51
|
Production of lycopene in the non-carotenoid-producing yeast Yarrowia lipolytica. Appl Environ Microbiol 2013; 80:1660-9. [PMID: 24375130 DOI: 10.1128/aem.03167-13] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The codon-optimized genes crtB and crtI of Pantoea ananatis were expressed in Yarrowia lipolytica under the control of the TEF1 promoter of Y. lipolytica. Additionally, the rate-limiting genes for isoprenoid biosynthesis in Y. lipolytica, GGS1 and HMG1, were overexpressed to increase the production of lycopene. All of the genes were also expressed in a Y. lipolytica strain with POX1 to POX6 and GUT2 deleted, which led to an increase in the size of lipid bodies and a further increase in lycopene production. Lycopene is located mainly within lipid bodies, and increased lipid body formation leads to an increase in the lycopene storage capacity of Y. lipolytica. Growth-limiting conditions increase the specific lycopene content. Finally, a yield of 16 mg g(-1) (dry cell weight) was reached in fed-batch cultures, which is the highest value reported so far for a eukaryotic host.
Collapse
|
52
|
Baadhe RR, Mekala NK, Parcha SR, Prameela Devi Y. Combination of ERG9 Repression and Enzyme Fusion Technology for Improved Production of Amorphadiene in Saccharomyces cerevisiae. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2013; 2013:140469. [PMID: 24282652 PMCID: PMC3826331 DOI: 10.1155/2013/140469] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/31/2013] [Accepted: 08/12/2013] [Indexed: 05/27/2023]
Abstract
The yeast strain (Saccharomyces cerevisiae) MTCC 3157 was selected for combinatorial biosynthesis of plant sesquiterpene amorpha-4,11-diene. Our main objective was to overproduce amorpha 4-11-diene, which is a key precursor molecule of artemisinin (antimalarial drug) produced naturally in plant Artemisia annua through mevalonate pathway. Farnesyl diphosphate (FPP) is a common intermediate metabolite of a variety of compounds in the mevalonate pathway of yeast and leads to the production of ergosterols, dolichol and ubiquinone, and so forth. In our studies, FPP converted to amorphadiene (AD) by expressing heterologous amorphadiene synthase (ADS) in yeast. First, ERG9 (squalane synthase) promoter of yeast was replaced with repressible methionine (MET3) promoter by using bipartite gene fusion method. Further to overcome the loss of the intermediate FPP through competitive pathways in yeast, fusion protein technology was adopted and farnesyldiphosphate synthase (FPPS) of yeast has been coupled with amorphadiene synthase (ADS) of plant origin (Artemisia annua L.) where amorphadiene production was improved by 2-fold (11.2 mg/L) and 4-fold (25.02 mg/L) in yeast strains YCF-002 and YCF-005 compared with control strain YCF-AD (5.5 mg/L), respectively.
Collapse
Affiliation(s)
- Rama Raju Baadhe
- Department of Biotechnology, National Institute of Technology, Warangal 506004, India
| | - Naveen Kumar Mekala
- Department of Biotechnology, National Institute of Technology, Warangal 506004, India
| | - Sreenivasa Rao Parcha
- Department of Biotechnology, National Institute of Technology, Warangal 506004, India
| | | |
Collapse
|
53
|
Yuan J, Ching CB. Combinatorial engineering of mevalonate pathway for improved amorpha-4,11-diene production in budding yeast. Biotechnol Bioeng 2013; 111:608-17. [PMID: 24122315 DOI: 10.1002/bit.25123] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/08/2013] [Accepted: 09/23/2013] [Indexed: 11/06/2022]
Abstract
Combinatorial genome integration of mevalonate pathway genes was performed with the aim of optimizing the metabolic flux for improved production of terpenoids in budding yeast. In the present study, we developed a novel δ-integration platform to achieve multiple genome integrations through modulating the concentration of antibiotics. By exploiting carotenoid biosynthesis as screening module, we successfully created a library of yeast colonies appeared with various intensities of orange color. As proof-of-concept that carotenoid overproducers could serve to boost the titer of other terpenoids, we further tested engineered strains for the production of amorpha-4,11-diene, an important precursor for antimalarial drug. However, we experienced some limitations of the carotenoid-based screening approach as it was only effective in detecting a small range of pathway activity improvement and further increasing mevalonate pathway activity led to a decreased orange color. By far, we were only able to obtain one mutant strain yielded more than 13-fold amorpha-4,11-diene over parental strains, which was approximately 64 mg/L of caryophyllene equivalents. Further qPCR studies confirmed that erg10, erg13, thmg1 and erg12 involved in mevalonate pathway were overexpressed in this mutant strain. We envision the current δ-integration platform would form the basis of a generalized technique for multiple gene integrations in yeast-a method that would be of significant interest to the metabolic engineering community.
Collapse
Affiliation(s)
- Jifeng Yuan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576, Singapore.
| | | |
Collapse
|
54
|
Wriessnegger T, Pichler H. Yeast metabolic engineering – Targeting sterol metabolism and terpenoid formation. Prog Lipid Res 2013; 52:277-93. [DOI: 10.1016/j.plipres.2013.03.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 12/28/2022]
|
55
|
Li Q, Sun Z, Li J, Zhang Y. Enhancing beta-carotene production inSaccharomyces cerevisiaeby metabolic engineering. FEMS Microbiol Lett 2013; 345:94-101. [DOI: 10.1111/1574-6968.12187] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 12/28/2022] Open
Affiliation(s)
| | | | | | - Yansheng Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture; Wuhan Botanical Garden; Chinese Academy of Sciences; Wuhan; China
| |
Collapse
|
56
|
Tamakawa H, Ikushima S, Yoshida S. Construction of a Candida utilis strain with ratio-optimized expression of xylose-metabolizing enzyme genes by cocktail multicopy integration method. J Biosci Bioeng 2013; 115:532-9. [DOI: 10.1016/j.jbiosc.2012.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 11/14/2012] [Accepted: 12/02/2012] [Indexed: 11/26/2022]
|
57
|
Kunigo M, Buerth C, Tielker D, Ernst JF. Heterologous protein secretion by Candida utilis. Appl Microbiol Biotechnol 2013; 97:7357-68. [PMID: 23613034 DOI: 10.1007/s00253-013-4890-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/26/2013] [Accepted: 03/31/2013] [Indexed: 10/26/2022]
Abstract
The yeast Candida utilis (also referred to as Torula) is used as a whole-cell food additive and as a recombinant host for production of intracellular molecules. Here, we report recombinant C. utilis strains secreting significant amounts of Candida antarctica lipase B (CalB). Native and heterologous secretion signals led to secretion of CalB into the growth medium; CalB was enzymatically active and it carried a short N-glycosyl chain lacking extensive mannosylation. Furthermore, CalB fusions to the C. utilis Gas1 cell wall protein led to effective surface display of enzymatically active CalB and of β-galactosidase. Secretory production in C. utilis was achieved using a novel set of expression vectors containing sat1 conferring nourseothricin resistance, which could be transformed into C. utilis, Pichia jadinii, Candida albicans, and Saccharomyces cerevisiae; C. utilis promoters including the constitutive TDH3 and the highly xylose-inducible GXS1 promoters allowed efficient gene expression. These results establish C. utilis as a promising host for the secretory production of proteins.
