgrowth in Children. Cancers (Basel) 2021; 13:cancers13246166. [PMID: 34944785 PMCID: PMC8699773 DOI: 10.3390/cancers13246166] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 01/19/2023] Open
Abstract
Congenital disorders of lateralized or segmental overgrowth (LO) are heterogeneous conditions with increased tissue growth in a body region. LO can affect every region, be localized or extensive, involve one or several embryonic tissues, showing variable severity, from mild forms with minor body asymmetry to severe ones with progressive tissue growth and related relevant complications. Recently, next-generation sequencing approaches have increased the knowledge on the molecular defects in LO, allowing classifying them based on the deranged cellular signaling pathway. LO is caused by either genetic or epigenetic somatic anomalies affecting cell proliferation. Most LOs are classifiable in the Beckwith-Wiedemann spectrum (BWSp), PI3KCA/AKT-related overgrowth spectrum (PROS/AROS), mosaic RASopathies, PTEN Hamartoma Tumor Syndrome, mosaic activating variants in angiogenesis pathways, and isolated LO (ILO). These disorders overlap over common phenotypes, making their appraisal and distinction challenging. The latter is crucial, as specific management strategies are key: some LO is associated with increased cancer risk making imperative tumor screening since childhood. Interestingly, some LO shares molecular mechanisms with cancer: recent advances in tumor biological pathway druggability and growth downregulation offer new avenues for the treatment of the most severe and complicated LO.
Collapse
Affiliation(s)
- Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Torino, Italy; (D.C.); (S.C.)
- Pediatric Clinical Genetics Unit, Regina Margherita Children’s Hospital, Città della Salute e della Scienza di Torino, 10126 Torino, Italy
- Correspondence: ; Tel.: +39-0113135372
| | - Diana Carli
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Torino, Italy; (D.C.); (S.C.)
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cell Therapy Division, Regina Margherita Children’s Hospital, Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Simona Cardaropoli
- Department of Public Health and Pediatric Sciences, University of Torino, 10126 Torino, Italy; (D.C.); (S.C.)
| | | | - Nicoletta Resta
- Department of Biomedical Sciences and Human Oncology (DIMO), Medical Genetics, University of Bari “Aldo Moro”, 70121 Bari, Italy;
| |
Collapse
|
52
|
Wang S, Zhou Z, Li J, Wang Y, Li H, Lv R, Xu G, Zhang J, Bi J, Huo R. Identification of ACTA2 as a Key Contributor to Venous Malformation. Front Cell Dev Biol 2021; 9:755409. [PMID: 34858981 PMCID: PMC8630574 DOI: 10.3389/fcell.2021.755409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: Proteomics and high connotation functional gene screening (HCS) were used to screen key functional genes that play important roles in the pathogenesis of venous malformation. Furthermore, this study was conducted to analyze and explore their possible functions, establish a gene mutation zebrafish model, and perform a preliminary study to explore their possible pathogenic mechanisms in venous malformation. Methods: Pathological and normal tissues from patients with disseminated venous malformation were selected for Tandem Mass Tag (TMT) proteomics analysis to identify proteins that were differentially expressed. Based on bioinformatics analysis, 20 proteins with significant differential expression were selected for HCS to find key driver genes and characterize the expression of these genes in patients with venous malformations. In vitro experiments were then performed using human microvascular endothelial cells (HMEC-1). A gene mutant zebrafish model was also constructed for in vivo experiments to explore gene functions and pathogenic mechanisms. Results: The TMT results showed a total of 71 proteins that were differentially expressed as required, with five of them upregulated and 66 downregulated. Based on bioinformatics and proteomics results, five highly expressed genes and 15 poorly expressed genes were selected for functional screening by RNAi technology. HCS screening identified ACTA2 as the driver gene. Quantitative polymerase chain reaction (qPCR) and western blot were used to detect the expression of ACTA2 in the pathological tissues of patients with venous malformations and in control tissues, and the experimental results showed a significantly lower expression of ACTA2 in venous malformation tissues (P < 0.05). Cell assays on the human microvascular endothelial cells (HMEC-1) model showed that cell proliferation, migration, invasion, and angiogenic ability were all significantly increased in the ACTA2 over-expression group (P < 0.05), and that overexpression of ACTA2 could improve the inhibitory effect on vascular endothelial cell proliferation. We constructed an ACTA2-knockdown zebrafish model and found that the knockdown of ACTA2 resulted in defective vascular development, disruption of vascular integrity, and malformation of micro vein development in zebrafish. Further qPCR assays revealed that the knockdown of ACTA2 inhibited the Dll4/notch1 signaling pathway, Ephrin-B2 signaling pathway, and vascular integrity-related molecules and activated the Hedgehog signaling pathway. Conclusion: This study revealed that ACTA2 deficiency is an important factor in the pathogenesis of venous malformation, resulting in the disruption of vascular integrity and malformed vascular development. ACTA2 can be used as a potential biomarker for the treatment and prognosis of venous malformations.
Collapse
Affiliation(s)
- Song Wang
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zifu Zhou
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jing Li
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Wang
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hongwen Li
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Renrong Lv
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guangqi Xu
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jian Zhang
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jianhai Bi
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ran Huo
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
53
|
Zhu J, Tang Z, Ren J, Geng J, Guo F, Xu Z, Jia J, Chen L, Jia Y. Downregulation of microRNA-21 contributes to decreased collagen expression in venous malformations via transforming growth factor-β/Smad3/microRNA-21 signaling feedback loop. J Vasc Surg Venous Lymphat Disord 2021; 10:469-481.e2. [PMID: 34506963 DOI: 10.1016/j.jvsv.2021.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/27/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Venous malformations (VMs) are the most frequent vascular malformations and are characterized by dilated and tortuous veins with a dysregulated vascular extracellular matrix. The purpose of the present study was to investigate the potential involvement of microRNA-21 (miR-21), a multifunctional microRNA tightly associated with extracellular matrix regulation, in the pathogenesis of VMs. METHODS The expression of miR-21, collagen I, III, and IV, transforming growth factor-β (TGF-β), and Smad3 (mothers against decapentaplegic homolog 3) was evaluated in VMs and normal skin tissue using in situ hybridization, immunohistochemistry, Masson trichrome staining, and real-time polymerase chain reaction. Human umbilical vein endothelial cells (HUVECs) were used to explore the underlying mechanisms. RESULTS miR-21 expression was markedly decreased in the VM specimens compared with normal skin, in parallel with downregulation of collagen I, III, and IV and the TGF-β/Smad3 pathway in VMs. Moreover, our data demonstrated that miR-21 positively regulated the expression of collagens in HUVECs and showed a positive association with the TGF-β/Smad3 pathway in the VM tissues. In addition, miR-21 was found to mediate TGF-β-induced upregulation of collagens in HUVECs. Our data have indicated that miR-21 and the TGF-β/Smad3 pathway could form a positive feedback loop to synergistically regulate endothelial collagen synthesis. In addition, TGF-β/Smad3/miR-21 feedback loop signaling was upregulated in bleomycin-treated HUVECs and VM specimens, which was accompanied by increased collagen deposition. CONCLUSIONS To the best of our knowledge, the present study has, for the first time, revealed downregulation of miR-21 in VMs, which might contribute to decreased collagen expression via the TGF-β/Smad3/miR-21 signaling feedback loop. These findings provide new information on the pathogenesis of VMs and might facilitate the development of new therapies for VMs.
Collapse
Affiliation(s)
- Junyi Zhu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zirong Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiangang Ren
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jinhuan Geng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Fengyuan Guo
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zhi Xu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jun Jia
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yulin Jia
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China.
| |
Collapse
|
54
|
Peyre M, Miyagishima D, Bielle F, Chapon F, Sierant M, Venot Q, Lerond J, Marijon P, Abi-Jaoude S, Le Van T, Labreche K, Houlston R, Faisant M, Clémenceau S, Boch AL, Nouet A, Carpentier A, Boetto J, Louvi A, Kalamarides M. Somatic PIK3CA Mutations in Sporadic Cerebral Cavernous Malformations. N Engl J Med 2021; 385:996-1004. [PMID: 34496175 PMCID: PMC8606022 DOI: 10.1056/nejmoa2100440] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Cerebral cavernous malformations (CCMs) are common sporadic and inherited vascular malformations of the central nervous system. Although familial CCMs are linked to loss-of-function mutations in KRIT1 (CCM1), CCM2, or PDCD10 (CCM3), the genetic cause of sporadic CCMs, representing 80% of cases, remains incompletely understood. METHODS We developed two mouse models harboring mutations identified in human meningiomas with the use of the prostaglandin D2 synthase (PGDS) promoter. We performed targeted DNA sequencing of surgically resected CCMs from patients and confirmed our findings by droplet digital polymerase-chain-reaction analysis. RESULTS We found that in mice expressing one of two common genetic drivers of meningioma - Pik3ca H1047R or AKT1 E17K - in PGDS-positive cells, a spectrum of typical CCMs develops (in 22% and 11% of the mice, respectively) instead of meningiomas, which prompted us to analyze tissue samples from sporadic CCMs from 88 patients. We detected somatic activating PIK3CA and AKT1 mutations in 39% and 1%, respectively, of lesion tissue from the patients. Only 10% of lesions harbored mutations in the CCM genes. We analyzed lesions induced by the activating mutations Pik3ca H1074R and AKT1 E17K in mice and identified the PGDS-expressing pericyte as the probable cell of origin. CONCLUSIONS In tissue samples from sporadic CCMs, mutations in PIK3CA were represented to a greater extent than mutations in any other gene. The contribution of somatic mutations in the genes that cause familial CCMs was comparatively small. (Funded by the Fondation ARC pour la Recherche contre le Cancer and others.).
Collapse
Affiliation(s)
- Matthieu Peyre
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Danielle Miyagishima
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Franck Bielle
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Françoise Chapon
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Michael Sierant
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Quitterie Venot
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Julie Lerond
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Pauline Marijon
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Samiya Abi-Jaoude
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Tuan Le Van
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Karim Labreche
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Richard Houlston
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Maxime Faisant
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Stéphane Clémenceau
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Anne-Laure Boch
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Aurelien Nouet
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Alexandre Carpentier
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Julien Boetto
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Angeliki Louvi
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| | - Michel Kalamarides
- From the Departments of Neurosurgery (M.P., S.C., A.-L.B., A.N., A.C., M.K.) and Neuropathology (F.B.), Sorbonne Université, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, INSERM Unité 1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Paris Brain Institute (M.P., F.B., J.L., P.M., S.A.-J., T.L.V., K.L., J.B., M.K.), and INSERM Unité 1151-Institut Necker Enfants Malades, Hôpital Necker Enfants Malades, AP-HP (Q.V.), Paris, and the Department of Pathology, Centre Hospitalier Régional Universitaire (CHRU) Caen-INSERM Unité 1075 COMETE, Caen University (F.C.), and the Department of Pathology CHRU Caen-INSERM Unité Mixte de Recherche en Santé Unité 1237, Cyceron (M.F.), Caen - all in France; the Departments of Genetics (D.M., M.S.) and Neurosurgery and Neuroscience (A.L.), Yale School of Medicine, New Haven, CT; and the Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, United Kingdom (K.L., R.H.)
| |
Collapse
|
55
|
Venot Q, Canaud G. PIK3CA-related overgrowth spectrum: animal model and drug discovery. C R Biol 2021; 344:189-201. [PMID: 34213856 DOI: 10.5802/crbiol.50] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 11/24/2022]
Abstract
This review recapitulates the recent knowledge accumulation on overgrowth syndrome related to gain of function of the phosphoinositide3 kinase (PI3K)-alpha. These disorders, known as PIK3CA related overgrowth syndromes (PROS) are caused by somatic PIK3CA mutation occurring during embryogenesis. We summarize here the currently available animal models and new treatments undergoing development.
