51
|
Oneschuk D. Progressive Multifocal Leuko-encephalopathy and Sporadic Creutzfeldt-Jakob Disease: A Review and Palliative Management in a Hospice Setting. PROGRESS IN PALLIATIVE CARE 2016. [DOI: 10.1080/09699260.2001.11746932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
52
|
The legacies of John F. Kurtzke and Richard T. Johnson. Nat Rev Neurol 2016. [DOI: 10.1038/nrneurol.2016.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
53
|
Simian Virus 40 Infection in the Spinal Cord of Simian Immunodeficiency Virus-Immunosuppressed Rhesus Macaques. J Neuropathol Exp Neurol 2016; 74:1071-6. [PMID: 26469249 DOI: 10.1097/nen.0000000000000252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is an often-fatal demyelinating disease of the CNS that usually develops in immunocompromised individuals because of reactivation of quiescent JC virus (JCV). There are only a few reports of JCV infection in the human spinal cord. Progressive multifocal leukoencephalopathy-like demyelinating lesions have been documented in the brains of simian immunodeficiency virus-infected macaques. To determine whether simian virus 40 (SV40) can infect and cause PML lesions in spinal cords of immunosuppressed macaques, we examined archival spinal cord samples from 15 simian immunodeficiency virus-infected rhesus monkeys with acquired immunodeficiency syndrome and SV40 infection of the brain. Among those, 6 (40%) had SV40-infected cells in the spinal cord, including 1 with PML-like lesions, 1 with PML-like lesions and meningoencephalitis, 2 with meningoencephalitis, 1 with gray matter gliosis, and 1 with no lesions. One animal with a large PML-like lesion had extensive demyelination and SV40 infection of astrocytes, oligodendrocytes, and meningeal cells. None of the 6 animals had SV40-infected spinal cord neurons. These observations indicate that, like JCV in immunosuppressed humans, SV40 can infect glial cells and cause PML-like lesions in the spinal cord of immunosuppressed rhesus macaques. Rhesus macaques could serve as an animal model to study polyomavirus infection and pathogenesis in the spinal cord.
Collapse
|
54
|
Kenyon LC, Biswas K, Shindler KS, Nabar M, Stout M, Hingley ST, Grinspan JB, Das Sarma J. Gliopathy of Demyelinating and Non-Demyelinating Strains of Mouse Hepatitis Virus. Front Cell Neurosci 2015; 9:488. [PMID: 26733813 PMCID: PMC4686739 DOI: 10.3389/fncel.2015.00488] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/02/2015] [Indexed: 11/24/2022] Open
Abstract
Demyelination in the central nervous system induced by neurovirulent strains of Mouse Hepatitis Virus (MHV) is mediated by the viral spike glycoprotein, but it is not clear whether the mechanism of this disease pathology involves direct viral infection of oligodendrocytes. Detailed studies of glial cell tropism of MHV are presented, demonstrating that direct MHV infection of oligodendrocytes differs between demyelinating (RSA59) and non-demyelinating (RSMHV2) viral strains both in vitro and in vivo. Our results indicate that direct injury of mature oligodendrocytes is an important mechanism of virus-induced demyelination. In vivo, RSA59 infection was identified in spinal cord gray and white matter, but infected oligodendrocytes were restricted to white matter. In contrast, RSMHV2 infection was restricted to gray matter neurons and was not localized to oligodendrocytes. In vitro, RSA59 can infect both oligodendrocyte precursors and differentiated oligodendrocytes, whereas RSMHV2 can infect oligodendrocyte precursors but not differentiated oligodendrocytes. Viral spreading through axonal means to white matter and release of the demyelinating strain MHV at the nerve end is critical for oligodendrocytes infection and subsequent demyelination. Understanding the mechanisms by which known viruses effect demyelination in this animal model has important therapeutic implications in the treatment of human demyelinating disease.
Collapse
Affiliation(s)
- Lawrence C Kenyon
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University Philadelphia, PA, USA
| | - Kaushiki Biswas
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, India
| | - Kenneth S Shindler
- Scheie Eye Institute and FM Kirby Center for Molecular Ophthalmology, University of Pennsylvania Philadelphia, PA, USA
| | - Manasi Nabar
- Department of Neurology, Thomas Jefferson University Philadelphia, PA, USA
| | - Marjorie Stout
- Department of Neurology, Thomas Jefferson University Philadelphia, PA, USA
| | - Susan T Hingley
- Department of Microbiology, Philadelphia College of Osteopathic Medicine Philadelphia, PA, USA
| | - Judith B Grinspan
- Department of Neurology, Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - Jayasri Das Sarma
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson UniversityPhiladelphia, PA, USA; Department of Biological Sciences, Indian Institute of Science Education and ResearchKolkata, India; Department of Neurology, Thomas Jefferson UniversityPhiladelphia, PA, USA
| |
Collapse
|
55
|
Wortman MJ, Lundberg PS, Dagdanova AV, Venkataraman P, Daniel DC, Johnson EM. Opportunistic DNA Recombination With Epstein-Barr Virus at Sites of Control Region Rearrangements Mediating JC Virus Neurovirulence. J Infect Dis 2015; 213:1436-43. [PMID: 26690342 DOI: 10.1093/infdis/jiv755] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/12/2015] [Indexed: 01/07/2023] Open
Abstract
We document a unique DNA recombination between polyomavirus JC (JC virus [JCV]) and Epstein-Barr virus (EBV) at sequences of JCV found infecting the brain. Archetype JCV is present in bone marrow and uroepithelial cells of most adults. During immunosuppression, JCV can infect the brain, causing a demyelinating disease, progressive multifocal leukoencephalopathy. Rearrangements in the archetype noncoding control region are necessary for neurovirulence. Two NCCR deletions and a duplication occur at sequences of homology with EBV, present latently in B cells, which may be coinfected with both viruses. Recombination between JCV and EBV occurs in B lymphoblasts at a sequence essential for JCV neurovirulence and in cerebrospinal fluid of immunosuppressed patients with multiple sclerosis, those susceptible to progressive multifocal leukoencephalopathy. Interviral recombination is a model for conferring advantages on JCV in the brain. It can alter a critical noncoding control region sequence and potentially facilitate use of EBV DNA abilities to transfer among different cell types.
Collapse
Affiliation(s)
- Margaret J Wortman
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk
| | - Patric S Lundberg
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk
| | - Ayuna V Dagdanova
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk
| | - Pranav Venkataraman
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk
| | - Dianne C Daniel
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk
| | - Edward M Johnson
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk
| |
Collapse
|
56
|
White MK, Gordon J, Berger JR, Khalili K. Animal Models for Progressive Multifocal Leukoencephalopathy. J Cell Physiol 2015; 230:2869-74. [PMID: 26041694 DOI: 10.1002/jcp.25047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/14/2015] [Indexed: 12/14/2022]
Abstract
Progressive multifocal leukoencephalopathy (PML) is a severe demyelinating disease of the CNS caused by the human polyomavirus JC (JCV). JCV replication occurs only in human cells and investigation of PML has been severely hampered by the lack of an animal model. The common feature of PML is impairment of the immune system. The key to understanding PML is working out the complex mechanisms that underlie viral entry and replication within the CNS and the immunosurveillance that suppresses the virus or allows it to reactivate. Early models involved the simple inoculation of JCV into animals such as monkeys, hamsters, and mice. More recently, mouse models transgenic for the gene encoding the JCV early protein, T-antigen, a protein thought to be involved in the disruption of myelin seen in PML, have been employed. These animal models resulted in tumorigenesis rather than demyelination. Another approach is to use animal polyomaviruses that are closely related to JCV but able to replicate in the animal such as mouse polyomavirus and SV40. More recently, novel models have been developed that involve the engraftment of human cells into the animal. Here, we review progress that has been made to establish an animal model for PML, the advances and limitations of different models and weigh future prospects.
Collapse
Affiliation(s)
- Martyn K White
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Jennifer Gordon
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Joseph R Berger
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
57
|
Bischel HN, Özel Duygan BD, Strande L, McArdell CS, Udert KM, Kohn T. Pathogens and pharmaceuticals in source-separated urine in eThekwini, South Africa. WATER RESEARCH 2015; 85:57-65. [PMID: 26302215 DOI: 10.1016/j.watres.2015.08.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/06/2015] [Accepted: 08/11/2015] [Indexed: 05/12/2023]
Abstract
In eThekwini, South Africa, the production of agricultural fertilizers from human urine collected from urine-diverting dry toilets is being evaluated at a municipality scale as a way to help finance a decentralized, dry sanitation system. The present study aimed to assess a range of human and environmental health hazards in source-separated urine, which was presumed to be contaminated with feces, by evaluating the presence of human pathogens, pharmaceuticals, and an antibiotic resistance gene. Composite urine samples from households enrolled in a urine collection trial were obtained from urine storage tanks installed in three regions of eThekwini. Polymerase chain reaction (PCR) assays targeted 9 viral and 10 bacterial human pathogens transmitted by the fecal-oral route. The most frequently detected viral pathogens were JC polyomavirus, rotavirus, and human adenovirus in 100%, 34% and 31% of samples, respectively. Aeromonas spp. and Shigella spp. were frequently detected gram negative bacteria, in 94% and 61% of samples, respectively. The gram positive bacterium, Clostridium perfringens, which is known to survive for extended times in urine, was found in 72% of samples. A screening of 41 trace organic compounds in the urine facilitated selection of 12 priority pharmaceuticals for further evaluation. The antibiotics sulfamethoxazole and trimethoprim, which are frequently prescribed as prophylaxis for HIV-positive patients, were detected in 95% and 85% of samples, reaching maximum concentrations of 6800 μg/L and 1280 μg/L, respectively. The antiretroviral drug emtricitabine was also detected in 40% of urine samples. A sulfonamide antibiotic resistance gene (sul1) was detected in 100% of urine samples. By coupling analysis of pathogens and pharmaceuticals in geographically dispersed samples in eThekwini, this study reveals a range of human and environmental health hazards in urine intended for fertilizer production. Collection of urine offers the benefit of sequestering contaminants from environmental release and allows for targeted treatment of potential health hazards prior to agricultural application. The efficacy of pathogen and pharmaceutical inactivation, transformation or removal during urine nutrient recovery processes is thus briefly reviewed.
