51
|
Vandenbosch D, De Canck E, Dhondt I, Rigole P, Nelis HJ, Coenye T. Genomewide screening for genes involved in biofilm formation and miconazole susceptibility inSaccharomyces cerevisiae. FEMS Yeast Res 2013; 13:720-30. [DOI: 10.1111/1567-1364.12071] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 08/19/2013] [Accepted: 08/19/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Davy Vandenbosch
- Laboratory of Pharmaceutical Microbiology; Ghent University; Ghent Belgium
| | - Evelien De Canck
- Laboratory of Pharmaceutical Microbiology; Ghent University; Ghent Belgium
| | - Inne Dhondt
- Laboratory of Pharmaceutical Microbiology; Ghent University; Ghent Belgium
| | - Petra Rigole
- Laboratory of Pharmaceutical Microbiology; Ghent University; Ghent Belgium
| | - Hans J. Nelis
- Laboratory of Pharmaceutical Microbiology; Ghent University; Ghent Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology; Ghent University; Ghent Belgium
| |
Collapse
|
52
|
Impact of environmental conditions on the form and function of Candida albicans biofilms. EUKARYOTIC CELL 2013; 12:1389-402. [PMID: 23954841 DOI: 10.1128/ec.00127-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Candida albicans, like other pathogens, can form complex biofilms on a variety of substrates. However, as the number of studies of gene regulation, architecture, and pathogenic traits of C. albicans biofilms has increased, so have differences in results. This suggests that depending upon the conditions employed, biofilms may vary widely, thus hampering attempts at a uniform description. Gene expression studies suggest that this may be the case. To explore this hypothesis further, we compared the architectures and traits of biofilms formed in RPMI 1640 and Spider media at 37°C in air. Biofilms formed by a/α cells in the two media differed to various degrees in cellular architecture, matrix deposition, penetrability by leukocytes, fluconazole susceptibility, and the facilitation of mating. Similar comparisons of a/a cells in the two media, however, were made difficult given that in air, although a/a cells form traditional biofilms in RPMI medium, they form polylayers composed primarily of yeast cells in Spider medium. These polylayers lack an upper hyphal/matrix region, are readily penetrated by leukocytes, are highly fluconazole susceptible, and do not facilitate mating. If, however, air is replaced with 20% CO2, a/a cells make a biofilm in Spider medium similar architecturally to that of a/α cells, which facilitates mating. A second, more cursory comparison is made between the disparate cellular architectures of a/a biofilms formed in air in RPMI and Lee's media. The results demonstrate that C. albicans forms very different types of biofilms depending upon the composition of the medium, level of CO2 in the atmosphere, and configuration of the MTL locus.
Collapse
|
53
|
Abstract
Biofilm formation by Candida albicans on medically implanted devices poses a significant clinical challenge. Here, we compared biofilm-associated gene expression in two clinical C. albicans isolates, SC5314 and WO-1, to identify shared gene regulatory responses that may be functionally relevant. Among the 62 genes most highly expressed in biofilms relative to planktonic (suspension-grown) cells, we were able to recover insertion mutations in 25 genes. Twenty mutants had altered biofilm-related properties, including cell substrate adherence, cell-cell signaling, and azole susceptibility. We focused on one of the most highly upregulated genes in our biofilm proles, RHR2, which specifies the glycerol biosynthetic enzyme glycerol-3-phosphatase. Glycerol is 5-fold-more abundant in biofilm cells than in planktonic cells, and an rhr2Δ/Δ strain accumulates 2-fold-less biofilm glycerol than does the wild type. Under in vitro conditions, the rhr2Δ/Δ mutant has reduced biofilm biomass and reduced adherence to silicone. The rhr2Δ/Δ mutant is also severely defective in biofilm formation in vivo in a rat catheter infection model. Expression profiling indicates that the rhr2Δ/Δ mutant has reduced expression of cell surface adhesin genes ALS1, ALS3, and HWP1, as well as many other biofilm-upregulated genes. Reduced adhesin expression may be the cause of the rhr2Δ/Δ mutant biofilm defect, because overexpression of ALS1, ALS3, or HWP1 restores biofilm formation ability to the mutant in vitro and in vivo. Our findings indicate that internal glycerol has a regulatory role in biofilm gene expression and that adhesin genes are among the main functional Rhr2-regulated genes. Candida albicans is a major fungal pathogen, and infection can arise from the therapeutically intractable biofilms that it forms on medically implanted devices. It stands to reason that genes whose expression is induced during biofilm growth will function in the process, and our analysis of 25 such genes confirms that expectation. One gene is involved in synthesis of glycerol, a small metabolite that we find is abundant in biofilm cells. The impact of glycerol on biofilm formation is regulatory, not solely metabolic, because it is required for expression of numerous biofilm-associated genes. Restoration of expression of three of these genes that specify cell surface adhesins enables the glycerol-synthetic mutant to create a biofilm. Our findings emphasize the significance of metabolic pathways as therapeutic targets, because their disruption can have both physiological and regulatory consequences.
Collapse
|
54
|
SR-like RNA-binding protein Slr1 affects Candida albicans filamentation and virulence. Infect Immun 2013; 81:1267-76. [PMID: 23381995 DOI: 10.1128/iai.00864-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Candida albicans causes both mucosal and disseminated infections, and its capacity to grow as both yeast and hyphae is a key virulence factor. Hyphal formation is a type of polarized growth, and members of the SR (serine-arginine) family of RNA-binding proteins influence polarized growth of both Saccharomyces cerevisiae and Aspergillus nidulans. Therefore, we investigated whether SR-like proteins affect filamentous growth and virulence of C. albicans. BLAST searches with S. cerevisiae SR-like protein Npl3 (ScNpl3) identified two C. albicans proteins: CaNpl3, an apparent ScNpl3 ortholog, and Slr1, another SR-like RNA-binding protein with no close S. cerevisiae ortholog. Whereas ScNpl3 was critical for growth, deletion of NPL3 in C. albicans resulted in few phenotypic changes. In contrast, the slr1Δ/Δ mutant had a reduced growth rate in vitro, decreased filamentation, and impaired capacity to damage epithelial and endothelial cells in vitro. Mice infected intravenously with the slr1Δ/Δ mutant strain had significantly prolonged survival compared to that of mice infected with the wild-type or slr1Δ/Δ mutant complemented with SLR1 (slr1Δ/Δ+SLR1) strain, without a concomitant decrease in kidney fungal burden. Histopathology, however, revealed differential localization of slr1Δ/Δ hyphal and yeast morphologies within the kidney. Mice infected with slr1Δ/Δ cells also had an increased brain fungal burden, which correlated with increased invasion of brain, but not umbilical vein, endothelial cells in vitro. The enhanced brain endothelial cell invasion was likely due to the increased surface exposure of the Als3 adhesin on slr1Δ/Δ cells. Our results indicate that Slr1 is an SR-like protein that influences C. albicans growth, filamentation, host cell interactions, and virulence.
Collapse
|
55
|
Improved gene ontology annotation for biofilm formation, filamentous growth, and phenotypic switching in Candida albicans. EUKARYOTIC CELL 2012; 12:101-8. [PMID: 23143685 DOI: 10.1128/ec.00238-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The opportunistic fungal pathogen Candida albicans is a significant medical threat, especially for immunocompromised patients. Experimental research has focused on specific areas of C. albicans biology, with the goal of understanding the multiple factors that contribute to its pathogenic potential. Some of these factors include cell adhesion, invasive or filamentous growth, and the formation of drug-resistant biofilms. The Gene Ontology (GO) (www.geneontology.org) is a standardized vocabulary that the Candida Genome Database (CGD) (www.candidagenome.org) and other groups use to describe the functions of gene products. To improve the breadth and accuracy of pathogenicity-related gene product descriptions and to facilitate the description of as yet uncharacterized but potentially pathogenicity-related genes in Candida species, CGD undertook a three-part project: first, the addition of terms to the biological process branch of the GO to improve the description of fungus-related processes; second, manual recuration of gene product annotations in CGD to use the improved GO vocabulary; and third, computational ortholog-based transfer of GO annotations from experimentally characterized gene products, using these new terms, to uncharacterized orthologs in other Candida species. Through genome annotation and analysis, we identified candidate pathogenicity genes in seven non-C. albicans Candida species and in one additional C. albicans strain, WO-1. We also defined a set of C. albicans genes at the intersection of biofilm formation, filamentous growth, pathogenesis, and phenotypic switching of this opportunistic fungal pathogen, which provides a compelling list of candidates for further experimentation.