Collapse
Affiliation(s)
- Quitterie Venot
- Inserm U1151, Institut Necker Enfants Malades, Paris, France.,Université de Paris, Paris, France
| | - Guillaume Canaud
- Inserm U1151, Institut Necker Enfants Malades, Paris, France.,Service de Néphrologie Transplantation Adultes, Hôpital Necker-Enfants Malades, AP-HP, Paris, France.,Unité d'hypercroissance dysharmonieuse, Hôpital Necker-Enfants Malades, AP-HP, Paris, France.,Université de Paris, Paris, France
| |
Collapse
|
56
|
Abstract
Vascular and lymphatic malformations represent a challenge for clinicians. The identification of inherited and somatic mutations in important signaling pathways, including the PI3K (phosphoinositide 3-kinase)/AKT (protein kinase B)/mTOR (mammalian target of rapamycin), RAS (rat sarcoma)/RAF (rapidly accelerated fibrosarcoma)/MEK (mitogen-activated protein kinase kinase)/ERK (extracellular signal-regulated kinases), HGF (hepatocyte growth factor)/c-Met (hepatocyte growth factor receptor), and VEGF (vascular endothelial growth factor) A/VEGFR (vascular endothelial growth factor receptor) 2 cascades has led to the evaluation of tailored strategies with preexisting cancer drugs that interfere with these signaling pathways. The era of theranostics has started for the treatment of vascular anomalies. Registration: URL: https://www.clinicaltrialsregister.eu; Unique identifier: 2015-001703-32.
Collapse
Affiliation(s)
- Angela Queisser
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium (A.Q., L.M.B., M.V.), University of Louvain, Brussels, Belgium (M.V.)
| | - Emmanuel Seront
- Centre for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc Brussels, Belgium (E.S., L.M.B., M.V.).,Institut Roi Albert II, Department of Medical Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium (E.S.).,VASCERN VASCA European Reference Centre Cliniques Universitaires Saint-Luc, Brussels, Belgium (E.S., L.M.B., M.V.)
| | - Laurence M Boon
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium (A.Q., L.M.B., M.V.), University of Louvain, Brussels, Belgium (M.V.).,Centre for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc Brussels, Belgium (E.S., L.M.B., M.V.).,VASCERN VASCA European Reference Centre Cliniques Universitaires Saint-Luc, Brussels, Belgium (E.S., L.M.B., M.V.)
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium (A.Q., L.M.B., M.V.), University of Louvain, Brussels, Belgium (M.V.).,Centre for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc Brussels, Belgium (E.S., L.M.B., M.V.).,University of Louvain, Brussels, Belgium (M.V.).,University of Louvain, Brussels, Belgium (M.V.).,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), University of Louvain, Brussels, Belgium (M.V.).,VASCERN VASCA European Reference Centre Cliniques Universitaires Saint-Luc, Brussels, Belgium (E.S., L.M.B., M.V.)
| |
Collapse
|
57
|
Abstract
Lymphatic vessels maintain tissue fluid homeostasis by returning to blood circulation interstitial fluid that has extravasated from the blood capillaries. They provide a trafficking route for cells of the immune system, thus critically contributing to immune surveillance. Developmental or functional defects in the lymphatic vessels, their obstruction or damage, lead to accumulation of fluid in tissues, resulting in lymphedema. Here we discuss developmental lymphatic anomalies called lymphatic malformations and complex lymphatic anomalies that manifest as localized or multifocal lesions of the lymphatic vasculature, respectively. They are rare diseases that are caused mostly by somatic mutations and can present with variable symptoms based upon the size and location of the lesions composed of fluid-filled cisterns or channels. Substantial progress has been made recently in understanding the molecular basis of their pathogenesis through the identification of their genetic causes, combined with the elucidation of the underlying mechanisms in animal disease models and patient-derived lymphatic endothelial cells. Most of the solitary somatic mutations that cause lymphatic malformations and complex lymphatic anomalies occur in genes that encode components of oncogenic growth factor signal transduction pathways. This has led to successful repurposing of some targeted cancer therapeutics to the treatment of lymphatic malformations and complex lymphatic anomalies. Apart from the mutations that act as lymphatic endothelial cell-autonomous drivers of these anomalies, current evidence points to superimposed paracrine mechanisms that critically contribute to disease pathogenesis and thus provide additional targets for therapeutic intervention. Here, we review these advances and discuss new treatment strategies that are based on the recently identified molecular pathways.
Collapse
Affiliation(s)
- Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden (T.M.)
| | - Laurence M Boon
- Division of Plastic Surgery, Center for Vascular Anomalies, Cliniques Universitaires Saint Luc, UCLouvain, Brussels, Belgium (L.M.B.).,Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium (L.M.B., M.V.)
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium (L.M.B., M.V.).,Walloon Excellence in Lifesciences and Biotechnology, University of Louvain, Brussels, Belgium (M.V.)
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum, University of Helsinki, Finland (K.A.)
| |
Collapse
|
58
|
Ren AA, Snellings DA, Su YS, Hong CC, Castro M, Tang AT, Detter MR, Hobson N, Girard R, Romanos S, Lightle R, Moore T, Shenkar R, Benavides C, Beaman MM, Müller-Fielitz H, Chen M, Mericko P, Yang J, Sung DC, Lawton MT, Ruppert JM, Schwaninger M, Körbelin J, Potente M, Awad IA, Marchuk DA, Kahn ML. PIK3CA and CCM mutations fuel cavernomas through a cancer-like mechanism. Nature 2021; 594:271-276. [PMID: 33910229 PMCID: PMC8626098 DOI: 10.1038/s41586-021-03562-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 04/16/2021] [Indexed: 02/02/2023]
Abstract
Vascular malformations are thought to be monogenic disorders that result in dysregulated growth of blood vessels. In the brain, cerebral cavernous malformations (CCMs) arise owing to inactivation of the endothelial CCM protein complex, which is required to dampen the activity of the kinase MEKK31-4. Environmental factors can explain differences in the natural history of CCMs between individuals5, but why single CCMs often exhibit sudden, rapid growth, culminating in strokes or seizures, is unknown. Here we show that growth of CCMs requires increased signalling through the phosphatidylinositol-3-kinase (PI3K)-mTOR pathway as well as loss of function of the CCM complex. We identify somatic gain-of-function mutations in PIK3CA and loss-of-function mutations in the CCM complex in the same cells in a majority of human CCMs. Using mouse models, we show that growth of CCMs requires both PI3K gain of function and CCM loss of function in endothelial cells, and that both CCM loss of function and increased expression of the transcription factor KLF4 (a downstream effector of MEKK3) augment mTOR signalling in endothelial cells. Consistent with these findings, the mTORC1 inhibitor rapamycin effectively blocks the formation of CCMs in mouse models. We establish a three-hit mechanism analogous to cancer, in which aggressive vascular malformations arise through the loss of vascular 'suppressor genes' that constrain vessel growth and gain of a vascular 'oncogene' that stimulates excess vessel growth. These findings suggest that aggressive CCMs could be treated using clinically approved mTORC1 inhibitors.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Class I Phosphatidylinositol 3-Kinases/genetics
- Class I Phosphatidylinositol 3-Kinases/metabolism
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Gain of Function Mutation
- Hemangioma, Cavernous, Central Nervous System/blood supply
- Hemangioma, Cavernous, Central Nervous System/genetics
- Hemangioma, Cavernous, Central Nervous System/metabolism
- Hemangioma, Cavernous, Central Nervous System/pathology
- Humans
- Kruppel-Like Factor 4
- Kruppel-Like Transcription Factors/metabolism
- Loss of Function Mutation
- MAP Kinase Kinase Kinase 3/metabolism
- Male
- Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors
- Mechanistic Target of Rapamycin Complex 1/metabolism
- Mice
- Mutation
- Neoplasms/blood supply
- Neoplasms/genetics
- Neoplasms/pathology
- Sirolimus/pharmacology
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- Aileen A Ren
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel A Snellings
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Yourong S Su
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Courtney C Hong
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Marco Castro
- Angiogenesis and Metabolism Laboratory, Max Planck institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Alan T Tang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew R Detter
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Nicholas Hobson
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Sharbel Romanos
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Rhonda Lightle
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Thomas Moore
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Robert Shenkar
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Christian Benavides
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - M Makenzie Beaman
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Helge Müller-Fielitz
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Mei Chen
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Patricia Mericko
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Jisheng Yang
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Derek C Sung
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael T Lawton
- Department of Neurosurgery, The Barrow Neurological Institute, Phoenix, AZ, USA
| | | | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Jakob Körbelin
- University Medical Center Hamburg-Eppendorf, Department of Oncology, Hematology and Bone Marrow Transplantation, Hamburg, Germany
| | - Michael Potente
- Angiogenesis and Metabolism Laboratory, Max Planck institute for Heart and Lung Research, Bad Nauheim, Germany
- Berlin Institute of Health (BIH) and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, IL, USA
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
59
|
Schonning MJ, Koh S, Sun RW, Richter GT, Edwards AK, Shawber CJ, Wu JK. Venous malformation vessels are improperly specified and hyperproliferative. PLoS One 2021; 16:e0252342. [PMID: 34043714 PMCID: PMC8158993 DOI: 10.1371/journal.pone.0252342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/12/2021] [Indexed: 11/26/2022] Open
Abstract
Venous malformations (VMs) are slow-flow malformations of the venous vasculature and are the most common type of vascular malformation with a prevalence of 1%. Germline and somatic mutations have been shown to contribute to VM pathogenesis, but how these mutations affect VM pathobiology is not well understood. The goal of this study was to characterize VM endothelial and mural cell expression by performing a comprehensive expression analysis of VM vasculature. VM specimens (n = 16) were stained for pan-endothelial, arterial, venous, and endothelial progenitor cell proteins; proliferation was assessed with KI67. Endothelial cells in the VM vessels were abnormally orientated and improperly specified, as seen by the misexpression of both arterial and endothelial cell progenitor proteins not observed in control vessels. Consistent with arterialization of the endothelial cells, VM vessels were often surrounded by multiple layers of disorganized mural cells. VM endothelium also had a significant increase in proliferative endothelial cells, which may contribute to the dilated channels seen in VMs. Together the expression analysis indicates that the VM endothelium is misspecified and hyperproliferative, suggesting that VMs are biologically active lesions, consistent with clinical observations of VM progression over time.
Collapse
Affiliation(s)
- Michael J. Schonning
- Department of Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States of America
| | - Seung Koh
- Department of Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States of America
| | - Ravi W. Sun
- Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Gresham T. Richter
- Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Andrew K. Edwards
- Department of Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States of America
| | - Carrie J. Shawber
- Department of Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States of America
- Department of Ob/Gyn, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States of America
| | - June K. Wu
- Department of Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
60
|
Abstract
PURPOSE OF REVIEW The use of genetic models has facilitated the study of the origins and mechanisms of vascular disease. Mouse models have been developed to specifically target endothelial cell populations, with the goal of pinpointing when and where causative mutations wreck their devastating effects. Together, these approaches have propelled the development of therapies by providing an in-vivo platform to evaluate diagnoses and treatment options. This review summarizes the most widely used mouse models that have facilitated the study of vascular disease, with a focus on mouse models of vascular malformations and the road ahead. RECENT FINDINGS Over the past 3 decades, the vascular biology scientific community has been steadily generating a powerful toolkit of useful mouse lines that can be used to tightly regulate gene ablation, or to express transgenic genes, in the murine endothelium. Some of these models inducibly (constitutively) alter gene expression across all endothelial cells, or within distinct subsets, by expressing either Cre recombinase (or inducible versions such as CreERT), or the tetracycline controlled transactivator protein tTA (or rtTA). This now relatively standard technology has been used to gain cutting edge insights into vascular disorders, by allowing in-vivo modeling of key molecular pathways identified as dysregulated across the vast spectrum of vascular anomalies, malformations and dysplasias. However, as sequencing of human patient samples expands, the number of interesting candidate molecular culprits keeps increasing. Consequently, there is now a pressing need to create new genetic mouse models to test hypotheses and to query mechanisms underlying vascular disease. SUMMARY The current review assesses the collection of mouse driver lines that have been instrumental is identifying genes required for blood vessel formation, remodeling, maintenance/quiescence and disease. In addition, the usefulness of these driver lines is underscored here by cataloguing mouse lines developed to experimentally assess the role of key candidate genes in vascular malformations. Despite this solid and steady progress, numerous new candidate vascular malformation genes have recently been identified for which no mouse model yet exists.