Collapse
Affiliation(s)
- Maya Kunigo
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Universitätsstrasse 1/26.12.01, 40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
58
|
Sonntag F, Schmidt I, Buchhaupt M, Schrader J. Effect of linoleic acids on the release of β-carotene from carotenoid-producing Saccharomyces cerevisiae into sunflower oil. J Mol Microbiol Biotechnol 2013; 23:233-8. [PMID: 23594478 DOI: 10.1159/000348578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In situ extraction is important for highly productive and cost-efficient processes in industrial biotechnology, but it is difficult to establish for intracellularly accumulating carotenoids like β-carotene. In this study, the organic solvent used in aqueous-organic two-phase media exerted a strong effect on the release of β-carotene from recombinant yeast cells. The carotenoid-synthesizing Saccharomyces cerevisiae strain YB/I/E was cultivated in two-liquid-phase media with 20% dodecane or 20% sunflower oil. Up to 0.6 µg/ml β-carotene was released into sunflower oil, but less than 0.1 µg/ml into dodecane, although biocompatibility and solubility of β-carotene is appropriate for both solvents. Addition of linoleic acid, the main component of sunflower oil, to the dodecane phase increased the amount of β-carotene released, indicating that linoleic acid is the component responsible for the β-carotene release into sunflower oil. These findings demonstrate that the effect of the organic solvent should be taken into consideration for further research on in situ extraction of carotenoids.
Collapse
Affiliation(s)
- Frank Sonntag
- DECHEMA Research Institute, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
59
|
Construction and utilization of carotenoid reporter systems: identification of chromosomal integration sites that support suitable expression of biosynthetic genes and pathways. Methods Mol Biol 2012; 892:219-43. [PMID: 22623306 DOI: 10.1007/978-1-61779-879-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
In order to metabolically engineer microorganisms to produce compounds of interest, it is often desirable to integrate foreign genes into the chromosome of the host. However, the consequences of these genetic alterations are not always predictable. The use of a reporter system can often assist in determining chromosomal locations for optimal expression of foreign biosynthetic genes. The method described here involves the construction and utilization of promoterless carotenoid transposons, which provides a colorimetric screen for identifying the best chromosomal integration sites for the expression of the genes of interest. The transposons (pUTmTn5::392W and pUTmTn5::392) contain the carotenoid genes required for the production of canthaxanthin and astaxanthin, respectively. Thus, when promoterless transposons insert into the host's genome, the color of the colonies will vary based on their chromosomal location. There is a correlation between the color intensity of the colonies and the expression of the carotenoid transposon. The transposon insertion site can be determined via direct chromosomal sequencing. This sequence information is used to guide the site-specific integration of biosynthetic genes and pathways of interest.
Collapse
|
60
|
High-level production of the industrial product lycopene by the photosynthetic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 2012; 78:7205-15. [PMID: 22865070 DOI: 10.1128/aem.00545-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biosynthesis of the major carotenoid spirilloxanthin by the purple nonsulfur bacterium Rhodospirillum rubrum is thought to occur via a linear pathway proceeding through phytoene and, later, lycopene as intermediates. This assumption is based solely on early chemical evidence (B. H. Davies, Biochem. J. 116:93-99, 1970). In most purple bacteria, the desaturation of phytoene, catalyzed by the enzyme phytoene desaturase (CrtI), leads to neurosporene, involving only three dehydrogenation steps and not four as in the case of lycopene. We show here that the chromosomal insertion of a kanamycin resistance cassette into the crtC-crtD region of the partial carotenoid gene cluster, whose gene products are responsible for the downstream processing of lycopene, leads to the accumulation of the latter as the major carotenoid. We provide spectroscopic and biochemical evidence that in vivo, lycopene is incorporated into the light-harvesting complex 1 as efficiently as the methoxylated carotenoids spirilloxanthin (in the wild type) and 3,4,3',4'-tetrahydrospirilloxanthin (in a crtD mutant), both under semiaerobic, chemoheterotrophic, and photosynthetic, anaerobic conditions. Quantitative growth experiments conducted in dark, semiaerobic conditions, using a growth medium for high cell density and high intracellular membrane levels, which are suitable for the conventional industrial production in the absence of light, yielded lycopene at up to 2 mg/g (dry weight) of cells or up to 15 mg/liter of culture. These values are comparable to those of many previously described Escherichia coli strains engineered for lycopene production. This study provides the first genetic proof that the R. rubrum CrtI produces lycopene exclusively as an end product.
Collapse
|
61
|
Araya-Garay JM, Ageitos JM, Vallejo JA, Veiga-Crespo P, Sánchez-Pérez A, Villa TG. Construction of a novel Pichia pastoris strain for production of xanthophylls. AMB Express 2012; 2:24. [PMID: 22534340 PMCID: PMC3485114 DOI: 10.1186/2191-0855-2-24] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 02/11/2012] [Indexed: 11/25/2022] Open
Abstract
In this study, we used the yeast carotenogenic producer Pichia pastoris Pp-EBIL strain, which has been metabolically engineered, by heterologously expressing β-carotene-pathway enzymes to produce β-carotene, as a vessel for recombinant astaxanthin expression. For this purpose, we designed new P. pastoris recombinant-strains harboring astaxanthin-encoding genes from carotenogenic microorganism, and thus capable of producing xanthophyllic compounds. We designed and constructed a plasmid (pGAPZA-WZ) containing both the β-carotene ketolase (crtW) and β-carotene hydroxylase (crtZ) genes from Agrobacterium aurantiacum, under the control of the GAP promoter and containing an AOX-1 terminator. The plasmid was then integrated into the P. pastoris Pp-EBIL strain genomic DNA, producing clone Pp-EBILWZ. The recombinant P. pastoris (Pp-EBILWZ) cells exhibited a strong reddish carotenoid coloration and were confirmed, by HPLC, to produce not only the previous described carotenoids lycopene and β-carotene, but also de novo synthesized astaxanthin.
Collapse
|
62
|
Siddiqui MS, Thodey K, Trenchard I, Smolke CD. Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools. FEMS Yeast Res 2012; 12:144-70. [PMID: 22136110 DOI: 10.1111/j.1567-1364.2011.00774.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 11/18/2011] [Accepted: 11/19/2011] [Indexed: 12/11/2022] Open
Abstract
Secondary metabolites are an important source of high-value chemicals, many of which exhibit important pharmacological properties. These valuable natural products are often difficult to synthesize chemically and are commonly isolated through inefficient extractions from natural biological sources. As such, they are increasingly targeted for production by biosynthesis from engineered microorganisms. The budding yeast species Saccharomyces cerevisiae has proven to be a powerful microorganism for heterologous expression of biosynthetic pathways. S. cerevisiae's usefulness as a host organism is owed in large part to the wealth of knowledge accumulated over more than a century of intense scientific study. Yet many challenges are currently faced in engineering yeast strains for the biosynthesis of complex secondary metabolite production. However, synthetic biology is advancing the development of new tools for constructing, controlling, and optimizing complex metabolic pathways in yeast. Here, we review how the coupling between yeast biology and synthetic biology is advancing the use of S. cerevisiae as a microbial host for the construction of secondary metabolic pathways.
Collapse
Affiliation(s)
- Michael S Siddiqui
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
63
|
Ye RW, Kelly K. Construction of carotenoid biosynthetic pathways through chromosomal integration in methane-utilizing bacterium Methylomonas sp. strain 16a. Methods Mol Biol 2012; 892:185-95. [PMID: 22623303 DOI: 10.1007/978-1-61779-879-5_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Methylomonas sp. strain 16a is an obligate methanotrophic bacterium that uses methane or methanol as the sole energy and carbon source. In order to engineer a stable strain to produce carotenoids, integration of genes or gene clusters in various nonessential locations in the chromosome is used. Construction of a canthaxanthin-producing strain involves the integration of canthaxanthin biosynthetic genes including the crtW gene for the β-carotenoid ketolase. Addition of the crtZ gene that encodes the β-carotenoid hydroxylase in this strain leads to the production of astaxanthin. Further increase in titer and yield for astaxanthin is obtained by integration of another set of astaxanthin biosynthetic gene cluster in a separate location of the chromosome.
