51
|
Current Trends and Challenges in Point-of-care Urinalysis of Biomarkers in Trace Amounts. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
52
|
Ren Y, Cao L, You M, Ji J, Gong Y, Ren H, Xu F, Guo H, Hu J, Li Z. “SMART” digital nucleic acid amplification technologies for lung cancer monitoring from early to advanced stages. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
53
|
Shah KG, Kumar S, Yager P. Near-digital amplification in paper improves sensitivity and speed in biplexed reactions. Sci Rep 2022; 12:14618. [PMID: 36028745 PMCID: PMC9418329 DOI: 10.1038/s41598-022-18937-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
The simplest point-of-care assays are usually paper and plastic devices that detect proteins or nucleic acids at low cost and minimal user steps, albeit with poor limits of detection. Digital assays improve limits of detection and analyte quantification by splitting a sample across many wells (or droplets), preventing diffusion, and performing analyte amplification and detection in multiple small wells. However, truly digital nucleic acid amplification tests (NAATs) require costly consumable cartridges that are precisely manufactured, aligned, and operated to enable low detection limits. In this study, we demonstrate how to implement near-digital NAATs in low-cost porous media while approaching the low limits of detection of digital assays. The near-digital NAAT was enabled by a paper membrane containing lyophilized amplification reagents that automatically, passively meters and distributes a sample over a wide area. Performing a NAAT in the paper membrane while allowing diffusion captures many of the benefits of digital NAATs if the pad is imaged at a high spatial resolution during amplification. We show that the near-digital NAAT is compatible with a low-cost paper and plastic disposable cartridge coupled to a 2-layer rigid printed circuit board heater (the MD NAAT platform). We also demonstrate compatibility with biplexing and imaging with mobile phones with different camera sensors. We show that the near-digital NAAT increased signal-to-noise ratios by ~ 10×, improved limits of detection from above 103 copies of methicillin-resistant Staphylococcus aureus genomic DNA to between 100 and 316 copies in a biplexed reaction containing 105 copies of co-amplifying internal amplification control DNA, and reduced time-to-result from 45 min of amplification to 15-20 min for the positive samples.
Collapse
Affiliation(s)
- Kamal G Shah
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Sujatha Kumar
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
| | - Paul Yager
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
54
|
Zhang W, Sun H, He S, Chen X, Yao L, Zhou L, Wang Y, Wang P, Hong W. Compound Raman microscopy for rapid diagnosis and antimicrobial susceptibility testing of pathogenic bacteria in urine. Front Microbiol 2022; 13:874966. [PMID: 36090077 PMCID: PMC9449455 DOI: 10.3389/fmicb.2022.874966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Rapid identification and antimicrobial susceptibility testing (AST) of bacteria are key interventions to curb the spread and emergence of antimicrobial resistance. The current gold standard identification and AST methods provide comprehensive diagnostic information but often take 3 to 5 days. Here, a compound Raman microscopy (CRM), which integrates Raman spectroscopy and stimulated Raman scattering microscopy in one system, is presented and demonstrated for rapid identification and AST of pathogens in urine. We generated an extensive bacterial Raman spectral dataset and applied deep learning to identify common clinical bacterial pathogens. In addition, we employed stimulated Raman scattering microscopy to quantify bacterial metabolic activity to determine their antimicrobial susceptibility. For proof-of-concept, we demonstrated an integrated assay to diagnose urinary tract infection pathogens, S. aureus and E. coli. Notably, the CRM system has the unique ability to provide Gram-staining classification and AST results within ~3 h directly from urine samples and shows great potential for clinical applications.
Collapse
Affiliation(s)
- Weifeng Zhang
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Hongyi Sun
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shipei He
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xun Chen
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- School of Engineering Medicine, Beihang University, Beijing, China
| | - Lin Yao
- Department of Urology, Peking University First Hospital, Beijing, China
- Lin Yao,
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Yi Wang
- Department of Clinical Laboratory, China Rehabilitation Research Center, Capital Medical University, Beijing, China
| | - Pu Wang
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- *Correspondence: Pu Wang,
| | - Weili Hong
- Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Weili Hong,
| |
Collapse
|
55
|
Hemez C, Clarelli F, Palmer AC, Bleis C, Abel S, Chindelevitch L, Cohen T, Abel zur Wiesch P. Mechanisms of antibiotic action shape the fitness landscapes of resistance mutations. Comput Struct Biotechnol J 2022; 20:4688-4703. [PMID: 36147681 PMCID: PMC9463365 DOI: 10.1016/j.csbj.2022.08.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/15/2022] Open
Abstract
Antibiotic-resistant pathogens are a major public health threat. A deeper understanding of how an antibiotic's mechanism of action influences the emergence of resistance would aid in the design of new drugs and help to preserve the effectiveness of existing ones. To this end, we developed a model that links bacterial population dynamics with antibiotic-target binding kinetics. Our approach allows us to derive mechanistic insights on drug activity from population-scale experimental data and to quantify the interplay between drug mechanism and resistance selection. We find that both bacteriostatic and bactericidal agents can be equally effective at suppressing the selection of resistant mutants, but that key determinants of resistance selection are the relationships between the number of drug-inactivated targets within a cell and the rates of cellular growth and death. We also show that heterogeneous drug-target binding within a population enables resistant bacteria to evolve fitness-improving secondary mutations even when drug doses remain above the resistant strain's minimum inhibitory concentration. Our work suggests that antibiotic doses beyond this "secondary mutation selection window" could safeguard against the emergence of high-fitness resistant strains during treatment.
Collapse
Affiliation(s)
- Colin Hemez
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Graduate Program in Biophysics, Harvard University, Boston, MA 02115, USA
| | - Fabrizio Clarelli
- Department of Pharmacy, UiT – The Arctic University of Norway, 9019 Tromsø, Norway
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Adam C. Palmer
- Department of Pharmacology, Computational Medicine Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christina Bleis
- Department of Pharmacy, UiT – The Arctic University of Norway, 9019 Tromsø, Norway
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Sören Abel
- Department of Pharmacy, UiT – The Arctic University of Norway, 9019 Tromsø, Norway
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Division of Infection Control, Norwegian Institute of Public Health, Oslo 0318, Norway
| | - Leonid Chindelevitch
- Department of Infectious Disease Epidemiology, Imperial College, London SW7 2AZ, UK
| | - Theodore Cohen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520, USA
| | - Pia Abel zur Wiesch
- Department of Pharmacy, UiT – The Arctic University of Norway, 9019 Tromsø, Norway
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Division of Infection Control, Norwegian Institute of Public Health, Oslo 0318, Norway
| |
Collapse
|
56
|
Wang H, Jia C, Li H, Yin R, Chen J, Li Y, Yue M. Paving the way for precise diagnostics of antimicrobial resistant bacteria. Front Mol Biosci 2022; 9:976705. [PMID: 36032670 PMCID: PMC9413203 DOI: 10.3389/fmolb.2022.976705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/19/2022] [Indexed: 12/26/2022] Open
Abstract
The antimicrobial resistance (AMR) crisis from bacterial pathogens is frequently emerging and rapidly disseminated during the sustained antimicrobial exposure in human-dominated communities, posing a compelling threat as one of the biggest challenges in humans. The frequent incidences of some common but untreatable infections unfold the public health catastrophe that antimicrobial-resistant pathogens have outpaced the available countermeasures, now explicitly amplified during the COVID-19 pandemic. Nowadays, biotechnology and machine learning advancements help create more fundamental knowledge of distinct spatiotemporal dynamics in AMR bacterial adaptation and evolutionary processes. Integrated with reliable diagnostic tools and powerful analytic approaches, a collaborative and systematic surveillance platform with high accuracy and predictability should be established and implemented, which is not just for an effective controlling strategy on AMR but also for protecting the longevity of valuable antimicrobials currently and in the future.
Collapse
Affiliation(s)
- Hao Wang
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Chenhao Jia
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Hongzhao Li
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Rui Yin
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Jiang Chen
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
- *Correspondence: Jiang Chen, ; Yan Li, ; Min Yue,
| | - Yan Li
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
- *Correspondence: Jiang Chen, ; Yan Li, ; Min Yue,
| | - Min Yue
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Jiang Chen, ; Yan Li, ; Min Yue,
| |
Collapse
|
57
|
Yu Z, Xu L, Lyu W, Shen F. Parallel multistep digital analysis SlipChip demonstrated with the quantification of nucleic acid by digital LAMP-CRISPR. LAB ON A CHIP 2022; 22:2954-2961. [PMID: 35696983 DOI: 10.1039/d2lc00284a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Digital biological analysis compartmentalizes targets of interest, such as nucleic acids, proteins, and cells, to a single event level and performs detection and further investigation. Microfluidic-based digital biological analysis methods, including digital PCR, digital protein analysis, and digital cell analysis, have demonstrated superior advantages in research applications and clinical diagnostics. However, most of the methods are still based on a one-step "divide and detect" strategy, and it is challenging for these methods to perform further parallel manipulation of reaction partitions to achieve "divide, manipulate, and analyze" capabilities. Here, we present a parallel multistep digital analysis (PAMDA) SlipChip for the parallel multistep manipulation of a large number of droplets for digital biological analysis, demonstrated by the quantification of SARS-CoV-2 nucleic acids by a two-step digital isothermal amplification combined with clustered regularly interspaced short palindromic repeats (CRISPR). This PAMDA SlipChip utilizes a "chain-of-pearl" channel with a self-partitioning droplet formation mechanism that does not require the precise alignment of microfeatures for fluidic loading as the traditional SlipChip design. This device can first generate 2400 3.2 nanoliter droplets to perform digital loop-mediated isothermal amplification (LAMP) and then deliver reagents containing Cas12a protein and crRNA to each individual partition in parallel to simultaneously initiate digital CRISPR detection by a simple multistep slipping operation. This PAMDA SlipChip not only provides a promising tool to perform digital CRISPR with a flexible assay and workflow design but can also be applied for a broad range of applications in digital biological analysis that require multistep manipulation of partitions in parallel.
Collapse
Affiliation(s)
- Ziqing Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| | - Lei Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
- MineBio Technology LLC, 333 Gui Ping Road, Shanghai, 200233, China
| | - Weiyuan Lyu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| |
Collapse
|
58
|
Luo Y, Cui X, Cheruba E, Chua YK, Ng C, Tan RZ, Tan KK, Cheow LF. SAMBA: A Multicolor Digital Melting PCR Platform for Rapid Microbiome Profiling. SMALL METHODS 2022; 6:e2200185. [PMID: 35652511 DOI: 10.1002/smtd.202200185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/27/2022] [Indexed: 06/15/2023]
Abstract
During the past decade, breakthroughs in sequencing technology have provided the basis for studies of the myriad ways in which microbial communities in and on the human body influence human health and disease. In almost every medical specialty, there is now a growing interest in accurate and quantitative profiling of the microbiota for use in diagnostic and therapeutic applications. However, the current next-generation sequencing approach for microbiome profiling is costly, requires laborious library preparation, and is challenging to scale up for routine diagnostics. Split, Amplify, and Melt analysis of BActeria-community (SAMBA), a novel multicolor digital melting polymerase chain reaction platform with unprecedented multiplexing capability is presented, and the capability to distinguish and quantify 16 bacteria species in mixtures is demonstrated. Subsequently, SAMBA is applied to measure the compositions of bacteria in the gut microbiome to identify microbial dysbiosis related to colorectal cancer. This rapid, low cost, and high-throughput approach will enable the implementation of microbiome diagnostics in clinical laboratories and routine medical practice.