Collapse
Affiliation(s)
- Heather N Bischel
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Birge D Özel Duygan
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Linda Strande
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Christa S McArdell
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Kai M Udert
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
58
|
Chattaraj S, Bera NK, Dutta C, Bhattacharjee S. Quantification of human polyomavirus JC virus load in urine and blood samples of healthy tribal populations of North-Eastern part of West Bengal, India. Indian J Med Microbiol 2015; 33:491-5. [DOI: 10.4103/0255-0857.167345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
59
|
Durali D, de Goër de Herve MG, Gasnault J, Taoufik Y. B cells and progressive multifocal leukoencephalopathy: search for the missing link. Front Immunol 2015; 6:241. [PMID: 26042124 PMCID: PMC4437032 DOI: 10.3389/fimmu.2015.00241] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/05/2015] [Indexed: 12/23/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a deadly demyelinating disease due to JC virus (JCV) replication in the brain. PML classically occurs in patients with severe immunodepression, and cases have recently been linked to therapeutic monoclonal antibodies such as natalizumab and also rituximab, which depletes B cells. B cells appear to play a complex role in the pathogenesis of PML. They may act as a viral reservoir and as a vector for viral dissemination in the central nervous system. Anti-JCV antibody responses appear to have a limited effect on JCV replication in the brain. However, accumulating evidence suggests that B cells may considerably influence T cell responses through their cytokine secretion. This immunomodulatory function of B cells may play an important role in the control of JCV infection and in the pathogenesis of PML, including rituximab-induced PML.
Collapse
Affiliation(s)
- Deniz Durali
- Immunology Research Laboratory, Department of Medical Microbiology, School of Medicine, Istanbul Medipol University , Istanbul , Turkey
| | | | - Jacques Gasnault
- IMVA-INSERM U1184, Department of Immunology, Bicetre Hospital, University Paris-sud , Le Kremlin-Bicêtre , France
| | - Yassine Taoufik
- IMVA-INSERM U1184, Department of Immunology, Bicetre Hospital, University Paris-sud , Le Kremlin-Bicêtre , France
| |
Collapse
|
60
|
Abstract
Monoclonal antibodies have become an important treatment option for a number of serious conditions. Concerns have arisen about the potential association of these products with progressive multifocal leukoencephalopathy (PML). A list of monoclonal antibodies authorized for sale was derived from the Health Canada Drug Product Database. Case reports of PML after exposure to a monoclonal antibody authorized for use in Canada were retrieved by searching Canada Vigilance and WHO adverse event databases and through a Pub MED/Medline literature search. 182 adverse event case reports were retrieved (adalimumab -1 case, alemtuzumab-14, bevacizumab -3, cetuximab -1, efalizumab - 8, ibritumomab tiuxetan-5, infliximab-4, natalizumab-32, and rituximab-114). The Canadian Product Monographs for natalizumab and ritiximab contain box warnings for PML. A natalizumab registry has been established.
Collapse
|
61
|
Abstract
JC virus (JCV) causes progressive multifocal leukoencephalopathy (PML), a demyelinating disease in humans. The disease, once considered fatal, is now managed with immune reconstitution therapy; however, surviving patients remain severely debilitated. Until now, there has been no animal model to study JCV in the brain, and research into treatment has relied on cell culture systems. In this issue of the JCI, Kondo and colleagues developed a mouse model in which human glial cells are engrafted into neonatal mice that are both immunodeficient and deficient for myelin basic protein. When challenged intracerebrally with JCV, these mice exhibit some of the characteristics of PML. The establishment of this chimeric mouse model is a significant advance toward understanding the mechanism of JCV pathogenesis and the identification of drugs to treat or prevent the disease.
Collapse
|
62
|
Schwab N, Schneider-Hohendorf T, Wiendl H. Therapeutic uses of anti-α4-integrin (anti-VLA-4) antibodies in multiple sclerosis. Int Immunol 2014; 27:47-53. [PMID: 25326459 DOI: 10.1093/intimm/dxu096] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is a disorder of putative autoimmune origin, where immune cells invade the central nervous system and cause damage by attacking the myelin sheath of nerve cells. The blockade of the integrin very late antigen-4 (VLA-4) with the monoclonal antibody natalizumab has become the most effective therapy against MS since its approval in 2004. It is assumed that the inhibition of VLA-4-mediated immune cell adhesion to the endothelium of the blood-brain barrier (BBB) alleviates pathogenic processes of MS and, therefore, reduces disease severity and burden. Not all approaches to treat additional immune-mediated disorders (e.g. Rasmussen encephalitis and neuromyelitis optica) with natalizumab have been successful, but allowed researchers to gain additional insight into mechanisms of specific immune cell subsets' migration through the BBB in the human system. While the long-term efficacy and general tolerability of natalizumab in MS are clear, the over 400 cases of natalizumab-associated progressive multifocal leukoencephalopathy (PML) have been of great concern and methods of risk stratification in patients have become a major area of research. Modern risk stratification includes established factors such as treatment duration, previous immune-suppressive therapy, and anti-John Cunningham virus (JCV) antibody seropositivity, but also experimental factors such as anti-JCV antibody titers and levels of L-selectin. Today, anti-VLA-4 therapy is reserved for patients with highly active relapsing-remitting MS and patients are monitored closely for early signs of potential PML.
Collapse
Affiliation(s)
- Nicholas Schwab
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | | | - Heinz Wiendl
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| |
Collapse
|
63
|
Shin J, Phelan PJ, Chhum P, Bashkenova N, Yim S, Parker R, Gagnon D, Gjoerup O, Archambault J, Bullock PA. Analysis of JC virus DNA replication using a quantitative and high-throughput assay. Virology 2014; 468-470:113-125. [PMID: 25155200 DOI: 10.1016/j.virol.2014.07.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/09/2014] [Accepted: 07/21/2014] [Indexed: 12/17/2022]
Abstract
Progressive Multifocal Leukoencephalopathy (PML) is caused by lytic replication of JC virus (JCV) in specific cells of the central nervous system. Like other polyomaviruses, JCV encodes a large T-antigen helicase needed for replication of the viral DNA. Here, we report the development of a luciferase-based, quantitative and high-throughput assay of JCV DNA replication in C33A cells, which, unlike the glial cell lines Hs 683 and U87, accumulate high levels of nuclear T-ag needed for robust replication. Using this assay, we investigated the requirement for different domains of T-ag, and for specific sequences within and flanking the viral origin, in JCV DNA replication. Beyond providing validation of the assay, these studies revealed an important stimulatory role of the transcription factor NF1 in JCV DNA replication. Finally, we show that the assay can be used for inhibitor testing, highlighting its value for the identification of antiviral drugs targeting JCV DNA replication.
Collapse
Affiliation(s)
- Jong Shin
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Paul J Phelan
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Panharith Chhum
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nazym Bashkenova
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Sung Yim
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Robert Parker
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - David Gagnon
- Institut de Recherches Cliniques de Montreal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Ole Gjoerup
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Jacques Archambault
- Institut de Recherches Cliniques de Montreal (IRCM), 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Peter A Bullock
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
64
|
Link A, Balaguer F, Nagasaka T, Boland CR, Goel A. MicroRNA miR-J1-5p as a potential biomarker for JC virus infection in the gastrointestinal tract. PLoS One 2014; 9:e100036. [PMID: 24932487 PMCID: PMC4059717 DOI: 10.1371/journal.pone.0100036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/20/2014] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION JC virus (JCV), a human polyomavirus that causes progressive multifocal leukoencephalopathy (PML), has been linked to colorectal cancer (CRC). However, determination of JCV infection and its role in carcinogenesis has been challenging, highlighting the need for better diagnostic strategies for this virus. JCV-specific microRNAs (miRNAs) were identified and shown to negatively regulate oncogenic JCV T-Ag. Herein, we determined the pattern of JCV miRNA expression in clinical specimens from healthy subjects and CRC patients. MATERIAL AND METHODS JCV miRNA expression was validated in CRC cell lines transfected with the JCV T-Ag. Results were confirmed using CRC tissues that were expressed T-Ag. Expression of JCV-specific miR-J1-5p was measured in fresh stool samples from healthy volunteers, and samples from fecal occult blood test kits from healthy subject, and patients with colorectal neoplasms. RESULTS JCV miR-J1-5p was detected in JCV-transfected, but not vector-transfected, CRC cells, and was stable between cell passages. MiR-J1-5p was present in all six JCV T-Ag+ CRC samples. Surprisingly, JCV miRNA was detectable in all normal tissues, but the expression was much lower in CRC tissues. Similarly, miR-J1-5p expression was present in all fecal samples, but expression was lower in CRCs compared to controls or adenoma patients. CONCLUSION JC virus-specific miR-J1-5p miRNA is a potential biomarker for viral infection, and the lower expression in patients with colonic neoplasia highlights its biological role regulating oncogenic T-Ag expression in CRC. IMPACT JCV-specific miRNA is a candidate for the development of a non-invasive screening test, as well as therapeutic intervention for JCV-associated diseases.