Collapse
Affiliation(s)
- Ondine Cleaver
- Department of Molecular Biology, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
61
|
Marziano C, Genet G, Hirschi KK. Vascular endothelial cell specification in health and disease. Angiogenesis 2021; 24:213-236. [PMID: 33844116 PMCID: PMC8205897 DOI: 10.1007/s10456-021-09785-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/17/2021] [Indexed: 02/08/2023]
Abstract
There are two vascular networks in mammals that coordinately function as the main supply and drainage systems of the body. The blood vasculature carries oxygen, nutrients, circulating cells, and soluble factors to and from every tissue. The lymphatic vasculature maintains interstitial fluid homeostasis, transports hematopoietic cells for immune surveillance, and absorbs fat from the gastrointestinal tract. These vascular systems consist of highly organized networks of specialized vessels including arteries, veins, capillaries, and lymphatic vessels that exhibit different structures and cellular composition enabling distinct functions. All vessels are composed of an inner layer of endothelial cells that are in direct contact with the circulating fluid; therefore, they are the first responders to circulating factors. However, endothelial cells are not homogenous; rather, they are a heterogenous population of specialized cells perfectly designed for the physiological demands of the vessel they constitute. This review provides an overview of the current knowledge of the specification of arterial, venous, capillary, and lymphatic endothelial cell identities during vascular development. We also discuss how the dysregulation of these processes can lead to vascular malformations, and therapeutic approaches that have been developed for their treatment.
Collapse
Affiliation(s)
- Corina Marziano
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Gael Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Karen K Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA. .,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA. .,Department of Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
62
|
A Xenograft Model for Venous Malformation. Methods Mol Biol 2021; 2206:179-192. [PMID: 32754818 DOI: 10.1007/978-1-0716-0916-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Xenograft models allow for an in vivo approach to monitor cellular functions within the context of a host microenvironment. Here we describe a protocol to generate a xenograft model of venous malformation (VM) based on the use of human umbilical vein endothelial cells (HUVEC) expressing a constitutive active form of the endothelial tyrosine kinase receptor TEK (TIE2 p.L914F) or patient-derived EC containing TIE2 and/or PIK3CA gene mutations. Hyperactive somatic TIE2 and PIK3CA mutations are a common hallmark of VM in patient lesions. The EC are injected subcutaneously on the back of athymic nude mice to generate ectatic vascular channels and recapitulate histopathological features of VM patient tissue histology. Lesion plugs with TIE2/PIK3CA-mutant EC are visibly vascularized within 7-9 days of subcutaneous injection, making this a great tool to study venous malformation.
Collapse
|
63
|
Organismal roles for the PI3Kα and β isoforms: their specificity, redundancy or cooperation is context-dependent. Biochem J 2021; 478:1199-1225. [DOI: 10.1042/bcj20210004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023]
Abstract
PI3Ks are important lipid kinases that produce phosphoinositides phosphorylated in position 3 of the inositol ring. There are three classes of PI3Ks: class I PI3Ks produce PIP3 at plasma membrane level. Although D. melanogaster and C. elegans have only one form of class I PI3K, vertebrates have four class I PI3Ks called isoforms despite being encoded by four different genes. Hence, duplication of these genes coincides with the acquisition of coordinated multi-organ development. Of the class I PI3Ks, PI3Kα and PI3Kβ, encoded by PIK3CA and PIK3CB, are ubiquitously expressed. They present similar putative protein domains and share PI(4,5)P2 lipid substrate specificity. Fifteen years after publication of their first isoform-selective pharmacological inhibitors and genetically engineered mouse models (GEMMs) that mimic their complete and specific pharmacological inhibition, we review the knowledge gathered in relation to the redundant and selective roles of PI3Kα and PI3Kβ. Recent data suggest that, further to their redundancy, they cooperate for the integration of organ-specific and context-specific signal cues, to orchestrate organ development, physiology, and disease. This knowledge reinforces the importance of isoform-selective inhibitors in clinical settings.
Collapse
|
64
|
Hong T, Xiao X, Ren J, Cui B, Zong Y, Zou J, Kou Z, Jiang N, Meng G, Zeng G, Shan Y, Wu H, Chen Z, Liang J, Xiao X, Tang J, Wei Y, Ye M, Sun L, Li G, Hu P, Hui R, Zhang H, Wang Y. Somatic MAP3K3 and PIK3CA mutations in sporadic cerebral and spinal cord cavernous malformations. Brain 2021; 144:2648-2658. [PMID: 33729480 DOI: 10.1093/brain/awab117] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 01/03/2023] Open
Abstract
Cavernous malformations (CMs) affecting the central nervous system occur in approximately 0.16% to 0.4% of the general population. The majority (85%) of the CMs are in a sporadic form, but the genetic background of sporadic CMs remains enigmatic. Of the 81 patients, 73 (90.1%) patients were detected carrying somatic missense variants in 2 genes: MAP3K3 and PIK3CA by whole-exome sequencing (WES). The mutation spectrum correlated with lesion size (P = 0.001), anatomical distribution (P < 0.001), MRI appearance (P = 0.004) and haemorrhage events (P = 0.006). PIK3CA mutation was a significant predictor of overt haemorrhage events (P = 0.003, OR = 11.252, 95% CI = 2.275-55.648). Enrichment of endothelial cell (EC) population was associated with a higher fractional abundance of the somatic mutations. Overexpression of the MAP3K3 mutation perturbed angiogenesis of EC models in vitro and zebrafish embryos in vivo. Distinct transcriptional signatures between different genetic subgroups of sporadic CMs were identified by single-cell RNA-sequencing (scRNA-seq) and verified by pathological staining. Significant apoptosis in MAP3K3 mutation carriers and overexpression of GDF15 and SERPINA5 in PIK3CA mutation carriers contributed to their phenotype. We identified activating MAP3K3 and PIK3CA somatic mutations in the majority (90.1%) of sporadic CMs and PIK3CA mutations could confer a higher risk for overt haemorrhage. Our data provide insights into genomic landscapes, propose a mechanistic explanation and underscore the possibility of a molecular classification for sporadic CMs.
Collapse
Affiliation(s)
- Tao Hong
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, Beijing, China
| | - Xiao Xiao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Ren
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, Beijing, China
| | - Bing Cui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuru Zong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Zou
- The Institute of Translational Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zqi Kou
- The Institute of Translational Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Nan Jiang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, Beijing, China
| | - Guolu Meng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, Beijing, China
| | - Gao Zeng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, Beijing, China
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, Beijing, China
| | - Hao Wu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, Beijing, China
| | - Zan Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, Beijing, China
| | - Jiantao Liang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, Beijing, China
| | - Xinru Xiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, Beijing, China
| | - Jie Tang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, Beijing, China
| | - Yukui Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, Beijing, China
| | - Ming Ye
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, Beijing, China
| | - Liyong Sun
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, Beijing, China
| | - Guilin Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, Beijing, China
| | - Peng Hu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, Beijing, China
| | - Rutai Hui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, China International Neuroscience Institute, Beijing, China
| | - Yibo Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
65
|
Geeurickx M, Labarque V. A narrative review of the role of sirolimus in the treatment of congenital vascular malformations. J Vasc Surg Venous Lymphat Disord 2021; 9:1321-1333. [PMID: 33737259 DOI: 10.1016/j.jvsv.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/04/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Vascular malformations arise from defects in the morphologic development of the vascular system and can have an impact on quality of life and/or lead to severe complications. To date, vascular malformations are frequently managed by invasive techniques, after which recurrence is common. Sirolimus, a downstream inhibitor of the phosphatidylinositol 3 kinase/AKT pathway and best known for its immunosuppressive effect, has been used off-label for lesions for which approved therapies were associated with unsatisfactory results or recurrence. The aim of this study was to review the available data on the effect of sirolimus on the size and symptoms of different types of malformations and to summarize the main safety issues. METHODS A literature search in Pubmed, Embase, Web of Science, and SCOPUS was performed. Case reports, case series, and clinical trials evaluating the effect of sirolimus in vascular malformations were eligible for this review. Fully terminated studies published between January 2010 and May 2019 reporting an evaluable response on size and/or symptoms were included. Relevant data on lesion size, symptoms, side effects and duration of treatment were extracted as reported in the study. Additionally, we reported 10 unpublished cases who were treated in UZ Leuven. RESULTS The literature review included 68 articles, describing 324 patients. The median duration of therapy was 12 months (range, 1-60 months). After 6 months of treatment, the size of the malformation had at least decreased in 67% of patients with common venous malformations (VM), in 93% of patients with blue rubber bleb nevus syndrome and in all patients with verrucous VM. The size of lymphatic malformations improved in more than 80% of the patients, even in the case of extensive involvement such as in Gorham-Stout disease and generalized lymphatic anomaly. In addition, the majority of patients with syndromic vascular malformations experienced a decrease in size and reported symptoms improved in almost all patients, regardless of the type of malformation. Side effects were common (53%) but usually mild; mucositis and bone marrow suppression were the most common. Regrowth or recurrence of symptoms occurred in 49% of patients who discontinued treatment. Comparable effects were seen in our own patients. CONCLUSIONS This review shows that sirolimus is effective in decreasing the size and/or symptoms of particularly lymphatic malformations as well as VMs. Although common, side effects were usually mild. Nevertheless, clinical trials are needed to confirm the safety and effectivity of sirolimus and to identify the required serum levels and duration of treatment.
Collapse
Affiliation(s)
- Marlies Geeurickx
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Veerle Labarque
- Department of Pediatric Hemato-Oncology, University Hospitals Leuven, Leuven, Belgium; Catholic University Leuven, Center for Molecular and Vascular Biology, Leuven, Belgium.
| |
Collapse
|
66
|
Kilmister EJ, Hansen L, Davis PF, Hall SRR, Tan ST. Cell Populations Expressing Stemness-Associated Markers in Vascular Anomalies. Front Surg 2021; 7:610758. [PMID: 33634164 PMCID: PMC7900499 DOI: 10.3389/fsurg.2020.610758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/31/2020] [Indexed: 12/31/2022] Open
Abstract
Treatment of vascular anomalies (VAs) is mostly empirical and, in many instances unsatisfactory, as the pathogeneses of these heterogeneous conditions remain largely unknown. There is emerging evidence of the presence of cell populations expressing stemness-associated markers within many types of vascular tumors and vascular malformations. The presence of these populations in VAs is supported, in part, by the observed clinical effect of the mTOR inhibitor, sirolimus, that regulates differentiation of embryonic stem cells (ESCs). The discovery of the central role of the renin-angiotensin system (RAS) in regulating stem cells in infantile hemangioma (IH) provides a plausible explanation for its spontaneous and accelerated involution induced by β-blockers and ACE inhibitors. Recent work on targeting IH stem cells by inhibiting the transcription factor SOX18 using the stereoisomer R(+) propranolol, independent of β-adrenergic blockade, opens up exciting opportunities for novel treatment of IH without the β-adrenergic blockade-related side effects. Gene mutations have been identified in several VAs, involving mainly the PI3K/AKT/mTOR and/or the Ras/RAF/MEK/ERK pathways. Existing cancer therapies that target these pathways engenders the exciting possibility of repurposing these agents for challenging VAs, with early results demonstrating clinical efficacy. However, there are several shortcomings with this approach, including the treatment cost, side effects, emergence of treatment resistance and unknown long-term effects in young patients. The presence of populations expressing stemness-associated markers, including transcription factors involved in the generation of induced pluripotent stem cells (iPSCs), in different types of VAs, suggests the possible role of stem cell pathways in their pathogenesis. Components of the RAS are expressed by cell populations expressing stemness-associated markers in different types of VAs. The gene mutations affecting the PI3K/AKT/mTOR and/or the Ras/RAF/MEK/ERK pathways interact with different components of the RAS, which may influence cell populations expressing stemness-associated markers within VAs. The potential of targeting these populations by manipulating the RAS using repurposed, low-cost and commonly available oral medications, warrants further investigation. This review presents the accumulating evidence demonstrating the presence of stemness-associated markers in VAs, their expression of the RAS, and their interaction with gene mutations affecting the PI3K/AKT/mTOR and/or the Ras/RAF/MEK/ERK pathways, in the pathogenesis of VAs.