Collapse
Affiliation(s)
- Rick W Ye
- DuPont Experimental Station, Wilmington, DE, USA.
| | | |
Collapse
|
64
|
Construction of new Pichia pastoris X-33 strains for production of lycopene and β-carotene. Appl Microbiol Biotechnol 2011; 93:2483-92. [DOI: 10.1007/s00253-011-3764-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 11/12/2011] [Accepted: 11/14/2011] [Indexed: 10/14/2022]
|
65
|
Lycopene production from synthetic medium by Blakeslea trispora NRRL 2895 (+) and 2896 (−) in a stirred-tank fermenter. Bioprocess Biosyst Eng 2011; 35:739-49. [DOI: 10.1007/s00449-011-0654-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 11/08/2011] [Indexed: 10/15/2022]
|
66
|
Wang JF, Liu XJ, Liu RS, Li HM, Tang YJ. Optimization of the mated fermentation process for the production of lycopene by Blakeslea trispora NRRL 2895 (+) and NRRL 2896 (−). Bioprocess Biosyst Eng 2011; 35:553-64. [DOI: 10.1007/s00449-011-0628-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 09/11/2011] [Indexed: 10/17/2022]
|
67
|
Cunningham FX, Gantt E. Elucidation of the pathway to astaxanthin in the flowers of Adonis aestivalis. THE PLANT CELL 2011; 23:3055-69. [PMID: 21862704 PMCID: PMC3180810 DOI: 10.1105/tpc.111.086827] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/18/2011] [Accepted: 07/28/2011] [Indexed: 05/18/2023]
Abstract
A few species in the genus Adonis are the only land plants known to produce the valuable red ketocarotenoid astaxanthin in abundance. Here, we ascertain the pathway that leads from the β-rings of β-carotene, a carotenoid ubiquitous in plants, to the 3-hydroxy-4-keto-β-rings of astaxanthin (3,3'-dihydroxy-β,β-carotene-4,4'-dione) in the blood-red flowers of Adonis aestivalis, an ornamental and medicinal plant commonly known as summer pheasant's eye. Two gene products were found to catalyze three distinct reactions, with the first and third reactions of the pathway catalyzed by the same enzyme. The pathway commences with the activation of the number 4 carbon of a β-ring in a reaction catalyzed by a carotenoid β-ring 4-dehydrogenase (CBFD), continues with the further dehydrogenation of this carbon to yield a carbonyl in a reaction catalyzed by a carotenoid 4-hydroxy-β-ring 4-dehydrogenase, and concludes with the addition of an hydroxyl group at the number 3 carbon in a reaction catalyzed by the erstwhile CBFD enzyme. The A. aestivalis pathway is both portable and robust, functioning efficiently in a simple bacterial host. Our elucidation of the pathway to astaxanthin in A. aestivalis provides enabling technology for development of a biological production process and reveals the evolutionary origin of this unusual plant pathway, one unrelated to and distinctly different from those used by bacteria, green algae, and fungi to synthesize astaxanthin.
Collapse
Affiliation(s)
- Francis X Cunningham
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA.
| | | |
Collapse
|
68
|
Peled E, Leu S, Zarka A, Weiss M, Pick U, Khozin-Goldberg I, Boussiba S. Isolation of a novel oil globule protein from the green alga Haematococcus pluvialis (Chlorophyceae). Lipids 2011; 46:851-61. [PMID: 21732215 DOI: 10.1007/s11745-011-3579-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
Abstract
Cytoplasmic oil globules of Haematococcus pluvialis (Chlorophyceae) were isolated and analyzed for pigments, lipids and proteins. Astaxanthin appeared to be the only pigment deposited in the globules. Triacyglycerols were the main lipids (more than 90% of total fatty acids) in both the cell-free extract and in the oil globules. Lipid profile analysis of the oil globules showed that relative to the cell-free extract, they were enriched with extraplastidial lipids. A fatty acids profile revealed that the major fatty acids in the isolated globules were oleic acid (18:1) and linoleic acid (18:2). Protein extracts from the globules revealed seven enriched protein bands, all of which were possible globule-associated proteins. A major 33-kDa globule protein was partially sequenced by MS/MS analysis, and degenerate DNA primers were prepared and utilized to clone its encoding gene from cDNA extracted from cells grown in a nitrogen depleted medium under high light. The sequence of this 275-amino acid protein, termed the Haematococcus Oil Globule Protein (HOGP), revealed partial homology with a Chlamydomonas reinhardtii oil globule protein and with undefined proteins from other green algae. The HOGP transcript was barely detectable in vegetative cells, but its level increased by more than 100 fold within 12 h of exposure to nitrogen depletion/high light conditions, which induced oil accumulation. HOGP is the first oil-globule-associated protein to be identified in H. pluvialis, and it is a member of a novel gene family that may be unique to green microalgae.
Collapse
Affiliation(s)
- Ehud Peled
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990, Sede boker campus, Israel
| | | | | | | | | | | | | |
Collapse
|
69
|
Buerth C, Heilmann CJ, Klis FM, de Koster CG, Ernst JF, Tielker D. Growth-dependent secretome of Candida utilis. MICROBIOLOGY-SGM 2011; 157:2493-2503. [PMID: 21680638 DOI: 10.1099/mic.0.049320-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recently, the food yeast Candida utilis has emerged as an excellent host for production of heterologous proteins. Since secretion of the recombinant product is advantageous for its purification, we characterized the secreted proteome of C. utilis. Cells were cultivated to the exponential or stationary growth phase, and the proteins in the medium were identified by MS. In parallel, a draft genome sequence of C. utilis strain DSM 2361 was determined by massively parallel sequencing. Comparisons of protein and coding sequences established that C. utilis is not a member of the CUG clade of Candida species. In total, we identified 37 proteins in the culture solution, 17 of which were exclusively present in the stationary phase, whereas three proteins were specific to the exponential growth phase. Identified proteins represented mostly carbohydrate-active enzymes associated with cell wall organization, while no proteolytic enzymes and only a few cytoplasmic proteins were detected. Remarkably, cultivation in xylose-based medium generated a protein pattern that diverged significantly from glucose-grown cells, containing the invertase Inv1 as the major extracellular protein, particularly in its highly glycosylated S-form (slow-migrating). Furthermore, cultivation without ammonium sulfate induced the secretion of the asparaginase Asp3. Comparisons of the secretome of C. utilis with those of Kluyveromyces lactis and Pichia pastoris, as well as with those of the human fungal pathogens Candida albicans and Candida glabrata, revealed a conserved set of 10 and six secretory proteins, respectively.