Collapse
Affiliation(s)
- Alexander Link
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas, United States of America
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Francesc Balaguer
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas, United States of America
- Department of Gastroenterology, Hospital Clinic, CIBEREHD, University of Barcelona, Spain
| | - Takeshi Nagasaka
- Department of Gastroenterological Surgery and Surgical Oncology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - C. Richard Boland
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas, United States of America
| | - Ajay Goel
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Baylor Research Institute, Baylor University Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
65
|
Nuclear magnetic resonance structure revealed that the human polyomavirus JC virus agnoprotein contains an α-helix encompassing the Leu/Ile/Phe-rich domain. J Virol 2014; 88:6556-75. [PMID: 24672035 DOI: 10.1128/jvi.00146-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Agnoprotein is a small multifunctional regulatory protein required for sustaining the productive replication of JC virus (JCV). It is a mostly cytoplasmic protein localizing in the perinuclear area and forms highly stable dimers/oligomers through a Leu/Ile/Phe-rich domain. There have been no three-dimensional structural data available for agnoprotein due to difficulties associated with the dynamic conversion from monomers to oligomers. Here, we report the first nuclear magnetic resonance (NMR) structure of a synthetic agnoprotein peptide spanning amino acids Thr17 to Glu55 where Lys23 to Phe39 encompassing the Leu/Ile/Phe-rich domain forms an amphipathic α-helix. On the basis of these structural data, a number of Ala substitution mutations were made to investigate the role of the α-helix in the structure and function of agnoprotein. Single L29A and L36A mutations exhibited a significant negative effect on both protein stability and viral replication, whereas the L32A mutation did not. In addition, the L29A mutant displayed a highly nuclear localization pattern, in contrast to the pattern for the wild type (WT). Interestingly, a triple mutant, the L29A+L32A+L36A mutant, yielded no detectable agnoprotein expression, and the replication of this JCV mutant was significantly reduced, suggesting that Leu29 and Leu36 are located at the dimer interface, contributing to the structure and stability of agnoprotein. Two other single mutations, L33A and E34A, did not perturb agnoprotein stability as drastically as that observed with the L29A and L36A mutations, but they negatively affected viral replication, suggesting that the role of these residues is functional rather than structural. Thus, the agnoprotein dimerization domain can be targeted for the development of novel drugs active against JCV infection. IMPORTANCE Agnoprotein is a small regulatory protein of JC virus (JCV) and is required for the successful completion of the viral replication cycle. It forms highly stable dimers and oligomers through its hydrophobic (Leu/Ile/Phe-rich) domain, which has been shown to play essential roles in the stability and function of the protein. In this work, the Leu/Ile/Phe-rich domain has been further characterized by NMR studies using an agnoprotein peptide spanning amino acids T17 to Q54. Those studies revealed that the dimerization domain of the protein forms an amphipathic α-helix. Subsequent NMR structure-based mutational analysis of the region highlighted the critical importance of certain amino acids within the α-helix for the stability and function of agnoprotein. In conclusion, this study provides a solid foundation for developing effective therapeutic approaches against the dimerization domain of the protein to inhibit its critical roles in JCV infection.
Collapse
|
66
|
Donnarumma P, Pichierri A, Tarantino R, Ruggeri AG, Antonelli M, Delfini R. 74 Year-Old Woman with Systemic Lupus Erythematosis and Recent Onset Ataxia. Brain Pathol 2014; 24:193-4. [DOI: 10.1111/bpa.12122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Pasquale Donnarumma
- DPT Neurological Sciences; Institute of Neurosurgery; University “Sapienza”; Rome Italy
| | - Angelo Pichierri
- DPT Neurological Sciences; Institute of Neurosurgery; University “Sapienza”; Rome Italy
| | - Roberto Tarantino
- DPT Neurological Sciences; Institute of Neurosurgery; University “Sapienza”; Rome Italy
| | | | | | - Roberto Delfini
- DPT Neurological Sciences; Institute of Neurosurgery; University “Sapienza”; Rome Italy
| |
Collapse
|
67
|
Abstract
With the widespread use of combination antiretroviral therapy (cART), the incidence of central nervous system (CNS) opportunistic infections and coinfections has significantly decreased. This review focuses on the clinical presentation, diagnostic laboratory and radiologic findings, as well as the treatment of neurosyphilis, progressive multifocal leukoencephalopathy, primary CNS lymphoma, and toxoplasmosis, which are CNS opportunistic infections and coinfections that are most relevant to clinicians in North America.
Collapse
Affiliation(s)
- Emily L. Ho
- Department of Neurology, Harborview Medical Center, Seattle, Washington
| | | |
Collapse
|
68
|
Nukuzuma S, Nakamichi K, Kameoka M, Sugiura S, Nukuzuma C, Tasaki T, Takegami T. TNF-α stimulates efficient JC virus replication in neuroblastoma cells. J Med Virol 2014; 86:2026-32. [PMID: 24415534 DOI: 10.1002/jmv.23886] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2013] [Indexed: 11/09/2022]
Abstract
JC polyomavirus (JCV) causes progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease of the central nervous system (CNS) in immunocompromised patients, and particularly in the severe immunosuppression associated with acquired immunodeficiency syndrome (AIDS). HIV-1 can lead to the production of tumor necrosis factor-alpha (TNF-α) in the CNS. Our aim was to examine the effects of TNF-α on JCV gene expression and replication using a human neuroblastoma cell line, IMR-32, transfected with JCV DNA, M1-IMRb. Quantitative RT-PCR analysis of JCV large T antigen and VP1 mRNA, the viral DNA replication assay, and the DNase protection assay were carried out. TNF-α treatment of IMR-32 cells transfected with JCV DNA induced large T antigen mRNA and JCV DNA replication, while other effects on VP1 mRNA expression and virus production were marginal. In addition, ELISA analysis of the nuclear p65 subunit of nuclear factor κB (NF-κB), which is a hallmark of NF-κB pathway activation, of IMR-32 cells upon TNF-α treatment showed that TNF-α treatment activated the NF-κB pathway in IMR-32 cells. Taken together, our results suggest that TNF-α stimulation could induce JCV replication associated with the induction of JCV large T antigen mRNA through the NF-κB pathway in IMR-32 cells transfected with JCV DNA. Our findings may contribute to further understanding of the pathogenesis of AIDS-related PML.
Collapse
Affiliation(s)
- Souichi Nukuzuma
- Department of Infectious Diseases, Kobe Institute of Health, Chuo-ku, Kobe, Japan
| | | | | | | | | | | | | |
Collapse
|
69
|
Affiliation(s)
- Joseph R Berger
- Department of Neurology and Department of Medicine, University of Kentucky College of Medicine, Lexington, KY, USA.
| |
Collapse
|
70
|
Tseng CE, Yeh CM, Fang CY, Shay J, Chen PL, Lin MC, Chang D, Wang M. Detection of human JCPyV and BKPyV in diffuse large B-cell lymphoma of the GI tract. Eur J Clin Microbiol Infect Dis 2013. [PMID: 24258263 DOI: 10.1007/s10096-d13-2010-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Previous studies have demonstrated that infection with human polyomavirus, such as JCPyV and BKPyV, might be associated with various human tumors. However, an association between human JCPyV and BKPyV infection and diffuse large B-cell lymphoma (DLBCL) has not been reported. The purpose of this study was to examine DLBCLs of the gastrointestinal tract for evidence of human polyomavirus infection. Nested PCR and DNA sequencing were employed for viral DNA detection and viral genotype identification. In addition, two viral proteins, the large tumor antigen (LT) and the major structural protein (VP1), were detected by immunohistochemistry (IHC). Human JCPyV and BKPyV DNA was detected in 14 out of 16 tissue samples (87.5%), whereby nine cases were infected with JCPyV and five cases were infected with BKPyV. Both archetypal and rearranged genotypes of JCPyV and BKPyV were detected in the tissues. LT was detected in 11 tissue samples (68.75%). However, VP1 was not detected in any of the tissue samples. The presence of human JCPyV and BKPyV DNA and protein in DLBCL tissues of gastrointestinal tract were first reported in this study. The current results provide evidence of a possible association between human JCPyV and BKPyV infection and DLBCL.