Collapse
|
56
|
Shapiro RS, Zaas AK, Betancourt-Quiroz M, Perfect JR, Cowen LE. The Hsp90 co-chaperone Sgt1 governs Candida albicans morphogenesis and drug resistance. PLoS One 2012; 7:e44734. [PMID: 22970302 PMCID: PMC3435277 DOI: 10.1371/journal.pone.0044734] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 08/07/2012] [Indexed: 12/30/2022] Open
Abstract
The molecular chaperone Hsp90 orchestrates regulatory circuitry governing fungal morphogenesis, biofilm development, drug resistance, and virulence. Hsp90 functions in concert with co-chaperones to regulate stability and activation of client proteins, many of which are signal transducers. Here, we characterize the first Hsp90 co-chaperone in the leading human fungal pathogen, Candida albicans. We demonstrate that Sgt1 physically interacts with Hsp90, and that it governs C. albicans morphogenesis and drug resistance. Genetic depletion of Sgt1 phenocopies depletion of Hsp90, inducing yeast to filament morphogenesis and invasive growth. Sgt1 governs these traits by bridging two morphogenetic regulators: Hsp90 and the adenylyl cyclase of the cAMP-PKA signaling cascade, Cyr1. Sgt1 physically interacts with Cyr1, and depletion of either Sgt1 or Hsp90 activates cAMP-PKA signaling, revealing the elusive link between Hsp90 and the PKA signaling cascade. Sgt1 also mediates tolerance and resistance to the two most widely deployed classes of antifungal drugs, azoles and echinocandins. Depletion of Sgt1 abrogates basal tolerance and acquired resistance to azoles, which target the cell membrane. Depletion of Sgt1 also abrogates tolerance and resistance to echinocandins, which target the cell wall, and renders echinocandins fungicidal. Though Sgt1 and Hsp90 have a conserved impact on drug resistance, the underlying mechanisms are distinct. Depletion of Hsp90 destabilizes the client protein calcineurin, thereby blocking crucial responses to drug-induced stress; in contrast, depletion of Sgt1 does not destabilize calcineurin, but blocks calcineurin activation in response to drug-induced stress. Sgt1 influences not only morphogenesis and drug resistance, but also virulence, as genetic depletion of C. albicans Sgt1 leads to reduced kidney fungal burden in a murine model of systemic infection. Thus, our characterization of the first Hsp90 co-chaperone in a fungal pathogen establishes C. albicans Sgt1 as a global regulator of morphogenesis and drug resistance, providing a new target for treatment of life-threatening fungal infections.
Collapse
Affiliation(s)
- Rebecca S. Shapiro
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Aimee K. Zaas
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Marisol Betancourt-Quiroz
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - John R. Perfect
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
57
|
Oh S, Go G, Mylonakis E, Kim Y. The bacterial signalling molecule indole attenuates the virulence of the fungal pathogen Candida albicans. J Appl Microbiol 2012; 113:622-8. [DOI: 10.1111/j.1365-2672.2012.05372.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/09/2012] [Accepted: 06/19/2012] [Indexed: 12/24/2022]
Affiliation(s)
- S. Oh
- Department of Gastroenterology; Massachusetts General Hospital; Harvard Medical School; Boston; MA; USA
| | - G.W. Go
- Cardiovascular Research Center; Yale School of Medicine; New Haven; CT; USA
| | - E. Mylonakis
- Division of Infectious Diseases; Massachusetts General Hospital; Harvard Medical School; Boston; MA; USA
| | - Y. Kim
- Department of Animal Science; Chonbuk National University; Jeonju; Korea
| |
Collapse
|
58
|
Abstract
Infectious diseases can be difficult to cure, especially if the pathogen forms a biofilm. After decades of extensive research into the morphology, physiology and genomics of biofilm formation, attention has recently been directed toward the analysis of the cellular metabolome in order to understand the transformation of a planktonic cell to a biofilm. Metabolomics can play an invaluable role in enhancing our understanding of the underlying biological processes related to the structure, formation and antibiotic resistance of biofilms. A systematic view of metabolic pathways or processes responsible for regulating this 'social structure' of microorganisms may provide critical insights into biofilm-related drug resistance and lead to novel treatments. This review will discuss the development of NMR-based metabolomics as a technology to study medically relevant biofilms. Recent advancements from case studies reviewed in this manuscript have shown the potential of metabolomics to shed light on numerous biological problems related to biofilms.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Chemistry, University of Nebraska-Lincoln, 722 Hamilton Hall, Lincoln, NE 68588-0304, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, 722 Hamilton Hall, Lincoln, NE 68588-0304, USA
| |
Collapse
|
59
|
Karunanithi S, Joshi J, Chavel C, Birkaya B, Grell L, Cullen PJ. Regulation of mat responses by a differentiation MAPK pathway in Saccharomyces cerevisiae. PLoS One 2012; 7:e32294. [PMID: 22496730 PMCID: PMC3319557 DOI: 10.1371/journal.pone.0032294] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/24/2012] [Indexed: 11/18/2022] Open
Abstract
Fungal species exhibit diverse behaviors when presented with extracellular challenges. Pathogenic fungi can undergo cell differentiation and biofilm formation in response to fluctuating nutrient levels, and these responses are required for virulence. In the model fungal eukaryote Saccharomyces cerevisiae, nutrient limitation induces filamentous growth and biofilm/mat formation. Both responses require the same signal transduction (MAPK) pathway and the same cell adhesion molecule (Flo11) but have been studied under different conditions. We found that filamentous growth and mat formation are aspects of a related response that is regulated by the MAPK pathway. Cells in yeast-form mats differentiated into pseudohyphae in response to nutrient limitation. The MAPK pathway regulated mat expansion (in the plane of the XY-axis) and substrate invasion (downward in the plane of the Z-axis), which optimized the mat's response to extracellular nutrient levels. The MAPK pathway also regulated an upward growth pattern (in the plane of the Z-axis) in response to nutrient limitation and changes in surface rigidity. Upward growth allowed for another level of mat responsiveness and resembled a type of colonial chemorepulsion. Together our results show that signaling pathways play critical roles in regulating social behaviors in which fungal cells participate. Signaling pathways may regulate similar processes in pathogens, whose highly nuanced responses are required for virulence.
Collapse
Affiliation(s)
| | | | | | | | | | - Paul J. Cullen
- Department of Biological Sciences, State University of New York-Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
60
|
Abstract
Fungal biofilm infections have become increasingly recognised as a significant clinical problem. One of the major reasons behind this is the impact that these have upon treatment, as antifungal therapy often fails and surgical intervention is required. This places a large financial burden on health care providers. This paper aims to illustrate the importance of fungal biofilms, particularly Candida albicans, and discusses some of the key fungal biofilm resistance mechanisms that include, extracellular matrix (ECM), efflux pump activity, persisters, cell density, overexpression of drug targets, stress responses, and the general physiology of the cell. The paper demonstrates the multifaceted nature of fungal biofilm resistance, which encompasses some of the newest data and ideas in the field.