Collapse
Affiliation(s)
- Christoph Buerth
- Molecular Mycology, Heinrich-Heine-University, Duesseldorf, Universitaetsstraße 1, 40225 Duesseldorf, Germany
| | - Clemens J Heilmann
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Frans M Klis
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Chris G de Koster
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Joachim F Ernst
- Molecular Mycology, Heinrich-Heine-University, Duesseldorf, Universitaetsstraße 1, 40225 Duesseldorf, Germany
| | - Denis Tielker
- Molecular Mycology, Heinrich-Heine-University, Duesseldorf, Universitaetsstraße 1, 40225 Duesseldorf, Germany
| |
Collapse
|
70
|
Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol 2010; 89:555-71. [PMID: 21046372 DOI: 10.1007/s00253-010-2976-6] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 10/19/2010] [Accepted: 10/19/2010] [Indexed: 12/18/2022]
Abstract
The oxygenated β-carotene derivative astaxanthin exhibits outstanding colouring, antioxidative and health-promoting properties and is mainly found in the marine environment. To satisfy the growing demand for this ketocarotenoid in the feed, food and cosmetics industries, there are strong efforts to develop economically viable bioprocesses alternative to the current chemical synthesis. However, up to now, natural astaxanthin from Haematococcus pluvialis, Phaffia rhodozyma or Paracoccus carotinifaciens has not been cost competitive with chemically synthesized astaxanthin, thus only serving niche applications. This review illuminates recent advances made in elucidating astaxanthin biosynthesis in P. rhodozyma. It intensely focuses on strategies to increase astaxanthin titers in the heterobasidiomycetous yeast by genetic engineering of the astaxanthin pathway, random mutagenesis and optimization of fermentation processes. This review emphasizes the potential of P. rhodozyma for the biotechnological production of astaxanthin in comparison to other natural sources such as the microalga H. pluvialis, other fungi and transgenic plants and to chemical synthesis.
Collapse
|
71
|
Lemoine Y, Schoefs B. Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. PHOTOSYNTHESIS RESEARCH 2010; 106:155-77. [PMID: 20706789 DOI: 10.1007/s11120-010-9583-3] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 07/05/2010] [Indexed: 05/03/2023]
Abstract
Under stressful environments, many green algae such as Haematococcus pluvialis accumulate secondary ketocarotenoids such as canthaxanthin and astaxanthin. The carotenogenesis, responsible for natural phenomena such as red snows, generally accompanies larger metabolic changes as well as morphological modifications, i.e., the conversion of the green flagellated macrozoids into large red cysts. Astaxanthin accumulation constitutes a convenient way to store energy and carbon, which will be used for further synthesis under less stressful conditions. Besides this, the presence of high amount of astaxanthin enhances the cell resistance to oxidative stress generated by unfavorable environmental conditions including excess light, UV-B irradiation, and nutrition stress and, therefore, confers a higher survival capacity to the cells. This better resistance results from the quenching of oxygen atoms for the synthesis itself as well as from the antioxidant properties of the astaxanthin molecules. Therefore, astaxanthin synthesis corresponds to a multifunctional response to stress. In this contribution, the various biochemical, genetic, and molecular data related to the biosynthesis of ketocarotenoids by Haematococcus pluvialis and other taxa are reviewed and compared. A tentative regulatory model of the biochemical network driving astaxanthin production is proposed.
Collapse
Affiliation(s)
- Yves Lemoine
- University Lille Nord de France, UMR 8187 LOG CNRS/University Lille 1, Bât SN2, 59655 Villeneuve d'Ascq Cedex, France
| | | |
Collapse
|
72
|
Moliné M, Flores MR, Libkind D, Diéguez MDC, Farías ME, van Broock M. Photoprotection by carotenoid pigments in the yeast Rhodotorula mucilaginosa: the role of torularhodin. Photochem Photobiol Sci 2010; 9:1145-51. [PMID: 20571712 DOI: 10.1039/c0pp00009d] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper we report the relationship between carotenoids and ergosterol and cell UV-B resistance in different strains of the yeast Rhodotorula mucilaginosa. Cell survival was studied using a set of 13 strains; additionally, two mutants (a hyper-producing one and a colourless one) in combination with diphenylamine (DPA), a carotenogenesis inhibitor, were used. A positive correlation between total carotenoids and survival to UV-B radiation was found. However, when individual carotenoid concentrations were tested, only torularhodin was found to be significantly related to UV-B survival. On the contrary, ergosterol did not affect survival. The hyper-pigmented strain showed an enhanced survival (up to 250%) compared to the parental strain, while the survival of the albino mutant was similar to that experienced by the parental strain; however, observed changes in survival were dose dependent. The cyclobutane pyrimidine dimers (CPDs), one of the major forms of DNA damage caused by UV exposure, appears as unrelated to the accumulation of carotenoids and cell survival. These results indicate that bearing higher torularhodin concentrations enhances UV-B survival in yeasts and, thus, the accumulation of this pigment constitutes an important mechanism that improves the resistance of yeasts to UV-B.
Collapse
Affiliation(s)
- Martín Moliné
- Laboratorio de Microbiología Aplicada y Biotecnología, Instituto de Investigaciones en Biodiversidad y Medio Ambiente, INIBIOMA (CONICET-UNComahue), Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina
| | | | | | | | | | | |
Collapse
|
73
|
Systems biology of industrial microorganisms. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 120:51-99. [PMID: 20503029 DOI: 10.1007/10_2009_59] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.
Collapse
|
74
|
|
75
|
Wei W, Hong-Lan Y, HuiFang B, Daoyuan Z, Qi-mu-ge S, Wood AJ. The effective expression of xylanase gene in Candida utilis by 18S rDNA targeted homologous recombination in pGLR9K. Mol Biol Rep 2009; 37:2615-20. [DOI: 10.1007/s11033-009-9786-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
76
|
Kim SW, Kim JB, Ryu JM, Jung JK, Kim JH. High-level production of lycopene in metabolically engineered E. coli. Process Biochem 2009. [DOI: 10.1016/j.procbio.2009.04.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
77
|
Certík M, Márová I, Hanusová V, Rapta P, Breierová E. Biotechnological Production and Properties of Carotenoid Pigments. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2009. [DOI: 10.1201/9781420077070.ch25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
78
|
Strobel I, Breitenbach J, Scheckhuber CQ, Osiewacz HD, Sandmann G. Carotenoids and carotenogenic genes in Podospora anserina: engineering of the carotenoid composition extends the life span of the mycelium. Curr Genet 2009; 55:175-84. [PMID: 19277665 DOI: 10.1007/s00294-009-0235-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 02/16/2009] [Accepted: 02/17/2009] [Indexed: 02/08/2023]
Abstract
Carotenoids have been identified in the fungus Podospora anserina and a parallel pathway to neurosporene and beta-carotene was established. Three genes for the beta-carotene branch have been cloned and their function elucidated. They correspond to the al-1, al-2 and al-3 genes from Neurospora crassa. They were individually and in combinations over-expressed in P. anserina in order to modify the carotenoid composition qualitatively and quantitatively. In the resulting transformants, carotenoid synthesis was up to eightfold increased and several intermediates of the pathway together with special cyclic carotenoids, beta-zeacarotene and 7,8-dihydro-beta-carotene, accumulated. All transformants with an over-expressed al-2 gene (encoding a phytoene synthase and a lycopene cyclase) displayed up to 31% prolonged life span.