Collapse
Affiliation(s)
- C E Tseng
- Department of Anatomic Pathology, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Tseng CE, Yeh CM, Fang CY, Shay J, Chen PL, Lin MC, Chang D, Wang M. Detection of human JCPyV and BKPyV in diffuse large B-cell lymphoma of the GI tract. Eur J Clin Microbiol Infect Dis 2013; 33:665-72. [PMID: 24258263 DOI: 10.1007/s10096-013-2010-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 10/22/2013] [Indexed: 10/26/2022]
Abstract
Previous studies have demonstrated that infection with human polyomavirus, such as JCPyV and BKPyV, might be associated with various human tumors. However, an association between human JCPyV and BKPyV infection and diffuse large B-cell lymphoma (DLBCL) has not been reported. The purpose of this study was to examine DLBCLs of the gastrointestinal tract for evidence of human polyomavirus infection. Nested PCR and DNA sequencing were employed for viral DNA detection and viral genotype identification. In addition, two viral proteins, the large tumor antigen (LT) and the major structural protein (VP1), were detected by immunohistochemistry (IHC). Human JCPyV and BKPyV DNA was detected in 14 out of 16 tissue samples (87.5%), whereby nine cases were infected with JCPyV and five cases were infected with BKPyV. Both archetypal and rearranged genotypes of JCPyV and BKPyV were detected in the tissues. LT was detected in 11 tissue samples (68.75%). However, VP1 was not detected in any of the tissue samples. The presence of human JCPyV and BKPyV DNA and protein in DLBCL tissues of gastrointestinal tract were first reported in this study. The current results provide evidence of a possible association between human JCPyV and BKPyV infection and DLBCL.
Collapse
Affiliation(s)
- C E Tseng
- Department of Anatomic Pathology, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
72
|
The human alpha defensin HD5 neutralizes JC polyomavirus infection by reducing endoplasmic reticulum traffic and stabilizing the viral capsid. J Virol 2013; 88:948-60. [PMID: 24198413 DOI: 10.1128/jvi.02766-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a fatal disease with limited treatment options, both clinically and in the research pipeline. Potential therapies would target and neutralize its etiologic agent, JC polyomavirus (JCPyV). The innate immune response to JCPyV infection has not been studied, and little is known about the initial host response to polyomavirus infection. This study examined the ability of a human alpha defensin, HD5, to neutralize JCPyV infection in human fetal glial cells. We show that HD5, by binding to the virion, blocks infection. The JCPyV-HD5 complexes bind to and enter host cells but are reduced in their ability to reach the endoplasmic reticulum (ER), where virions are normally uncoated. Furthermore, HD5 binding to the virion stabilizes the capsid and prevents genome release. Our results show that HD5 neutralizes JCPyV infection at an early postentry step in the viral life cycle by stabilizing the viral capsid and disrupting JCPyV trafficking. This study provides a naturally occurring platform for developing antivirals to treat PML and also expands on the known capabilities of human defensins.
Collapse
|
73
|
Alam A, Voronovich Z, Carley JA. A review of therapeutic uses of mirtazapine in psychiatric and medical conditions. Prim Care Companion CNS Disord 2013; 15:13r01525. [PMID: 24511451 DOI: 10.4088/pcc.13r01525] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/09/2013] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE To review the literature examining the use of mirtazapine with an emphasis on its therapeutic benefits for psychiatric patients with comorbid medical conditions. DATA SOURCES MEDLINE, PsycINFO, Global Health, and AGRICOLA were searched using the terms mirtazapine OR Remeron. Limits were English language, human, year 1980-2012, treatment and prevention, and therapy. STUDY SELECTION Two hundred ninety-three articles were identified. DATA EXTRACTION Identified articles were reviewed with a focus on indications and therapeutic benefits in patients with medical comorbidities. RESULTS Mirtazapine is an effective antidepressant with unique mechanisms of action. It is characterized by a relatively rapid onset of action, high response and remission rates, a favorable side-effect profile, and several unique therapeutic benefits over other antidepressants. Mirtazapine has also shown promise in treating some medical disorders, including neurologic conditions, and ameliorating some of the associated debilitating symptoms of weight loss, insomnia, and postoperative nausea and vomiting. CONCLUSIONS Mirtazapine offers clinicians multiple therapeutic advantages especially when treating patients with comorbid medical illness.
Collapse
Affiliation(s)
- Abdulkader Alam
- Departments of Psychiatry and Medicine (Dr Alam), University of Pittsburgh School of Medicine (Ms Voronovich), Pittsburgh, Pennsylvania; and University of Alabama School of Medicine, Birmingham (Dr Carley)
| | - Zoya Voronovich
- Departments of Psychiatry and Medicine (Dr Alam), University of Pittsburgh School of Medicine (Ms Voronovich), Pittsburgh, Pennsylvania; and University of Alabama School of Medicine, Birmingham (Dr Carley)
| | - Joseph A Carley
- Departments of Psychiatry and Medicine (Dr Alam), University of Pittsburgh School of Medicine (Ms Voronovich), Pittsburgh, Pennsylvania; and University of Alabama School of Medicine, Birmingham (Dr Carley)
| |
Collapse
|
74
|
Wilk A, Waligórski P, Lassak A, Vashistha H, Lirette D, Tate D, Zea AH, Koochekpour S, Rodriguez P, Meggs LG, Estrada JJ, Ochoa A, Reiss K. Polycyclic aromatic hydrocarbons-induced ROS accumulation enhances mutagenic potential of T-antigen from human polyomavirus JC. J Cell Physiol 2013; 228:2127-38. [PMID: 23558788 DOI: 10.1002/jcp.24375] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 03/28/2013] [Indexed: 01/28/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are the products of incomplete combustion of organic materials, which are present in cigarette smoke, deep-fried food, and in natural crude oil. Since PAH-metabolites form DNA adducts and cause oxidative DNA damage, we asked if these environmental carcinogens could affect transforming potential of the human Polyomavirus JC oncoprotein, T-antigen (JCV T-antigen). We extracted DMSO soluble PAHs from Deepwater Horizon oil spill in the Gulf of Mexico (oil-PAHs), and detected several carcinogenic PAHs. The oil-PAHs were tested in exponentially growing cultures of normal mouse fibroblasts (R508), and in R508 stably expressing JCV T-antigen (R508/T). The oil-PAHs were cytotoxic only at relatively high doses (1:50-1:100 dilution), and at 1:500 dilution the growth and cell survival rates were practically unaffected. This non-toxic dose triggered however, a significant accumulation of reactive oxygen species (ROS), caused oxidative DNA damage and the formation of DNA double strand breaks (DSBs). Although oil-PAHs induced similar levels of DNA damage in R508 and R508/T cells, only T-antigen expressing cells demonstrated inhibition of high fidelity DNA repair by homologous recombination (HRR). In contrast, low-fidelity repair by non-homologous end joining (NHEJ) was unaffected. This potential mutagenic shift between DNA repair mechanisms was accompanied by a significant increase in clonal growth of R508/T cells chronically exposed to low doses of the oil-PAHs. Our results indicate for the first time carcinogenic synergy in which oil-PAHs trigger oxidative DNA damage and JCV T-antigen compromises DNA repair fidelity.
Collapse
Affiliation(s)
- Anna Wilk
- Neurological Cancer Research at Stanley S Scott Cancer Center, New Orleans, Louisiana, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
DeBoever C, Reid EG, Smith EN, Wang X, Dumaop W, Harismendy O, Carson D, Richman D, Masliah E, Frazer KA. Whole transcriptome sequencing enables discovery and analysis of viruses in archived primary central nervous system lymphomas. PLoS One 2013; 8:e73956. [PMID: 24023918 PMCID: PMC3762708 DOI: 10.1371/journal.pone.0073956] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/24/2013] [Indexed: 11/23/2022] Open
Abstract
Primary central nervous system lymphomas (PCNSL) have a dramatically increased prevalence among persons living with AIDS and are known to be associated with human Epstein Barr virus (EBV) infection. Previous work suggests that in some cases, co-infection with other viruses may be important for PCNSL pathogenesis. Viral transcription in tumor samples can be measured using next generation transcriptome sequencing. We demonstrate the ability of transcriptome sequencing to identify viruses, characterize viral expression, and identify viral variants by sequencing four archived AIDS-related PCNSL tissue samples and analyzing raw sequencing reads. EBV was detected in all four PCNSL samples and cytomegalovirus (CMV), JC polyomavirus (JCV), and HIV were also discovered, consistent with clinical diagnoses. CMV was found to express three long non-coding RNAs recently reported as expressed during active infection. Single nucleotide variants were observed in each of the viruses observed and three indels were found in CMV. No viruses were found in several control tumor types including 32 diffuse large B-cell lymphoma samples. This study demonstrates the ability of next generation transcriptome sequencing to accurately identify viruses, including DNA viruses, in solid human cancer tissue samples.