Collapse
|
61
|
Srikantha T, Daniels KJ, Pujol C, Sahni N, Yi S, Soll DR. Nonsex genes in the mating type locus of Candida albicans play roles in a/α biofilm formation, including impermeability and fluconazole resistance. PLoS Pathog 2012; 8:e1002476. [PMID: 22253594 PMCID: PMC3257300 DOI: 10.1371/journal.ppat.1002476] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 11/22/2011] [Indexed: 12/24/2022] Open
Abstract
The mating type locus (MTL) of Candida albicans contains the mating type genes and has, therefore, been assumed to play an exclusive role in the mating process. In mating-incompetent a/α cells, two of the mating type genes, MTLa1 and MTLα2, encode components of the a1-α2 corepressor that suppresses mating and switching. But the MTL locus of C. albicans also contains three apparently unrelated “nonsex” genes (NSGs), PIK, PAP and OBP, the first two essential for growth. Since it had been previously demonstrated that deleting either the a/α copy of the entire MTL locus, or either MTLa1 or MTLα2, affected virulence, we hypothesized that the NSGs in the MTL locus may also play a role in pathogenesis. Here by mutational analysis, it is demonstrated that both the mating type and nonsex genes in the MTL locus play roles in a/α biofilm formation, and that OBP is essential for impermeability and fluconazole resistance. Most natural strains of the yeast pathogen Candida albicans are diploid and heterozygous (a/α) at the mating type locus (MTL). The MTL locus contains mating type genes and has been assumed to play roles exclusively in the mating process of a/a and α/α cells. In C. albicans, however, the MTL locus also contains three nonsex genes (NSGs), the essential phosphatidyl inositol kinase gene, PIK, the essential poly(A) polymerase gene, PAP, and the nonessential oxysterol binding protein gene, OBP. We demonstrate for the first time that both the mating type genes MTLa1 and MTLα2, and the three NSGs play non-mating roles in a/α biofilm formation and virulence. In addition, we show that the NSG OBP is necessary for impermeability and fluconazole resistance of a/α biofilms. These results demonstrate that nonsex genes as well as two mating type genes embedded in the mating type locus, play related roles in pathogenic processes unrelated to mating in a/α cells.
Collapse
Affiliation(s)
- Thyagarajan Srikantha
- The Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Karla J. Daniels
- The Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Claude Pujol
- The Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Nidhi Sahni
- The Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Song Yi
- The Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - David R. Soll
- The Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
62
|
Peters BM, Jabra-Rizk MA, O'May GA, Costerton JW, Shirtliff ME. Polymicrobial interactions: impact on pathogenesis and human disease. Clin Microbiol Rev 2012; 25:193-213. [PMID: 22232376 PMCID: PMC3255964 DOI: 10.1128/cmr.00013-11] [Citation(s) in RCA: 483] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microorganisms coexist in a complex milieu of bacteria, fungi, archaea, and viruses on or within the human body, often as multifaceted polymicrobial biofilm communities at mucosal sites and on abiotic surfaces. Only recently have we begun to appreciate the complicated biofilm phenotype during infection; moreover, even less is known about the interactions that occur between microorganisms during polymicrobial growth and their implications in human disease. Therefore, this review focuses on polymicrobial biofilm-mediated infections and examines the contribution of bacterial-bacterial, bacterial-fungal, and bacterial-viral interactions during human infection and potential strategies for protection against such diseases.
Collapse
Affiliation(s)
- Brian M. Peters
- Graduate Program in Life Sciences, Molecular Microbiology and Immunology Program, University of Maryland—Baltimore, Baltimore, Maryland, USA
- Department of Microbial Pathogenesis, University of Maryland—Baltimore, Dental School, Baltimore, Maryland, USA
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, Dental School, University of Maryland—Baltimore, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland—Baltimore, Baltimore, Maryland, USA
| | - Graeme A. O'May
- Department of Microbial Pathogenesis, University of Maryland—Baltimore, Dental School, Baltimore, Maryland, USA
| | - J. William Costerton
- Department of Orthopedic Surgery, Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, USA
| | - Mark E. Shirtliff
- Department of Microbial Pathogenesis, University of Maryland—Baltimore, Dental School, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland—Baltimore, Baltimore, Maryland, USA
| |
Collapse
|
63
|
Szczesny RJ, Borowski LS, Malecki M, Wojcik MA, Stepien PP, Golik P. RNA degradation in yeast and human mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:1027-34. [PMID: 22178375 DOI: 10.1016/j.bbagrm.2011.11.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 01/23/2023]
Abstract
Expression of mitochondrially encoded genes must be finely tuned according to the cell's requirements. Since yeast and human mitochondria have limited possibilities to regulate gene expression by altering the transcription initiation rate, posttranscriptional processes, including RNA degradation, are of great importance. In both organisms mitochondrial RNA degradation seems to be mostly depending on the RNA helicase Suv3. Yeast Suv3 functions in cooperation with Dss1 ribonuclease by forming a two-subunit complex called the mitochondrial degradosome. The human ortholog of Suv3 (hSuv3, hSuv3p, SUPV3L1) is also indispensable for mitochondrial RNA decay but its ribonucleolytic partner has so far escaped identification. In this review we summarize the current knowledge about RNA degradation in human and yeast mitochondria. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Roman J Szczesny
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
64
|
Jung JH, Kim J. Accumulation of P-bodies in Candida albicans under different stress and filamentous growth conditions. Fungal Genet Biol 2011; 48:1116-23. [DOI: 10.1016/j.fgb.2011.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 01/11/2023]
|
65
|
Possible inhibitory molecular mechanism of farnesol on the development of fluconazole resistance in Candida albicans biofilm. Antimicrob Agents Chemother 2011; 56:770-5. [PMID: 22106223 DOI: 10.1128/aac.05290-11] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans biofilm infections are usually treated with azole antifungals such as fluconazole. However, the development of resistance to this drug in C. albicans biofilms is very common, especially in immunocompromised individuals. The upregulation of the sterol biosynthetic pathway gene ERG and the efflux pump genes CDR and MDR may contribute to this azole tolerance in Candida species. We hypothesize that farnesol, an endogenous quorum sensing molecule with possible antimicrobial properties which is also the precursor of ergosterols in C. albicans, may interfere with the development of fluconazole resistance in C. albicans biofilms. To test this hypothesis, MICs were compared and morphology changes were observed by confocal laser scanning microscopy (CLSM) for farnesol-treated and -untreated and fluconazole-resistant groups. The expression of possible target genes (ERG11, ERG25, ERG6, ERG5, ERG3, ERG1, MDR1, CDR1, and CDR2) in biofilms was analyzed by reverse transcription-PCR (RT-PCR) and quantitative PCR (qPCR) to investigate the molecular mechanisms of the inhibitory effects of farnesol. The results showed a decreased MIC of fluconazole and thinner biofilms for the farnesol-treated group, indicating that farnesol inhibited the development of fluconazole resistance. The sterol biosynthetic pathway may contribute to the inhibitory effects of farnesol, as the transcription levels of the ERG11, ERG25, ERG6, ERG3, and ERG1 genes decreased in the farnesol-treated group.