Collapse
Affiliation(s)
- Yongqiang Luo
- Department of Biomedical Engineering & Institute for Health Innovation and Technology, National University of Singapore, Singapore, 119077, Singapore
| | - Xu Cui
- Department of Biomedical Engineering & Institute for Health Innovation and Technology, National University of Singapore, Singapore, 119077, Singapore
| | - Elsie Cheruba
- Department of Biomedical Engineering & Institute for Health Innovation and Technology, National University of Singapore, Singapore, 119077, Singapore
| | - Yong Kang Chua
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Charmaine Ng
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Rui Zhen Tan
- Engineering Cluster, Singapore Institute of Technology, Singapore, 138683, Singapore
| | - Ker-Kan Tan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Division of Colorectal Surgery, National University Hospital, Singapore, 119074, Singapore
| | - Lih Feng Cheow
- Department of Biomedical Engineering & Institute for Health Innovation and Technology, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
59
|
Droplet-based methods for tackling antimicrobial resistance. Curr Opin Biotechnol 2022; 76:102755. [PMID: 35841864 DOI: 10.1016/j.copbio.2022.102755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022]
Abstract
Application of droplet-based methods enables (i) faster detection, (ii) increased sensitivity, (iii) characterization of the level of heterogeneity in response to antibiotics by bacterial populations, and (iv) expanded screening of the effectiveness of antibiotic combinations. Hereby, we discuss the key steps and parameters of droplet-based experiments to investigate antimicrobial resistance. We also review recent findings accomplished with these methods and highlight their advantages and capacity to yield new insights into the problem of antimicrobial resistance.
Collapse
|
60
|
Liu X, Li X, Wu N, Luo Y, Zhang J, Yu Z, Shen F. Formation and Parallel Manipulation of Gradient Droplets on a Self-Partitioning SlipChip for Phenotypic Antimicrobial Susceptibility Testing. ACS Sens 2022; 7:1977-1984. [PMID: 35815869 DOI: 10.1021/acssensors.2c00734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Flexible, robust, and user-friendly screening systems with a large dynamic range are highly desired in scientific research, industrial development, and clinical diagnostics. Droplet-based microfluidic systems with gradient concentrations of chemicals have been demonstrated as promising tools to provide confined microenvironments for screening tests with small reaction volumes. However, the generation and manipulation of gradient droplets, such as droplet merging, generally require sophisticated fluidic manipulation systems, potentially limiting their application in decentralized settings. We present a gradient-droplet SlipChip (gd-SlipChip) microfluidic device that enables instrument-free gradient droplet formation and parallel manipulation. The device can establish a gradient profile by free interfacial diffusion in a continuous fluidic channel. With a simple slipping step, gradient droplets can be generated by a surface tension-driven self-partitioning process. Additional reagents can be introduced in parallel to these gradient droplets with further slipping operations to initiate screening tests of the droplets over a large concentration range. To profile the concentration in the gradient droplets, we establish a numerical simulation model and verify it with hydrogen chloride (HCl) diffusion, as tested with a dual-color pH indicator (methyl orange and aniline blue). As a proof of concept, we tested this system with a gradient concentration of nitrofurantoin for the phenotypic antimicrobial susceptibility testing (AST) of Escherichia coli. The results of our gd-SlipChip-based AST on both reference and clinical strains of E. coli can be indicated by the bacterial growth profile within 3 h and are consistent with the clinical culture-based AST.
Collapse
Affiliation(s)
- Xu Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Xiang Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Nannan Wu
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200433, China
| | - Yang Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Jiajie Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Ziqing Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| |
Collapse
|
61
|
Ngashangva L, Hemdan BA, El-Liethy MA, Bachu V, Minteer SD, Goswami P. Emerging Bioanalytical Devices and Platforms for Rapid Detection of Pathogens in Environmental Samples. MICROMACHINES 2022; 13:1083. [PMID: 35888900 PMCID: PMC9321031 DOI: 10.3390/mi13071083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023]
Abstract
The development of robust bioanalytical devices and biosensors for infectious pathogens is progressing well with the advent of new materials, concepts, and technology. The progress is also stepping towards developing high throughput screening technologies that can quickly identify, differentiate, and determine the concentration of harmful pathogens, facilitating the decision-making process for their elimination and therapeutic interventions in large-scale operations. Recently, much effort has been focused on upgrading these analytical devices to an intelligent technological platform by integrating them with modern communication systems, such as the internet of things (IoT) and machine learning (ML), to expand their application horizon. This review outlines the recent development and applications of bioanalytical devices and biosensors to detect pathogenic microbes in environmental samples. First, the nature of the recent outbreaks of pathogenic microbes such as foodborne, waterborne, and airborne pathogens and microbial toxins are discussed to understand the severity of the problems. Next, the discussion focuses on the detection systems chronologically, starting with the conventional methods, advanced techniques, and emerging technologies, such as biosensors and other portable devices and detection platforms for pathogens. Finally, the progress on multiplex assays, wearable devices, and integration of smartphone technologies to facilitate pathogen detection systems for wider applications are highlighted.
Collapse
Affiliation(s)
- Lightson Ngashangva
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvanthapuram, Kerala 695014, India;
| | - Bahaa A. Hemdan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (B.A.H.); (V.B.)
- Water Pollution Research Department, Environmental and Climate Change Research Institute, National Research Centre, 33 El Buhouth Street, Cairo P.O. Box 12622, Egypt;
| | - Mohamed Azab El-Liethy
- Water Pollution Research Department, Environmental and Climate Change Research Institute, National Research Centre, 33 El Buhouth Street, Cairo P.O. Box 12622, Egypt;
| | - Vinay Bachu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (B.A.H.); (V.B.)
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, RM 2020, Salt Lake City, UT 84112, USA
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; (B.A.H.); (V.B.)
| |
Collapse
|
62
|
Feng L, Wu H, Yue H, Chu Y, Zhang J, Huang X, Pang S, Zhang L, Li Y, Wang W, Zou B, Zhou G. Multiplexed and Rapid AST for Escherichia coli Infection by Simultaneously Pyrosequencing Multiple Barcodes Each Specific to an Antibiotic Exposed to a Sample. Anal Chem 2022; 94:8633-8641. [PMID: 35675678 DOI: 10.1021/acs.analchem.2c00312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antimicrobial susceptibility testing (AST) is an effective way to guide antibiotic selection. However, conventional culture-based phenotypic AST is time-consuming. The key point to shorten the test is to quantify the small change in the bacterial number after the antibiotic exposure. To achieve rapid AST, we proposed a combination of multiplexed PCR with barcoded pyrosequencing to significantly shorten the time for antibiotic exposure. First, bacteria exposed to each antibiotic were labeled with a unique barcode. Then, the pool of the barcoded products was amplified by PCR with a universal primer pair. Finally, barcodes in the amplicons were individually and quantitatively decoded by pyrosequencing. As pyrosequencing is able to discriminate as low as 5% variation in target concentrations, as short as 7.5 min was enough for cultivation to detect the susceptibility of Escherichia coli to an antibiotic. The barcodes enable more than six kinds of drugs or six kinds of concentrations of a drug to be tested at a time. The susceptibility of 6 antibiotics to 43 E. coli-positive samples from 482 clinical urine samples showed a consistency of 99.3% for drug-resistant samples and of 95.7% for drug-sensitive samples in comparison with the conventional method. In addition, the minimum inhibitory concentration (MIC) of 29 E. coli samples was successfully measured. The proposed AST is dye free (pyrosequencing), multiplexed (six antibiotics), fast (a half-working day for reporting the results), and able to detect the MIC, thus having a great potential for clinical use in quick antibiotic selection.
Collapse
Affiliation(s)
- Liying Feng
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Haiping Wu
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China.,School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| | - Huijie Yue
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Yanan Chu
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Jieyu Zhang
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Xiaohui Huang
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Shuyun Pang
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Likun Zhang
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Yujiao Li
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China
| | - Weiping Wang
- Department of Clinical Laboratory, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Bingjie Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance of Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Guohua Zhou
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210002, China.,School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
63
|
Wang Y, Xu H, Dong Z, Wang Z, Yang Z, Yu X, Chang L. Micro/nano biomedical devices for point-of-care diagnosis of infectious respiratory diseases. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022; 14:100116. [PMID: 35187465 PMCID: PMC8837495 DOI: 10.1016/j.medntd.2022.100116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/14/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Corona Virus Disease 2019 (COVID-19) has developed into a global pandemic in the last two years, causing significant impacts on our daily life in many countries. Rapid and accurate detection of COVID-19 is of great importance to both treatments and pandemic management. Till now, a variety of point-of-care testing (POCT) approaches devices, including nucleic acid-based test and immunological detection, have been developed and some of them has been rapidly ruled out for clinical diagnosis of COVID-19 due to the requirement of mass testing. In this review, we provide a summary and commentary on the methods and biomedical devices innovated or renovated for the quick and early diagnosis of COVID-19. In particular, some of micro and nano devices with miniaturized structures, showing outstanding analytical performances such as ultra-sensitivity, rapidness, accuracy and low cost, are discussed in this paper. We also provide our insights on the further implementation of biomedical devices using advanced micro and nano technologies to meet the demand of point-of-care diagnosis and home testing to facilitate pandemic management. In general, our paper provides a comprehensive overview of the latest advances on the POCT device for diagnosis of COVID-19, which may provide insightful knowledge for researcher to further develop novel diagnostic technologies for rapid and on-site detection of pathogens including SARS-CoV-2.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Huiren Xu
- School of Biomedical Information and Engineering, Hainan Medical University, Haikou, 471100, China
| | - Zaizai Dong
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zhiying Wang
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, United Kingdom,Corresponding author
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China,Corresponding author.
| | - Lingqian Chang
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China,Corresponding author.
| |
Collapse
|
64
|
Tan YL, Wang T, He J, Jiang JH. Droplet microfluidic-based loop-mediated isothermal amplification (dLAMP) for simultaneous quantification of multiple targets. STAR Protoc 2022; 3:101335. [PMID: 35496787 PMCID: PMC9043755 DOI: 10.1016/j.xpro.2022.101335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The quantification of trace nucleic acids in biological samples is a frequent requirement in experimental and clinical diagnostics. Here, we present a protocol for the digital quantification of multiple nucleic acid targets with droplet microfluidics-based loop-mediated isothermal amplification (dLAMP). Our protocol provides a fundamental platform for the absolute quantification of multiple nucleic acid targets with high specificity, allowing readily adaption in various in vitro diagnostic settings. For complete details on the use and execution of this protocol, please refer to Tan et al. (2021a, 2021b). Protocol for droplet microfluidic-based loop-mediated isothermal amplification (dLAMP) Fluorescence-activating scorpion-shaped probes-based dLAMP for fluorescence generation Fast and accurate fluorescence microscopy-based droplets counting Can be applied for the absolute quantification of multiple nucleic acid targets
Collapse
|
65
|
Abstract
Healthcare is undergoing large transformations, and it is imperative to leverage new technologies to support the advent of personalized medicine and disease prevention. It is now well accepted that the levels of certain biological molecules found in blood and other bodily fluids, as well as in exhaled breath, are an indication of the onset of many human diseases and reflect the health status of the person. Blood, urine, sweat, or saliva biomarkers can therefore serve in early diagnosis of diseases such as cancer, but also in monitoring disease progression, detecting metabolic disfunctions, and predicting response to a given therapy. For most point-of-care sensors, the requirement that patients themselves can use and apply them is crucial not only regarding the diagnostic part, but also at the sample collection level. This has stimulated the development of such diagnostic approaches for the non-invasive analysis of disease-relevant analytes. Considering these timely efforts, this review article focuses on novel, sensitive, and selective sensing systems for the detection of different endogenous target biomarkers in bodily fluids as well as in exhaled breath, which are associated with human diseases.