Collapse
Affiliation(s)
- Christopher DeBoever
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, California, United States of America
| | - Erin G. Reid
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Erin N. Smith
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
- Department of Pediatrics and Rady Children’s Hospital, University of California San Diego, La Jolla, California, United States of America
| | - Xiaoyun Wang
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
- Department of Pediatrics and Rady Children’s Hospital, University of California San Diego, La Jolla, California, United States of America
| | - Wilmar Dumaop
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| | - Olivier Harismendy
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
- Department of Pediatrics and Rady Children’s Hospital, University of California San Diego, La Jolla, California, United States of America
- Clinical and Translational Research Institute, University of California San Diego, La Jolla, California, United States of America
| | - Dennis Carson
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
| | - Douglas Richman
- VA San Diego Healthcare System and Center for AIDS Research, University of California San Diego, La Jolla, California, United States of America
| | - Eliezer Masliah
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Kelly A. Frazer
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
- Department of Pediatrics and Rady Children’s Hospital, University of California San Diego, La Jolla, California, United States of America
- Clinical and Translational Research Institute, University of California San Diego, La Jolla, California, United States of America
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
76
|
JC polyomavirus (JCV) and monoclonal antibodies: friends or potential foes? Clin Dev Immunol 2013; 2013:967581. [PMID: 23878587 PMCID: PMC3708391 DOI: 10.1155/2013/967581] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/13/2013] [Indexed: 12/13/2022]
Abstract
Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system (CNS), observed in immunodeficient patients and caused by JC virus ((JCV), also called JC polyomavirus (JCPyV)). After the HIV pandemic and the introduction of immunomodulatory therapy, the PML incidence significantly increased. The correlation between the use of natalizumab, a drug used in multiple sclerosis (MS), and the PML development of particular relevance. The high incidence of PML in natalizumab-treated patients has highlighted the importance of two factors: the need of PML risk stratification among natalizumab-treated patients and the need of effective therapeutic options. In this review, we discuss these two needs under the light of the major viral models of PML etiopathogenesis.
Collapse
|
77
|
Sami Saribas A, Abou-Gharbia M, Childers W, Sariyer IK, White MK, Safak M. Essential roles of Leu/Ile/Phe-rich domain of JC virus agnoprotein in dimer/oligomer formation, protein stability and splicing of viral transcripts. Virology 2013; 443:161-76. [PMID: 23747198 DOI: 10.1016/j.virol.2013.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/21/2013] [Accepted: 05/03/2013] [Indexed: 10/26/2022]
Abstract
Agnoprotein is one of the key regulatory proteins of polyomaviruses, including JCV, BKV and SV40 and is required for a productive viral life cycle. We have recently reported that agnoprotein forms stable dimer/oligomers mediated by a predicted amphipathic α-helix, spanning amino acids (aa), 17 to 42. Deletion of the α-helix renders a replication incompetent virus. Here, we have further characterized this region by a systematic deletion and substitution mutagenesis and demonstrated that a Leu/Ile/Phe-rich domain, (spanning aa 28-39) within α-helix is indispensable for agnoprotein structure and function. Deletion of aa 30-37 severely affects the dimer/oligomer formation and stable expression of the protein. Mutagenesis data also indicate that the residues, 34-36, may be involved in regulation of the splicing events of JCV transcripts. Collectively, these data suggest that the Leu/Ile/Phe-rich domain plays critical roles in agnoprotein function and thus represents a potential target for developing novel therapeutics against JCV infections.
Collapse
Affiliation(s)
- A Sami Saribas
- Department of Neuroscience, Laboratory of Molecular Neurovirology, MERB-757, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140, United States
| | | | | | | | | | | |
Collapse
|
78
|
Chitsaz A, Tolou-Ghamari Z, Ashtari F. Preliminary evaluations related to the ranges of hematological and biochemical variables in hospitalized patients with stroke. Int J Prev Med 2013; 4:S347-52. [PMID: 23776750 PMCID: PMC3678244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 02/27/2013] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND According to the international reports, brain stroke is the main reason of death and disability. In ischemic stroke, early and precise classification of patients who may profit from conflicting finest therapeutic interference is necessary if enhanced effects in terms of survival are to be talented. Due to uncomplicated, easy performance, and inexpensive method the aim of this preliminary study was to investigate changes related to biochemical and hematological variables in patients with stroke. METHODS A cross-sectional study located at the neurology ward of the Ayatolah Kashani and Alzahra Hospitals' (conducted to Isfahan Neurosciences Research Center) was carried out on fifty patients (females; n = 20 and males; n = 30) between April 1, 2012 and September 31, 2012. The data from subjects' records were taken for analyzing variables. The statistical analysis of d-base was performed using (SPSS) for windows. RESULTS Analysis of available data showed that with a mean of 182.4 mg/dl, blood sugar (BS) ranged from 75 to 300 mg/dl (n = 15/50). The changes in hemoglobin (Hgb) (mean 4.6 g/dl, n = 27/50), platelet (mean 210, 653/mm(3), n = 26/50) and lymphocyte (Lymph) (mean 37, n = 26/50) seems to be significant. The mean age of females was 76 years (ranged 46-93 years). The mean age of males was 70 years (ranged 31-90 years). Information related to previous drug history was available only in 24 patients. In 5 out of 22 cases ischemic heart disease (IHD) were positive. In 8 out of 29 cases, diabetes mellitus was positive. In 5 out of 28 cases, hypertension (HTN) was positive. In the four patients both IHD and HTN were positive. CONCLUSIONS Any considerable alter in patients' biochemical and hematological figures (BS, Hgb, Plt and Lymph) may necessitate further attention related to inter- and intra-individual variability in clinical supervision and drug's assortment. Therefore, success in treatment could be achieved by the close management of clinical, biochemical, hematological, and pharmacological manifestation. To reduce disability, mortality, and morbidity in Iranian stroke population further clinical studies are needed to correlate drugs and laboratory markers to associated clinical events in order.
Collapse
Affiliation(s)
- Ahmad Chitsaz
- Department of Neurology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Tolou-Ghamari
- Isfahan Neurosciences Research Centre, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,Correspondence to: Dr. Zahra Tolou-Ghamari, Isfahan Neurosciences Research Centre (INRC), Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. E-mail:
| | - Fereshteh Ashtari
- Department of Neurology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
79
|
Polyomavirus JC in the context of immunosuppression: a series of adaptive, DNA replication-driven recombination events in the development of progressive multifocal leukoencephalopathy. Clin Dev Immunol 2013; 2013:197807. [PMID: 23690820 PMCID: PMC3649189 DOI: 10.1155/2013/197807] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 03/17/2013] [Indexed: 01/13/2023]
Abstract
Polyomavirus JC (JCV) is the etiological agent of progressive multifocal leukoencephalopathy (PML), a demyelinating infection of oligodendrocytes in the brain. PML, a frequently fatal opportunistic infection in AIDS, has also emerged as a consequence of treatment with several new immunosuppressive therapeutic agents. Although nearly 80% of adults are seropositive, JCV attains an ability to infect glial cells in only a minority of people. Data suggest that JCV undergoes sequence alterations that accompany this ability, and these changes can be derived from an archetype strain by mutation, deletion, and duplication. While the introductory source and primary tissue reservoir of JCV remain unknown, lymphoid cells have been identified as potential intermediaries in progression of JCV to the brain. This review is focused on sequence changes in the noncoding control region (NCCR) of the virus. We propose an adaptive mechanism that involves a sequential series of DNA replication-driven NCCR recombination events involving stalled DNA replication forks at NCCR palindromic secondary structures. We shall describe how the NCCR sequence changes point to a model in which viral DNA replication drives NCCR recombination, allowing JCV adaptation to different cell types in its progression to neurovirulence.
Collapse
|
80
|
Abstract
During the past 6 years, focused virus hunting has led to the discovery of nine new human polyomaviruses, including Merkel cell polyomavirus, which has been linked to Merkel cell carcinoma, a lethal skin cell cancer. The discovery of so many new and highly divergent human polyomaviruses raises key questions regarding their evolution, tropism, latency, reactivation, immune evasion and contribution to disease. This Review describes the similarities and differences among the new human polyomaviruses and discusses how these viruses might interact with their human host.
Collapse
Affiliation(s)
- James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
81
|
Early magnetic resonance detection of natalizumab-related progressive multifocal leukoencephalopathy in a patient with multiple sclerosis. Case Rep Radiol 2013; 2013:415873. [PMID: 23555065 PMCID: PMC3608276 DOI: 10.1155/2013/415873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/19/2013] [Indexed: 12/19/2022] Open
Abstract
Diagnosis of progressive multifocal leukoencephalopathy is usually based on the clinical presentation, on the demonstration of the brain lesions at the magnetic resonance imaging examination, and on the detection of the JC virus DNA in the cerebrospinal fluid with high sensitive polymerase chain reaction. The role of magnetic resonance imaging specifically in natalizumab-associated progressive multifocal leukoencephalopathy is strengthening, and it is gaining importance not only as an irreplaceable diagnostic tool but also as a surveillance and risk stratifying tool in treated patients. While other imaging techniques such as computed tomography lack sensitivity and specificity, magnetic resonance performed with morphological and functional sequences offers clinicians the possibility to early identify the stage of the disease and the emergence of an immune reconstitution inflammatory syndrome after natalizumab blood removal plasmapheresis.