Collapse
|
66
|
Shertz CA, Cardenas ME. Exploiting and subverting Tor signaling in the pathogenesis of fungi, parasites, and viruses. PLoS Pathog 2011; 7:e1002269. [PMID: 21980290 PMCID: PMC3182915 DOI: 10.1371/journal.ppat.1002269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Cecelia A. Shertz
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Maria E. Cardenas
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
67
|
Robbins N, Uppuluri P, Nett J, Rajendran R, Ramage G, Lopez-Ribot JL, Andes D, Cowen LE. Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathog 2011; 7:e1002257. [PMID: 21931556 PMCID: PMC3169563 DOI: 10.1371/journal.ppat.1002257] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 07/27/2011] [Indexed: 01/12/2023] Open
Abstract
Fungal biofilms are a major cause of human mortality and are recalcitrant to most treatments due to intrinsic drug resistance. These complex communities of multiple cell types form on indwelling medical devices and their eradication often requires surgical removal of infected devices. Here we implicate the molecular chaperone Hsp90 as a key regulator of biofilm dispersion and drug resistance. We previously established that in the leading human fungal pathogen, Candida albicans, Hsp90 enables the emergence and maintenance of drug resistance in planktonic conditions by stabilizing the protein phosphatase calcineurin and MAPK Mkc1. Hsp90 also regulates temperature-dependent C. albicans morphogenesis through repression of cAMP-PKA signalling. Here we demonstrate that genetic depletion of Hsp90 reduced C. albicans biofilm growth and maturation in vitro and impaired dispersal of biofilm cells. Further, compromising Hsp90 function in vitro abrogated resistance of C. albicans biofilms to the most widely deployed class of antifungal drugs, the azoles. Depletion of Hsp90 led to reduction of calcineurin and Mkc1 in planktonic but not biofilm conditions, suggesting that Hsp90 regulates drug resistance through different mechanisms in these distinct cellular states. Reduction of Hsp90 levels led to a marked decrease in matrix glucan levels, providing a compelling mechanism through which Hsp90 might regulate biofilm azole resistance. Impairment of Hsp90 function genetically or pharmacologically transformed fluconazole from ineffectual to highly effective in eradicating biofilms in a rat venous catheter infection model. Finally, inhibition of Hsp90 reduced resistance of biofilms of the most lethal mould, Aspergillus fumigatus, to the newest class of antifungals to reach the clinic, the echinocandins. Thus, we establish a novel mechanism regulating biofilm drug resistance and dispersion and that targeting Hsp90 provides a much-needed strategy for improving clinical outcome in the treatment of biofilm infections. Candida albicans and Aspergillus fumigatus are the most common causative agents of fungal infections worldwide. Both species can form biofilms on host tissues and indwelling medical devices that are highly resistant to antifungal treatment. Here we implicate the molecular chaperone Hsp90 as a key regulator of biofilm dispersion and drug resistance. Compromising Hsp90 function reduced biofilm formation of C. albicans in vitro and impaired dispersal of biofilm cells, potentially blocking their capacity to serve as reservoirs for infection. Further, compromise of Hsp90 function abrogated resistance of C. albicans biofilms to the most widely deployed class of antifungal, the azoles, both in vitro and in a mammalian model of catheter-associated candidiasis. Key drug resistance regulators were depleted upon reduction of Hsp90 levels in planktonic but not biofilm conditions, suggesting that Hsp90 regulates drug resistance through different mechanisms in these distinct cellular states. Reduction of Hsp90 markedly reduced levels of matrix glucan, a carbohydrate important for C. albicans biofilm drug resistance. Inhibition of Hsp90 also reduced resistance of A. fumigatus biofilms to the newest class of antifungal, the echinocandins. Thus, targeting Hsp90 provides a promising strategy for the treatment of biofilm infections caused by diverse fungal species.
Collapse
Affiliation(s)
- Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Priya Uppuluri
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, Texas, United States of America
| | - Jeniel Nett
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Ranjith Rajendran
- College of Medicine, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| | - Gordon Ramage
- College of Medicine, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| | - Jose L. Lopez-Ribot
- Department of Biology and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, Texas, United States of America
| | - David Andes
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
68
|
DiDone L, Oga D, Krysan DJ. A novel assay of biofilm antifungal activity reveals that amphotericin B and caspofungin lyse Candida albicans cells in biofilms. Yeast 2011; 28:561-8. [DOI: 10.1002/yea.1860] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 05/07/2011] [Indexed: 11/11/2022] Open
|
69
|
Shapiro RS, Robbins N, Cowen LE. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev 2011; 75:213-67. [PMID: 21646428 PMCID: PMC3122626 DOI: 10.1128/mmbr.00045-10] [Citation(s) in RCA: 412] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pathogenic fungi have become a leading cause of human mortality due to the increasing frequency of fungal infections in immunocompromised populations and the limited armamentarium of clinically useful antifungal drugs. Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus are the leading causes of opportunistic fungal infections. In these diverse pathogenic fungi, complex signal transduction cascades are critical for sensing environmental changes and mediating appropriate cellular responses. For C. albicans, several environmental cues regulate a morphogenetic switch from yeast to filamentous growth, a reversible transition important for virulence. Many of the signaling cascades regulating morphogenesis are also required for cells to adapt and survive the cellular stresses imposed by antifungal drugs. Many of these signaling networks are conserved in C. neoformans and A. fumigatus, which undergo distinct morphogenetic programs during specific phases of their life cycles. Furthermore, the key mechanisms of fungal drug resistance, including alterations of the drug target, overexpression of drug efflux transporters, and alteration of cellular stress responses, are conserved between these species. This review focuses on the circuitry regulating fungal morphogenesis and drug resistance and the impact of these pathways on virulence. Although the three human-pathogenic fungi highlighted in this review are those most frequently encountered in the clinic, they represent a minute fraction of fungal diversity. Exploration of the conservation and divergence of core signal transduction pathways across C. albicans, C. neoformans, and A. fumigatus provides a foundation for the study of a broader diversity of pathogenic fungi and a platform for the development of new therapeutic strategies for fungal disease.
Collapse
Affiliation(s)
| | | | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
70
|
Killing of Candida albicans filaments by Salmonella enterica serovar Typhimurium is mediated by sopB effectors, parts of a type III secretion system. EUKARYOTIC CELL 2011; 10:782-90. [PMID: 21498643 DOI: 10.1128/ec.00014-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although bacterial-fungal interactions shape microbial virulence during polymicrobial infections, only a limited number of studies have evaluated this interaction on a genetic level. We report here that one interaction is mediated by sopB, an effector of a type III secretion system (TTSS) of Salmonella enterica serovar Typhimurium. In these studies, we screened 10 TTSS effector-related mutants and determined their role in the killing of C. albicans filaments in vitro during coinfection in planktonic environments. We found that deleting the sopB gene (which encodes inositol phosphatase) was associated with a significant decrease in C. albicans killing at 25°C after 5 days, similar to that caused by the deletion of sipB (which encodes TTSS translocation machinery components). The sopB deletion dramatically influenced the killing of C. albicans filaments. It was associated with repressed filamentation in the Caenorhabditis elegans model of C. albicans-S. Typhimurium coinfection, as well as with biofilm formation by C. albicans. We confirmed that SopB translocated to fungal filaments through SipB during coinfection. Using quantitative real-time PCR assays, we found that the Candida supernatant upregulated the S. Typhimurium genes associated with C. albicans killing (sopB and sipB). Interestingly, the sopB effector negatively regulated the transcription of CDC42, which is involved in fungal viability. Taken together, these results indicate that specific TTSS effectors, including SopB, play a critical role in bacterial-fungal interactions and are important to S. Typhimurium in order to selectively compete with fungal pathogens. These findings highlight a new role for TTSS of S. Typhimurium in the intestinal tract and may further explain the evolution and maintenance of these traits.
Collapse
|
71
|
Bonhomme J, Chauvel M, Goyard S, Roux P, Rossignol T, d'Enfert C. Contribution of the glycolytic flux and hypoxia adaptation to efficient biofilm formation by Candida albicans. Mol Microbiol 2011; 80:995-1013. [PMID: 21414038 DOI: 10.1111/j.1365-2958.2011.07626.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The fungal pathogen Candida albicans forms therapeutically challenging biofilms on biomedical implants. Using a transcript profiling approach genes whose expression is favoured upon biofilm growth compared with planktonic growth have been previously identified. Knock-out mutants for 38 of these genes were constructed, six of which showed a specific defect in biofilm formation. Among these genes, TYE7 that encodes a transcriptional activator of glycolytic genes in planktonic and biofilm growth conditions was identified as being required for the cohesiveness of biofilms. Biofilms formed by the tye7Δ knock-out mutant showed a hyperfilamentous morphology, and growth of this mutant on solid medium under hypoxia was also associated with the production of hyphae. Similar to TYE7 inactivation, inhibition of glycolysis or ATP synthesis using oxalate or an uncoupler, respectively, triggered morphogenesis when a wild-type strain was grown under hypoxia. These treatments also induced the formation of weakly cohesive, hyper-filamentous biofilms by a wild-type strain. Our data indicate that a hypoxic environment is generated within C. albicans biofilms and that continued biofilm development requires a Tye7p-dependent upregulation of glycolytic genes necessary to adapt to hypoxia and prevent uncontrolled hyphal formation. Thus, adaptation to hypoxia is an integral component of biofilm formation in C. albicans.