Collapse
Affiliation(s)
| | - Lauren Hansen
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Paul F. Davis
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | | | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Wellington, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
67
|
Dasgupta K, Lessard S, Hann S, Fowler ME, Robling AG, Warman ML. Sensitive detection of Cre-mediated recombination using droplet digital PCR reveals Tg(BGLAP-Cre) and Tg(DMP1-Cre) are active in multiple non-skeletal tissues. Bone 2021; 142:115674. [PMID: 33031974 DOI: 10.1016/j.bone.2020.115674] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
In humans, somatic activating mutations in PIK3CA are associated with skeletal overgrowth. In order to determine if activated PI3K signaling in bone cells causes overgrowth, we used Tg(BGLAP-Cre) and Tg(DMP1-Cre) mouse strains to somatically activate a disease-causing conditional Pik3ca allele (Pik3caH1047R) in osteoblasts and osteocytes. We observed Tg(BGLAP-Cre);Pik3caH1047R/+ offspring were born at the expected Mendelian frequency. However, these mice developed cutaneous lymphatic malformations and died before 7 weeks of age. In contrast, Tg(DMP1-Cre);Pik3caH1047R/+ offspring survived and had no cutaneous lymphatic malformations. Assuming that Cre-activity outside of the skeletal system accounted for the difference in phenotype between Tg(BGLAP-Cre);Pik3caH1047R/+ and Tg(DMP1-Cre);Pik3caH1047R/+ mice, we developed sensitive and specific droplet digital PCR (ddPCR) assays to search for and quantify rates of Tg(BGLAP-Cre)- and Tg(DMP1-Cre)-mediated recombination in non-skeletal tissues. We observed Tg(BGLAP-Cre)-mediated recombination in several tissues including skin, muscle, artery, and brain; two CNS locations, hippocampus and cerebellum, exhibited Cre-mediated recombination in >5% of cells. Tg(DMP1-Cre)-mediated recombination was also observed in muscle, artery, and brain. Although we cannot preclude that differences in phenotype between mice with Tg(BGLAP-Cre)- and Tg(DMP1-Cre)-mediated PIK3CA activation are due to Cre-recombination being induced at different stages of osteoblast differentiation, differences in recombination at non-skeletal sites are the more likely explanation. Since unanticipated sites of recombination can affect the interpretation of data from experiments involving conditional alleles, we recommend ddPCR as a good first step for assessing efficiency, leakiness, and off-targeting in experiments that employ Cre-mediated or Flp-mediated recombination.
Collapse
Affiliation(s)
- Krishnakali Dasgupta
- Orthopedic Research Laboratories, Department of Orthopedic Surgery, Boston Children's Hospital, Boston, MA, United States of America; Department of Genetics, Harvard Medical School, Boston, MA, United States of America
| | - Samantha Lessard
- Orthopedic Research Laboratories, Department of Orthopedic Surgery, Boston Children's Hospital, Boston, MA, United States of America
| | - Steven Hann
- Orthopedic Research Laboratories, Department of Orthopedic Surgery, Boston Children's Hospital, Boston, MA, United States of America
| | - Megan E Fowler
- Orthopedic Research Laboratories, Department of Orthopedic Surgery, Boston Children's Hospital, Boston, MA, United States of America
| | - Alexander G Robling
- Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Matthew L Warman
- Orthopedic Research Laboratories, Department of Orthopedic Surgery, Boston Children's Hospital, Boston, MA, United States of America; Department of Genetics, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
68
|
Budge EJ, Khalil Allam MA, Mechie I, Scully M, Agu O, Lim CS. Venous malformations: Coagulopathy control and treatment methods. Phlebology 2020; 36:361-374. [PMID: 33283636 DOI: 10.1177/0268355520972918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Venous malformations (VMs) are ectatic channels which arise as a result of vascular dysmorphogenesis, commonly caused by activating mutations in the endothelial tyrosine kinase receptor (TIE2)/phosphatidylinositol 3-kinase (PI3Kinase) pathway. With a prevalence of 1% in the general population, and a diverse clinical presentation depending on site, size and tissue involvement, their treatment requires a personalised and multidisciplinary approach. Larger lesions are complicated by local intravascular coagulopathy (LIC) causing haemorrhagic and/or thrombotic complications which can progress to disseminated intravascular coagulopathy (DIC). METHODS We performed a literature review using a PubMed® search and identified 15 articles to include. References of these texts were examined to further expand the literature review.Principle findings: Several treatment options have been explored, including compression, sclerotherapy, laser therapy, cryoablation and surgery in addition to the management of LIC with low-molecular-weight-heparin (LMWH) and other anticoagulants. Targeted molecular therapies acting on the phosphatidylinositol 3-kinase (PI3Kinase)/Protein Kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway are newly emerging. CONCLUSION Despite a wealth of literature, larger, multi-centric, randomised and prospective trails are required to offer further clarification on the therapeutic management of coagulopathy control and to provide symptomatic benefit to patients with VMs. There should be efforts to provide long term follow up and to use standardised risk stratification tools and quality of life (QOL) questionnaires to aid comparison of agents and treatment protocols.
Collapse
Affiliation(s)
- Eleanor J Budge
- Department of Vascular Surgery, Royal Free London NHS Foundation Trust, London, UK
| | | | - Imogen Mechie
- Department of Vascular Surgery, Royal Free London NHS Foundation Trust, London, UK
| | - Marie Scully
- Department of Vascular Surgery, Royal Free London NHS Foundation Trust, London, UK.,Research Department of Surgical Biotechnology, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| | - Obi Agu
- Department of Vascular Surgery, Royal Free London NHS Foundation Trust, London, UK.,Research Department of Surgical Biotechnology, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| | - Chung Sim Lim
- Department of Vascular Surgery, Royal Free London NHS Foundation Trust, London, UK.,Research Department of Surgical Biotechnology, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, UK
| |
Collapse
|
69
|
Genetic landscape of common venous malformations in the head and neck. J Vasc Surg Venous Lymphat Disord 2020; 9:1007-1016.e7. [PMID: 33248299 DOI: 10.1016/j.jvsv.2020.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/15/2020] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Common venous malformations (VMs) are a frequent sporadic subtype of vascular malformations. Given the TEK and PIK3CA mutations identified, this study aims to investigate the genetic landscape of VMs in the head and neck. METHODS Patients from published sequencing studies related to common VMs were reviewed. Detailed data regarding clinical characteristics, sequencing strategies, and mutation frequency were synthesized. Lesion distribution of common VMs in the head and neck were further retrospectively analyzed by the pathologic database of the Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital. For the frequently affected sites in the head and neck, patients were selected for targeted sequencing with a designed vascular malformation-related gene panel or whole exome sequencing. Detected variants were analyzed by classical bioinformatic algorithms (SIFT23, PolyPhen-2 HDIV, LRT, MutationTaster, Mutation Assessor, and GERP++). To confirm the expression pattern of particular candidate gene, specimens were examined histochemically. Gene ontology enrichment analysis and a protein-protein interaction network were also constructed. RESULTS Three hundred patients from eight sequencing studies related to common VMs were reviewed. The total prevalence rates of TEK and PIK3CA mutations were 41.3% and 26.7%, respectively. The most frequent TEK/PIK3CA mutations were TEK-L914F/PIK3CA-H1047R. TEK/PIK3CA mutations existed in 70.3% and 2.7% of VMs in the head and neck. In retrospective data from 649 patients carrying cervicofacial VMs at Shanghai Ninth Hospital, the most frequent sites were the maxillofacial region (lips, cheek, parotid-masseteric region, submandibular region) and the oral and oropharyngeal region (buccal mucosa, tongue). Targeted sequencing for 14 frequent lesions detected TEK variants in three patients (21.4%), but no PIK3CA mutations. On whole exome sequencing of two patients without TEK/PIK3CA mutations, CDH11 was the only shared deleteriously mutated gene. Bioinformatic analyses of CDH11 implied that genes involved in cellular adhesion and junctions formed a significant portion. CONCLUSIONS Common VMs of the head and neck have a unique genetic landscape. Novel CDH11 and TEK variants imply that pathogenesis is mediated by the regulatory relationship between endothelial cells and extracellular components.
Collapse
|
70
|
Mühleder S, Fernández-Chacón M, Garcia-Gonzalez I, Benedito R. Endothelial sprouting, proliferation, or senescence: tipping the balance from physiology to pathology. Cell Mol Life Sci 2020; 78:1329-1354. [PMID: 33078209 PMCID: PMC7904752 DOI: 10.1007/s00018-020-03664-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/05/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
Therapeutic modulation of vascular cell proliferation and migration is essential for the effective inhibition of angiogenesis in cancer or its induction in cardiovascular disease. The general view is that an increase in vascular growth factor levels or mitogenic stimulation is beneficial for angiogenesis, since it leads to an increase in both endothelial proliferation and sprouting. However, several recent studies showed that an increase in mitogenic stimuli can also lead to the arrest of angiogenesis. This is due to the existence of intrinsic signaling feedback loops and cell cycle checkpoints that work in synchrony to maintain a balance between endothelial proliferation and sprouting. This balance is tightly and effectively regulated during tissue growth and is often deregulated or impaired in disease. Most therapeutic strategies used so far to promote vascular growth simply increase mitogenic stimuli, without taking into account its deleterious effects on this balance and on vascular cells. Here, we review the main findings on the mechanisms controlling physiological vascular sprouting, proliferation, and senescence and how those mechanisms are often deregulated in acquired or congenital cardiovascular disease leading to a diverse range of pathologies. We also discuss alternative approaches to increase the effectiveness of pro-angiogenic therapies in cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Severin Mühleder
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Macarena Fernández-Chacón
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Irene Garcia-Gonzalez
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Rui Benedito
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
71
|
Abstract
Vascular malformations are inborn errors of vascular morphogenesis and consist of localized networks of abnormal blood and/or lymphatic vessels with weak endothelial cell proliferation. They have historically been managed by surgery and sclerotherapy. Extensive insight into the genetic origin and molecular mechanism of development has been accumulated over the last 20 years. Since the discovery of the first somatic mutations in a vascular anomaly 10 years ago, it is now recognized that they are perhaps all caused by inherited or somatic mutations in genes that hyperactivate two major intracellular signaling pathways: the RAS/MAPK/ERK and/or the phosphatidylinositol 3 kinase (PIK3)/protein kinase B/mammalian target of rapamycin (mTOR) pathway. Several targeted molecular inhibitors of these pathways have been developed, mostly for the treatment of cancers that harbor mutations in the same pathways. The mTOR inhibitor sirolimus is the most studied compound for the treatment of venous, lymphatic, and complex malformations. Disease responses of vascular malformations to sirolimus have now been reported in several studies in terms of clinical changes, quality of life, functional and radiological outcomes, and safety. Other targeted treatment strategies, such as the PIK3CA inhibitor alpelisib for PIK3CA-mutated vascular malformations, are also emerging. Repurposing of cancer drugs has become a major focus in this rapidly evolving field.