Collapse
|
82
|
Wright CA, Nance JA, Johnson EM. Effects of Tat proteins and Tat mutants of different human immunodeficiency virus type 1 clades on glial JC virus early and late gene transcription. J Gen Virol 2012; 94:514-523. [PMID: 23152365 DOI: 10.1099/vir.0.047902-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Polyomavirus JC (JCV) is the aetiological agent of progressive multifocal leukoencephalopathy (PML), a frequently fatal infection of the brain afflicting nearly 4% of AIDS patients in the USA. Human immunodeficiency virus type 1 (HIV-1) Tat, acting together with cellular proteins at the JCV non-coding control region (NCCR), can stimulate JCV DNA transcription and replication. Tat in the brain is secreted by HIV-1-infected cells and incorporated by oligodendroglia, cells capable of infection by JCV. Thus far the effects of Tat on JCV have been studied primarily with protein encoded by the HIV-1 B clade most common in North America. Here, we determine the abilities of Tat from different HIV-1 clades to alter JCV early and late gene transcription and DNA replication initiated at the JCV origin. Tat from all clades tested stimulates both JCV early and late gene promoters, with clade B Tat being significantly most effective. Tat proteins from the HIV-1 clades display parallel patterns of differences in their effects on HIV-1 and JCV transcription, suggesting that Tat effects in both cases are mediated by the same cellular proteins. Clade B Tat is most effective at directing Smad mediators of tumour growth factor beta and cellular partner Purα to the NCCR. Tat proteins from all non-B clades inhibit initiation of JCV DNA replication. The effectiveness of HIV-1 clade B Tat at promoting JCV transcriptional and replicative processes highlights a need for further investigation to determine which molecular aspects of Tat from distinct HIV-1 substrains can contribute to the course of PML development in neuroAIDS.
Collapse
Affiliation(s)
- Clayton A Wright
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 West Olney Road, Norfolk, VA 23510, USA
| | - Jonas A Nance
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 West Olney Road, Norfolk, VA 23510, USA
| | - Edward M Johnson
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, 700 West Olney Road, Norfolk, VA 23510, USA
| |
Collapse
|
83
|
Molecular biology, epidemiology, and pathogenesis of progressive multifocal leukoencephalopathy, the JC virus-induced demyelinating disease of the human brain. Clin Microbiol Rev 2012; 25:471-506. [PMID: 22763635 DOI: 10.1128/cmr.05031-11] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a debilitating and frequently fatal central nervous system (CNS) demyelinating disease caused by JC virus (JCV), for which there is currently no effective treatment. Lytic infection of oligodendrocytes in the brain leads to their eventual destruction and progressive demyelination, resulting in multiple foci of lesions in the white matter of the brain. Before the mid-1980s, PML was a relatively rare disease, reported to occur primarily in those with underlying neoplastic conditions affecting immune function and, more rarely, in allograft recipients receiving immunosuppressive drugs. However, with the onset of the AIDS pandemic, the incidence of PML has increased dramatically. Approximately 3 to 5% of HIV-infected individuals will develop PML, which is classified as an AIDS-defining illness. In addition, the recent advent of humanized monoclonal antibody therapy for the treatment of autoimmune inflammatory diseases such as multiple sclerosis (MS) and Crohn's disease has also led to an increased risk of PML as a side effect of immunotherapy. Thus, the study of JCV and the elucidation of the underlying causes of PML are important and active areas of research that may lead to new insights into immune function and host antiviral defense, as well as to potential new therapies.
Collapse
|
84
|
McClure GB, Gardner JS, Williams JT, Copeland CM, Sylvester SK, Garcea RL, Meinerz NM, Groome LJ, Vanchiere JA. Dynamics of pregnancy-associated polyomavirus urinary excretion: a prospective longitudinal study. J Med Virol 2012; 84:1312-22. [PMID: 22711361 DOI: 10.1002/jmv.23320] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Asymptomatic polyomaviruria of pregnancy has been documented in point prevalence studies, but little attention has been given to the dynamics of polyomavirus excretion during pregnancy because of its benign course. We tested the hypothesis that the frequency and/or magnitude of polyomavirus excretion would increase as pregnancy progresses. Urine specimens were obtained prospectively from 179 healthy women during uncomplicated pregnancies and 37 healthy non-pregnant women. Real-time polymerase chain reaction was used to determine BK virus (BKV) and JC virus (JCV) viral loads in urine, blood, and rectal and vaginal swabs collected during routine obstetric and gynecologic clinic visits. Asymptomatic urinary shedding of BKV and/or JCV was observed in 384 (48.0%) of 800 specimens from 100 (55.8%) pregnant women. BKV excretion was more common in pregnant than non-pregnant women (41.3% vs. 13.5%, P = 0.0026). The frequency of JCV excretion was no different in pregnant compared to non-pregnant women. The frequency and magnitude of polyomavirus shedding did not vary with gestational age. Post-partum shedding of BKV, but not JCV, rapidly decreased to undetectable levels. Pregnancy-associated BKV excretion begins early in pregnancy and terminates rapidly post-partum. Neither the frequency nor magnitude of BKV or JCV shedding increased with pregnancy progression. Further study into the host factors that regulate pregnancy-associated BKV excretion may allow identification of the host factors that predict susceptibility to BKV-associated diseases in immune compromised patients.
Collapse
Affiliation(s)
- Gloria B McClure
- Department of Pediatrics, Section of Infectious Diseases, Louisiana State University Health Sciences Center-Shreveport, LA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Nukuzuma S, Kameoka M, Sugiura S, Nakamichi K, Nukuzuma C, Takegami T. Suppressive effect of PARP-1 inhibitor on JC virus replication in vitro. J Med Virol 2012; 85:132-7. [PMID: 23074024 DOI: 10.1002/jmv.23443] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2012] [Indexed: 02/02/2023]
Abstract
The incidence of progressive multifocal leukoencephalopathy (PML) has increased due to the AIDS pandemic, hematological malignancies, and immunosuppressive therapies. Recently, the number of cases of monoclonal antibody-associated PML has increased in patients treated with immunomodulatory drugs such as natalizumab. However, no common consensus regarding PML therapy has been reached in clinical studies. In order to examine the suppression of JC virus (JCV) replication by 3-aminobenzamide (3-AB), a representative PARP-1 inhibitor, a DNA replication assay was carried out using the neuroblastoma cell line IMR-32 and IMR-adapted JCV. The suppression of JCV propagation by 3-AB was also examined using JCI cells, which are a carrier culture producing continuously high JCV titers. The results indicated that PARP-1 inhibitors, such as 3-aminobenzamide (3-AB), suppress JCV replication and propagation significantly in vitro, as judged by DNA replication assay, hemagglutination, and real-time PCR analysis. It has been also shown that 3-AB reduced PARP-1 activity in IMR-32 cells. According to the results of the MTT assay, the enzyme activity of 3-AB-treated cells was slightly lower than that of DMSO-treated cells. However, the significant suppression of JCV propagation is not related to the slight decrease in cell growth. To our knowledge, this is the first report that PARP-1 inhibitor suppresses the replication of JCV significantly in neuroblastoma cell lines via the reduction of PARP-1 activity. Thus, PARP-1 inhibitors also may be a novel therapeutic drug for PML.
Collapse
Affiliation(s)
- Souichi Nukuzuma
- Department of Microbiology, Kobe Institute of Health, Chuo-ku, Kobe, Japan.
| | | | | | | | | | | |
Collapse
|
86
|
Abstract
Treatment of progressive multifocal leukoencephalopathy (PML) in a patient with exogenous immunosuppression starts with discontinuation of immunosuppressive medication. The restored host immunity will clear JC virus, the cause of PML, from the brain via cell-mediated immune mechanisms. Patients with solid-organ transplants will lose the transplanted organ, however, and patients who have autoimmune disorders may experience exacerbation of their underlying disease. These factors need to be weighed against the potentially fatal nature of PML. If the patient's immunosuppression is AIDS-related, highly active antiretroviral therapy (HAART) should be initiated if it has not previously been used. If the patient is already receiving HAART, the therapy should be changed to optimize treatment, with the goals of a nondetectable HIV viral load and normalization or near normalization of the CD4 count. For non-AIDS PML patients, daily intravenous cytosine arabinoside for 5 days can be offered if the patient is not pancytopenic and can tolerate a chemotherapeutic agent. For AIDS patients with PML or failing non-AIDS patients with neurologic deterioration, cidofovir can be considered. These therapies can be offered if neurologic stabilization satisfies the quality-of-life goals for the patient. For patients intolerant of other therapies or unsuited to them, oral mirtazapine or risperidone can be considered. The safety of these agents has been established in the treatment of psychiatric disease, but their efficacy has not yet been proven. Small interfering RNA (siRNA) therapy holds the promise of specific antiviral therapy, but delivery methods, safety, and efficacy are yet to be established.