Collapse
|
66
|
Tjandra KC, Ram-Mohan N, Abe R, Hashemi MM, Lee JH, Chin SM, Roshardt MA, Liao JC, Wong PK, Yang S. Diagnosis of Bloodstream Infections: An Evolution of Technologies towards Accurate and Rapid Identification and Antibiotic Susceptibility Testing. Antibiotics (Basel) 2022; 11:511. [PMID: 35453262 PMCID: PMC9029869 DOI: 10.3390/antibiotics11040511] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023] Open
Abstract
Bloodstream infections (BSI) are a leading cause of death worldwide. The lack of timely and reliable diagnostic practices is an ongoing issue for managing BSI. The current gold standard blood culture practice for pathogen identification and antibiotic susceptibility testing is time-consuming. Delayed diagnosis warrants the use of empirical antibiotics, which could lead to poor patient outcomes, and risks the development of antibiotic resistance. Hence, novel techniques that could offer accurate and timely diagnosis and susceptibility testing are urgently needed. This review focuses on BSI and highlights both the progress and shortcomings of its current diagnosis. We surveyed clinical workflows that employ recently approved technologies and showed that, while offering improved sensitivity and selectivity, these techniques are still unable to deliver a timely result. We then discuss a number of emerging technologies that have the potential to shorten the overall turnaround time of BSI diagnosis through direct testing from whole blood-while maintaining, if not improving-the current assay's sensitivity and pathogen coverage. We concluded by providing our assessment of potential future directions for accelerating BSI pathogen identification and the antibiotic susceptibility test. While engineering solutions have enabled faster assay turnaround, further progress is still needed to supplant blood culture practice and guide appropriate antibiotic administration for BSI patients.
Collapse
Affiliation(s)
- Kristel C. Tjandra
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (K.C.T.); (N.R.-M.); (R.A.); (M.M.H.)
| | - Nikhil Ram-Mohan
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (K.C.T.); (N.R.-M.); (R.A.); (M.M.H.)
| | - Ryuichiro Abe
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (K.C.T.); (N.R.-M.); (R.A.); (M.M.H.)
| | - Marjan M. Hashemi
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (K.C.T.); (N.R.-M.); (R.A.); (M.M.H.)
| | - Jyong-Huei Lee
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.-H.L.); (S.M.C.); (M.A.R.); (P.K.W.)
| | - Siew Mei Chin
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.-H.L.); (S.M.C.); (M.A.R.); (P.K.W.)
| | - Manuel A. Roshardt
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.-H.L.); (S.M.C.); (M.A.R.); (P.K.W.)
| | - Joseph C. Liao
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA;
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.-H.L.); (S.M.C.); (M.A.R.); (P.K.W.)
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Surgery, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Samuel Yang
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (K.C.T.); (N.R.-M.); (R.A.); (M.M.H.)
| |
Collapse
|
67
|
DeFina SM, Wang J, Yang L, Zhou H, Adams J, Cushing W, Tuohy B, Hui P, Liu C, Pham K. SaliVISION: a rapid saliva-based COVID-19 screening and diagnostic test with high sensitivity and specificity. Sci Rep 2022; 12:5729. [PMID: 35388102 PMCID: PMC8986854 DOI: 10.1038/s41598-022-09718-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
The Coronavirus disease 2019 (COVID-19) pandemic-caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)– has posed a global threat and presented with it a multitude of economic and public-health challenges. Establishing a reliable means of readily available, rapid diagnostic testing is of paramount importance in halting the spread of COVID-19, as governments continue to ease lockdown restrictions. The current standard for laboratory testing utilizes reverse transcription quantitative polymerase chain reaction (RT-qPCR); however, this method presents clear limitations in requiring a longer run-time as well as reduced on-site testing capability. Therefore, we investigated the feasibility of a reverse transcription looped-mediated isothermal amplification (RT-LAMP)-based model of rapid COVID-19 diagnostic testing which allows for less invasive sample collection, named SaliVISION. This novel, two-step, RT-LAMP assay utilizes a customized multiplex primer set specifically targeting SARS-CoV-2 and a visual report system that is ready to interpret within 40 min from the start of sample processing and does not require a BSL-2 level testing environment or special laboratory equipment. When compared to the SalivaDirect and Thermo Fisher Scientific TaqPath RT-qPCR testing platforms, the respective sensitivities of the SaliVISION assay are 94.29% and 98.28% while assay specificity was 100% when compared to either testing platform. Our data illustrate a robust, rapid diagnostic assay in our novel RT-LAMP test design, with potential for greater testing throughput than is currently available through laboratory testing and increased on-site testing capability.
Collapse
Affiliation(s)
- Samuel M DeFina
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Jianhui Wang
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Lei Yang
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Han Zhou
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Jennifer Adams
- Department of Laboratory Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - William Cushing
- Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT, USA.,Yale New Haven Hospital, New Haven, CT, USA
| | - Beth Tuohy
- Yale University Health Services, Yale University, New Haven, CT, USA
| | - Pei Hui
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Chen Liu
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA.
| | - Kien Pham
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
68
|
Postek W, Garstecki P. Droplet Microfluidics for High-Throughput Analysis of Antibiotic Susceptibility in Bacterial Cells and Populations. Acc Chem Res 2022; 55:605-615. [PMID: 35119826 PMCID: PMC8892833 DOI: 10.1021/acs.accounts.1c00729] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Antibiotic-resistant bacteria are an increasing concern both in everyday life and specialized environments such as healthcare. As the rate of antibiotic-resistant infections rises, so do complications to health and the risk of disability and death. Urgent action is required regarding the discovery of new antibiotics and rapid diagnosis of the resistance profile of an infectious pathogen as well as a better understanding of population and single-cell distribution of the resistance level. High-throughput screening is the major affordance of droplet microfluidics. Droplet screens can be exploited both to look for combinations of drugs that could stop an infection of multidrug-resistant bacteria and to search for the source of resistance via directed-evolution experiments or the analysis of various responses to a drug by genetically identical bacteria. In droplet techniques that have been used in this way for over a decade, aqueous droplets containing antibiotics and bacteria are manipulated both within and outside of the microfluidic devices. The diagnostics problem was approached by producing a series of microfluidic systems with integrated dilution modules for automated preparation of antibiotic concentration gradients, achieving the speed that allowed for high-throughput combinatorial assays. We developed a method for automated emulsification of a series of samples that facilitated measuring the resistance levels of thousands of individual cells encapsulated in droplets and quantifying the inoculum effect, the dependence of resistance level on bacterial cell count. Screening of single cells encapsulated in droplets with varying antibiotic contents has revealed a distribution of resistance levels within populations of clonally identical cells. To be able to screen bacteria from clinical samples, a study of fluorescent dyes in droplets determined that a derivative of a popular viability marker is more suitable for droplet assays. We have developed a detection system that analyzes the growth or death state of bacteria with antibiotics for thousands of droplets per second by measuring the scattering of light hitting the droplets without labeling the cells or droplets. The droplet-based microchemostats enabled long-term evolution of resistance experiments, which will be integrated with high-throughput single-cell assays to better understand the mechanism of resistance acquisition and loss. These techniques underlie automated combinatorial screens of antibiotic resistance in single cells from clinical samples. We hope that this Account will inspire new droplet-based research on the antibiotic susceptibility of bacteria.
Collapse
Affiliation(s)
- Witold Postek
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Piotr Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warszawa, Poland
| |
Collapse
|
69
|
Chen J, San SSS, Kung A, Tomasek M, Liu D, Rodgers W, Gau V. Direct-from-specimen microbial growth inhibition spectrums under antibiotic exposure and comparison to conventional antimicrobial susceptibility testing. PLoS One 2022; 17:e0263868. [PMID: 35171945 PMCID: PMC8849476 DOI: 10.1371/journal.pone.0263868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/29/2021] [Indexed: 11/30/2022] Open
Abstract
Increasing global travel and changes in the environment may escalate the frequency of contact with a natural host carrying an infection and, therefore, increase our chances of encountering microorganisms previously unknown to humans. During an emergency, the etiology of infection may be unknown at the time of patient treatment. The existing local or global Antimicrobial Stewardship Programs may not be fully prepared for emerging/re-emerging infectious disease outbreaks, especially if they are caused by an unknown organism, engineered bioterrorist attack, or rapidly evolving superbug. We demonstrate an antimicrobial efficacy profiling method that can be performed in hours directly from clinical urine specimens. The antimicrobial potency was determined by the level of microbial growth inhibition and compared to conventional antimicrobial susceptibility testing results. The oligonucleotide probe pairs on the sensors were designed to target Gram-negative bacteria, specifically Enterobacterales and Pseudomonas aeruginosa. A pilot study of 10 remnant clinical specimens from the Clinical Laboratory Improvement Amendments-certified labs of New York-Presbyterian Queens was conducted, and only one sample was not detected by the probes. The remaining nine samples agreed with reference AST methods (Vitek and broth microdilution), resulting in 100% categorical agreement. In a separate feasibility study, we evaluated a dual-kinetic response approach, in which we inoculated two antibiotic stripwells containing the same antimicrobial concentrations with clinical specimens at the original concentration (1x) and at a 10-fold dilution (0.1x) to cover a broader range of microbiological responses. The combined categorical susceptibility reporting of 12 contrived urine specimens was 100% for ciprofloxacin, gentamicin, and meropenem over a range of microbial loads from 105 to 108 CFU/mL.
Collapse
Affiliation(s)
- Jade Chen
- GeneFluidics, Los Angeles, California, United States of America
| | - Su Su Soe San
- GeneFluidics, Los Angeles, California, United States of America
| | - Amelia Kung
- GeneFluidics, Los Angeles, California, United States of America
| | - Michael Tomasek
- GeneFluidics, Los Angeles, California, United States of America
| | - Dakai Liu
- Department of Pathology and Clinical Laboratories, New York-Presbyterian Queens, Flushing, New York, United States of America
| | - William Rodgers
- Department of Pathology and Clinical Laboratories, New York-Presbyterian Queens, Flushing, New York, United States of America
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York City, New York, United States of America
| | - Vincent Gau
- GeneFluidics, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
70
|
Zhang M, Seleem MN, Cheng JX. Rapid Antimicrobial Susceptibility Testing by Stimulated Raman Scattering Imaging of Deuterium Incorporation in a Single Bacterium. J Vis Exp 2022:10.3791/62398. [PMID: 35225259 PMCID: PMC9682461 DOI: 10.3791/62398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
To slow and prevent the spread of antimicrobial resistant infections, rapid antimicrobial susceptibility testing (AST) is in urgent need to quantitatively determine the antimicrobial effects on pathogens. It typically takes days to complete the AST by conventional methods based on the long-time culture, and they do not work directly for clinical samples. Here, we report a rapid AST method enabled by stimulated Raman scattering (SRS) imaging of deuterium oxide (D2O) metabolic incorporation. Metabolic incorporation of D2O into biomass and the metabolic activity inhibition upon exposure to antibiotics at the single bacterium level are monitored by SRS imaging. The single-cell metabolism inactivation concentration (SC-MIC) of bacteria upon exposure to antibiotics can be obtained after a total of 2.5 h of sample preparation and detection. Furthermore, this rapid AST method is directly applicable to bacterial samples in complex biological environments, such as urine or whole blood. SRS metabolic imaging of deuterium incorporation is transformative for rapid single-cell phenotypic AST in the clinic.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Electrical and Computer Engineering, Boston University; Boston University Photonics Center, Boston University
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University; Boston University Photonics Center, Boston University; Department of Biomedical Engineering, Boston University; Department of Chemistry, Boston University;
| |
Collapse
|
71
|
Remmel MC, Coyle SM, Eshoo MW, Sweeney TE, Rawling DC. Diagnostic Host Gene Expression Analysis by Quantitative Reverse Transcription Loop-Mediated Isothermal Amplification to Discriminate between Bacterial and Viral Infections. Clin Chem 2022; 68:550-560. [PMID: 35134876 DOI: 10.1093/clinchem/hvab275] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/30/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Early and accurate diagnosis of acute infections can help minimize the overprescription of antibiotics and improve patient outcomes. Discrimination between bacterial and viral etiologies in acute infection based on changes in host gene expression has been described. Unfortunately, established technologies used for gene expression profiling are typically expensive and slow, confounding integration into clinical workflows. Here we report the development of an ultra-rapid test system for host gene expression profiling from blood based on quantitative reverse transcription followed by loop-mediated isothermal amplification (qRT-LAMP). METHODS We developed 10 messenger ribonucleic acid-specific assays based on qRT-LAMP targeting 7 informative biomarkers to discriminate viral from bacterial infections and 3 housekeeping reference genes. We optimized qRT-LAMP formulations to achieve a turnaround time of 12 min without sacrificing specificity or precision. The accuracy of the test system was verified utilizing blood samples from 57 patients and comparing qRT-LAMP results to profiles obtained using an orthogonal reference technology. RESULTS We observed a Pearson coefficient of 0.90 between bacterial/viral metascores generated by qRT-LAMP and the reference technology. CONCLUSIONS qRT-LAMP assays can provide sufficiently accurate gene expression profiling data to enable discrimination between bacterial and viral etiologies using an established set of biomarkers and a classification algorithm.