Collapse
|
72
|
Abstract
Vascular anomalies are developmental defects of the vasculature and encompass a variety of disorders. The identification of genes mutated in the different malformations provides insight into the etiopathogenic mechanisms and the specific roles the associated proteins play in vascular development and maintenance. A few familial forms of vascular anomalies exist, but most cases occur sporadically. It is becoming evident that somatic mosaicism plays a major role in the formation of vascular lesions. The use of Next Generating Sequencing for high throughput and "deep" screening of both blood and lesional DNA and RNA has been instrumental in detecting such low frequency somatic changes. The number of novel causative mutations identified for many vascular anomalies has soared within a 10-year period. The discovery of such genes aided in unraveling a holistic overview of the pathogenic mechanisms, by which in vitro and in vivo models could be generated, and opening the doors to development of more effective treatments that do not address just symptoms. Moreover, as many mutations and the implicated signaling pathways are shared with cancers, current oncological therapies could potentially be repurposed for the treatment of vascular anomalies.
Collapse
Affiliation(s)
- Ha-Long Nguyen
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Laurence M Boon
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium; Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Centre, Saint Luc University Hospital, Brussels, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium; Center for Vascular Anomalies, Division of Plastic Surgery, VASCERN VASCA European Reference Centre, Saint Luc University Hospital, Brussels, Belgium; WELBIO (Walloon Excellence in Lifesciences and Biotechnology), de Duve Institute, University of Louvain, Brussels, Belgium.
| |
Collapse
|
73
|
Castel P, Rauen KA, McCormick F. The duality of human oncoproteins: drivers of cancer and congenital disorders. Nat Rev Cancer 2020; 20:383-397. [PMID: 32341551 PMCID: PMC7787056 DOI: 10.1038/s41568-020-0256-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2020] [Indexed: 01/29/2023]
Abstract
Human oncoproteins promote transformation of cells into tumours by dysregulating the signalling pathways that are involved in cell growth, proliferation and death. Although oncoproteins were discovered many years ago and have been widely studied in the context of cancer, the recent use of high-throughput sequencing techniques has led to the identification of cancer-associated mutations in other conditions, including many congenital disorders. These syndromes offer an opportunity to study oncoprotein signalling and its biology in the absence of additional driver or passenger mutations, as a result of their monogenic nature. Moreover, their expression in multiple tissue lineages provides insight into the biology of the proto-oncoprotein at the physiological level, in both transformed and unaffected tissues. Given the recent paradigm shift in regard to how oncoproteins promote transformation, we review the fundamentals of genetics, signalling and pathogenesis underlying oncoprotein duality.
Collapse
Affiliation(s)
- Pau Castel
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Katherine A Rauen
- MIND Institute, Department of Pediatrics, University of California, Davis, Sacramento, CA, USA
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
74
|
Schrenk S, Goines J, Boscolo E. A Patient-Derived Xenograft Model for Venous Malformation. J Vis Exp 2020. [PMID: 32597867 DOI: 10.3791/61501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Venous malformation (VM) is a vascular anomaly that arises from impaired development of the venous network resulting in dilated and often dysfunctional veins. The purpose of this article is to carefully describe the establishment of a murine xenograft model that mimics human VM and is able to reflect patient heterogeneity. Hyper-activating non-inherited (somatic) TEK (TIE2) and PIK3CA mutations in endothelial cells (EC) have been identified as the main drivers of pathological vessel enlargement in VM. The following protocol describes the isolation, purification and expansion of patient-derived EC expressing mutant TIE2 and/or PIK3CA. These EC are injected subcutaneously into the back of immunodeficient athymic mice to generate ectatic vascular channels. Lesions generated with TIE2 or PIK3CA-mutant EC are visibly vascularized within 7‒9 days of injection and recapitulate histopathological features of VM patient tissue. This VM xenograft model provides a reliable platform to investigate the cellular and molecular mechanisms driving VM formation and expansion. In addition, this model will be instrumental for translational studies testing the efficacy of novel drug candidates in preventing the abnormal vessel enlargement seen in human VM.
Collapse
Affiliation(s)
- Sandra Schrenk
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
| | - Jillian Goines
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
| | - Elisa Boscolo
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine;
| |
Collapse
|
75
|
Martinez-Corral I, Zhang Y, Petkova M, Ortsäter H, Sjöberg S, Castillo SD, Brouillard P, Libbrecht L, Saur D, Graupera M, Alitalo K, Boon L, Vikkula M, Mäkinen T. Blockade of VEGF-C signaling inhibits lymphatic malformations driven by oncogenic PIK3CA mutation. Nat Commun 2020; 11:2869. [PMID: 32513927 PMCID: PMC7280302 DOI: 10.1038/s41467-020-16496-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
Lymphatic malformations (LMs) are debilitating vascular anomalies presenting with large cysts (macrocystic) or lesions that infiltrate tissues (microcystic). Cellular mechanisms underlying LM pathology are poorly understood. Here we show that the somatic PIK3CAH1047R mutation, resulting in constitutive activation of the p110α PI3K, underlies both macrocystic and microcystic LMs in human. Using a mouse model of PIK3CAH1047R-driven LM, we demonstrate that both types of malformations arise due to lymphatic endothelial cell (LEC)-autonomous defects, with the developmental timing of p110α activation determining the LM subtype. In the postnatal vasculature, PIK3CAH1047R promotes LEC migration and lymphatic hypersprouting, leading to microcystic LMs that grow progressively in a vascular endothelial growth factor C (VEGF-C)-dependent manner. Combined inhibition of VEGF-C and the PI3K downstream target mTOR using Rapamycin, but neither treatment alone, promotes regression of lesions. The best therapeutic outcome for LM is thus achieved by co-inhibition of the upstream VEGF-C/VEGFR3 and the downstream PI3K/mTOR pathways. Lymphatic malformation (LM) is a debilitating often incurable vascular disease. Using a mouse model of LM driven by a disease-causative PIK3CA mutation, the authors show that vascular growth is dependent on the upstream lymphangiogenic VEGF-C signalling, permitting effective therapeutic intervention.
Collapse
Affiliation(s)
- Ines Martinez-Corral
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Yan Zhang
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Milena Petkova
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Henrik Ortsäter
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Sofie Sjöberg
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden
| | - Sandra D Castillo
- Vascular Signaling Laboratory, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), 08908L´Hospitalet de Llobregat, Barcelona, Spain
| | - Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Louis Libbrecht
- Center for Vascular Anomalies, Division of Pathology, Cliniques universitaires Saint Luc, University of Louvain, 10 avenue Hippocrate, B-1200, Brussels, Belgium
| | - Dieter Saur
- Department of Internal Medicine 2, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675, München, Germany
| | - Mariona Graupera
- Vascular Signaling Laboratory, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), 08908L´Hospitalet de Llobregat, Barcelona, Spain
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, Biomedicum Helsinki, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Laurence Boon
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium.,Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques universitaires Saint Luc, University of Louvain, 10 avenue Hippocrate, B-1200, Brussels, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium.,Walloon Excellence in Lifesciences and Biotechnology (WELBIO), University of Louvain, Brussels, Belgium
| | - Taija Mäkinen
- Uppsala University, Department of Immunology, Genetics and Pathology, Dag Hammarskjölds väg 20, 751 85, Uppsala, Sweden.
| |
Collapse
|
76
|
Figueiredo AM, Villacampa P, Diéguez-Hurtado R, José Lozano J, Kobialka P, Cortazar AR, Martinez-Romero A, Angulo-Urarte A, Franco CA, Claret M, Aransay AM, Adams RH, Carracedo A, Graupera M. Phosphoinositide 3-Kinase-Regulated Pericyte Maturation Governs Vascular Remodeling. Circulation 2020; 142:688-704. [PMID: 32466671 DOI: 10.1161/circulationaha.119.042354] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Pericytes regulate vessel stabilization and function, and their loss is associated with diseases such as diabetic retinopathy or cancer. Despite their physiological importance, pericyte function and molecular regulation during angiogenesis remain poorly understood. METHODS To decipher the transcriptomic programs of pericytes during angiogenesis, we crossed Pdgfrb(BAC)-CreERT2 mice into RiboTagflox/flox mice. Pericyte morphological changes were assessed in mural cell-specific R26-mTmG reporter mice, in which low doses of tamoxifen allowed labeling of single-cell pericytes at high resolution. To study the role of phosphoinositide 3-kinase (PI3K) signaling in pericyte biology during angiogenesis, we used genetic mouse models that allow selective inactivation of PI3Kα and PI3Kβ isoforms and their negative regulator phosphate and tensin homolog deleted on chromosome 10 (PTEN) in mural cells. RESULTS At the onset of angiogenesis, pericytes exhibit molecular traits of cell proliferation and activated PI3K signaling, whereas during vascular remodeling, pericytes upregulate genes involved in mature pericyte cell function, together with a remarkable decrease in PI3K signaling. Immature pericytes showed stellate shape and high proliferation, and mature pericytes were quiescent and elongated. Unexpectedly, we demonstrate that PI3Kβ, but not PI3Kα, regulates pericyte proliferation and maturation during vessel formation. Genetic PI3Kβ inactivation in pericytes triggered early pericyte maturation. Conversely, unleashing PI3K signaling by means of PTEN deletion delayed pericyte maturation. Pericyte maturation was necessary to undergo vessel remodeling during angiogenesis. CONCLUSIONS Our results identify new molecular and morphological traits associated with pericyte maturation and uncover PI3Kβ activity as a checkpoint to ensure appropriate vessel formation. In turn, our results may open new therapeutic opportunities to regulate angiogenesis in pathological processes through the manipulation of pericyte PI3Kβ activity.
Collapse
Affiliation(s)
- Ana M Figueiredo
- Vascular Biology and Signalling Group, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908 L´Hospitalet de Llobregat, Barcelona, Spain (A.M.F., P.V., P.K., A.M.-R., A.A.-U., M.G.)
| | - Pilar Villacampa
- Vascular Biology and Signalling Group, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908 L´Hospitalet de Llobregat, Barcelona, Spain (A.M.F., P.V., P.K., A.M.-R., A.A.-U., M.G.)
| | - Rodrigo Diéguez-Hurtado
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, and Faculty of Medicine, University of Münster, Germany (R.D.-H., R.H.A.)
| | - Juan José Lozano
- Bioinformatics Platform, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain (J.J.L.)
| | - Piotr Kobialka
- Vascular Biology and Signalling Group, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908 L´Hospitalet de Llobregat, Barcelona, Spain (A.M.F., P.V., P.K., A.M.-R., A.A.-U., M.G.)
| | - Ana Rosa Cortazar
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain (A.R.C., A.M.A., A.C.)
| | - Anabel Martinez-Romero
- Vascular Biology and Signalling Group, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908 L´Hospitalet de Llobregat, Barcelona, Spain (A.M.F., P.V., P.K., A.M.-R., A.A.-U., M.G.)
| | - Ana Angulo-Urarte
- Vascular Biology and Signalling Group, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908 L´Hospitalet de Llobregat, Barcelona, Spain (A.M.F., P.V., P.K., A.M.-R., A.A.-U., M.G.)
| | - Claudio A Franco
- CIBERONC (A.R.C., A.M.A., A.C., M.G.) and CIBERehd (A.M.A.), Instituto de Salud Carlos III, Madrid, Spain. Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal (C.A.F.)
| | - Marc Claret
- Neuronal Control of Metabolism Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (M.C.)
| | - Ana María Aransay
- CIBERONC (A.R.C., A.M.A., A.C., M.G.) and CIBERehd (A.M.A.), Instituto de Salud Carlos III, Madrid, Spain. Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal (C.A.F.)