Collapse
Affiliation(s)
- Ingmar Strobel
- Department of Biological Sciences and Cluster of Excellence Macromolecular Complexes, Institute of Molecular Biosciences, J. W. Goethe University, Frankfurt, Germany.
| | | | | | | | | |
Collapse
|
79
|
Choudhari SM, Singhal RS. Supercritical carbon dioxide extraction of lycopene from mated cultures of Blakeslea trispora NRRL 2895 and 2896. J FOOD ENG 2008. [DOI: 10.1016/j.jfoodeng.2008.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
80
|
Frengova GI, Beshkova DM. Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance. J Ind Microbiol Biotechnol 2008; 36:163-80. [PMID: 18982370 DOI: 10.1007/s10295-008-0492-9] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 10/14/2008] [Indexed: 10/21/2022]
Abstract
Carotenoids represent a group of valuable molecules for the pharmaceutical, chemical, food and feed industries, not only because they can act as vitamin A precursors, but also for their coloring, antioxidant and possible tumor-inhibiting activity. Animals cannot synthesize carotenoids, and these pigments must therefore be added to the feeds of farmed species. The synthesis of different natural commercially important carotenoids (beta-carotene, torulene, torularhodin and astaxanthin) by several yeast species belonging to the genera Rhodotorula and Phaffia has led to consider these microorganisms as a potential pigment sources. In this review, we discuss the biosynthesis, factors affecting carotenogenesis in Rhodotorula and Phaffia strains, strategies for improving the production properties of the strains and directions for potential utility of carotenoid-synthesizing yeast as a alternative source of natural carotenoid pigments.
Collapse
Affiliation(s)
- Ginka I Frengova
- Laboratory of Applied Microbiology, Institute of Microbiology, Bulgarian Academy of Sciences, 26 Maritza Blvd., 4002, Plovdiv, Bulgaria.
| | | |
Collapse
|
81
|
Pscheidt B, Glieder A. Yeast cell factories for fine chemical and API production. Microb Cell Fact 2008; 7:25. [PMID: 18684335 PMCID: PMC2628649 DOI: 10.1186/1475-2859-7-25] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 08/07/2008] [Indexed: 12/25/2022] Open
Abstract
This review gives an overview of different yeast strains and enzyme classes involved in yeast whole-cell biotransformations. A focus was put on the synthesis of compounds for fine chemical and API (= active pharmaceutical ingredient) production employing single or only few-step enzymatic reactions. Accounting for recent success stories in metabolic engineering, the construction and use of synthetic pathways was also highlighted. Examples from academia and industry and advances in the field of designed yeast strain construction demonstrate the broad significance of yeast whole-cell applications. In addition to Saccharomyces cerevisiae, alternative yeast whole-cell biocatalysts are discussed such as Candida sp., Cryptococcus sp., Geotrichum sp., Issatchenkia sp., Kloeckera sp., Kluyveromyces sp., Pichia sp. (including Hansenula polymorpha = P. angusta), Rhodotorula sp., Rhodosporidium sp., alternative Saccharomyces sp., Schizosaccharomyces pombe, Torulopsis sp., Trichosporon sp., Trigonopsis variabilis, Yarrowia lipolytica and Zygosaccharomyces rouxii.
Collapse
Affiliation(s)
- Beate Pscheidt
- Research Centre Applied Biocatalysis GmbH, Petersgasse 14/3, 8010 Graz, Austria.
| | | |
Collapse
|
82
|
Zhu YH, Jiang JG, Chen Q. Influence of daily collection and culture medium recycling on the growth and beta-carotene yield of Dunaliella salina. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:4027-4031. [PMID: 18461967 DOI: 10.1021/jf8004417] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The halophilic green alga Dunaliella salina has the potential to be cultivated for beta-carotene-rich biomass, however, open-air systems need to be further improved in order to become more competitive and more economical, rather than leave the major beta-carotene consuming market derived from artificially synthesis. A set of daily collection ratios was designed and scaled up with the aim to harvest cell biomass and beta-carotene from D. salina at logarithmic phase; the yields were comparable to the normal culture without daily removal of culture. Daily collection of 1/7.5 volume of algal culture was found to be appropriate to keep the balance between the cell biomass and beta-carotene accumulation. Light intensity as one of the important factors would affect both cell growth and beta-carotene content synchronously. Further, the method of recycling 1/7.5 volume of culture after removal of algae cells was developed in order to decrease input cost for the effective production of beta-carotene, and both the resulting yields of the cell biomass and beta-carotene gained an advantage over those from the normal D. salina culture.
Collapse
Affiliation(s)
- Yue-Hui Zhu
- College of Food and Bioengineering, South China University of Technology, Guangzhou, China
| | | | | |
Collapse
|
83
|
Ajikumar PK, Tyo K, Carlsen S, Mucha O, Phon TH, Stephanopoulos G. Terpenoids: Opportunities for Biosynthesis of Natural Product Drugs Using Engineered Microorganisms. Mol Pharm 2008; 5:167-90. [DOI: 10.1021/mp700151b] [Citation(s) in RCA: 311] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Parayil Kumaran Ajikumar
- Department of Chemical Engineering, Room 56-469, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Chemical and Pharmaceutical Engineering, Singapore−MIT Alliance, 4 Engineering Drive 3, Singapore 117 576
| | - Keith Tyo
- Department of Chemical Engineering, Room 56-469, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Chemical and Pharmaceutical Engineering, Singapore−MIT Alliance, 4 Engineering Drive 3, Singapore 117 576
| | - Simon Carlsen
- Department of Chemical Engineering, Room 56-469, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Chemical and Pharmaceutical Engineering, Singapore−MIT Alliance, 4 Engineering Drive 3, Singapore 117 576
| | - Oliver Mucha
- Department of Chemical Engineering, Room 56-469, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Chemical and Pharmaceutical Engineering, Singapore−MIT Alliance, 4 Engineering Drive 3, Singapore 117 576
| | - Too Heng Phon
- Department of Chemical Engineering, Room 56-469, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Chemical and Pharmaceutical Engineering, Singapore−MIT Alliance, 4 Engineering Drive 3, Singapore 117 576
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Room 56-469, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Chemical and Pharmaceutical Engineering, Singapore−MIT Alliance, 4 Engineering Drive 3, Singapore 117 576
| |
Collapse
|
84
|
Identification of an alternative translation initiation site for the Pantoea ananatis lycopene cyclase (crtY) gene in E. coli and its evolutionary conservation. Protein Expr Purif 2007; 58:23-31. [PMID: 18096401 DOI: 10.1016/j.pep.2007.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2007] [Revised: 11/05/2007] [Accepted: 11/12/2007] [Indexed: 11/20/2022]
Abstract
Previous sequence analyses of the lycopene cyclase gene (crt Y) from Pantoea ananatis revealed that translation of its protein product in Escherichia coli began at the ATG start codon. We found, however, that this enzyme could also be produced in E. coli without the ATG start codon present. Results of experiments using crt Y mutants revealed that a GTG (Val) sequence, located in-frame and 24 bp downstream of the ATG, could act as a potential start codon. Additionally, a point-mutated GTA (Val), replaced from alternative GTG start codon, also displayed its potential as a start codon although the strength as a translation initiation codon was considerably weak. This finding suggests that non-ATG codons, especially one base pairing with the anticodon (3'-UAC-5') in fMet-tRNA, might be also able to function as start codon in translation process. Furthermore, amino acid sequence alignment of lycopene cyclases from different sources suggested that a Val residue located within the N-terminus of these enzymes might be used as an alternative translation initiation site. In particular, presence of a conserved Asp, located in-frame and 12 bp upstream of potential start codon, supports this assumption in view of the fact that Asp (GAT or GAC) can function as part of the Shine-Dalgano sequence (AGGAGG).