Collapse
|
72
|
Battat S, Weitz DA, Whitesides GM. An outlook on microfluidics: the promise and the challenge. LAB ON A CHIP 2022; 22:530-536. [PMID: 35048918 DOI: 10.1039/d1lc00731a] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This perspective considers ways in which the field of microfluidics can increase its impact by improving existing technologies and enabling new functionalities. We highlight applications where microfluidics has made or can make important contributions, including diagnostics, food safety, and the production of materials. The success of microfluidics assumes several forms, including fundamental innovations in fluid mechanics that enable the precise manipulation of fluids at small scales and the development of portable microfluidic chips for commercial purposes. We identify outstanding technical challenges whose resolution could increase the accessibility of microfluidics to users with both scientific and non-technical backgrounds. They include the simplification of procedures for sample preparation, the identification of materials for the production of microfluidic devices in both laboratory and commercial settings, and the replacement of auxiliary equipment with automated components for the operation of microfluidic devices.
Collapse
Affiliation(s)
- Sarah Battat
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - George M Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
73
|
Li H, Zhang P, Hsieh K, Wang TH. Combinatorial nanodroplet platform for screening antibiotic combinations. LAB ON A CHIP 2022; 22:621-631. [PMID: 35015012 PMCID: PMC9035339 DOI: 10.1039/d1lc00865j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The emergence and spread of multidrug resistant bacterial strains and concomitant dwindling of effective antibiotics pose worldwide healthcare challenges. To address these challenges, advanced engineering tools are developed to personalize antibiotic treatments by speeding up the diagnostics that is critical to prevent antibiotic misuse and overuse and make full use of existing antibiotics. Meanwhile, it is necessary to investigate novel antibiotic strategies. Recently, repurposing mono antibiotics into combinatorial antibiotic therapies has shown great potential for treatment of bacterial infections. However, widespread adoption of drug combinations has been hindered by the complexity of screening techniques and the cost of reagent consumptions in practice. In this study, we developed a combinatorial nanodroplet platform for automated and high-throughput screening of antibiotic combinations while consuming orders of magnitude lower reagents than the standard microtiter-based screening method. In particular, the proposed platform is capable of creating nanoliter droplets with multiple reagents in an automatic manner, tuning concentrations of each component, performing biochemical assays with high flexibility (e.g., temperature and duration), and achieving detection with high sensitivity. A biochemical assay, based on the reduction of resazurin by the metabolism of bacteria, has been characterized and employed to evaluate the combinatorial effects of the antibiotics of interest. In a pilot study, we successfully screened pairwise combinations between 4 antibiotics for a model Escherichia coli strain.
Collapse
Affiliation(s)
- Hui Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Pengfei Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
74
|
Hsieh K, Mach KE, Zhang P, Liao JC, Wang TH. Combating Antimicrobial Resistance via Single-Cell Diagnostic Technologies Powered by Droplet Microfluidics. Acc Chem Res 2022; 55:123-133. [PMID: 34898173 PMCID: PMC10023138 DOI: 10.1021/acs.accounts.1c00462] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antimicrobial resistance is a global threat that if left unchecked could lead to 10 million annual mortalities by 2050. One factor contributing to the rise of multi-drug-resistant (MDR) pathogens is the reliance on traditional culture-based pathogen identification (ID) and antimicrobial susceptibility testing (AST) that typically takes several days. This delay of objective pathogen ID and AST information to inform clinical decision making results in clinicians treating patients empirically often using first-line, broad-spectrum antibiotics, contributing to the misuse/overuse of antibiotics. To combat the rise in MDR pathogens, there is a critical demand for rapid ID and AST technologies. Among the advances in ID and AST technologies in the past decade, single-cell diagnostic technologies powered by droplet microfluidics offer great promise due to their potential for high-sensitivity detection and rapid turnaround time. Our laboratory has been at the forefront of developing such technologies and applying them to diagnosing urinary tract infections (UTIs), one of the most common infections and a frequent reason for the prescription of antimicrobials. For pathogen ID, we first demonstrated the highly sensitive, amplification-free detection of single bacterial cells by confining them in picoliter-scale droplets and detection with fluorogenic peptide nucleic acid (PNA) probes that target their 16S rRNA (rRNA), a well-characterized marker for phylogenic classification. We subsequently improved the PNA probe design and enhanced detection sensitivity. For single-cell AST, we first employed a growth indicator dye and engineered an integrated device that allows us to detect growth from single bacterial cells under antibiotic exposure within 1 h, equivalent to two to three bacterial replications. To expand beyond testing a single antibiotic condition per device, a common limitation for droplet microfluidics, we developed an integrated programmable droplet microfluidic device for scalable single-cell AST. Using the scalable single-cell AST platform, we demonstrated the generation of up to 32 droplet groups in a single device with custom antibiotic titers and the capacity to scale up single-cell AST, and providing reliable pathogen categories beyond a binary call embodies a critical advance. Finally, we developed an integrated ID and AST platform. To this end, we developed a PNA probe panel that can identify nearly 90% of uropathogens and showed the quantitative detection of 16S rRNA from single bacterial cells in droplet-enabled AST after as little as 10 min of antibiotic exposure. This platform achieved both ID and AST from minimally processed urine samples in 30 min, representing one of the fastest turnaround times to date. In addition to tracing the development of our technologies, we compare them with contemporary research advances and offer our perspectives for future development, with the vision that single-cell ID and AST technologies powered by droplet microfluidics can indeed become a useful diagnostic tool for combating antimicrobial resistance.
Collapse
Affiliation(s)
| | - Kathleen E Mach
- Department of Urology, Stanford University School of Medicine, Stanford, California 94305, United States
| | | | - Joseph C Liao
- Department of Urology, Stanford University School of Medicine, Stanford, California 94305, United States
| | | |
Collapse
|
75
|
Lin X, Fang M, Yi C, Jiang Y, Zhang C, Pan X, Luo Z. Functional hydrogel for fast, precise and inhibition-free point-of-care bacteria analysis in crude food samples. Biomaterials 2021; 280:121278. [PMID: 34871876 DOI: 10.1016/j.biomaterials.2021.121278] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/30/2021] [Accepted: 11/23/2021] [Indexed: 11/02/2022]
Abstract
In this work, instead of performing nucleic acid amplification in the bulk solution, we report a nanoporous hydrogel with controlled release function for rapid, precise, and inhibition-free nucleic acid analysis in crude food samples. The cross-linked PEG hydrogel with nanoporous structures possesses adsorption, release, separation, restriction and self-cleaning abilities. When digital loop-mediated isothermal amplification (LAMP) was performed inside this hydrogel, the surrounding nanostructure act as a temporary reservoir for reagents storage and release them on demand during or after amplification. Meanwhile, the restricted nanoconfined environment of hydrogel also favor the enzymatic amplification process. Thus, an enhanced signal readout, robust anti-inhibition, faster amplification rate, more products yields and specific amplification without primer-dimers were obtained. Moreover, direct amplification in untreated complex food sample was successfully performed inside hydrogel without any sample pretreatment, while conventional droplets digital LAMP failed for detection. Absolute quantification of Escherichia coli and Salmonella typhi directly in fresh fruit and vegetables was achieved within 20 min, with high precision and sensitivity down to single cell. This novel lab-on-hydrogel concept has an enormous potential for future molecular diagnostic assays, and can be also applied for other point-of-care assays.
Collapse
Affiliation(s)
- Xingyu Lin
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, PR China.
| | - Mei Fang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, PR China; College of Environment, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Changyu Yi
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, PR China; College of Environment, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Yan Jiang
- Chemistry Instrumentation Center, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Chao Zhang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, PR China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, PR China
| |
Collapse
|
76
|
Zhang W, Zheng K, Ye Y, Ji J, Cheng X, He S. Pipette-Tip-Enabled Digital Nucleic Acid Analyzer for COVID-19 Testing with Isothermal Amplification. Anal Chem 2021; 93:15288-15294. [PMID: 34735121 DOI: 10.1021/acs.analchem.1c02414] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, a pipette-tip-enabled digital nucleic acid analyzer for high-performance COVID-19 testing is demonstrated. This is achieved by digital loop-mediated isothermal amplification (digital LAMP or dLAMP) using common laboratory equipment and materials. It is shown that simply fixing a glass capillary inside conventional pipette tips enables the generation of monodisperse, water-in-oil microdroplets with benchtop centrifugation. It is shown that using LAMP, the ORF1a/b gene, a standard test region for COVID-19 screening, can be amplified without a thermal cycler. The amplification allows counting of fluorescent microdroplets so that Poisson analysis can be performed to allow quantification with a limit of detection that is 1 order of magnitude better than those of nondigital techniques and comparable to those of commercial dLAMP platforms. It is envisioned that this work will inspire studies on ultrasensitive digital nucleic acid analyzers demanding both sensitivity and accessibility, which is pivotal to their large-scale applications.
Collapse
Affiliation(s)
- Wenyao Zhang
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Kaixin Zheng
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Yang Ye
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China.,Ningbo Research Institute, Ningbo 310050, China.,ZJU-TU/e Joint Research Institute of Design, Optoelectronic and Sensing, Hangzhou 310052, China
| | - Jiali Ji
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China
| | - Xiaoyu Cheng
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China.,Ningbo Research Institute, Ningbo 310050, China.,ZJU-TU/e Joint Research Institute of Design, Optoelectronic and Sensing, Hangzhou 310052, China
| | - Sailing He
- National Engineering Research Center for Optical Instruments, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310052, China.,Ningbo Research Institute, Ningbo 310050, China.,ZJU-TU/e Joint Research Institute of Design, Optoelectronic and Sensing, Hangzhou 310052, China
| |
Collapse
|
77
|
Sklavounos AA, Nemr CR, Kelley SO, Wheeler AR. Bacterial classification and antibiotic susceptibility testing on an integrated microfluidic platform. LAB ON A CHIP 2021; 21:4208-4222. [PMID: 34549763 DOI: 10.1039/d1lc00609f] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the prevalence of bacterial infections and increasing levels of antibiotic resistance comes the need for rapid and accurate methods for bacterial classification (BC) and antibiotic susceptibility testing (AST). Here we demonstrate the use of the fluid handling technique digital microfluidics (DMF) for automated and simultaneous BC and AST using growth metabolic markers. Custom instrumentation was developed for this application including an integrated heating module and a machine-learning-enabled low-cost colour camera for real-time absorbance and fluorescent sample monitoring on multipurpose devices. Antibiotic dilutions along with sample handling, mixing and incubation at 37 °C were all pre-programmed and processed automatically. By monitoring the metabolism of resazurin, resorufin beta-D-glucuronide and resorufin beta-D-galactopyranoside to resorufin, BC and AST were achieved in under 18 h. AST was validated in two uropathogenic E. coli strains with antibiotics ciprofloxacin and nitrofurantoin. BC was performed independently and simultaneously with ciprofloxacin AST for E. coli, K. pneumoniae, P. mirabilis and S. aureus. Finally, a proof-of-concept multiplexed system for breakpoint testing of two antibiotics, as well as E. coli and coliform classification was investigated with a multidrug-resistant E. coli strain. All bacteria were correctly identified, while AST and breakpoint test results were in essential and category agreement with reference methods. These results show the versatility and accuracy of this all-in-one microfluidic system for analysis of bacterial growth and phenotype.