Collapse
Affiliation(s)
- Julie Bonhomme
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, F-75015 Paris, France
| | | | | | | | | | | |
Collapse
|
72
|
Nett JE, Cain MT, Crawford K, Andes DR. Optimizing a Candida biofilm microtiter plate model for measurement of antifungal susceptibility by tetrazolium salt assay. J Clin Microbiol 2011; 49:1426-33. [PMID: 21227984 PMCID: PMC3122839 DOI: 10.1128/jcm.02273-10] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 01/06/2011] [Indexed: 11/20/2022] Open
Abstract
Candida spp. infect medical devices, such as venous and urinary catheters, by adhering to the surface and forming a community of drug-resistant cells surrounded by a matrix. The ability to measure drug activity during this biofilm mode of growth is of interest for the investigation of resistance mechanisms and novel antifungal therapies. The tetrazolium salt (XTT) reduction assay is the test most commonly used to estimate viable biofilm growth and to examine the impact of biofilm therapies. The primary goal of the current experiments was to identify assay variables that affect the XTT assay result in order to improve assay reproducibility, sensitivity, and throughput for the study of antifungal activity. The species used in the current studies included Candida albicans, C. parapsilosis, and C. glabrata. The assay variables that were studied included the impact of culture conditions, the duration of biofilm growth, the timing and frequency of drug administration, the XTT source and concentration, and the duration of XTT incubation. The conditions that impacted the assay readout and altered assay sensitivity included the duration of biofilm growth, the frequency of drug dosing, and the duration of XTT incubation. Several factors were found to reduce time and assay expense, including the elimination of washing steps, the shortening of incubation times, and the use of lower XTT concentrations. A description of assay pitfalls and troubleshooting is included. Recognition of these technical variables should allow investigators to better design reproducible biofilm therapeutic studies.
Collapse
Affiliation(s)
- Jeniel E. Nett
- Departments of Microbiology and Immunology
- William S. Middleton Veterans Hospital, Madison, Wisconsin
| | | | | | - David R. Andes
- Departments of Microbiology and Immunology
- Medicine, University of Wisconsin
- William S. Middleton Veterans Hospital, Madison, Wisconsin
| |
Collapse
|
73
|
Deveau A, Hogan DA. Linking quorum sensing regulation and biofilm formation by Candida albicans. Methods Mol Biol 2011; 692:219-33. [PMID: 21031315 DOI: 10.1007/978-1-60761-971-0_16] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Candida albicans biofilms are surface-associated, structured communities composed of yeast, hyphal, and pseudohyphal cells surrounded by an extracellular matrix. C. albicans biofilms often lead to life-threatening systemic infections and are particularly difficult to eradicate because of their high levels of resistance to antibiotics. Farnesol, an autoregulatory molecule secreted by C. albicans, inhibits hyphal growth and the expression of a number of morphology-specific genes that are necessary for robust biofilm formation. Many stages of biofilm development are impacted by farnesol including the adherence of cells to the substratum, the architecture of mature biofilms, and the dispersal of cells from biofilms. For these reasons, understanding the mechanisms of action of farnesol could lead to the development of new antifungal compounds that target C. albicans biofilm cells, perhaps rendering biofilms more sensitive to antibiotics. Here, we describe several methods for the analysis of the effects of farnesol on biofilm formation and function.
Collapse
Affiliation(s)
- Aurélie Deveau
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH, USA
| | | |
Collapse
|
74
|
Dwivedi P, Thompson A, Xie Z, Kashleva H, Ganguly S, Mitchell AP, Dongari-Bagtzoglou A. Role of Bcr1-activated genes Hwp1 and Hyr1 in Candida albicans oral mucosal biofilms and neutrophil evasion. PLoS One 2011; 6:e16218. [PMID: 21283544 PMCID: PMC3026825 DOI: 10.1371/journal.pone.0016218] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 12/10/2010] [Indexed: 11/18/2022] Open
Abstract
Candida albicans triggers recurrent infections of the oropharyngeal mucosa that result from biofilm growth. Prior studies have indicated that the transcription factor Bcr1 regulates biofilm formation in a catheter model, both in vitro and in vivo. We thus hypothesized that Bcr1 plays similar roles in the formation of oral mucosal biofilms and tested this hypothesis in a mouse model of oral infection. We found that a bcr1/bcr1 mutant did not form significant biofilm on the tongues of immunocompromised mice, in contrast to reference and reconstituted strains that formed pseudomembranes covering most of the tongue dorsal surface. Overexpression of HWP1, which specifies an epithelial adhesin that is under the transcriptional control of Bcr1, partly but significantly rescued the bcr1/bcr1 biofilm phenotype in vivo. Since HWP1 overexpression only partly reversed the biofilm phenotype, we investigated whether additional mechanisms, besides adhesin down-regulation, were responsible for the reduced virulence of this mutant. We discovered that the bcr1/bcr1 mutant was more susceptible to damage by human leukocytes when grown on plastic or on the surface of a human oral mucosa tissue analogue. Overexpression of HYR1, but not HWP1, significantly rescued this phenotype. Furthermore a hyr1/hyr1 mutant had significantly attenuated virulence in the mouse oral biofilm model of infection. These discoveries show that Bcr1 is critical for mucosal biofilm infection via regulation of epithelial cell adhesin and neutrophil function.
Collapse
Affiliation(s)
- Prabhat Dwivedi
- Department of Microbiology, University of Texas, Houston, Texas, United States of America
| | - Angela Thompson
- Division of Periodontology, School of Dental Medicine, University of Connecticut, Farmington, Connecticut, United States of America
| | - Zhihong Xie
- Division of Periodontology, School of Dental Medicine, University of Connecticut, Farmington, Connecticut, United States of America
| | - Helena Kashleva
- Division of Periodontology, School of Dental Medicine, University of Connecticut, Farmington, Connecticut, United States of America
| | - Shantanu Ganguly
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Aaron P. Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Anna Dongari-Bagtzoglou
- Division of Periodontology, School of Dental Medicine, University of Connecticut, Farmington, Connecticut, United States of America
| |
Collapse
|
75
|
Xu T, Bharucha N, Kumar A. Genome-wide transposon mutagenesis in Saccharomyces cerevisiae and Candida albicans. Methods Mol Biol 2011; 765:207-24. [PMID: 21815095 DOI: 10.1007/978-1-61779-197-0_13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transposon mutagenesis is an effective method for generating large sets of random mutations in target DNA, with applicability toward numerous types of genetic screens in prokaryotes, single-celled eukaryotes, and metazoans alike. Relative to methods of random mutagenesis by chemical/UV treatment, transposon insertions can be easily identified in mutants with phenotypes of interest. The construction of transposon insertion mutants is also less labor-intensive on a genome-wide scale than methods for targeted gene replacement, although transposon insertions are not precisely targeted to a specific residue, and thus coverage of the target DNA can be problematic. The collective advantages of transposon mutagenesis have been well demonstrated in studies of the budding yeast Saccharomyces cerevisiae and the related pathogenic yeast Candida albicans, as transposon mutagenesis has been used extensively for phenotypic screens in both yeasts. Consequently, we present here protocols for the generation and utilization of transposon-insertion DNA libraries in S. cerevisiae and C. albicans. Specifically, we present methods for the large-scale introduction of transposon insertion alleles in a desired strain of S. cerevisiae. Methods are also presented for transposon mutagenesis of C. albicans, encompassing both the construction of the plasmid-based transposon-mutagenized DNA library and its introduction into a desired strain of Candida. In total, these methods provide the necessary information to implement transposon mutagenesis in yeast, enabling the construction of large sets of identifiable gene disruption mutations, with particular utility for phenotypic screening in nonstandard genetic backgrounds.