Collapse
|
85
|
Verwaal R, Wang J, Meijnen JP, Visser H, Sandmann G, van den Berg JA, van Ooyen AJJ. High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 2007; 73:4342-50. [PMID: 17496128 PMCID: PMC1932764 DOI: 10.1128/aem.02759-06] [Citation(s) in RCA: 259] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To determine whether Saccharomyces cerevisiae can serve as a host for efficient carotenoid and especially beta-carotene production, carotenogenic genes from the carotenoid-producing yeast Xanthophyllomyces dendrorhous were introduced and overexpressed in S. cerevisiae. Because overexpression of these genes from an episomal expression vector resulted in unstable strains, the genes were integrated into genomic DNA to yield stable, carotenoid-producing S. cerevisiae cells. Furthermore, carotenoid production levels were higher in strains containing integrated carotenogenic genes. Overexpression of crtYB (which encodes a bifunctional phytoene synthase and lycopene cyclase) and crtI (phytoene desaturase) from X. dendrorhous was sufficient to enable carotenoid production. Carotenoid production levels were increased by additional overexpression of a homologous geranylgeranyl diphosphate (GGPP) synthase from S. cerevisiae that is encoded by BTS1. Combined overexpression of crtE (heterologous GGPP synthase) from X. dendrorhous with crtYB and crtI and introduction of an additional copy of a truncated 3-hydroxy-3-methylglutaryl-coenzyme A reductase gene (tHMG1) into carotenoid-producing cells resulted in a successive increase in carotenoid production levels. The strains mentioned produced high levels of intermediates of the carotenogenic pathway and comparable low levels of the preferred end product beta-carotene, as determined by high-performance liquid chromatography. We finally succeeded in constructing an S. cerevisiae strain capable of producing high levels of beta-carotene, up to 5.9 mg/g (dry weight), which was accomplished by the introduction of an additional copy of crtI and tHMG1 into carotenoid-producing yeast cells. This transformant is promising for further development toward the biotechnological production of beta-carotene by S. cerevisiae.
Collapse
Affiliation(s)
- René Verwaal
- Fungal Genomics, Laboratory of Microbiology, Wageningen University, Dreijenlaan 2, Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
86
|
Sharpe PL, Dicosimo D, Bosak MD, Knoke K, Tao L, Cheng Q, Ye RW. Use of transposon promoter-probe vectors in the metabolic engineering of the obligate methanotroph Methylomonas sp. strain 16a for enhanced C40 carotenoid synthesis. Appl Environ Microbiol 2007; 73:1721-8. [PMID: 17261513 PMCID: PMC1828837 DOI: 10.1128/aem.01332-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recent expansion of genetic and genomic tools for metabolic engineering has accelerated the development of microorganisms for the industrial production of desired compounds. We have used transposable elements to identify chromosomal locations in the obligate methanotroph Methylomonas sp. strain 16a that support high-level expression of genes involved in the synthesis of the C(40) carotenoids canthaxanthin and astaxanthin. with three promoterless carotenoid transposons, five chromosomal locations-the fliCS, hsdM, ccp-3, cysH, and nirS regions-were identified. Total carotenoid synthesis increased 10- to 20-fold when the carotenoid gene clusters were inserted at these chromosomal locations compared to when the same carotenoid gene clusters were integrated at neutral locations under the control of the promoter for the gene conferring resistance to chloramphenicol. A chromosomal integration system based on sucrose lethality was used to make targeted gene deletions or site-specific integration of the carotenoid gene cluster into the Methylomonas genome without leaving genetic scars in the chromosome from the antibiotic resistance genes that are present on the integration vector. The genetic approaches described in this work demonstrate how metabolic engineering of microorganisms, including the less-studied environmental isolates, can be greatly enhanced by identifying integration sites within the chromosome of the host that permit optimal expression of the target genes.
Collapse
Affiliation(s)
- Pamela L Sharpe
- E. I. DuPont de Nemours Inc. Experimental Station, E328/B49, Wilmington, DE 19880-0328, USA.
| | | | | | | | | | | | | |
Collapse
|
87
|
Raja R, Hemaiswarya S, Rengasamy R. Exploitation of Dunaliella for beta-carotene production. Appl Microbiol Biotechnol 2007; 74:517-23. [PMID: 17225103 DOI: 10.1007/s00253-006-0777-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 11/19/2006] [Accepted: 11/19/2006] [Indexed: 12/01/2022]
Abstract
Halotolerant microalga Dunaliella, which is exploited for the production of dried biomass or cell extract, is used as a medicinal food. With the advancement in this field in recent years, the production of bio-organic compounds such as beta-carotene is established in many countries. Large-scale production of beta-carotene is controlled by numerous stress factors like high light intensity, high salinity, temperature and availability of nutrients. The state-of-the-art strategies in industries in closed systems under new set of inductive factors will additionally promote the ease of commercial production of beta-carotene. This review mainly focuses on the different methodologies employed recently for the optimum production of beta-carotene from Dunaliella species.
Collapse
Affiliation(s)
- R Raja
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, 600 025, India.
| | | | | |
Collapse
|
88
|
Ye RW, Yao H, Stead K, Wang T, Tao L, Cheng Q, Sharpe PL, Suh W, Nagel E, Arcilla D, Dragotta D, Miller ES. Construction of the astaxanthin biosynthetic pathway in a methanotrophic bacterium Methylomonas sp. strain 16a. J Ind Microbiol Biotechnol 2007; 34:289-99. [PMID: 17205350 DOI: 10.1007/s10295-006-0197-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 12/05/2006] [Indexed: 11/28/2022]
Abstract
Methylomonas sp. strain 16a is an obligate methanotrophic bacterium that uses methane or methanol as the sole carbon source. An effort was made to engineer this organism for astaxanthin production. Upon expressing the canthaxanthin gene cluster under the control of the native hps promoter in the chromosome, canthaxanthin was produced as the main carotenoid. Further conversion to astaxanthin was carried out by expressing different combinations of crtW and crtZ genes encoding the beta-carotenoid ketolase and hydroxylase. The carotenoid intermediate profile was influenced by the copy number of these two genes under the control of the hps promoter. Expression of two copies of crtZ and one copy of crtW led to the accumulation of a large amount of the mono-ketolated product adonixanthin. On the other hand, expression of two copies of crtW and one copy of crtZ resulted in the presence of non-hydroxylated carotenoid canthaxanthin and the mono-hydroxylated adonirubin. Production of astaxanthin as the predominant carotenoid was obtained in a strain containing two complete sets of carotenoid biosynthetic genes. This strain had an astaxanthin titer ranging from 1 to 2.4 mg g(-1) of dry cell biomass depending on the growth conditions. More than 90% of the total carotenoid was astaxanthin, of which the majority was in the form of E-isomer. This result indicates that it is possible to produce astaxanthin with desirable properties in methanotrophs through genetic engineering.
Collapse
Affiliation(s)
- Rick W Ye
- DuPont Central Research and Development, E328/148B Experimental Station, Route 141, Henry Clay Rd., Wilmington, DE 19880, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Asadollahi MA, Maury J, Møller K, Nielsen KF, Schalk M, Clark A, Nielsen J. Production of plant sesquiterpenes inSaccharomyces cerevisiae: Effect ofERG9 repression on sesquiterpene biosynthesis. Biotechnol Bioeng 2007; 99:666-77. [PMID: 17705244 DOI: 10.1002/bit.21581] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The yeast Saccharomyces cerevisiae was chosen as a microbial host for heterologous biosynthesis of three different plant sesquiterpenes, namely valencene, cubebol, and patchoulol. The volatility and low solubility of the sesquiterpenes were major practical problems for quantification of the excreted sesquiterpenes. In situ separation of sesquiterpenes in a two-phase fermentation using dodecane as the secondary phase was therefore performed in order to enable quantitative evaluation of different strains. In order to enhance the availability of the precursor for synthesis of sesquiterpenes, farnesyl diphosphate (FPP), the ERG9 gene which is responsible for conversion of FPP to squalene was downregulated by replacing the native ERG9 promoter with the regulatable MET3 promoter combined with addition of 2 mM methionine to the medium. This strategy led to a reduced ergosterol content of the cells and accumulation of FPP derived compounds like target sesquiterpenes and farnesol. Adjustment of the methionine level during fermentations prevented relieving MET3 promoter repression and resulted in further improved sesquiterpene production. Thus, the final titer of patchoulol and farnesol in the ERG9 downregulated strain reached 16.9 and 20.2 mg/L, respectively. The results obtained in this study revealed the great potential of yeast as a cell factory for production of sesquiterpenes.