Collapse
Affiliation(s)
- Alexandros A Sklavounos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Carine R Nemr
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Canada.
| | - Shana O Kelley
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Canada.
- Department of Pharmaceutical Science, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3E5, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Ontario, M5S 3G9, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| |
Collapse
|
78
|
Yuan H, Tian J, Chao Y, Chien YS, Luo RH, Guo JY, Li S, Chou YJ, Shum HC, Chen CF. Hand-Powered Microfluidics for Parallel Droplet Digital Loop-Mediated Isothermal Amplification Assays. ACS Sens 2021; 6:2868-2874. [PMID: 34156242 DOI: 10.1021/acssensors.1c00184] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Droplet digital loop-mediated isothermal amplification (ddLAMP) is an important assay for pathogen detection due to its high accuracy, specificity, and ability to quantify nucleic acids. However, performing ddLAMP requires expensive instrumentation and the need for highly trained personnel with expertise in microfluidics. To make ddLAMP more accessible, a ddLAMP assay is developed, featuring significantly decreased operational difficulty and instrumentation requirements. The proposed assay consists of three simplified steps: (1) droplet generation step, in which a LAMP mixture can be emulsified just by manually pulling a syringe connected to a microfluidic device. In this step, for the first time, we verify that highly monodispersed droplets can be generated with unstable flow rates or pressures, allowing untrained personnel to operate the microfluidic device and perform ddLAMP assay; (2) heating step, in which the droplets are isothermally heated in a water bath, which can be found in most laboratories; and (3) result analysis step, in which the ddLAMP result can be determined using only a fluorescence microscopy and an open-source analyzing software. Throughout the process, no droplet microfluidic expertise or equipment is required. More importantly, the proposed system enables multiple samples to be processed simultaneously with a detection limit of 10 copies/μL. The test is simple and intuitive to operate in most laboratories for multi-sample detection, significantly enhancing the accessibility and detection throughput of the ddLAMP technique.
Collapse
Affiliation(s)
- Hao Yuan
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Jingxuan Tian
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Youchuang Chao
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yuh-Shiuan Chien
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Ren-Hao Luo
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Jun-Yu Guo
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Shanshan Li
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518009, China
| | - Yi-Ju Chou
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
79
|
Lyu W, Zhang J, Yu Y, Xu L, Shen F. Slip formation of a high-density droplet array for nucleic acid quantification by digital LAMP with a random-access system. LAB ON A CHIP 2021; 21:3086-3093. [PMID: 34160518 DOI: 10.1039/d1lc00361e] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Digital nucleic acid analysis (digital NAA) is an important tool for the precise quantification of nucleic acids. Various microfluidic-based approaches for digital NAA have been developed, but most methods require complex auxiliary control instruments, cumbersome device fabrication, or inconvenient preparation processes. A SlipChip is a microfluidic device that can generate and manipulate liquid partitions through simple movements of two microfluidic plates in close contact. However, the traditional SlipChip requires accurate alignment of microfeatures on different plates; therefore, the dimensions of the microwells and density of partitions can be constrained. Here, we developed a droplet array SlipChip (da-SlipChip) that can form droplets of various sizes at high density in a single slipping step. This process does not require precise overlapping microfeatures on different plates; therefore, the design flexibility and partition density can be significantly increased. We quantified SARS-CoV-2 nucleic acids extracted from the COVID-19 pseudovirus by digital loop-mediated isothermal amplification (LAMP) on a da-SlipChip with 21 696 of 0.25 nL droplets, and the results were in good agreement with those of the commercial digital PCR method of Stilla. Furthermore, we demonstrated a random-access system with a single-throughput fluorescence imager and a stackable thermal control instrument with nine independent heating modules. This random-access system with the da-SlipChip can greatly improve the total throughput and flexibility for digital isothermal nucleic acid quantification and significantly reduce the total waiting time.
Collapse
Affiliation(s)
- Weiyuan Lyu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| | - Jiajie Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| | - Yan Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| | - Lei Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| |
Collapse
|
80
|
Catterton MA, Ball AG, Pompano RR. Rapid Fabrication by Digital Light Processing 3D Printing of a SlipChip with Movable Ports for Local Delivery to Ex Vivo Organ Cultures. MICROMACHINES 2021; 12:993. [PMID: 34442615 PMCID: PMC8399530 DOI: 10.3390/mi12080993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
SlipChips are two-part microfluidic devices that can be reconfigured to change fluidic pathways for a wide range of functions, including tissue stimulation. Currently, fabrication of these devices at the prototype stage requires a skilled microfluidic technician, e.g., for wet etching or alignment steps. In most cases, SlipChip functionality requires an optically clear, smooth, and flat surface that is fluorophilic and hydrophobic. Here, we tested digital light processing (DLP) 3D printing, which is rapid, reproducible, and easily shared, as a solution for fabrication of SlipChips at the prototype stage. As a case study, we sought to fabricate a SlipChip intended for local delivery to live tissue slices through a movable microfluidic port. The device was comprised of two multi-layer components: an enclosed channel with a delivery port and a culture chamber for tissue slices with a permeable support. Once the design was optimized, we demonstrated its function by locally delivering a chemical probe to slices of hydrogel and to living tissue with up to 120 µm spatial resolution. By establishing the design principles for 3D printing of SlipChip devices, this work will enhance the ability to rapidly prototype such devices at mid-scale levels of production.
Collapse
Affiliation(s)
- Megan A Catterton
- Department of Chemistry, University of Virginia College of Arts and Science, Charlottesville, VA 22904, USA;
| | - Alexander G Ball
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
| | - Rebecca R Pompano
- Department of Chemistry, University of Virginia College of Arts and Science, Charlottesville, VA 22904, USA;
- Carter Immunology Center and UVA Cancer Center, University of Virginia, Charlottesville, VA 22903, USA
- Department of Biomedical Engineering, University of Virginia School of Engineering and Applied Sciences, Charlottesville, VA 22904-4259, USA
| |
Collapse
|
81
|
Sun L, Chen Y, Duan Y, Ma F. Electrogenerated Chemiluminescence Biosensor Based on Functionalized Two-Dimensional Metal-Organic Frameworks for Bacterial Detection and Antimicrobial Susceptibility Assays. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38923-38930. [PMID: 34369161 DOI: 10.1021/acsami.1c11949] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The emergence of antibiotic resistance has prompted the development of rapid antimicrobial susceptibility testing (AST) technologies to guide antibiotic prescription. A novel electrochemiluminescence (ECL) biosensor developed can quantitatively measure the binding between the lectin and lipopolysaccharide (LPS) on Gram-negative bacteria for bacterial determination and to characterize the antimicrobial activities of β-lactam and non-β-lactam antibiotics to normal and antibiotic-resistant bacteria. The biosensor utilizes ruthenium complex tagged concanavalin A (Ru-Con A) coated on NH2-MIL-53(Al) interface for LPS binding measurements. The decreased ECL signal obtained was directly proportional to increasing Escherichia coli (E. coli) BL21 concentrations. The sensitivity displayed logarithmic dependence in the range of (50-5.0) × 104 cells/mL, with a detection limit of 16 cells/mL. The minimum inhibitory concentration (MIC) values of antibiotics for normal E. coli BL21 were 0.02-0.2, 2-4, 0.002-0.02, and 0.2-1 mg/L for levofloxacin hydrochloride (LVX), tetracycline (TCY), imipenem (IPM), and cefpirome (CPO), respectively. The increased MIC values (8-16 and 4 mg/L for IMP and CPO, respectively) in New Delhi metallo-β-lactamase-1 expressing E. coli BL21 (NDM-1-E. coli BL21) indicated greater resistance to β-lactams in NDM-1-E. coli BL21 compared with normal E. coli BL21. Therefore, the changed ECL signal because of binding between LPS with the lectin has a relation with the type of antibiotic and bacterial strains, making the ECL biosensor promote clinical practicability and facilitate antibiotic stewardship.
Collapse
Affiliation(s)
- Lina Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Yu Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Yuhong Duan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Fen Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| |
Collapse
|
82
|
Trick AY, Melendez JH, Chen FE, Chen L, Onzia A, Zawedde A, Nakku-Joloba E, Kyambadde P, Mande E, Matovu J, Atuheirwe M, Kwizera R, Gilliams EA, Hsieh YH, Gaydos CA, Manabe YC, Hamill MM, Wang TH. A portable magnetofluidic platform for detecting sexually transmitted infections and antimicrobial susceptibility. Sci Transl Med 2021; 13:13/593/eabf6356. [PMID: 33980576 DOI: 10.1126/scitranslmed.abf6356] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
Effective treatment of sexually transmitted infections (STIs) is limited by diagnostics that cannot deliver results rapidly while the patient is still in the clinic. The gold standard methods for identification of STIs are nucleic acid amplification tests (NAATs), which are too expensive for widespread use and have lengthy turnaround times. To address the need for fast and affordable diagnostics, we have developed a portable, rapid, on-cartridge magnetofluidic purification and testing (PROMPT) polymerase chain reaction (PCR) test. We show that it can detect Neisseria gonorrhoeae, the pathogen causing gonorrhea, with simultaneous genotyping of the pathogen for resistance to the antimicrobial drug ciprofloxacin in <15 min. The duplex test was integrated into a low-cost thermoplastic cartridge with automated processing of penile swab samples from patients using magnetic beads. A compact instrument conducted DNA extraction, PCR, and analysis of results while relaying data to the user via a smartphone app. This platform was tested on penile swab samples from sexual health clinics in Baltimore, MD, USA (n = 66) and Kampala, Uganda (n = 151) with an overall sensitivity and specificity of 97.7% (95% CI, 94.7 to 100%) and 97.6% (95% CI, 94.1 to 100%), respectively, for N. gonorrhoeae detection and 100% concordance with culture results for ciprofloxacin resistance. This study paves the way for delivering accessible PCR diagnostics for rapidly detecting STIs at the point of care, helping to guide treatment decisions and combat the rise of antimicrobial resistant pathogens.