Collapse
Affiliation(s)
- Tao Xu
- Department of Molecular, Cellular, and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
76
|
Abstract
Candida species cause frequent infections owing to their ability to form biofilms - surface-associated microbial communities - primarily on implanted medical devices. Increasingly, mechanistic studies have identified the gene products that participate directly in the development of Candida albicans biofilms, as well as the regulatory circuitry and networks that control their expression and activity. These studies have uncovered new mechanisms and signals that govern C. albicans biofilm development and associated drug resistance, thus providing biological insight and therapeutic foresight.
Collapse
|
77
|
Abstract
The use of indwelling medical devices is rapidly growing and is often complicated by infections with biofilm-forming microbes that are resistant to antimicrobial agents and host defense mechanisms. Fungal biofilms have emerged as a clinical problem associated with these medical device infections, causing significant morbidity and mortality. This review discusses the recent advances in the understanding of fungal biofilms, including the role of fungal surface components in adherence, gene expression, and quorum sensing in biofilm formation. We propose novel strategies for the prevention or eradication of microbial colonization of medical prosthetic devices.
Collapse
Affiliation(s)
- Luis R Martinez
- Albert Einstein College of Medicine, 1300 Morris Park Avenue Bronx, Morris Park, NY 10461, USA
| | | |
Collapse
|
78
|
Padovan ACB, Chaves GM, Colombo AL, Briones MRS. A novel allele of HWP1, isolated from a clinical strain of Candida albicans with defective hyphal growth and biofilm formation, has deletions of Gln/Pro and Ser/Thr repeats involved in cellular adhesion. Med Mycol 2010; 47:824-35. [PMID: 19184714 DOI: 10.3109/13693780802669574] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene HWP1 encodes a major Candida albicans hyphae cell wall protein which is a substrate of mammalian transglutaminases, promoting the cross-link of the fungus to epithelial cells. Here, we describe a novel HWP1 allele, isolated from C. albicans blood isolates. Analysis of the translated sequence shows that three important regions are absent in the novel allele, HWP1-2, relative to the previously described allele, HWP1-1. Regions 1 and 2 consist of 10 amino acid repeats important for functional conformation of peptide chains and attachment of C. albicans cells to the mammalian epithelia. Region 3 consists of 34 amino acid residues rich in threonine and serine, with O-glycosylation sites that promote the cross-linking with other proteins on C. albicans surface. The HWP1-2 homozygous strain L757 and the heterozygous strain L296 (HWP1-1/HWP1-2) have significantly lower levels of HWP1 expression during hyphal growth and biofilm formation compared to strain SC5314 (HWP1-1/HWP1-1). However, strain L296 properly forms hyphae and biofilms in vitro while strain L757 has reduced hyphal growth (40.4%) and biofilm formation (90.8%). Our results indicate that the HWP1 locus has biofilm specific allelic differential expression and suggest that the HWP1-2 encoded protein is less efficient to maintain cell-to-cell and cell-to-surface adhesion during biofilm formation. This is the first report of a natural variant of HWP1.
Collapse
Affiliation(s)
- Ana Carolina B Padovan
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
79
|
Karlsson AJ, Flessner RM, Gellman SH, Lynn DM, Palecek SP. Polyelectrolyte multilayers fabricated from antifungal β-peptides: design of surfaces that exhibit antifungal activity against Candida albicans. Biomacromolecules 2010; 11:2321-8. [PMID: 20831274 PMCID: PMC2939741 DOI: 10.1021/bm100424s] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The fungal pathogen Candida albicans can form biofilms on the surfaces of medical devices that are resistant to drug treatment and provide a reservoir for recurrent infections. The use of fungicidal or fungistatic materials to fabricate or coat the surfaces of medical devices has the potential to reduce or eliminate the incidence of biofilm-associated infections. Here we report on (i) the fabrication of multilayered polyelectrolyte thin films (PEMs) that promote the surface-mediated release of an antifungal β-peptide and (ii) the ability of these films to inhibit the growth of C. albicans on film-coated surfaces. We incorporated a fluorescently labeled antifungal β-peptide into the structures of PEMs fabricated from poly-l-glutamic acid (PGA) and poly-l-lysine (PLL) using a layer-by-layer fabrication procedure. These films remained stable when incubated in culture media at 37 °C and released β-peptide gradually into solution for up to 400 h. Surfaces coated with β-peptide-containing films inhibited the growth of C. albicans , resulting in a 20% reduction of cell viability after 2 h and a 74% decrease in metabolic activity after 7 h when compared to cells incubated on PGA/PLL-coated surfaces without β-peptide. In addition, β-peptide-containing films inhibited hyphal elongation by 55%. These results, when combined, demonstrate that it is possible to fabricate β-peptide-containing thin films that inhibit the growth and proliferation of C. albicans and provide the basis of an approach that could be used to inhibit the formation of C. albicans biofilms on film-coated surfaces. The layer-by-layer approach reported here could ultimately be used to coat the surfaces of catheters, surgical instruments, and other devices to inhibit drug-resistant C. albicans biofilm formation in clinical settings.
Collapse
Affiliation(s)
- Amy J Karlsson
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
80
|
Zacchi LF, Schulz WL, Davis DA. HOS2 and HDA1 encode histone deacetylases with opposing roles in Candida albicans morphogenesis. PLoS One 2010; 5:e12171. [PMID: 20730094 PMCID: PMC2921335 DOI: 10.1371/journal.pone.0012171] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 07/14/2010] [Indexed: 11/18/2022] Open
Abstract
Epigenetic mechanisms regulate the expression of virulence traits in diverse pathogens, including protozoan and fungi. In the human fungal pathogen Candida albicans, virulence traits such as antifungal resistance, white-opaque switching, and adhesion to lung cells are regulated by histone deacetylases (HDACs). However, the role of HDACs in the regulation of the yeast-hyphal morphogenetic transitions, a critical virulence attribute of C. albicans, remains poorly explored. In this study, we wished to determine the relevance of other HDACs on C. albicans morphogenesis. We generated mutants in the HDACs HOS1, HOS2, RPD31, and HDA1 and determined their ability to filament in response to different environmental stimuli. We found that while HOS1 and RPD31 have no or a more limited role in morphogenesis, the HDACs HOS2 and HDA1 have opposite roles in the regulation of hyphal formation. Our results demonstrate an important role for HDACs on the regulation of yeast-hyphal transitions in the human pathogen C. albicans.
Collapse
Affiliation(s)
- Lucia F Zacchi
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota, USA.
| | | | | |
Collapse
|
81
|
Lee KH, Kim SY, Jung JH, Kim J. Proteomic analysis of hyphae-specific proteins that are expressed differentially in cakem1/cakem1 mutant strains of Candida albicans. J Microbiol 2010; 48:365-71. [PMID: 20571955 DOI: 10.1007/s12275-010-9155-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 02/27/2010] [Indexed: 11/29/2022]
Abstract
The yeast-to-hyphal transition is a major virulence factor in the fungal pathogen Candida albicans. Mutations in the CaKEM1 gene, which encodes a 5'-3' exoribonuclease responsible for mRNA degradation, show a defect in hyphal growth. We applied two-dimensional gel electrophoresis to identify hyphae-specific proteins that have altered expressions in the presence of the cakem1 mutation. Eight proteins, Eno1, Eps1, Fba1, Imh3, Lpd1, Met6, Pdc11, and Tsa1 were upregulated during hyphal transition in wild-type but not in cakem1/cakem1 mutant cells. A second group of proteins, Idh1, Idh2, and Ssb1, showed increased levels of expression in cakem1/cakem1 mutant cells when compared to wild-type cells. Overexpression of Lpd1, a component of the pyruvate dehydrogenase complex, caused slight hyperfilamentation in a wild-type strain and suppressed the filamentation defect of the cakem1 mutation. The Ssb1 protein, which is a potential heat shock protein, and the Imh3 protein, which is a putative enzyme in GMP biosynthesis also showed the filamentation-associated phenotypes.