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, and Faculty of Medicine, University of Münster, Germany (R.D.-H., R.H.A.)
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain (A.R.C., A.M.A., A.C.)
| | - Mariona Graupera
- Vascular Biology and Signalling Group, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908 L´Hospitalet de Llobregat, Barcelona, Spain (A.M.F., P.V., P.K., A.M.-R., A.A.-U., M.G.)
| |
Collapse
|
77
|
Theranostic Advances in Vascular Malformations. J Invest Dermatol 2020; 140:756-763. [DOI: 10.1016/j.jid.2019.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 11/22/2022]
|
78
|
Venot Q, Canaud G. [Segmental overgrowth syndromes and therapeutic strategies]. Med Sci (Paris) 2020; 36:235-242. [PMID: 32228842 DOI: 10.1051/medsci/2020023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Overgrowth syndromes are a large group of rare disorders characterized by generalized or segmental excessive growth. Segmental overgrowth syndromes are mainly due to genetic anomalies appearing during the embryogenesis and leading to mosaicism. The numbers of patients with segmental overgrowth with an identified molecular defect has dramatically increased following the recent advances in molecular genetic using next-generation sequencing approaches. This review discusses various syndromes and pathways involved in segmental overgrowth syndromes and presents actual and future therapeutic strategies.
Collapse
Affiliation(s)
- Quitterie Venot
- Inserm U1151, Institut Necker Enfants Malades, 75015 Paris, France
| | - Guillaume Canaud
- Inserm U1151, Institut Necker Enfants Malades, 75015 Paris, France - Service d'Hypercroissance Pathologique, Hôpital Necker-Enfants Malades, AP-HP, 149 rue de Sèvres, 75015 Paris, France - Université de Paris, Paris, France
| |
Collapse
|
79
|
Abstract
Genodermatoses are inherited disorders presenting with cutaneous manifestations with or without the involvement of other systems. The majority of these disorders, particularly in cases that present with a cutaneous patterning, may be explained in the context of genetic mosaicism. Despite the barriers to the genetic analysis of mosaic disorders, next-generation sequencing has led to a substantial progress in understanding their pathogenesis, which has significant implications for the clinical management and genetic counseling. Advances in paired and deep sequencing technologies in particular have made the study of mosaic disorders more feasible. In this review, we provide an overview of genetic mosaicism as well as mosaic cutaneous disorders and the techniques required to study them.
Collapse
Affiliation(s)
- Shayan Cheraghlou
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Young Lim
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Keith A Choate
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
80
|
Madsen RR. PI3K in stemness regulation: from development to cancer. Biochem Soc Trans 2020; 48:301-315. [PMID: 32010943 PMCID: PMC7054754 DOI: 10.1042/bst20190778] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 02/08/2023]
Abstract
The PI3K/AKT pathway is a key target in oncology where most efforts are focussed on phenotypes such as cell proliferation and survival. Comparatively, little attention has been paid to PI3K in stemness regulation, despite the emerging link between acquisition of stem cell-like features and therapeutic failure in cancer. The aim of this review is to summarise current known and unknowns of PI3K-dependent stemness regulation, by integrating knowledge from the fields of developmental, signalling and cancer biology. Particular attention is given to the role of the PI3K pathway in pluripotent stem cells (PSCs) and the emerging parallels to dedifferentiated cancer cells with stem cell-like features. Compelling evidence suggests that PI3K/AKT signalling forms part of a 'core molecular stemness programme' in both mouse and human PSCs. In cancer, the oncogenic PIK3CAH1047R variant causes constitutive activation of the PI3K pathway and has recently been linked to increased stemness in a dose-dependent manner, similar to observations in mouse PSCs with heterozygous versus homozygous Pten loss. There is also evidence that the stemness phenotype may become 'locked' and thus independent of the original PI3K activation, posing limitations for the success of PI3K monotherapy in cancer. Ongoing therapeutic developments for PI3K-associated cancers may therefore benefit from a better understanding of the pathway's two-layered and highly context-dependent regulation of cell growth versus stemness.
Collapse
Affiliation(s)
- Ralitsa R. Madsen
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, U.K
| |
Collapse
|
81
|
Ustaszewski A, Janowska-Głowacka J, Wołyńska K, Pietrzak A, Badura-Stronka M. Genetic syndromes with vascular malformations - update on molecular background and diagnostics. Arch Med Sci 2020; 17:965-991. [PMID: 34336026 PMCID: PMC8314420 DOI: 10.5114/aoms.2020.93260] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/09/2018] [Indexed: 11/17/2022] Open
Abstract
Vascular malformations are present in a great variety of congenital syndromes, either as the predominant or additional feature. They pose a major challenge to the clinician: due to significant phenotype overlap, a precise diagnosis is often difficult to obtain, some of the malformations carry a risk of life threatening complications and, for many entities, treatment is not well established. To facilitate their recognition and aid in differentiation, we present a selection of notable congenital disorders of vascular system development, distinguishing between the heritable germinal and sporadic somatic mutations as their causes. Clinical features, genetic background and comprehensible description of molecular mechanisms is provided for each entity.
Collapse
Affiliation(s)
- Adam Ustaszewski
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Katarzyna Wołyńska
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Pietrzak
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
82
|
Castellote J, Mora Luján JM, Riera-Mestre A. Letter to the Editor: mTOR-Inhibitor-Based Immunosuppression Following Liver Transplantation for Hereditary Hemorrhagic Telangiectasia. Hepatology 2020; 71:762-763. [PMID: 31330053 DOI: 10.1002/hep.30870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Jose Castellote
- HHT Unit, Hospital Universitari Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Hepatology and Liver Transplant Unit, Department of Digestive Diseases, Hospital Universitari Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain
| | - José Maria Mora Luján
- HHT Unit, Hospital Universitari Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Internal Medicine Department, Hospital Universitari Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Antoni Riera-Mestre
- HHT Unit, Hospital Universitari Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Faculty of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, Spain.,Internal Medicine Department, Hospital Universitari Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| |
Collapse
|
83
|
Boccara O, Galmiche‐Rolland L, Dadone‐Montaudié B, Ariche‐Maman S, Coulet F, Eyries M, Pannier S, Soupre V, Molina T, Pedeutour F, Fraitag S. Soft tissue angiomatosis: another
PIK3CA
‐related disorder. Histopathology 2020; 76:540-549. [DOI: 10.1111/his.14021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/17/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Olivia Boccara
- Department of Dermatology and Reference Center for Genodermatoses and Rare Skin Diseases (MAGEC) Université Paris, Paris‐centre Institut Imagine Hôpital Universitaire Necker‐Enfants Malades APHP ParisFrance
| | | | - Bérengère Dadone‐Montaudié
- Laboratory of Solid Tumour Genetics Institute for Research on Cancer and Aging of Nice (IRCAN) CNRS UMR 7284/INSERM U1081 Université Côte d'Azur Centre Hospitalier Universitaire de Nice Nice France
| | - Sonia Ariche‐Maman
- Department of Pediatric Radiology Hôpital Universitaire Necker‐Enfants Malades APHP Paris France
| | - Florence Coulet
- Genetics Groupe hospitalier Pitié‐Salpêtrière Université Pierre et Marie Curie APHP Paris France
| | - Mélanie Eyries
- Genetics Groupe hospitalier Pitié‐Salpêtrière Université Pierre et Marie Curie APHP Paris France
| | - Stéphanie Pannier
- Department of Orthopedic Surgery Hôpital Universitaire Necker‐Enfants Malades APHP Paris France
| | - Véronique Soupre
- Maxillofacial Surgery and Stomatology Department Hôpital Universitaire Necker‐Enfants Malades APHP Paris France
| | - Thierry Molina
- Department of Pathology Hôpital Universitaire Necker‐Enfants Malades APHP Paris France
| | - Florence Pedeutour
- Laboratory of Solid Tumour Genetics Institute for Research on Cancer and Aging of Nice (IRCAN) CNRS UMR 7284/INSERM U1081 Université Côte d'Azur Centre Hospitalier Universitaire de Nice Nice France
| | - Sylvie Fraitag
- Department of Pathology Hôpital Universitaire Necker‐Enfants Malades APHP Paris France
| |
Collapse
|
84
|
Li X, Cai Y, Goines J, Pastura P, Brichta L, Lane A, Le Cras TD, Boscolo E. Ponatinib Combined With Rapamycin Causes Regression of Murine Venous Malformation. Arterioscler Thromb Vasc Biol 2020; 39:496-512. [PMID: 30626204 PMCID: PMC6392210 DOI: 10.1161/atvbaha.118.312315] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Objective- Venous malformations (VMs) arise from developmental defects of the vasculature and are characterized by massively enlarged and tortuous venous channels. VMs grow commensurately leading to deformity, obstruction of vital structures, bleeding, and pain. Most VMs are associated with the activating mutation L914F in the endothelial cell (EC) tyrosine kinase receptor TIE2. Therapeutic options for VM are limited and ineffective while therapy with the mammalian target of rapamycin inhibitor rapamycin shows moderate efficacy. Here, we investigated novel therapeutic targets promoting VM regression. Approach and Results- We performed an unbiased screen of Food and Drug Administration-approved drugs in human umbilical vein ECs expressing the TIE2-L914F mutation (HUVEC-TIE2-L914F). Three ABL (Abelson) kinase inhibitors prevented cell proliferation of HUVEC-TIE2-L914F. Moreover, c-ABL, common target of these inhibitors, was highly phosphorylated in HUVEC-TIE2-L914F and VM patient-derived ECs with activating TIE2 mutations. Knockdown of c-ABL/ARG in HUVEC-TIE2-L914F reduced cell proliferation and vascularity of murine VM. Combination treatment with the ABL kinase inhibitor ponatinib and rapamycin caused VM regression in a xenograft model based on injection of HUVEC-TIE2-L914F. A reduced dose of this drug combination was effective in this VM murine model with minimal side effects. The drug combination was antiproliferative, enhanced cell apoptosis and vascular channel regression both in vivo and in a 3-dimensional fibrin gel assay. Conclusions- This is the first report of a combination therapy with ponatinib and rapamycin promoting regression of VM. Mechanistically, the drug combination enhanced AKT inhibition compared with single drug treatment and reduced PLCγ (phospholipase C) and ERK (extracellular signal-regulated kinase) activity.