Collapse
Affiliation(s)
- Alexander Y Trick
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Johan H Melendez
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Fan-En Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Liben Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Annet Onzia
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Aidah Zawedde
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | | | - Peter Kyambadde
- AIDS Control Program, Division of Sexually Transmitted Infections, Ministry of Health, Kampala, Uganda
| | - Emmanuel Mande
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Joshua Matovu
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Maxine Atuheirwe
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Richard Kwizera
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Elizabeth A Gilliams
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Sexual Health Clinics, Baltimore City Health Department, Baltimore, MD 21205, USA
| | - Yu-Hsiang Hsieh
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Charlotte A Gaydos
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yukari C Manabe
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Matthew M Hamill
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Sexual Health Clinics, Baltimore City Health Department, Baltimore, MD 21205, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA. .,Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Institute for NanoBiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
83
|
Jusková P, Schmitt S, Kling A, Rackus DG, Held M, Egli A, Dittrich PS. Real-Time Respiration Changes as a Viability Indicator for Rapid Antibiotic Susceptibility Testing in a Microfluidic Chamber Array. ACS Sens 2021; 6:2202-2210. [PMID: 33900065 PMCID: PMC8240088 DOI: 10.1021/acssensors.1c00020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022]
Abstract
Rapid identification of a pathogen and the measurement of its antibiotic susceptibility are key elements in the diagnostic process of bacterial infections. Microfluidic technologies offer great control over handling and manipulation of low sample volumes with the possibility to study microbial cultures on the single-cell level. Downscaling the dimensions of cultivation systems directly results in a lower number of bacteria required for antibiotic susceptibility testing (AST) and thus in a reduction of the time to result. The developed platform presented in this work allows the reading of pathogen resistance profiles within 2-3 h based on the changes of dissolved oxygen levels during bacterial cultivation. The platform contains hundreds of individual growth chambers prefilled with a hydrogel containing oxygen-sensing nanoprobes and different concentrations of antibiotic compounds. The performance of the developed platform is tested using quality control Escherichia coli strains (ATCC 25922 and ATCC 35218) in response to clinically relevant antibiotics. The results are in agreement with values given in reference guidelines and independent measurements using a clinical AST protocol. Finally, the platform is successfully used for the AST of an E. coli clinical isolate obtained from a patient blood culture.
Collapse
Affiliation(s)
- Petra Jusková
- Department
of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Steven Schmitt
- Department
of Biosystems Science and Engineering, Bioprocess Laboratory, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - André Kling
- Department
of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Darius G. Rackus
- Department
of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Martin Held
- Department
of Biosystems Science and Engineering, Bioprocess Laboratory, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Adrian Egli
- Clinical
Bacteriology and Mycology, University Hospital
Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Petra S. Dittrich
- Department
of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
84
|
Zhang C, Zheng T, Fan H, Zhang T, Han D. Aligner-Mediated Cleavage-Based Isothermal Amplification for SARS-CoV-2 RNA Detection. ACS APPLIED BIO MATERIALS 2021; 4:3805-3810. [PMID: 35006810 PMCID: PMC7931623 DOI: 10.1021/acsabm.0c01674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/19/2021] [Indexed: 12/22/2022]
Abstract
Rapid detection of SARS-CoV-2 RNA is critical for reducing the global transmission of COVID-19. Here, we report a simple and versatile assay for detection of SARS-CoV-2 RNA based on aligner-mediated cleavage-based strand displacement amplification (AMC-SDA). The entire amplification procedure takes less than 25 min without professional instruments or requirement of specific target sequences and can reach a limit of detection of attomolar RNA concentration. Using pseudovirus as mimicry of clinical SARS-CoV-2 positive samples, we achieved a diagnostic accuracy of 100% in 10 simulated samples (five positive and five negative). We anticipate that our method will provide a universal platform for rapid and accurate detection of emerging infectious diseases.
Collapse
Affiliation(s)
- Chao Zhang
- Institute of Molecular Medicine (IMM), Shanghai Key
Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes
and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong
University, Shanghai 200127, China
| | - Tingting Zheng
- Institute of Molecular Medicine (IMM), Shanghai Key
Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes
and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong
University, Shanghai 200127, China
| | - Hongliang Fan
- Research Center for Analytical Instrumentation,
Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control
Technology, Zhejiang University, Hangzhou 310058,
China
| | - Tao Zhang
- Research Center for Analytical Instrumentation,
Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control
Technology, Zhejiang University, Hangzhou 310058,
China
| | - Da Han
- Institute of Molecular Medicine (IMM), Shanghai Key
Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes
and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong
University, Shanghai 200127, China
| |
Collapse
|
85
|
Tan YL, Huang AQ, Tang LJ, Jiang JH. Multiplexed droplet loop-mediated isothermal amplification with scorpion-shaped probes and fluorescence microscopic counting for digital quantification of virus RNAs. Chem Sci 2021; 12:8445-8451. [PMID: 34221326 PMCID: PMC8221175 DOI: 10.1039/d1sc00616a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Highly sensitive digital nucleic acid techniques are of great significance for the prevention and control of epidemic diseases. Here we report the development of multiplexed droplet loop-mediated isothermal amplification (multiplexed dLAMP) with scorpion-shaped probes (SPs) and fluorescence microscopic counting for simultaneous quantification of multiple targets. A set of target-specific fluorescence-activable SPs are designed, which allows establishment of a novel multiplexed LAMP strategy for simultaneous detection of multiple cDNA targets. The digital multiplexed LAMP assay is thus developed by implementing the LAMP reaction using a droplet microfluidic chip coupled to a droplet counting microwell chip. The droplet counting system allows rapid and accurate counting of the numbers of total droplets and the positive droplets by collecting multi-color fluorescence images of the droplets in a microwell. The multiplexed dLAMP assay was successfully demonstrated for the quantification of HCV and HIV cDNA with high precision and detection limits as low as 4 copies per reaction. We also verified its potential for simultaneous digital assay of HCV and HIV RNA in clinical plasma samples. This multiplexed dLAMP technique can afford a useful platform for highly sensitive and specific detection of nucleic acids of viruses and other pathogens, enabling rapid diagnosis and prevention of infectious diseases. The development of multiplexed dLAMP with scorpion-shaped probes and fluorescence microscopic counting affords simultaneous digital quantification of multiple virus RNAs.![]()
Collapse
Affiliation(s)
- Ya-Ling Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China +86-731-88822577 +86-731-88822872
| | - A-Qian Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China +86-731-88822577 +86-731-88822872
| | - Li-Juan Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China +86-731-88822577 +86-731-88822872
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China +86-731-88822577 +86-731-88822872
| |
Collapse
|
86
|
Rapid antimicrobial susceptibility testing by stimulated Raman scattering metabolic imaging and morphological deformation of bacteria. Anal Chim Acta 2021; 1168:338622. [PMID: 34051990 DOI: 10.1016/j.aca.2021.338622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/16/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022]
Abstract
Methods for rapid antimicrobial susceptibility testing (AST) are urgently needed to address the emergence and spread of antimicrobial resistance. Here, we report a new method based on stimulated Raman scattering (SRS) microscopy, which measures both the metabolic activity and the morphological deformation of bacteria to determine the antimicrobial susceptibility of β-lactam antibiotics rapidly. In this approach, we quantify single bacteria's metabolic activity by the carbon-deuterium (C-D) bond concentrations in bacteria after D2O incubation. In the meantime, bacterial morphological deformation caused by β-lactam antibiotics is also measured. With these two quantifiable markers, we develop an evaluation method to perform AST of cefotaxime on 103 E. coli strains. Our method achieved a 93.2% categorical agreement and a 93.2% essential agreement with the standard reference method.
Collapse
|
87
|
Azizi M, Nguyen AV, Dogan B, Zhang S, Simpson KW, Abbaspourrad A. Antimicrobial Susceptibility Testing in a Rapid Single Test via an Egg-like Multivolume Microchamber-Based Microfluidic Platform. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19581-19592. [PMID: 33884865 DOI: 10.1021/acsami.0c23096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fast determination of antimicrobial agents' effectiveness (susceptibility/resistance pattern) is an essential diagnostic step for treating bacterial infections and stopping world-wide outbreaks. Here, we report an egg-like multivolume microchamber-based microfluidic (EL-MVM2) platform, which is used to produce a wide range of gradient-based antibiotic concentrations quickly (∼10 min). The EL-MVM2 platform works based upon testing a bacterial suspension in multivolume microchambers (microchamber sizes that range from a volume of 12.56 to 153.86 nL). Antibiotic molecules from a stock solution diffuse into the microchambers of various volumes at the same loading rate, leading to different concentrations among the microchambers. Therefore, we can quickly and easily produce a robust antibiotic gradient-based concentration profile. The EL-MVM2 platform's diffusion (loading) pattern was investigated for different antibiotic drugs using both computational fluid dynamics simulations and experimental approaches. With an easy-to-follow protocol for sample loading and operation, the EL-MVM2 platform was also found to be of high precision with respect to predicting the susceptibility/resistance outcome (>97%; surpassing the FDA-approval criterion for technology-based antimicrobial susceptibility testing instruments). These features indicate that the EL-MVM2 is an effective, time-saving, and precise alternative to conventional antibiotic susceptibility testing platforms currently being used in clinical diagnostics and point-of-care settings.
Collapse
Affiliation(s)
- Morteza Azizi
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Ann V Nguyen
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Belgin Dogan
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Tower Rd., Ithaca, New York 14853, United States
| | - Shiying Zhang
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Tower Rd., Ithaca, New York 14853, United States
| | - Kenneth W Simpson
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Tower Rd., Ithaca, New York 14853, United States
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| |
Collapse
|
88
|
Zhang F, Jiang J, McBride M, Zhou X, Yang Y, Mo M, Peterman J, Grys T, Haydel SE, Tao N, Wang S. Rapid Antimicrobial Susceptibility Testing on Clinical Urine Samples by Video-Based Object Scattering Intensity Detection. Anal Chem 2021; 93:7011-7021. [PMID: 33909404 DOI: 10.1021/acs.analchem.1c00019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To combat the ongoing public health threat of antibiotic-resistant infections, a technology that can quickly identify infecting bacterial pathogens and concurrently perform antimicrobial susceptibility testing (AST) in point-of-care settings is needed. Here, we develop a technology for point-of-care AST with a low-magnification solution scattering imaging system and a real-time video-based object scattering intensity detection method. The low magnification (1-2×) optics provides sufficient volume for direct imaging of bacteria in urine samples, avoiding the time-consuming process of culture-based bacterial isolation and enrichment. Scattering intensity from moving bacteria and particles in the sample is obtained by subtracting both spatial and temporal background from a short video. The time profile of scattering intensity is correlated with the bacterial growth rate and bacterial response to antibiotic exposure. Compared to the image-based bacterial tracking and counting method we previously developed, this simple image processing algorithm accommodates a wider range of bacterial concentrations, simplifies sample preparation, and greatly reduces the computational cost of signal processing. Furthermore, development of this simplified processing algorithm eases implementation of multiplexed detection and allows real-time signal readout, which are essential for point-of-care AST applications. To establish the method, 130 clinical urine samples were tested, and the results demonstrated an accuracy of ∼92% within 60-90 min for UTI diagnosis. Rapid AST of 55 positive clinical samples revealed 98% categorical agreement with both the clinical culture results and the on-site parallel AST validation results. This technology provides opportunities for prompt infection diagnosis and accurate antibiotic prescriptions in point-of-care settings.