Collapse
Affiliation(s)
- Mohammad A Asadollahi
- Center for Microbial Biotechnology, BioCentrum-DTU, Building 223, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | | | | | | | | | | | | |
Collapse
|
90
|
Julsing MK, Koulman A, Woerdenbag HJ, Quax WJ, Kayser O. Combinatorial biosynthesis of medicinal plant secondary metabolites. ACTA ACUST UNITED AC 2006; 23:265-79. [PMID: 17049920 DOI: 10.1016/j.bioeng.2006.08.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 08/10/2006] [Accepted: 08/14/2006] [Indexed: 11/23/2022]
Abstract
Combinatorial biosynthesis is a new tool in the generation of novel natural products and for the production of rare and expensive natural products. The basic concept is combining metabolic pathways in different organisms on a genetic level. As a consequence heterologous organisms provide precursors from their own primary and secondary metabolism that are metabolised to the desired secondary product due to the expression of foreign genes. In this review we discuss the possibilities and limitations of combining genes from different organisms and the expression of heterologous genes. Major focuses are fundamentals of the genetic work, used expression systems and latest progress in this field. Combinatorial biosynthesis is discussed for important classes of natural products, including alkaloids (vinblastine, vincristine), terpenoids (artemisinin, paclitaxel) and flavonoids. The role and importance of today's used host organisms is critically described, and the latest approaches discussed to give an outlook for future trends and possibilities.
Collapse
Affiliation(s)
- Mattijs K Julsing
- Department of Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
91
|
Ye RW, Stead KJ, Yao H, He H. Mutational and functional analysis of the beta-carotene ketolase involved in the production of canthaxanthin and astaxanthin. Appl Environ Microbiol 2006; 72:5829-37. [PMID: 16957201 PMCID: PMC1563626 DOI: 10.1128/aem.00918-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biosynthesis of the commercial carotenoids canthaxanthin and astaxanthin requires beta-carotene ketolase. The functional importance of the conserved amino acid residues of this enzyme from Paracoccus sp. strain N81106 (formerly classified as Agrobacterium aurantiacum) was analyzed by alanine-scanning mutagenesis. Mutations in the three highly conserved histidine motifs involved in iron coordination abolished its ability to catalyze the formation of ketocarotenoids. This supports the hypothesis that the CrtW ketolase belongs to the family of iron-dependent integral membrane proteins. Most of the mutations generated at other highly conserved residues resulted in partial activity. All partially active mutants showed a higher amount of adonixanthin accumulation than did the wild type when expressed in Escherichia coli cells harboring the zeaxanthin biosynthetic gene cluster. Some of the partially active mutants also produced a significant amount of echinenone when expressed in cells producing beta-carotene. In fact, expression of a mutant carrying D117A resulted in the accumulation of echinenone as the predominant carotenoid. These observations indicate that partial inactivation of the CrtW ketolase can often lead to the production of monoketolated intermediates. In order to improve the conversion rate of astaxanthin catalyzed by the CrtW ketolase, a color screening system was developed. Three randomly generated mutants, carrying L175M, M99V, and M99I, were identified to have improved activity. These mutants are potentially useful in pathway engineering for the production of astaxanthin.
Collapse
Affiliation(s)
- Rick W Ye
- DuPont Experimental Station, Route 141 and Henry Clay Road, Wilmington, DE 19880, USA.
| | | | | | | |
Collapse
|
92
|
Kim SW, Kim JB, Jung WH, Kim JH, Jung JK. Over-production of β-carotene from metabolically engineered Escherichia coli. Biotechnol Lett 2006; 28:897-904. [PMID: 16786275 DOI: 10.1007/s10529-006-9023-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 02/24/2006] [Accepted: 02/27/2006] [Indexed: 10/24/2022]
Abstract
To produce recombinant beta-carotene in vitro, synthetic operons encoding genes governing its biosynthesis were engineered into Escherichia coli. Constructs harboring these operons were introduced into either a high-copy or low-copy cloning vector. beta-Carotene production from these recombinant E. coli cells was either constitutive or inducible depending upon plasmid copy number. The most efficient beta-carotene production was with the low-copy based vector. The process was increased incrementally from a 5 l to a 50 l fermentor and finally into a 300 l fermentor. The maximal beta-carotene yields achieved using the 50 l and 300 l fermentor were 390 mg l(-1) and 240 mg l(-1), respectively, with overall productivities of 7.8 mg l(-1) h(-1) and 4.8 mg l(-1) h(-1).
Collapse
Affiliation(s)
- Sung-Woo Kim
- AceBiotech Co Ltd, No 114 Bio-Venture Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon, Korea
| | | | | | | | | |
Collapse
|
93
|
Dejong JM, Liu Y, Bollon AP, Long RM, Jennewein S, Williams D, Croteau RB. Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol Bioeng 2006; 93:212-24. [PMID: 16161138 DOI: 10.1002/bit.20694] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Baccatin III, an intermediate of Taxol biosynthesis and a useful precursor for semisynthesis of the anti-cancer drug, is produced in yew (Taxus) species by a sequence of 15 enzymatic steps from primary metabolism. Ten genes encoding enzymes of this extended pathway have been described, thereby permitting a preliminary attempt to reconstruct early steps of taxane diterpenoid (taxoid) metabolism in Saccharomyces cerevisiae as a microbial production host. Eight of these taxoid biosynthetic genes were functionally expressed in yeast from episomal vectors containing one or more gene cassettes incorporating various epitope tags to permit protein surveillance and differentiation of those pathway enzymes of similar size. All eight recombinant proteins were readily detected by immunoblotting using specific monoclonal antibodies and each expressed protein was determined to be functional by in vitro enzyme assay, although activity levels differed considerably between enzyme types. Using three plasmids carrying different promoters and selection markers, genes encoding five sequential pathway steps leading from primary isoprenoid metabolism to the intermediate taxadien-5alpha- acetoxy-10beta-ol were installed in a single yeast host. Metabolite analysis showed that yeast isoprenoid precursors could be utilized in the reconstituted pathway because products accumulated from the first two engineered pathway steps (leading to the committed intermediate taxadiene); however, a pathway restriction was encountered at the first cytochrome P450 hydroxylation step. The means of overcoming this limitation are described in the context of further development of this novel approach for production of Taxol precursors and related taxoids in yeast.