Collapse
Affiliation(s)
- Kang-Hoon Lee
- Department of Microbiology, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | | | | | | |
Collapse
|
82
|
Fuchs BB, Eby J, Nobile CJ, El Khoury JB, Mitchell AP, Mylonakis E. Role of filamentation in Galleria mellonella killing by Candida albicans. Microbes Infect 2010; 12:488-96. [PMID: 20223293 PMCID: PMC2883670 DOI: 10.1016/j.micinf.2010.03.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 02/26/2010] [Accepted: 03/01/2010] [Indexed: 10/19/2022]
Abstract
Candida albicans is an important cause of morbidity in hospitalized and immunosuppressed patients. Virulence factors of C. albicans include: filamentation, proteinases, adherence proteins and biofilm formation. The objective of this work was to use Galleria mellonella as a model to study the roles of C. albicans filamentation in virulence. We focused our study to five genes BCR1, FLO8, KEM1, SUV3 and TEC1 that have been shown to play a role in filamentation. Filaments are necessary for biofilm formation and evading interaction with macrophages in mammalian infections. Among the five mutant strain tested, we found that only the flo8/flo8 mutant strain did not form filaments within G. mellonella. This strain also exhibited reduced virulence in the larvae. Another strain that exhibited reduced pathogenicity in the G. mellonella model was tec1/tec1 but by contrast, the tec1/tec1 strain retained the ability to form filaments. Overexpression of TEC1 in the flo8/flo8 mutant restored filamentation but did not restore virulence in the larvae as well as in a mouse model of C. albicans infection. The filamentation phenotype did not affect the ability of hemocytes, the immune cells of G. mellonella, to associate with the various mutant strains of C. albicans. The capacities of the tec1/tec1 mutant and the flo8/flo8 TDH3-TEC1 strains to form filaments with impaired virulence suggest that filamentation alone is not sufficient to kill G. mellonella and suggest other virulence factors may be associated with genes that regulate filamentation.
Collapse
Affiliation(s)
- Beth Burgwyn Fuchs
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114
| | - Josh Eby
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114
| | | | - Joseph B. El Khoury
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02114
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA 02114
| | - Aaron P. Mitchell
- Department of Microbiology, Columbia University, New York, NY, 10032
| | | |
Collapse
|
83
|
Abstract
The success of Candida albicans as a major human fungal pathogen is dependent on its ability to colonize and survive as a commensal on diverse mucosal surfaces. One trait required for survival and virulence in the host is the morphogenetic yeast-to-hypha transition. Mds3 was identified as a regulator of pH-dependent morphogenesis that functions in parallel with the classic Rim101 pH-sensing pathway. Microarray analyses revealed that mds3 Delta/Delta cells had an expression profile indicative of a hyperactive TOR pathway, including the preferential expression of genes encoding ribosomal proteins and a decreased expression of genes involved in nitrogen source utilization. The transcriptional and morphological defects of the mds3 Delta/Delta mutant were rescued by rapamycin, an inhibitor of TOR, and this rescue was lost in strains carrying the rapamycin-resistant TOR1-1 allele or an rbp1 Delta/Delta deletion. Rapamycin also rescued the transcriptional and morphological defects associated with the loss of Sit4, a TOR pathway effector, but not the loss of Rim101 or Ras1. The sit4 Delta/Delta and mds3 Delta/Delta mutants had additional phenotypic similarities, suggesting that Sit4 and Mds3 function similarly in the TOR pathway. Finally, we found that Mds3 and Sit4 coimmunoprecipitate. Thus, Mds3 is a new member of the TOR pathway that contributes to morphogenesis in C. albicans as a regulator of this key morphogenetic pathway.
Collapse
|
84
|
Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK, Köhler JR, Kadosh D, Lopez-Ribot JL. Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog 2010; 6:e1000828. [PMID: 20360962 PMCID: PMC2847914 DOI: 10.1371/journal.ppat.1000828] [Citation(s) in RCA: 308] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 02/18/2010] [Indexed: 01/15/2023] Open
Abstract
Biofilms are dynamic microbial communities in which transitions between planktonic and sessile modes of growth occur interchangeably in response to different environmental cues. In the last decade, early events associated with C. albicans biofilm formation have received considerable attention. However, very little is known about C. albicans biofilm dispersion or the mechanisms and signals that trigger it. This is important because it is precisely C. albicans cells dispersed from biofilms that are the main culprits associated with candidemia and establishment of disseminated invasive disease, two of the gravest forms of candidiasis. Using a simple flow biofilm model recently developed by our group, we have performed initial investigations into the phenomenon of C. albicans biofilm dispersion, as well as the phenotypic characteristics associated with dispersed cells. Our results indicate that C. albicans biofilm dispersion is dependent on growing conditions, including carbon source and pH of the media used for biofilm development. C. albicans dispersed cells are mostly in the yeast form and display distinct phenotypic properties compared to their planktonic counterparts, including enhanced adherence, filamentation, biofilm formation and, perhaps most importantly, increased pathogenicity in a murine model of hematogenously disseminated candidiasis, thus indicating that dispersed cells are armed with a complete arsenal of "virulence factors" important for seeding and establishing new foci of infection. In addition, utilizing genetically engineered strains of C. albicans (tetO-UME6 and tetO-PES1) we demonstrate that C. albicans biofilm dispersion can be regulated by manipulating levels of expression of these key genes, further supporting the evidence for a strong link between biofilms and morphogenetic conversions at different stages of the C. albicans biofilm developmental cycle. Overall, our results offer novel and important insight into the phenomenon of C. albicans biofilm dispersion, a key part of the biofilm developmental cycle, and provide the basis for its more detailed analysis.
Collapse
Affiliation(s)
- Priya Uppuluri
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Ashok K. Chaturvedi
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Anand Srinivasan
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Mohua Banerjee
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Anand K. Ramasubramaniam
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Julia R. Köhler
- Division of Infectious Diseases, Children's Hospital, Boston, Massachusetts, United States of America
| | - David Kadosh
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Jose L. Lopez-Ribot
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
85
|
Coleman JJ, Okoli I, Tegos GP, Holson EB, Wagner FF, Hamblin MR, Mylonakis E. Characterization of plant-derived saponin natural products against Candida albicans. ACS Chem Biol 2010; 5:321-32. [PMID: 20099897 DOI: 10.1021/cb900243b] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Candida albicans is an opportunistic fungal pathogen capable of life-threatening disseminated infections particularly in immunocompromised patients. Resistance to many clinically used antifungal agents has created a need to identify and develop a new generation of compounds for therapeutic use. A compound screen to identify potential antifungal natural products was undertaken, identifying 12 saponins, some of which have not been previously described. In the Caenorhabditis elegans model, some saponins conferred nematode survival comparable to that of amphotericin B. Of the 12 antifungal saponins identified, two were selected for further analysis. C. albicans isolates were inhibited by these compounds at relatively low concentrations (16 and 32 microg mL(-1)) including isolates resistant to clinically used antifungal agents. C. albicans hyphae and biofilm formation were also disrupted in the presence of these natural products, and studies demonstrate that fungal cells in the presence of saponins are more susceptible to salt-induced osmotic stress. Although saponins are known for their hemolytic activity, no hemolysis of erythrocytes was observed at three times the minimal inhibitory concentration for C. albicans, suggesting the saponins may have a preference for binding to fungal ergosterol when compared to cholesterol. Importantly, when used in combination with photosensitizer compounds, the fungus displayed increased susceptibility to photodynamic inactivation due to the ability of the saponins to increase cell permeability, thereby facilitating penetration of the photosensitizers. The large proportion of compounds identified as antifungal agents containing saponin structural features suggests it may be a suitable chemical scaffold for a new generation of antifungal compounds.