Collapse
Affiliation(s)
- Fenni Zhang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States.,Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Jiapei Jiang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States.,School of Biological and Health Systems Engineering, Tempe, Arizona 85287, United States
| | - Michelle McBride
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| | - Xinyu Zhou
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States.,School of Biological and Health Systems Engineering, Tempe, Arizona 85287, United States
| | - Yunze Yang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| | - Manni Mo
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States.,School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Joseph Peterman
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| | - Thomas Grys
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, Arizona 85054, United States
| | - Shelley E Haydel
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States.,School of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Nongjian Tao
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| | - Shaopeng Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
89
|
Azizi M, Davaji B, Nguyen AV, Zhang S, Dogan B, Simpson KW, Abbaspourrad A. Gradient-Based Microfluidic Platform for One Single Rapid Antimicrobial Susceptibility Testing. ACS Sens 2021; 6:1560-1571. [PMID: 33851833 DOI: 10.1021/acssensors.0c02428] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Antimicrobial resistance is a growing problem, necessitating rapid antimicrobial susceptibility testing (AST) to enable effective in-clinic diagnostic testing and treatment. Conventional AST using broth microdilution or the Kirby-Bauer disk diffusion are time-consuming (e.g., 24-72 h), labor-intensive, and costly and consume reagents. Here, we propose a novel gradient-based microchamber microfluidic (GM2) platform to perform AST assay for a wide range of antibiotic concentrations plus zero (positive control) and maximum (negative control) concentrations all in a single test. Antibiotic lateral diffusion within enriched to depleted (Cmax and zero, respectively) cocurrent flowing fluids, moving alongside a micron-sized main channel, is led to form an antibiotic concentration profile in microchambers, connected to the depleted side of the main channel. We examined the tunability of the GM2 platform, in terms of producing a wide range of antibiotic concentrations in a gradient mode between two consecutive microchambers with changing either the loading fluids' flow rates or their initial concentrations. We also tested the GM2 platform for profiling bacteria associated with human Crohn's disease and bovine mastitis. Time to result for performing a complete AST assay was ∼ 3-4 h in the GM2 platform. Lastly, the GM2 platform tracked the bacterial growth independent of an antibiotic mechanism of action or bacterial species in a robust and easy-to-implement fashion.
Collapse
Affiliation(s)
- Morteza Azizi
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Benyamin Davaji
- School of Electrical and Computer Engineering, Cornell University, Philips Hall, Ithaca, New York 8 14853, United States
| | - Ann V. Nguyen
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Shiying Zhang
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Tower Rd., Ithaca, New York 14853, United States
| | - Belgin Dogan
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Tower Rd., Ithaca, New York 14853, United States
| | - Kenneth W. Simpson
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Tower Rd., Ithaca, New York 14853, United States
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| |
Collapse
|
90
|
Sheervalilou R, Shirvaliloo M, Sargazi S, Shirvalilou S, Shahraki O, Pilehvar-Soltanahmadi Y, Sarhadi A, Nazarlou Z, Ghaznavi H, Khoei S. Application of Nanobiotechnology for Early Diagnosis of SARS-CoV-2 Infection in the COVID-19 Pandemic. Appl Microbiol Biotechnol 2021; 105:2615-2624. [PMID: 33710356 PMCID: PMC7952259 DOI: 10.1007/s00253-021-11197-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/23/2022]
Abstract
A most discussed topic of the new decade, COVID-19 is an infectious disease caused by the recently discovered SARS-CoV-2. With an exceedingly high transmission rate, COVID-19 has affected almost all the countries in the world. Absent any vaccine or specific treatment, the humanity is left with nothing but the legacy method of quarantine. However, quarantine can only be effective when combined with early diagnosis of suspected cases. With their high sensitivity and unmatched specificity, biosensors have become an area of interest for development of novel diagnostic methods. Compared to the more traditional diagnostics, nanobiotechnology introduces biosensors as different diagnostics with greater versatility in application. Today, a growing number of analytes are being accurately identified by these nanoscopic sensing machines. Several reports of validated application with real samples further strengthen this idea. As of recent, there has been a rise in the number of studies on portable biosensors. Despite the slow progression, certain devices with embedded biosensors have managed to be of diagnostic value in several countries. The perceptible increase in development of mobile platforms has revolutionized the healthcare delivery system in the new millennium. The present article reviews the most recent advancements in development of diagnostic nanobiosensors and their application in the clinical fields. KEY POINTS: • There is no specific treatment for highly transmissible SARS-CoV-2. • Early diagnosis is critical for control of pandemic. • Highly sensitive/specific nanobiosensors are emerging assets against COVID-19.
Collapse
Affiliation(s)
- Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
| | - Milad Shirvaliloo
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, 5166614766, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
| | - Sakine Shirvalilou
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Omolbanin Shahraki
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
| | - Younes Pilehvar-Soltanahmadi
- Cellular and Molecular Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia, 5714783734, Iran
| | - Alireza Sarhadi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran
| | - Ziba Nazarlou
- Material Engineering Department, College of Science, Koç University, 34450, Istanbul, Turkey
| | - Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran.
| | - Samideh Khoei
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran.
| |
Collapse
|
91
|
Chen J, Tomasek M, Cruz A, Faron ML, Liu D, Rodgers WH, Gau V. Feasibility and potential significance of rapid in vitro qualitative phenotypic antimicrobial susceptibility testing of gram-negative bacilli with the ProMax system. PLoS One 2021; 16:e0249203. [PMID: 33770124 PMCID: PMC7996979 DOI: 10.1371/journal.pone.0249203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
The emergence and evolution of antibiotic resistance has been accelerated due to the widespread use of antibiotics and a lack of timely diagnostic tests that guide therapeutic treatment with adequate sensitivity, specificity, and antimicrobial susceptibility testing (AST) accuracy. Automated AST instruments are extensively used in clinical microbiology labs and provide a streamlined workflow, simplifying susceptibility testing for pathogenic bacteria isolated from clinical samples. Although currently used commercial systems such as the Vitek2 and BD Phoenix can deliver results in substantially less time than conventional methods, their dependence on traditional AST inoculum concentrations and optical detection limit their speed somewhat. Herein, we describe the GeneFluidics ProMax lab automation system intended for a rapid 3.5-hour molecular AST from clinical isolates. The detection method described utilizes a higher starting inoculum concentration and automated molecular quantification of species-specific 16S rRNA through the use of an electrochemical sensor to assess microbiological responses to antibiotic exposure. A panel of clinical isolates consisting of species of gram-negative rods from the CDC AR bank and two hospitals, New York-Presbyterian Queens and Medical College of Wisconsin, were evaluated against ciprofloxacin, gentamicin, and meropenem in a series of reproducibility and clinical studies. The categorical agreement and reproducibility for Citrobacter freundii, Enterobacter cloacae, Escherichia coli, Klebsiella aerogenes, Klebsiella oxytoca, Klebsiella pneumoniae, and Pseudomonas aeruginosa were 100% and 100% for ciprofloxacin, 98.7% and 100% for gentamicin and 98.5% and 98.5% for meropenem, respectively.
Collapse
Affiliation(s)
- Jade Chen
- GeneFluidics, Los Angeles, California, United States of America
| | - Michael Tomasek
- GeneFluidics, Los Angeles, California, United States of America
| | - Amorina Cruz
- The Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Matthew L. Faron
- The Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Dakai Liu
- Department of Pathology and Clinical Laboratories, NewYork-Presbyterian Queens, Flushing, New York, United States of America
| | - William H. Rodgers
- Department of Pathology and Clinical Laboratories, NewYork-Presbyterian Queens, Flushing, New York, United States of America
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Vincent Gau
- GeneFluidics, Los Angeles, California, United States of America
| |
Collapse
|
92
|
Scherer B, Surrette C, Li H, Torab P, Kvam E, Galligan C, Go S, Grossmann G, Hammond T, Johnson T, St-Pierre R, Nelson JR, Potyrailo RA, Khire T, Hsieh K, Wang TH, Wong PK, Puleo CM. Digital electrical impedance analysis for single bacterium sensing and antimicrobial susceptibility testing. LAB ON A CHIP 2021; 21:1073-1083. [PMID: 33529300 DOI: 10.1039/d0lc00937g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Single-molecule and single-cell analysis techniques have opened new opportunities for characterizing and analyzing heterogeneity within biological samples. These detection methods are often referred to as digital assays because the biological sample is partitioned into many small compartments and each compartment contains a discrete number of targets (e.g. cells). Using digital assays, researchers can precisely detect and quantify individual targets, and this capability has made digital techniques the basis for many modern bioanalytical tools (including digital PCR, single cell RNA sequencing, and digital ELISA). However, digital assays are dominated by optical analysis systems that typically utilize microscopy to analyze partitioned samples. The utility of digital assays may be dramatically enhanced by implementing cost-efficient and portable electrical detection capabilities. Herein, we describe a digital electrical impedance sensing platform that enables direct multiplexed measurement of single cell bacterial cells. We outline our solutions to the challenge of multiplexing impedance sensing across many culture compartments and demonstrate the potential for rapidly differentiating antimicrobial resistant versus susceptible strains of bacteria.
Collapse
|
93
|
Recent Development of Rapid Antimicrobial Susceptibility Testing Methods through Metabolic Profiling of Bacteria. Antibiotics (Basel) 2021; 10:antibiotics10030311. [PMID: 33803002 PMCID: PMC8002737 DOI: 10.3390/antibiotics10030311] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 11/17/2022] Open
Abstract
Due to the inappropriate use and overuse of antibiotics, the emergence and spread of antibiotic-resistant bacteria are increasing and have become a major threat to human health. A key factor in the treatment of bacterial infections and slowing down the emergence of antibiotic resistance is to perform antimicrobial susceptibility testing (AST) of infecting bacteria rapidly to prescribe appropriate drugs and reduce the use of broad-spectrum antibiotics. Current phenotypic AST methods based on the detection of bacterial growth are generally reliable but are too slow. There is an urgent need for new methods that can perform AST rapidly. Bacterial metabolism is a fast process, as bacterial cells double about every 20 to 30 min for fast-growing species. Moreover, bacterial metabolism has shown to be related to drug resistance, so a comparison of differences in microbial metabolic processes in the presence or absence of antimicrobials provides an alternative approach to traditional culture for faster AST. In this review, we summarize recent developments in rapid AST methods through metabolic profiling of bacteria under antibiotic treatment.
Collapse
|
94
|
Kaushik AM, Hsieh K, Mach KE, Lewis S, Puleo CM, Carroll KC, Liao JC, Wang T. Droplet-Based Single-Cell Measurements of 16S rRNA Enable Integrated Bacteria Identification and Pheno-Molecular Antimicrobial Susceptibility Testing from Clinical Samples in 30 min. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003419. [PMID: 33747737 PMCID: PMC7967084 DOI: 10.1002/advs.202003419] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/13/2020] [Indexed: 05/06/2023]
Abstract
Empiric broad-spectrum antimicrobial treatments of urinary tract infections (UTIs) have contributed to widespread antimicrobial resistance. Clinical adoption of evidence-based treatments necessitates rapid diagnostic methods for pathogen identification (ID) and antimicrobial susceptibility testing (AST) with minimal sample preparation. In response, a microfluidic droplet-based platform is developed for achieving both ID and AST from urine samples within 30 min. In this platform, fluorogenic hybridization probes are utilized to detect 16S rRNA from single bacterial cells encapsulated in picoliter droplets, enabling molecular identification of uropathogenic bacteria directly from urine in as little as 16 min. Moreover, in-droplet single-bacterial measurements of 16S rRNA provide a surrogate for AST, shortening the exposure time to 10 min for gentamicin and ciprofloxacin. A fully integrated device and screening workflow were developed to test urine specimens for one of seven unique diagnostic outcomes including the presence/absence of Gram-negative bacteria, molecular ID of the bacteriaas Escherichia coli, an Enterobacterales, or other organism, and assessment of bacterial susceptibility to ciprofloxacin. In a 50-specimen clinical comparison study, the platform demonstrates excellent performance compared to clinical standard methods (areas-under-curves, AUCs >0.95), within a small fraction of the turnaround time, highlighting its clinical utility.