Collapse
Affiliation(s)
- Allen J Aksamit
- Allen J. Aksamit, MD Mayo Clinic College of Medicine, Department of Neurology, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
87
|
Dastmalchi M, Laki J, Lundberg IE, Iacobaeus E. Progressive multifocal leukoencephalopathy in a patient with polymyositis: case report and literature review. J Rheumatol 2012; 39:1299-303. [PMID: 22661423 DOI: 10.3899/jrheum.111126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
88
|
Motamedi N, Mairhofer H, Nitschko H, Jäger G, Koszinowski UH. The polyomaviruses WUPyV and KIPyV: a retrospective quantitative analysis in patients undergoing hematopoietic stem cell transplantation. Virol J 2012; 9:209. [PMID: 22988938 PMCID: PMC3463464 DOI: 10.1186/1743-422x-9-209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 09/13/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The polyomaviruses WUPyV and KIPyV have been detected in various sample types including feces indicating pathogenicity in the gastrointestinal (GI) system. However, quantitative viral load data from other simultaneously collected sample types are missing. As a consequence, primary replication in the GI system cannot be differentiated from swallowed virus from the respiratory tract. Here we present a retrospective quantitative longitudinal analysis in simultaneously harvested specimens from different organ sites of patients undergoing hematopoietic stem cell transplantation (HSCT). This allows the definition of sample types where deoxyribonucleic acid (DNA) detection can be expected and, as a consequence, the identification of their primary replication site. FINDINGS Viral DNA loads from 37 patients undergoing HSCT were quantified in respiratory tract secretions (RTS), stool and urine samples as well as in leukocytes (n = 449). Leukocyte-associated virus could not be found. WUPyV was found in feces, RTS and urine samples of an infant, while KIPyV was repeatedly detected in RTS and stool samples of 4 adult patients.RTS and stool samples were matched to determine the viral load difference showing a mean difference of 2.3 log copies/ml (p < 0.001). CONCLUSIONS The data collected in this study suggest that virus detection in the GI tract results from swallowed virus from the respiratory tract (RT). We conclude that shedding from the RT should be ruled out before viral DNA detection in the feces can be correlated to GI symptoms.
Collapse
Affiliation(s)
- Nasim Motamedi
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University, Department of Virology, Pettenkoferstr, 9a, Munich D-80336, Germany.
| | | | | | | | | |
Collapse
|
89
|
Recombined sequences between the non-coding control regions of JC and BK viruses found in the urine of a renal transplantation patient. Virus Genes 2012; 45:581-4. [PMID: 22948418 DOI: 10.1007/s11262-012-0815-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 08/25/2012] [Indexed: 10/27/2022]
Abstract
Kidney cells are the common host for JC virus (JCV) and BK virus (BKV). Reactivation of JCV and/or BKV in patients after organ transplantation, such as renal transplantation, may cause hemorrhagic cystitis and polyomavirus-associated nephropathy. Furthermore, JCV and BKV may be shed in the urine after reactivation in the kidney. Rearranged as well as archetypal non-coding control regions (NCCRs) of JCV and BKV have been frequently identified in human samples. In this study, three JC/BK recombined NCCR sequences were identified in the urine of a patient who had undergone renal transplantation. They were designated as JC-BK hybrids 1, 2, and 3. The three JC/BK recombinant NCCRs contain up-stream JCV as well as down-stream BKV sequences. Deletions of both JCV and BKV sequences were found in these recombined NCCRs. Recombination of DNA sequences between JCV and BKV may occur during co-infection due to the relatively high homology of the two viral genomes.
Collapse
|
90
|
JC virus agnoprotein enhances large T antigen binding to the origin of viral DNA replication: evidence for its involvement in viral DNA replication. Virology 2012; 433:12-26. [PMID: 22840425 DOI: 10.1016/j.virol.2012.06.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 05/25/2012] [Accepted: 06/11/2012] [Indexed: 10/28/2022]
Abstract
Agnoprotein is required for the successful completion of the JC virus (JCV) life cycle and was previously shown to interact with JCV large T-antigen (LT-Ag). Here, we further characterized agnoprotein's involvement in viral DNA replication. Agnoprotein enhances the DNA binding activity of LT-Ag to the viral origin (Ori) without directly interacting with DNA. The predicted amphipathic α-helix of agnoprotein plays a major role in this enhancement. All three phenylalanine (Phe) residues of agnoprotein localize to this α-helix and Phe residues in general are known to play critical roles in protein-protein interaction, protein folding and stability. The functional relevance of all Phe residues was investigated by mutagenesis. When all were mutated to alanine (Ala), the mutant virus (F31AF35AF39A) replicated significantly less efficiently than each individual Phe mutant virus alone, indicating the importance of Phe residues for agnoprotein function. Collectively, these studies indicate a close involvement of agnoprotein in viral DNA replication.
Collapse
|
91
|
Fernández Ocaña M, James IT, Kabir M, Grace C, Yuan G, Martin SW, Neubert H. Clinical Pharmacokinetic Assessment of an Anti-MAdCAM Monoclonal Antibody Therapeutic by LC-MS/MS. Anal Chem 2012; 84:5959-67. [DOI: 10.1021/ac300600f] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Mireia Fernández Ocaña
- Pharmacokinetics Dynamics & Metabolism, Pfizer, Inc., Andover, Massachusetts 01810, United States
| | - Ian T. James
- Molecular Medicine, Pfizer Limited,
Kent CT13 9NJ, United Kingdom
| | - Musarat Kabir
- Pharmacokinetics Dynamics & Metabolism, Pfizer Limited, Kent CT13 9NJ, United Kingdom
| | - Christopher Grace
- Pharmacokinetics Dynamics & Metabolism, Pfizer Limited, Kent CT13 9NJ, United Kingdom
| | - Guojun Yuan
- Quantitative Clinical Sciences,
Biotherapeutics Pfizer, Inc., Cambridge, Massachusetts 02140, United
States
| | - Steven W. Martin
- Clinical Pharmacology,
Pfizer,
Inc., Cambridge, Massachusetts 02140, United States
| | - Hendrik Neubert
- Pharmacokinetics Dynamics & Metabolism, Pfizer, Inc., Andover, Massachusetts 01810, United States
| |
Collapse
|
92
|
Troppmann M, Büttner R, Boewer M, Salzberger B. Smoldering myeloma presenting as progressive multifocal leukoencephalopathy: a case report. J Med Case Rep 2012; 6:177. [PMID: 22747665 PMCID: PMC3438020 DOI: 10.1186/1752-1947-6-177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 04/25/2012] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Progressive multifocal leukoencephalopathy is an opportunistic infection occurring in patients with severe cellular immunodeficiency. This case highlights the role of cellular immunodeficiency in the reactivation of John Cunningham virus in a case of an early stage plasmacytoma. CASE PRESENTATION A 76-year-old Caucasian woman presented with progressive left-sided hemiparesis, accompanied by hypoesthesia, hypoalgesia and neuropsychological symptoms. Magnetic resonance imaging demonstrated new hyperattenuating lesions in the right thalamus and left-sided subcortically. A polymerase chain reaction test revealed 4500 copies of John Cunningham virus-deoxyribonucleic acid/ml in cerebrospinal fluid. Human immunodeficiency virus infection was ruled out. A bone marrow biopsy showed an early stage immunoglobulin G-kappa plasmacytoma. Cidofovir (5mg/kg) weekly for three weeks was started. A significant improvement of her neuropsychological symptoms was achieved, but motor system and sensory symptoms did not change. CONCLUSIONS This case shows a rapid course of progressive multifocal leukoencephalopathy with severe residual deficits. In the diagnostic workup of all patients with atypical neurologic symptoms or immunodeficiency, progressive multifocal leukoencephalopathy should be included as a differential diagnosis.
Collapse
Affiliation(s)
- Martina Troppmann
- Department of Internal Medicine I, University of Regensburg, Regensburg, Germany.
| | | | | | | |
Collapse
|
93
|
Hachana M, Amara K, Ziadi S, Gacem RB, Korbi S, Trimeche M. Investigation of human JC and BK polyomaviruses in breast carcinomas. Breast Cancer Res Treat 2012; 133:969-77. [PMID: 22108781 DOI: 10.1007/s10549-011-1876-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 11/04/2011] [Indexed: 11/30/2022]
Abstract
We have previously showed the presence of the simian virus 40 (SV40) and the mouse mammary tumor virus (MMTV)-like in a significant proportions of Tunisian breast carcinomas. However, to date there are no published studies concerning evaluation of the possible implication of the human polyomaviruses JC (JCV) and BK (BKV) in breast carcinomas. The presence of JCV and BKV DNA was investigated by PCR in a 123 primary breast carcinomas and matched adjacent non-tumor breast tissues. The results were correlated to clinicopathological and virological parameters. JCV T-antigen DNA was detected in 23% of breast carcinoma cases; however, all cases were negative for BKV. JCV T antigen PCR products were further confirmed as authentic JCV genome by direct sequencing. JCV was found in invasive ductal carcinomas (28/112 cases) but not in invasive lobular carcinomas (0/5) or medullary carcinomas (0/6). JCV DNA presence correlates inversely with the expression of estrogen (P = 0.022) and progesterone (P = 0.008) receptors. JCV DNA presence correlates also with "triple negative" phenotype (P = 0.021). With regard to virological data, a trend toward an inverse correlation was noted between the presence of JCV and SV40 (P = 0.06). Moreover, significant correlation was found between multiple viral infection (JCV, and/or SV40, and/or MMTV-like in the same tumor) and "triple negative" phenotype (P = 0.001) and also with p53 accumulation (P = 0.028). To the best of our knowledge, this is the first study demonstrating the presence of JCV in a subset of breast carcinomas. Also our results suggest that "triple negative" breast carcinomas are viral-related tumors.