Collapse
Affiliation(s)
- Xian Li
- From the Divisions of Experimental Hematology and Cancer Biology (X.L., Y.C., J.G., E.B.), Cincinnati Children's Hospital Medical Center, OH
| | - Yuqi Cai
- From the Divisions of Experimental Hematology and Cancer Biology (X.L., Y.C., J.G., E.B.), Cincinnati Children's Hospital Medical Center, OH
| | - Jillian Goines
- From the Divisions of Experimental Hematology and Cancer Biology (X.L., Y.C., J.G., E.B.), Cincinnati Children's Hospital Medical Center, OH
| | - Patricia Pastura
- Cancer and Blood Disease Institute and Division of Pulmonary Biology (P.P., T.D.L.C.), Cincinnati Children's Hospital Medical Center, OH
| | - Lars Brichta
- Chemistry Rx Compounding and Specialty Pharmacy, Philadelphia, PA (L.B.)
| | - Adam Lane
- Division of Bone Marrow Transplantation and Immune Deficiency (A.L.), Cincinnati Children's Hospital Medical Center, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, OH (A.L., T.D.L.C., E.B.)
| | - Timothy D Le Cras
- Cancer and Blood Disease Institute and Division of Pulmonary Biology (P.P., T.D.L.C.), Cincinnati Children's Hospital Medical Center, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, OH (A.L., T.D.L.C., E.B.)
| | - Elisa Boscolo
- From the Divisions of Experimental Hematology and Cancer Biology (X.L., Y.C., J.G., E.B.), Cincinnati Children's Hospital Medical Center, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, OH (A.L., T.D.L.C., E.B.)
| |
Collapse
|
85
|
Li QF, Decker-Rockefeller B, Bajaj A, Pumiglia K. Activation of Ras in the Vascular Endothelium Induces Brain Vascular Malformations and Hemorrhagic Stroke. Cell Rep 2019; 24:2869-2882. [PMID: 30208313 DOI: 10.1016/j.celrep.2018.08.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/22/2018] [Accepted: 08/08/2018] [Indexed: 12/23/2022] Open
Abstract
Cerebrovascular malformations (CVMs) affect approximately 3% of the population, risking hemorrhagic stroke, seizures, and neurological deficits. Recently Ras mutations have been identified in a majority of brain arterio-venous malformations. We generated an endothelial-specific, inducible HRASV12 mouse model, which results in dilated, proliferative blood vessels in the brain, blood-brain barrier breakdown, intracerebral hemorrhage, and rapid lethality. Organoid morphogenesis models revealed abnormal cessation of proliferation, abnormalities in expression of tip and stalk genes, and a failure to properly form elongating tubes. These defects were influenced by both hyperactive PI-3' kinase signaling and altered TGF-β signaling. Several phenotypic changes predicted by the in vitro morphogenesis analysis were validated in the mouse model. These data provide a model of brain vascular malformations induced by mutant Ras and reveal insights into intersecting molecular mechanisms in the pathogenesis of brain vascular malformations.
Collapse
Affiliation(s)
- Qing-Fen Li
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA
| | | | - Anshika Bajaj
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA
| | - Kevin Pumiglia
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
86
|
Kobialka P, Graupera M. Revisiting PI3-kinase signalling in angiogenesis. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2019; 1:H125-H134. [PMID: 32923964 PMCID: PMC7439845 DOI: 10.1530/vb-19-0025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
PI3Ks belong to a family of lipid kinases that comprises eight isoforms. They phosphorylate the third position of the inositol ring present in phosphatidylinositol lipids and, in turn, activate a broad range of proteins. The PI3K pathway regulates primal cellular responses, including proliferation, migration, metabolism and vesicular traffic. These processes are fundamental for endothelial cell function during sprouting angiogenesis, the most common type of blood vessel formation. Research in animal models has revealed key functions of PI3K family members and downstream effectors in angiogenesis. In addition, perturbations in PI3K signalling have been associated with aberrant vascular growth including tumour angiogenesis and vascular malformations. Together, this highlights that endothelial cells are uniquely sensitive to fluctuations in PI3K signalling. Here, we aim to update the current view on this important signalling cue in physiological and pathological blood vessel growth.
Collapse
Affiliation(s)
- Piotr Kobialka
- Vascular Biology and Signalling Group, Program Against Cancer Therapeutic Resistance (ProCURE), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat-Barcelona, Spain
- ProCure Research Program, Instituto de Salud Carlos III, Madrid, Spain
- OncoBell Program, Instituto de Salud Carlos III, Madrid, Spain
| | - Mariona Graupera
- Vascular Biology and Signalling Group, Program Against Cancer Therapeutic Resistance (ProCURE), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat-Barcelona, Spain
- ProCure Research Program, Instituto de Salud Carlos III, Madrid, Spain
- OncoBell Program, Instituto de Salud Carlos III, Madrid, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
87
|
Iriarte A, Figueras A, Cerdà P, Mora JM, Jucglà A, Penín R, Viñals F, Riera-Mestre A. PI3K (Phosphatidylinositol 3-Kinase) Activation and Endothelial Cell Proliferation in Patients with Hemorrhagic Hereditary Telangiectasia Type 1. Cells 2019; 8:cells8090971. [PMID: 31450639 PMCID: PMC6770684 DOI: 10.3390/cells8090971] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022] Open
Abstract
Hemorrhagic hereditary telangiectasia (HHT) type 2 patients have increased activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway in telangiectasia. The main objective is to evaluate the activation of the PI3K pathway in cutaneous telangiectasia of HHT1 patients. A cutaneous biopsy of a digital hand telangiectasia was performed in seven HHT1 and eight HHT2 patients and compared with six controls. The study was approved by the Clinical Research Ethics Committee of our center. A histopathological pattern with more dilated and superficial vessels that pushed up the epidermis was identified in HHT patients regardless of the type of mutation and was associated with older age, as opposed to the common telangiectasia pattern. The mean proliferation index (Ki-67) was statistically higher in endothelial cells (EC) from HHT1 than in controls. The percentage of positive EC for pNDRG1, pAKT, and pS6 in HHT1 patients versus controls resulted in higher values, statistically significant for pNDRG1 and pS6. In conclusion, we detected an increase in EC proliferation linked to overactivation of the PI3K pathway in cutaneous telangiectasia biopsies from HHT1 patients. Our results suggest that PI3K inhibitors could be used as novel therapeutic agents for HHT.
Collapse
Affiliation(s)
- Adriana Iriarte
- HHT Unit, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
- Internal Medicine Department, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Agnes Figueras
- Program Against Cancer Therapeutic Resistance, Institut Catala d'Oncologia, Hospital Duran i Reynals, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Pau Cerdà
- HHT Unit, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
- Internal Medicine Department, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - José María Mora
- HHT Unit, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
- Internal Medicine Department, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Anna Jucglà
- HHT Unit, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Dermatology Department, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
| | - Rosa Penín
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Pathological Anatomy Department, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
| | - Francesc Viñals
- Program Against Cancer Therapeutic Resistance, Institut Catala d'Oncologia, Hospital Duran i Reynals, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
- Physiological Sciences Department, Faculty of Medicine and Health Sciences, Universitat de Barcelona, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| | - Antoni Riera-Mestre
- HHT Unit, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain.
- Internal Medicine Department, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain.
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
- Clinical Sciences Department, Faculty of Medicine and Health Sciences, Universitat de Barcelona, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| |
Collapse
|
88
|
Hong T, Yan Y, Li J, Radovanovic I, Ma X, Shao YW, Yu J, Ma Y, Zhang P, Ling F, Huang S, Zhang H, Wang Y. High prevalence of KRAS/BRAF somatic mutations in brain and spinal cord arteriovenous malformations. Brain 2019; 142:23-34. [PMID: 30544177 DOI: 10.1093/brain/awy307] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 10/16/2018] [Indexed: 11/12/2022] Open
Abstract
Brain and spinal arteriovenous malformations are congenital lesions causing intracranial haemorrhage or permanent disability especially in young people. We investigated whether the vast majority or all brain and spinal arteriovenous malformations are associated with detectable tumour-related somatic mutations. In a cohort of 31 patients (21 with brain and 10 with spinal arteriovenous malformations), tissue and paired blood samples were analysed with ultradeep next generation sequencing of a panel of 422 common tumour genes to identify the somatic mutations. We used droplet digital polymerase chain reaction to confirm the panel sequenced mutations and identify the additional low variant frequency mutations. The association of mutation variant frequencies and clinical features were analysed. The average sequencing depth was 1077 ± 298×. High prevalence (87.1%) of KRAS/BRAF somatic mutations was found in brain and spinal arteriovenous malformations with no other replicated tumour-related mutations. The prevalence of KRAS/BRAF mutation was 81.0% (17 of 21) in brain and 100% (10 of 10) in spinal arteriovenous malformations. We detected activating BRAF mutations and two novel mutations in KRAS (p.G12A and p.S65_A66insDS) in CNS arteriovenous malformations for the first time. The mutation variant frequencies were negatively correlated with nidus volumes of brain (P = 0.038) and spinal (P = 0.028) arteriovenous malformations but not ages. Our findings support a causative role of somatic tumour-related mutations of KRAS/BRAF in the overwhelming majority of brain and spinal arteriovenous malformations. This pathway homogeneity and high prevalence implies the development of targeted therapies with RAS/RAF pathway inhibitors without the necessity of tissue genetic diagnosis.10.1093/brain/awy307_video1awy307media15978667388001.
Collapse
Affiliation(s)
- Tao Hong
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yupeng Yan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingwei Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ivan Radovanovic
- Department of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Xiangyuan Ma
- Translational Medicine Research Institute, Geneseeq Technology Inc., Toronto, Canada
| | - Yang W Shao
- Translational Medicine Research Institute, Geneseeq Technology Inc., Toronto, Canada.,Department of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiaxing Yu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongjie Ma
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Peng Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Feng Ling
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shuchen Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yibo Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
89
|
Bischoff J. PTEN (Phosphatase and Tensin Homolog) Connection in Hereditary Hemorrhagic Telangiectasia 2. Arterioscler Thromb Vasc Biol 2019; 38:984-985. [PMID: 29695532 DOI: 10.1161/atvbaha.118.310921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Joyce Bischoff
- From the Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Harvard Medical School, MA.
| |
Collapse
|
90
|
Le Cras TD, Boscolo E. Cellular and molecular mechanisms of PIK3CA-related vascular anomalies. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2019; 1:H33-H40. [PMID: 32923951 PMCID: PMC7439927 DOI: 10.1530/vb-19-0016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) pathway is a major mediator of growth factor signaling, cell proliferation and metabolism. Somatic gain-of-function mutations in PIK3CA, the catalytic subunit of PI3K, have recently been discovered in a number of vascular anomalies. The timing and origin of these mutations remain unclear although they are believed to occur during embryogenesis. The cellular origin of these lesions likely involves endothelial cells or an early endothelial cell lineage. This review will cover the diseases and syndromes associated with PIK3CA mutations and discuss the cellular origin, pathways and mechanisms. Activating PIK3CA 'hot spot' mutations have long been associated with a multitude of cancers allowing the development of targeted pharmacological inhibitors that are FDA-approved or in clinical trials. Current and future therapeutic approaches for PIK3CA-related vascular anomalies are discussed.
Collapse
Affiliation(s)
- Timothy D Le Cras
- Division of Pulmonary Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA
| | - Elisa Boscolo
- Experimental Hematology and Cancer Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA
| |
Collapse
|
91
|
Castillo SD, Baselga E, Graupera M. PIK3CA mutations in vascular malformations. Curr Opin Hematol 2019; 26:170-178. [DOI: 10.1097/moh.0000000000000496] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
92
|
|
93
|
Wang D, Su L, Fan X. Diagnosis and treatment of venous malformations in China: consensus document. J Interv Med 2019; 1:191-196. [PMID: 34805850 PMCID: PMC8586577 DOI: 10.19779/j.cnki.2096-3602.2018.04.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Venous malformations (VMs) are the most common vascular developmental anomalies. There are many controversies over VMs in Chinese clinical medical practice. Experts on the panel from vascular-anomaly centers in China reviewed the etiology, pathophysiology, epidemiology, classification, clinical presentations, diagnosis, and treatment of VMs. The aim of this consensus document is to provide recommendations for, and assist clinicians and patients in, the diagnosis and treatment of VMs.