Collapse
Affiliation(s)
| | - Kuangwen Hsieh
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Kathleen E. Mach
- Department of UrologyStanford University School of MedicineStanfordCA94305USA
| | - Shawna Lewis
- Division of Medical MicrobiologyDepartment of PathologyJohns Hopkins University School of MedicineBaltimoreMD21287USA
| | | | - Karen C. Carroll
- Division of Medical MicrobiologyDepartment of PathologyJohns Hopkins University School of MedicineBaltimoreMD21287USA
| | - Joseph C. Liao
- Department of UrologyStanford University School of MedicineStanfordCA94305USA
| | - Tza‐Huei Wang
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMD21287USA
| |
Collapse
|
95
|
Zhang C, Zheng T, Wang H, Chen W, Huang X, Liang J, Qiu L, Han D, Tan W. Rapid One-Pot Detection of SARS-CoV-2 Based on a Lateral Flow Assay in Clinical Samples. Anal Chem 2021; 93:3325-3330. [PMID: 33570399 PMCID: PMC7885334 DOI: 10.1021/acs.analchem.0c05059] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/05/2021] [Indexed: 01/01/2023]
Abstract
Rapid tests for pathogen identification and spread assessment are critical for infectious disease control and prevention. The control of viral outbreaks requires a nucleic acid diagnostic test that is sensitive and simple and delivers fast and reliable results. Here, we report a one-pot direct reverse transcript loop-mediated isothermal amplification (RT-LAMP) assay of SARS-CoV-2 based on a lateral flow assay in clinical samples. The entire contiguous sample-to-answer workflow takes less than 40 min from a clinical swab sample to a diagnostic result without professional instruments and technicians. The assay achieved an accuracy of 100% in 12 synthetic and 12 clinical samples compared to the data from PCR-based assays. We anticipate that our method will provide a universal platform for rapid and point-of-care detection of emerging infectious diseases.
Collapse
Affiliation(s)
- Chao Zhang
- Institute
of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid
Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and
Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Tingting Zheng
- Institute
of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid
Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and
Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hua Wang
- Department
of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Chen
- Clinical
Laboratory, Central Hospital of Loudi, Loudi, Hunan 417099, China
| | - Xiaoye Huang
- Clinical
Laboratory, Central Hospital of Loudi, Loudi, Hunan 417099, China
| | - Jianqi Liang
- Clinical
Laboratory, Central Hospital of Loudi, Loudi, Hunan 417099, China
| | - Liping Qiu
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Da Han
- Institute
of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid
Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and
Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Weihong Tan
- Institute
of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid
Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and
Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Institute
of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy
of Sciences, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
96
|
Lee WB, Chien CC, You HL, Kuo FC, Lee MS, Lee GB. Rapid antimicrobial susceptibility tests on an integrated microfluidic device for precision medicine of antibiotics. Biosens Bioelectron 2020; 176:112890. [PMID: 33349537 DOI: 10.1016/j.bios.2020.112890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 01/07/2023]
Abstract
This study reports an integrated microfluidic device that was capable of executing rapid antimicrobial susceptibility tests with one, two, or even three antibiotics against two clinically isolated multi-drug-resistant bacteria strains (including carbapenem-resistant Escherichia coli and methicillin-resistant Staphylococcus aureus). Bacteria were automatically mixed for 10 min with serially diluted antibiotics with a novel, membrane-type micromixer consisting of two circular micropumps, and the minimum inhibitory concentrations (MIC) were then determined via simple colorimetric reactions in only 4.5-6 h using only 3 μL of bacteria sample of each reaction (as opposed to 24 h and 50 μL, respectively, with the conventional broth micro-dilution method). In addition to determining MICs of antibiotics (ceftazidime, gentamicin, meropenem, vancomycin and linezolid), interaction effects across antibiotics combinations (gentamicin/meropenem or ceftazidime/gentamicin/meropenem) at different dosages were explored. The efficacy of polypharmacy showed additivity when gentamicin or ceftazidime/gentamicin were combined with meropenem to treat carbapenem-resistant Escherichia coli. This represents the first time that the perplexing clinical decision to choose multiple antibiotics for combination therapy against drug resistant bacteria can be realized on an integrated microfluidic device within 6 h.
Collapse
Affiliation(s)
- Wen-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chun-Chih Chien
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung, 83301, Taiwan
| | - Huey-Ling You
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung, 83301, Taiwan
| | - Feng-Chih Kuo
- Department of Orthopaedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung, 83301, Taiwan
| | - Mel S Lee
- Department of Orthopaedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, Kaohsiung, 83301, Taiwan.
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
97
|
Affordable automated phenotypic antibiotic susceptibility testing method based on a contactless conductometric sensor. Sci Rep 2020; 10:21216. [PMID: 33277561 PMCID: PMC7718250 DOI: 10.1038/s41598-020-77938-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/11/2020] [Indexed: 11/08/2022] Open
Abstract
User-friendly phenotypic antibiotic susceptibility testing (AST) methods are urgently needed in many fields including clinical medicine, epidemiological studies and drug research. Herein, we report a convenient and cost-effective phenotypic AST method based on online monitoring bacterial growth with a developed 8-channel contactless conductometric sensor (CCS). Using E. coli and V. parahaemolyticus as microorganism models, as well as enoxacin, florfenicol, ampicillin, kanamycin and sulfadiazine as antibiotic probes. The minimum inhibitory concentration (MIC) determination was validated in comparison with standard broth microdilution (BMD) assay. The total essential agreements between the CCS AST assays and the reference BMD AST assays are 68.8–92.3%. The CCS has an approximate price of $9,000 (USD). Requiring neither chemical nor biotic auxiliary materials for the assay makes the cost of each sample < $1. The MICs obtained with the automated CCS AST assays are more precise than those obtained with the manual BMD. Moreover, in 72 percent of the counterpart, the MICs obtained with the CCS AST assays are higher than that obtained with the BMD AST assays. The proposed CCS AST method has advantages in affordability, accuracy, sensitivity and user-friendliness.
Collapse
|
98
|
Zhang F, Jiang J, McBride M, Yang Y, Mo M, Iriya R, Peterman J, Jing W, Grys T, Haydel SE, Tao N, Wang S. Direct Antimicrobial Susceptibility Testing on Clinical Urine Samples by Optical Tracking of Single Cell Division Events. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004148. [PMID: 33252191 PMCID: PMC7770081 DOI: 10.1002/smll.202004148] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/13/2020] [Indexed: 05/13/2023]
Abstract
With the increasing prevalence of antibiotic resistance, the need to develop antimicrobial susceptibility testing (AST) technologies is urgent. The current challenge has been to perform the antibiotic susceptibility testing in short time, directly with clinical samples, and with antibiotics over a broad dynamic range of clinically relevant concentrations. Here, a technology for point-of-care diagnosis of antimicrobial-resistant bacteria in urinary tract infections, by imaging the clinical urine samples directly with an innovative large volume solution scattering imaging (LVSi) system and analyzing the image sequences with a single-cell division tracking method is developed. The high sensitivity of single-cell division tracking associated with large volume imaging enables rapid antibiotic susceptibility testing directly on the clinical urine samples. The results demonstrate direct detection of bacterial infections in 60 clinical urine samples with a 60 min LVSi video, and digital AST of 30 positive clinical samples with 100% categorical agreement with both the clinical culture results and the on-site agar plating validation results. This technology provides opportunities for precise antibiotic prescription and proper treatment of the patient within a single clinic visit.
Collapse
Affiliation(s)
- Fenni Zhang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
| | - Jiapei Jiang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
- School of Biological and Health Systems Engineering, Tempe, Arizona 85287, USA
| | - Michelle McBride
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
| | - Yunze Yang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
| | - Manni Mo
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Rafael Iriya
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Joseph Peterman
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
| | - Wenwen Jing
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
| | - Thomas Grys
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, AZ 85054, USA
- Corresponding authors: Shaopeng Wang: , Shelley E. Haydel: , Thomas E. Grys:
| | - Shelley E. Haydel
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Corresponding authors: Shaopeng Wang: , Shelley E. Haydel: , Thomas E. Grys:
| | - Nongjian Tao
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, United States
- Corresponding authors: Shaopeng Wang: , Shelley E. Haydel: , Thomas E. Grys:
| | - Shaopeng Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ 85287, USA
- Corresponding authors: Shaopeng Wang: , Shelley E. Haydel: , Thomas E. Grys:
| |
Collapse
|
99
|
Thrift WJ, Ronaghi S, Samad M, Wei H, Nguyen DG, Cabuslay AS, Groome CE, Santiago PJ, Baldi P, Hochbaum AI, Ragan R. Deep Learning Analysis of Vibrational Spectra of Bacterial Lysate for Rapid Antimicrobial Susceptibility Testing. ACS NANO 2020; 14:15336-15348. [PMID: 33095005 DOI: 10.1021/acsnano.0c05693] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Rapid antimicrobial susceptibility testing (AST) is an integral tool to mitigate the unnecessary use of powerful and broad-spectrum antibiotics that leads to the proliferation of multi-drug-resistant bacteria. Using a sensor platform composed of surface-enhanced Raman scattering (SERS) sensors with control of nanogap chemistry and machine learning algorithms for analysis of complex spectral data, bacteria metabolic profiles post antibiotic exposure are correlated with susceptibility. Deep neural network models are able to discriminate the responses of Escherichia coli and Pseudomonas aeruginosa to antibiotics from untreated cells in SERS data in 10 min after antibiotic exposure with greater than 99% accuracy. Deep learning analysis is also able to differentiate responses from untreated cells with antibiotic dosages up to 10-fold lower than the minimum inhibitory concentration observed in conventional growth assays. In addition, analysis of SERS data using a generative model, a variational autoencoder, identifies spectral features in the P. aeruginosa lysate data associated with antibiotic efficacy. From this insight, a combinatorial dataset of metabolites is selected to extend the latent space of the variational autoencoder. This culture-free dataset dramatically improves classification accuracy to select effective antibiotic treatment in 30 min. Unsupervised Bayesian Gaussian mixture analysis achieves 99.3% accuracy in discriminating between susceptible versus resistant to antibiotic cultures in SERS using the extended latent space. Discriminative and generative models rapidly provide high classification accuracy with small sets of labeled data, which enormously reduces the amount of time needed to validate phenotypic AST with conventional growth assays. Thus, this work outlines a promising approach toward practical rapid AST.
Collapse
Affiliation(s)
- William John Thrift
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
| | - Sasha Ronaghi
- Sage Hill School, Newport Coast, California 92657, United States
| | - Muntaha Samad
- Department of Computer Science, University of California, Irvine, California 92697, United States
| | - Hong Wei
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
| | - Dean Gia Nguyen
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
| | | | - Chloe E Groome
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
| | - Peter Joseph Santiago
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
| | - Pierre Baldi
- Department of Computer Science, University of California, Irvine, California 92697, United States
| | - Allon I Hochbaum
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
- Department of Chemistry, University of California, Irvine, California 92617, United States
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Regina Ragan
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
| |
Collapse
|
100
|
Iseri E, Biggel M, Goossens H, Moons P, van der Wijngaart W. Digital dipstick: miniaturized bacteria detection and digital quantification for the point-of-care. LAB ON A CHIP 2020; 20:4349-4356. [PMID: 33169747 DOI: 10.1039/d0lc00793e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Established digital bioassay formats, digital PCR and digital ELISA, show extreme limits of detection, absolute quantification and high multiplexing capabilities. However, they often require complex instrumentation, and extensive off-chip sample preparation. In this study, we present a dipstick-format digital biosensor (digital dipstick) that detects bacteria directly from the sample liquid with a minimal number of steps: dip, culture, and count. We demonstrate the quantitative detection of Escherichia coli (E. coli) in urine in the clinically relevant range of 102-105 CFU ml-1 for urinary tract infections. Our format shows 89% sensitivity to detect E. coli in clinical urine samples (n = 28) when it is compared to plate culturing (gold standard). The significance and uniqueness of this diagnostic test format is that it allows a non-trained operator to detect urinary tract infections in the clinically relevant range in the home setting.
Collapse
Affiliation(s)
- Emre Iseri
- KTH Royal Institute of Technology, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|