Collapse
Affiliation(s)
- Mohamed Hachana
- Department of Pathology, Farhat Hached Hospital, 4000 Sousse, Tunisia
| | | | | | | | | | | |
Collapse
|
94
|
Dalianis T. Immunotherapy for polyomaviruses: opportunities and challenges. Immunotherapy 2012; 4:617-28. [DOI: 10.2217/imt.12.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Polyomaviruses are small DNA viruses present in mammals and birds, and in 1953 the first one to be described was murine polyomavirus. It was not until 1971 that the first two human polyomaviruses (HPyVs), BK virus and JC virus, were discovered and found to be common in humans, but only associated with disease in severely immunosuppressed patients. Since 2007, seven new HPyVs have been identified: KI polyomavirus, WU polyomavirus, Merkel cell polyomavirus, HPyV6, HPyV7, trichodyplasia spinulosa polyomavirus and HPyV9. Notably, Merkel cell polyomavirus was detected in Merkel cell cancer, a tumor mainly found in elderly and immunocompromised individuals, while trichodyplasia spinulosa polyomavirus was found in trichodyplasia spinulosa, a skin disorder observed only in immunosuppressed individuals. Consequently, many polyomaviruses cause problems in immunosuppressed individuals. This review deals with these issues, and the potential of the capsid protein VP1 to form virus-like particles for use as vaccines against polyomavirus infections.
Collapse
Affiliation(s)
- Tina Dalianis
- Department of Oncology-Pathology, Karolinska Institute, Cancer Center Karolinska, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
95
|
Contribution of a single host genetic locus to mouse adenovirus type 1 infection and encephalitis. mBio 2012; 3:mBio.00131-12. [PMID: 22647790 PMCID: PMC3372963 DOI: 10.1128/mbio.00131-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Susceptibility to mouse adenovirus type 1 (MAV-1) is mouse strain dependent; susceptible mice die from hemorrhagic encephalomyelitis. The MAV-1 susceptibility quantitative trait locus Msq1 accounts for ~40% of the phenotypic (brain viral load) variance that occurs between resistant BALB/c and susceptible SJL mice after MAV-1 infection. Using an interval-specific congenic mouse strain (C.SJL-Msq1SJL), in which the SJL-derived allele Msq1SJL is present in a BALB/c background, we demonstrate that Msq1SJL controls the development of high brain viral titers in response to MAV-1 infection, yet does not account for the total extent of brain pathology or mortality in SJL mice. C.SJL-Msq1SJL mice had disruption of the blood-brain barrier and increased brain water content after MAV-1 infection, but these effects occurred later and were not as severe, respectively, as those noted in infected SJL mice. As expected, BALB/c mice showed minimal pathology in these assays. Infection of SJL- and C.SJL-Msq1SJL-derived primary mouse brain endothelial cells resulted in loss of barrier properties, whereas BALB/c-derived cells retained their barrier properties despite being equally capable of supporting MAV-1 infection. Finally, we provide evidence that organ pathology and inflammatory cell recruitment to the brain following MAV-1 infection were both influenced by Msq1. These results validate Msq1 as an important host factor in MAV-1 infection and refine the major role of the locus in development of MAV-1 encephalitis. They further suggest that additional host factors or gene interactions are involved in the mechanism of pathogenesis in MAV-1-infected SJL mice. A successful viral infection requires both host and viral factors; identification of host components involved in viral replication and pathogenesis is important for development of therapeutic interventions. A genetic locus (Msq1) controlling mouse adenovirus type 1 (MAV-1) brain infection was previously identified. Genes in Msq1 belong to the same family of genes associated with susceptibility to other encephalitic viruses, HIV-1 and West Nile virus. We constructed an interval-specific congenic mouse strain to examine the contribution of Msq1 to MAV-1 susceptibility and brain morbidity. We compared infected resistant, susceptible, and congenic mice regarding known MAV-1 disease manifestations in the brain (survival, viral loads, blood-brain barrier disruption, edema, mouse brain endothelial cell barrier properties, pathology, and inflammatory cell recruitment) to determine the extent to which Msq1 influences MAV-1 infection outcome. Our results showed that Msq1 is a critical host genetic factor that controls many aspects of MAV-1 infection.
Collapse
|
96
|
Bruessow C, Karrer U, Gubler J, Pless M. Homonymous hemianopsia in a patient with Hodgkin's lymphoma in remission after BEACOPP chemotherapy. J Clin Oncol 2012; 30:e130-2. [PMID: 22393099 DOI: 10.1200/jco.2011.39.9634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
97
|
|
98
|
Nukuzuma S, Kameoka M, Sugiura S, Nakamichi K, Nukuzuma C, Miyoshi I, Takegami T. Exogenous human immunodeficiency virus-1 protein, tat, enhances replication of JC virus efficiently in neuroblastoma cell lines. J Med Virol 2012; 84:555-61. [DOI: 10.1002/jmv.23239] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
99
|
Schwab N, Ulzheimer JC, Fox RJ, Schneider-Hohendorf T, Kieseier BC, Monoranu CM, Staugaitis SM, Welch W, Jilek S, Du Pasquier RA, Brück W, Toyka KV, Ransohoff RM, Wiendl H. Fatal PML associated with efalizumab therapy: insights into integrin αLβ2 in JC virus control. Neurology 2012; 78:458-67; discussion 465. [PMID: 22302546 DOI: 10.1212/wnl.0b013e3182478d4b] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Progressive multifocal leukoencephalopathy (PML) has become much more common with monoclonal antibody treatment for multiple sclerosis and other immune-mediated disorders. METHODS We report 2 patients with severe psoriasis and fatal PML treated for ≥3 years with efalizumab, a neutralizing antibody to αLβ2-leukointegrin (LFA-1). In one patient, we conducted serial studies of peripheral blood and CSF including analyses of leukocyte phenotypes, migration ex vivo, and CDR3 spectratypes with controls coming from HIV-infected patients with PML. Extensive pathologic and histologic analysis was done on autopsy CNS tissue of both patients. RESULTS Both patients developed progressive cognitive and motor deficits, and JC virus was identified in CSF. Despite treatment including plasma exchange (PE) and signs of immune reconstitution, both died of PML 2 and 6 months after disease onset. Neuropathologic examination confirmed PML. Efalizumab treatment was associated with reduced transendothelial migration by peripheral T cells in vitro. As expression levels of LFA-1 on peripheral T cells gradually rose after PE, in vitro migration increased. Peripheral and CSF T-cell spectratyping showed CD8+ T-cell clonal expansion but blunted activation, which was restored after PE. CONCLUSIONS From these data we propose that inhibition of peripheral and intrathecal T-cell activation and suppression of CNS effector-phase migration both characterize efalizumab-associated PML. LFA-1 may be a crucial factor in homeostatic JC virus control.
Collapse
Affiliation(s)
- N Schwab
- Department of Neurology–Department of Inflammatory Diseases of the Nervous System and Neurooncology,University of Mu¨nster, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Vilkin A, Ronen Z, Levi Z, Morgenstern S, Halpern M, Niv Y. Presence of JC virus DNA in the tumor tissue and normal mucosa of patients with sporadic colorectal cancer (CRC) or with positive family history and Bethesda criteria. Dig Dis Sci 2012; 57:79-84. [PMID: 21830098 DOI: 10.1007/s10620-011-1855-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 07/27/2011] [Indexed: 12/09/2022]
Abstract
INTRODUCTION JC virus (JCV) may infect the gastrointestinal tract in childhood, and, by encoding a gene for T-antigen (T Ag), can initiate chromosomal instability in epithelial cells. AIM We looked for JCV DNA in the cancer tissue of patients with sporadic colorectal cancer (CRC, Group A) and with positive family history and Bethesda criteria (Group B). We hypothesized that the role of JCV may be different between these two groups. METHODS Fifty-six patients were randomly selected from our database, 30 in Group A and 26 in Group B. DNA was isolated from the tumor, normal mucosa, and plasma, and JCV DNA sequences were looked for with specific polymerase chain reaction (PCR) assays for T Ag primers. Immunohistochemistry for hMLH1, hMSH2, hMSH6, and PMS2 was performed on paraffin-embedded tissue. RESULTS In Group A, T Ag was demonstrated in 6 (20.00%) and 3 (10.00%) of the tumors and adjacent normal mucosa, respectively (P = 0.094). In Group B, the corresponding observations were 10 (38.46%) and 6 (23.07%), respectively (P < 0.001). Immunohistochemistry for hMLH1, hMSH2, hMSH6, and PMS2 was performed in all of the Group A and B patients. All patients of Group A (100%) showed expression of these proteins, while only 19 patients of Group B did so (73.1%), P = 0.009. JCV T Ag DNA was found in 20, 28.5, and 42.1% of the tumors in Group A, Group B with negative staining for DNA repair genes, and Group B with a positive staining, respectively (NS). CONCLUSION CRC patients with positive family history have a higher incidence of JCV T Ag, but this did not correlate with specific DNA repair gene mutations. We could not conclude that, on the background of genetic mutation in one of the DNA repair genes, JCV acts as the missing link in the chain of events leading to CRC.
Collapse
Affiliation(s)
- Alex Vilkin
- Department of Gastroenterology and Pathology, Rabin Medical Center, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|