Collapse
|
94
|
Nishida Y, Adachi K, Kasai H, Shizuri Y, Shindo K, Sawabe A, Komemushi S, Miki W, Misawa N. Elucidation of a carotenoid biosynthesis gene cluster encoding a novel enzyme, 2,2'-beta-hydroxylase, from Brevundimonas sp. strain SD212 and combinatorial biosynthesis of new or rare xanthophylls. Appl Environ Microbiol 2005; 71:4286-96. [PMID: 16085816 PMCID: PMC1183362 DOI: 10.1128/aem.71.8.4286-4296.2005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A carotenoid biosynthesis gene cluster mediating the production of 2-hydroxyastaxanthin was isolated from the marine bacterium Brevundimonas sp. strain SD212 by using a common crtI sequence as the probe DNA. A sequence analysis revealed this cluster to contain 12 open reading frames (ORFs), including the 7 known genes, crtW, crtY, crtI, crtB, crtE, idi, and crtZ. The individual ORFs were functionally analyzed by complementation studies using Escherichia coli that accumulated various carotenoid precursors due to the presence of other bacterial crt genes. In addition to functionally identifying the known crt genes, we found that one (ORF11, named crtG) coded for a novel enzyme, carotenoid 2,2'-beta-hydroxylase, which showed intriguingly partial homology with animal sterol-C5-desaturase. When this crtG gene was introduced into E. coli accumulating zeaxanthin and canthaxanthin, the resulting transformants produced their 2-hydroxylated and 2,2'-dihydroxylated products which were structurally novel or rare xanthophylls, as determined by their nuclear magnetic resonance and high-performance liquid chromatography/photodiode array detector/atmospheric pressure chemical ionization mass spectrometry spectral data. The new carotenoid produced was suggested to have a strong inhibitory effect on lipid peroxidation.
Collapse
|
95
|
Choi SK, Nishida Y, Matsuda S, Adachi K, Kasai H, Peng X, Komemushi S, Miki W, Misawa N. Characterization of beta-carotene ketolases, CrtW, from marine bacteria by complementation analysis in Escherichia coli. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2005; 7:515-22. [PMID: 16007373 DOI: 10.1007/s10126-004-5100-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Accepted: 01/27/2005] [Indexed: 05/03/2023]
Abstract
A complementation analysis was performed in Escherichia coli to evaluate the efficiency of beta-carotene ketolases (CrtW) from the marine bacteria Brevundimonas sp. SD212, Paracoccus sp. PC1 (Alcaligenes PC-1), and Paracoccus sp. N81106 (Agrobacterium aurantiacum), for astaxanthin production. Each crtW gene was expressed in Escherichia coli synthesizing zeaxanthin due to the presence of plasmid pACCAR25DeltacrtX. Carotenoids that accumulated in the resulting E. coli transformants were examined by chromatographic and spectroscopic analyses. The transformant carrying the Paracoccus sp. PC1 or N81106 crtW gene accumulated high levels of adonixanthin, which is the final astaxanthin precursor for CrtW, and astaxanthin, while the E. coli transformant with crtW from Brevundimonas sp. SD212 did not accumulate any adonixanthin and produced a high level of astaxanthin. These results show efficient conversion by CrtW of Brevundimonas sp. SD212 from adonixanthin to astaxanthin, which is a new-found characteristic of a bacterial CrtW enzyme. The phylogenetic positions between CrtW of the two genera, Brevundimonas and Paracoccus, are distant, although they fall into alpha-Proteobacteria.
Collapse
Affiliation(s)
- Seon-kang Choi
- Laboratory of Applied Molecular Design, Marine Biotechnology Institute, Heita, Kamaishi-shi, Iwate 026-0001, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Maury J, Asadollahi MA, Møller K, Clark A, Nielsen J. Microbial Isoprenoid Production: An Example of Green Chemistry through Metabolic Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 100:19-51. [PMID: 16270655 DOI: 10.1007/b136410] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Saving energy, cost efficiency, producing less waste, improving the biodegradability of products, potential for producing novel and complex molecules with improved properties, and reducing the dependency on fossil fuels as raw materials are the main advantages of using biotechnological processes to produce chemicals. Such processes are often referred to as green chemistry or white biotechnology. Metabolic engineering, which permits the rational design of cell factories using directed genetic modifications, is an indispensable strategy for expanding green chemistry. In this chapter, the benefits of using metabolic engineering approaches for the development of green chemistry are illustrated by the recent advances in microbial production of isoprenoids, a diverse and important group of natural compounds with numerous existing and potential commercial applications. Accumulated knowledge on the metabolic pathways leading to the synthesis of the principal precursors of isoprenoids is reviewed, and recent investigations into isoprenoid production using engineered cell factories are described.
Collapse
Affiliation(s)
- Jérôme Maury
- Center for Microbial Biotechnology, BioCentrum-DTU, Building 223, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | | | | | | |
Collapse
|
97
|
Ralley L, Enfissi EMA, Misawa N, Schuch W, Bramley PM, Fraser PD. Metabolic engineering of ketocarotenoid formation in higher plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:477-86. [PMID: 15272869 DOI: 10.1111/j.1365-313x.2004.02151.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Although higher plants synthesize carotenoids, they do not possess the ability to form ketocarotenoids. In order to generate higher plants capable of synthesizing combinations of ketolated and hydroxylated carotenoids the genes responsible for the carotene 4,4' oxygenase and 3,3' hydroxylase have been transformed into tomato and tobacco. The gene products were produced as a polyprotein. Subsequent cleavage of the polyprotein, targeting of the two enzymes to the plastid and enzyme activities have been shown for both gene products. Metabolite profiling has shown the formation of ketolated carotenoids from beta-carotene and its hydroxylated intermediates in tobacco and tomato leaf. In the nectary tissues of tobacco flowers a quantitative increase (10-fold) as well as compositional changes were evident, including the presence of astaxanthin, canthaxanthin and 4-ketozeaxanthin. Interestingly, in this tissue the newly formed carotenoids resided predominantly as esters. These data are discussed in terms of metabolic engineering of carotenoids and their sequestration in higher plant tissues.
Collapse
Affiliation(s)
- Louise Ralley
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | | | | | | | | | | |
Collapse
|
98
|
Khosla C, Keasling JD. Metabolic engineering for drug discovery and development. Nat Rev Drug Discov 2004; 2:1019-25. [PMID: 14654799 DOI: 10.1038/nrd1256] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chaitan Khosla
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA.
| | | |
Collapse
|
99
|
Stålberg K, Lindgren O, Ek B, Höglund AS. Synthesis of ketocarotenoids in the seed of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 36:771-779. [PMID: 14675443 DOI: 10.1046/j.1365-313x.2003.01919.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A cDNA coding for a gene necessary for synthesis of ketocarotenoids was cloned from the alga Haematococcus pluvialis and expressed in the seed of Arabidopsis thaliana. The expression of the algal beta-carotene-oxygenase gene was directed to the seed by use of the 2S, seed storage protein promoter napA. Extracts from seeds of the transgenic plants were clearly red because of accumulation of ketocarotenoids, and free and esterified forms of ketocarotenoids were found in addition to the normal carotenoid composition in the seed. The major ketocarotenoids in the transgenic plants were: 4-keto-lutein (3,3'-dihydroxy-beta-,epsilon-carotene-4-one), adonirubin (3-hydroxy-beta-,beta'-carotene-4,4'-dione) and canthaxanthin (beta-,beta'-carotene-4,4'-dione). 4-Keto-lutein differs from the more common adonixanthin only in the position of one double bond. To increase the substrate availability for the beta-carotene-oxygenase, these transformants were crossed with transgenic plants overexpressing a construct of an endogenous phytoene synthase gene, also under the control of the napA promoter. The resulting crossings gave rise to seeds with a 4.6-fold relative increase of the total pigment, and the three major ketocarotenoids were increased 13-fold compared to seeds of transgenic plants carrying only the beta-carotene-oxygenase construct.
Collapse
Affiliation(s)
- Kjell Stålberg
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Science, Box 7080, 750 07 Uppsala, Sweden.
| | | | | | | |
Collapse
|
100
|
|