Collapse
Affiliation(s)
- Deming Wang
- Vascular Malformations Panel of International Union of Angiology (IUA), China,Department of Interventional Therapy, Shanghai Ninth People Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lixin Su
- Vascular Malformations Panel of International Union of Angiology (IUA), China,Department of Interventional Therapy, Shanghai Ninth People Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Correspondence: Xindong Fan and Lixin Su, Department of Interventional Therapy, Shanghai Ninth People Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, (XF), (LS)
| | - Xindong Fan
- Vascular Malformations Panel of International Union of Angiology (IUA), China,Department of Interventional Therapy, Shanghai Ninth People Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Correspondence: Xindong Fan and Lixin Su, Department of Interventional Therapy, Shanghai Ninth People Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, (XF), (LS)
| |
Collapse
|
94
|
Mitchell CB, Phillips WA. Mouse Models for Exploring the Biological Consequences and Clinical Significance of PIK3CA Mutations. Biomolecules 2019; 9:biom9040158. [PMID: 31018529 PMCID: PMC6523081 DOI: 10.3390/biom9040158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 12/15/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K) pathway is involved in a myriad of cellular signalling pathways that regulate cell growth, metabolism, proliferation and survival. As a result, alterations in the PI3K pathway are frequently associated with human cancers. Indeed, PIK3CA-the gene encoding the p110α catalytic subunit of PI3K-is one of the most commonly mutated human oncogenes. PIK3CA mutations have also been implicated in non-malignant conditions including congenital overgrowth syndromes and vascular malformations. In order to study the role of PIK3CA mutations in driving tumorigenesis and tissue overgrowth and to test potential therapeutic interventions for these conditions, model systems are essential. In this review we discuss the various mouse models currently available for preclinical studies into the biological consequences and clinical significance of PIK3CA mutations.
Collapse
Affiliation(s)
| | - Wayne A Phillips
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
95
|
Yang S, Sui J, Liu T, Wu W, Xu S, Yin L, Pu Y, Zhang X, Zhang Y, Shen B, Liang G. Expression of miR-486-5p and its significance in lung squamous cell carcinoma. J Cell Biochem 2019; 120:13912-13923. [PMID: 30963622 DOI: 10.1002/jcb.28665] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 12/14/2022]
Abstract
Lung squamous cell carcinoma (LUSC) is one of the main histological types of lung cancer with high mortality. The role of microRNA-486-5p in LUSC remains unclear. In the current study, the aim was to explore miR-486-5p expression and its role in LUSC. The miR-486-5p expression was significantly low-expressed in patients with LUSC from The Cancer Genome Atlas database, which was further confirmed in the Gene Expression Omnibus database, patients' tissues, different cell lines by quantitative real-time polymerase chain reaction, and the high-throughput gene sequencing data of lung tissues of mice after a long-term B(a)P exposure. The meta-analysis was performed to evaluate the expression and diagnosis power of miR-486-5p (standard mean difference = -2.25; 95% confidence interval: -3.47 to -1.03; P = 0.0003; area under curve = 0.9082). Functional enrichment analysis revealed the potential function of miR-486-5p in LUSC using gene set enrichment analysis and clusterProfiler package in R software. At last, the hub genes (PTEN, TEK, PIK3R1, PPM1B, SMAD2, and SPTA1) of miR-486-5p were verified. In conclusion, miR-486-5p may be a LUSC antioncogene, playing an important role to serve as a biomarker in LUSC.
Collapse
Affiliation(s)
- Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Jing Sui
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Tong Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Wenjuan Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Siyi Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, P.R. China
| | - Xiaomei Zhang
- Department of Oncology, Jiangsu Cancer Hospital, Nanjing, Jiangsu, P.R. China
| | - Yan Zhang
- Department of Oncology, Jiangsu Cancer Hospital, Nanjing, Jiangsu, P.R. China
| | - Bo Shen
- Department of Oncology, Jiangsu Cancer Hospital, Nanjing, Jiangsu, P.R. China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
96
|
Wymeersch FJ, Skylaki S, Huang Y, Watson JA, Economou C, Marek-Johnston C, Tomlinson SR, Wilson V. Transcriptionally dynamic progenitor populations organised around a stable niche drive axial patterning. Development 2019; 146:dev168161. [PMID: 30559277 PMCID: PMC6340148 DOI: 10.1242/dev.168161] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 12/06/2018] [Indexed: 12/26/2022]
Abstract
The elongating mouse anteroposterior axis is supplied by progenitors with distinct tissue fates. It is not known whether these progenitors confer anteroposterior pattern to the embryo. We have analysed the progenitor population transcriptomes in the mouse primitive streak and tail bud throughout axial elongation. Transcriptomic signatures distinguish three known progenitor types (neuromesodermal, lateral/paraxial mesoderm and notochord progenitors; NMPs, LPMPs and NotoPs). Both NMP and LPMP transcriptomes change extensively over time. In particular, NMPs upregulate Wnt, Fgf and Notch signalling components, and many Hox genes as progenitors transit from production of the trunk to the tail and expand in number. In contrast, the transcriptome of NotoPs is stable throughout axial elongation and they are required for normal axis elongation. These results suggest that NotoPs act as a progenitor niche whereas anteroposterior patterning originates within NMPs and LPMPs.
Collapse
Affiliation(s)
- Filip J Wymeersch
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
- RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Stavroula Skylaki
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Yali Huang
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Julia A Watson
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Constantinos Economou
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Carylyn Marek-Johnston
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Simon R Tomlinson
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Valerie Wilson
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
97
|
Abstract
Tumor blood vessel formation (angiogenesis) is essential for tumor growth and metastasis. Two main endothelial ligand–receptor pathways regulating angiogenesis are vascular endothelial growth factor (VEGF) receptor and angiopoietin-TIE receptor pathways. The angiopoietin-TIE pathway is required for the remodeling and maturation of the blood and lymphatic vessels during embryonic development after VEGF and VEGF-C mediated development of the primary vascular plexus. Angiopoietin-1 (ANGPT1) stabilizes the vasculature after angiogenic processes, via tyrosine kinase with immunoglobulin-like and EGF-like domains 2 (TIE2) activation. In contrast, ANGPT2 is upregulated at sites of vascular remodeling. ANGPT2 is secreted by activated endothelial cells in inflammation, promoting vascular destabilization. ANGPT2 has been found to be expressed in many human cancers. Intriguingly, in preclinical models inhibition of ANGPT2 has provided promising results in preventing tumor angiogenesis, tumor growth, and metastasis, making it an attractive candidate to target in tumors. However, until now the first ANGPT2 targeting therapies have been less effective in clinical trials than in experimental models. Additionally, in preclinical models combined therapy against ANGPT2 and VEGF or immune checkpoint inhibitors has been superior to monotherapies, and these pathways are also targeted in early clinical trials. In order to improve current anti-angiogenic therapies and successfully exploit ANGPT2 as a target for cancer treatment, the biology of the angiopoietin-TIE pathway needs to be profoundly clarified.
Collapse
Affiliation(s)
- Dieter Marmé
- Tumor Biology Center, Freiburg, Baden-Württemberg Germany
| |
Collapse
|
98
|
Medical management of haemorrhagic hereditary telangiectasia in adult patients. Med Clin (Barc) 2018; 152:274-280. [PMID: 30502301 DOI: 10.1016/j.medcli.2018.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 12/26/2022]
Abstract
Hereditary haemorrhagic telangiectasia (HHT) is an autosomal dominant inherited Rare Disease that causes a systemic anomalous vascular overgrowth. The approach and follow-up of these patients should be from multidisciplinary units. Its diagnosis is carried out according to Curaçao clinical Criteria. Telangiectasia in the nasal mucosa cause recurrent epistaxis, the main symptom of HHT and difficult to control. The three types of hepatic shunting, hepatic artery to hepatic vein, hepatic artery to portal vein or to portal vein to hepatic vein, can cause high-output heart failure, portal hypertension or porto-systemic encephalopathy, respectively. These types of vascular involvement can be established using computerised tomography. Pulmonary arteriovenous fistula should be screened for all HHT patients by contrast echocardiography. The main objective is to review the management of epistaxis, liver and lung involvement of the adult patient with HHT.
Collapse
|
99
|
Effective angiogenesis requires regulation of phosphoinositide signaling. Adv Biol Regul 2018; 71:69-78. [PMID: 30503054 DOI: 10.1016/j.jbior.2018.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 12/21/2022]
Abstract
Phosphoinositide signaling regulates numerous downstream effectors that mediate cellular processes which influence cell cycle progression, migration, proliferation, growth, survival, metabolism and vesicular trafficking. A prominent role for phosphoinositide 3-kinase, which generates phosphatidylinositol 3,4,5-trisphosphate, a phospholipid that activates a plethora of effectors including AKT and FOXO during embryonic and postnatal angiogenesis, has been described. In addition, phosphatidylinositol 3-phosphate signaling is required for endosomal trafficking, which contributes to vascular remodeling. This review will examine the role phosphoinositide signaling plays in the endothelium and its contribution to sprouting angiogenesis.
Collapse
|
100
|
Angulo-Urarte A, Casado P, Castillo SD, Kobialka P, Kotini MP, Figueiredo AM, Castel P, Rajeeve V, Milà-Guasch M, Millan J, Wiesner C, Serra H, Muixi L, Casanovas O, Viñals F, Affolter M, Gerhardt H, Huveneers S, Belting HG, Cutillas PR, Graupera M. Endothelial cell rearrangements during vascular patterning require PI3-kinase-mediated inhibition of actomyosin contractility. Nat Commun 2018; 9:4826. [PMID: 30446640 PMCID: PMC6240100 DOI: 10.1038/s41467-018-07172-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis is a dynamic process relying on endothelial cell rearrangements within vascular tubes, yet the underlying mechanisms and functional relevance are poorly understood. Here we show that PI3Kα regulates endothelial cell rearrangements using a combination of a PI3Kα-selective inhibitor and endothelial-specific genetic deletion to abrogate PI3Kα activity during vessel development. Quantitative phosphoproteomics together with detailed cell biology analyses in vivo and in vitro reveal that PI3K signalling prevents NUAK1-dependent phosphorylation of the myosin phosphatase targeting-1 (MYPT1) protein, thereby allowing myosin light chain phosphatase (MLCP) activity and ultimately downregulating actomyosin contractility. Decreased PI3K activity enhances actomyosin contractility and impairs junctional remodelling and stabilization. This leads to overstretched endothelial cells that fail to anastomose properly and form aberrant superimposed layers within the vasculature. Our findings define the PI3K/NUAK1/MYPT1/MLCP axis as a critical pathway to regulate actomyosin contractility in endothelial cells, supporting vascular patterning and expansion through the control of cell rearrangement. Angiogenesis requires dynamic endothelial rearrangements and relative position changes within the vascular tubes. Here the authors show that a PI3K/NUAK1/MYPT1/MLCP pathway regulates actomyosin contractility in endothelial cells and cellular rearrangement during vascular patterning.
Collapse
Affiliation(s)
- Ana Angulo-Urarte
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Pedro Casado
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Sandra D Castillo
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Piotr Kobialka
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | | | - Ana M Figueiredo
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Pau Castel
- Helen Diller Family Comprehensive Cancer Center, University of California-San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Vinothini Rajeeve
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Maria Milà-Guasch
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Jaime Millan
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Calle Nicolás Cabrera, 28049, Madrid, Spain
| | - Cora Wiesner
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Helena Serra
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Laia Muixi
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Oriol Casanovas
- Translation Research Laboratory, ProCURE, Oncobell Program, IDIBELL, Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Francesc Viñals
- Translation Research Laboratory, ProCURE, Oncobell Program, IDIBELL, Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain.,Departament de Ciències Fisiològiques II, Universitat de Barcelona, Carrer de la Feixa Llarga, 08907, L´Hospitalet de Llobregat, Barcelona, Spain
| | - Markus Affolter
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Holger Gerhardt
- Max-Delbrueck Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125, Berlin, Germany.,The German Center for Cardiovascular Research (DZHK), Oudenarder Str. 16, 13347, Berlin, Germany.,The Berlin Institute of Health (BIH), Berlin, 10178, Germany
| | - Stephan Huveneers
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
| | - Heinz-Georg Belting
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Pedro R Cutillas
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Mariona Graupera
- Vascular Signalling Laboratory, ProCURE, Oncobell Program, Institut d´Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199, 08908, L´Hospitalet de Llobregat, Barcelona, Spain. .,CIBERONC, Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, 28029, Madrid, Spain.
| |
Collapse
|