Collapse
Affiliation(s)
- Jeffrey J. Coleman
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts
| | - Ikechukwu Okoli
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts
| | - George P. Tegos
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts
| | - Edward B. Holson
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Florence F. Wagner
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
86
|
Romeo O, De Leo F, Criseo G. Adherence ability of Candida africana: a comparative study with Candida albicans and Candida dubliniensis. Mycoses 2010; 54:e57-61. [DOI: 10.1111/j.1439-0507.2009.01833.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
87
|
Cheng A, Sun L, Wu X, Lou H. The inhibitory effect of a macrocyclic bisbibenzyl riccardin D on the biofilms of Candida albicans. Biol Pharm Bull 2010; 32:1417-21. [PMID: 19652383 DOI: 10.1248/bpb.32.1417] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biofilm formation plays a key role in the life cycles and subsistence of many microorganisms. The human fungal pathogen Candida albicans has a high propensity to develop biofilms and resulted resistant to traditional antifungal agents. Biofilms are composed of a mixture of cell types, including yeast, pseudohyphal and hyphal cells, and hyphae are a prominent feature of biofilms. Riccardin D is a macrocyclic bisbibenzyl isolated from the liverwort Dumortiera hirsute in our laboratory. In the present investigation, the XTT [2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide] reduction assay and live/dead cell staining were employed for evaluating the effects of riccardin D on C. albicans biofilms. The results demonstrated that riccardin D can interfere with the biofilm formation. To investigate whether this effect was due to the inhibition of hyphae formation, morphological observation and real-time reverse transcriptase polymerase chain reaction (RT-PCR) were employed for evaluating the effects of riccardin D on the hyphae formation and the expression of hyphae specific genes. The results showed that the hyphae formation was strongly inhibited and the mRNA expression levels of hyphae specific genes were downregulated after riccardin D treatment. We concluded that riccardin D interfered with the biofilm formation of C. albicans through downregulating the expression of hyphae specific genes and inhibiting the formation of hyphae.
Collapse
Affiliation(s)
- Aixia Cheng
- School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | | | | | | |
Collapse
|
88
|
Global screening of potential Candida albicans biofilm-related transcription factors via network comparison. BMC Bioinformatics 2010; 11:53. [PMID: 20102611 PMCID: PMC2842261 DOI: 10.1186/1471-2105-11-53] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 01/26/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Candida albicans is a commonly encountered fungal pathogen in humans. The formation of biofilm is a major virulence factor in C. albicans pathogenesis and is related to antidrug resistance of this organism. Although many factors affecting biofilm have been analyzed, molecular mechanisms that regulate biofilm formation still await to be elucidated. RESULTS In this study, from the gene regulatory network perspective, we developed an efficient computational framework, which integrates different kinds of data from genome-scale analysis, for global screening of potential transcription factors (TFs) controlling C. albicans biofilm formation. S. cerevisiae information and ortholog data were used to infer the possible TF-gene regulatory associations in C. albicans. Based on TF-gene regulatory associations and gene expression profiles, a stochastic dynamic model was employed to reconstruct the gene regulatory networks of C. albicans biofilm and planktonic cells. The two networks were then compared and a score of relevance value (RV) was proposed to determine and assign the quantity of correlation of each potential TF with biofilm formation. A total of twenty-three TFs are identified to be related to the biofilm formation; ten of them are previously reported by literature evidences. CONCLUSIONS The results indicate that the proposed screening method can successfully identify most known biofilm-related TFs and also identify many others that have not been previously reported. Together, this method can be employed as a pre-experiment screening approach that reveals new target genes for further characterization to understand the regulatory mechanisms in biofilm formation, which can serve as the starting point for therapeutic intervention of C. albicans infections.
Collapse
|
89
|
Ramage G, Mowat E, Jones B, Williams C, Lopez-Ribot J. Our current understanding of fungal biofilms. Crit Rev Microbiol 2010; 35:340-55. [PMID: 19863383 DOI: 10.3109/10408410903241436] [Citation(s) in RCA: 334] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fungal biofilms are an escalating clinical problem associated with significant rates of mortality. Candida albicans is the most notorious of all fungal biofilm formers. However, non-Candida species, yeasts such as Cryptococcus neoformans, and filamentous moulds such as Aspergillus fumigatus, have been shown to be implicated in biofilm-associated infections. Fungal biofilms have distinct developmental phases, including adhesion, colonisation, maturation and dispersal, which are governed by complex molecular events. Recalcitrance to antifungal therapy remains the greatest threat to patients with fungal biofilms. This review discusses our current understanding of the basic biology and clinical implications associated with fungal biofilms.
Collapse
Affiliation(s)
- Gordon Ramage
- Section of Infection and Immunity, Glasgow Dental School and Hospital, Faculty of Medicine, University of Glasgow, UK.
| | | | | | | | | |
Collapse
|
90
|
Kabir MA, Hussain MA. Human fungal pathogen Candida albicans in the postgenomic era: an overview. Expert Rev Anti Infect Ther 2009; 7:121-34. [PMID: 19622061 DOI: 10.1586/14787210.7.1.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Candida albicans is an opportunistic human fungal pathogen and is responsible for candidiasis. Owing to the improvement in healthcare, the number of immunocompromised patients in hospitals has increased worldwide and these individuals are susceptible to infections caused by many pathogenic microbes, among which C. albicans is one of the major players. Currently, the complete genome sequence of this pathogen is available and the size of this was estimated to be of 16 Mb. Annotation of C. albicans genome revealed that there are 6114 open reading frames (ORFs), of which 774 are specific to C. albicans. This poses a challenge as well as an opportunity to the Candida community to understand the functions of the unknown genes, especially those specific to C. albicans. Efforts have been made by the Candida community to systematically delete the ORFs and assign the functions. This will, in turn, help in understanding the biology of C. albicans and its interactions with animals as well as humans, and better drugs can be developed to treat Candida infections. In this article, we review updates on the Candida biology in the context of the availability of the genome sequence, its functional analysis and anti-Candida therapy. Finally, in the light of present trends in Candida research and current challenges, various opportunities are identified and suggestions are made.
Collapse
Affiliation(s)
- M Anaul Kabir
- Department of Biotechnology, PA College of Engineering, Kairangala, Mangalore-574153, Karnataka, India.
| | | |
Collapse
|
91
|
Characteristics of Candida albicans biofilms grown in a synthetic urine medium. J Clin Microbiol 2009; 47:4078-83. [PMID: 19794044 DOI: 10.1128/jcm.01377-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Urinary tract infections (UTIs) are the most common type of nosocomial infection, and Candida albicans is the most frequent organism causing fungal UTIs. Presence of an indwelling urinary catheter represents a significant risk factor for UTIs. Furthermore, these infections are frequently associated with the formation of biofilms on the surface of these catheters. Here, we describe the characterization of C. albicans biofilms formed in vitro using synthetic urine (SU) medium and the frequently used RPMI medium and compare the results. Biofilms of C. albicans strain SC5314 were formed in 96-well microtiter plates and on silicon elastomer pieces using both SU and RPMI media. Biofilm formation was monitored by microscopy and a colorimetric XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction assay. As in biofilms grown in RPMI medium, time course studies revealed that biofilm formation using SU medium occurred after an initial adherence phase, followed by growth, proliferation, and maturation. However, microscopy techniques revealed that the architectural complexity of biofilms formed in SU medium was lower than that observed for those formed using RPMI medium. In particular, the level of filamentation of cells within the biofilms formed in SU medium was diminished compared to those in the biofilms grown in RPMI medium. This observation was also corroborated by expression profiling of five filamentation-associated genes using quantitative real-time reverse transcriptase PCR. Sessile C. albicans cells were resistant to fluconazole and amphotericin B, irrespective of the medium used to form the biofilms. However, caspofungin exhibited potent in vitro activity at therapeutic levels against C. albicans biofilms grown in both SU and RPMI media.
Collapse
|
92
|
Uppuluri P, Chaturvedi AK, Ribot JL. Design of a simple model of Candida albicans biofilms formed under conditions of flow: development, architecture, and drug resistance. Mycopathologia 2009; 168:101-9. [PMID: 19370400 PMCID: PMC3972753 DOI: 10.1007/s11046-009-9205-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 04/02/2009] [Indexed: 11/25/2022]
Abstract
Candida albicans biofilms on most medical devices are exposed to a flow of body fluids that provide water and nutrients to the fungal cells. While C. albicans biofilms grown in vitro under static conditions have been exhaustively studied, the same is not true for biofilms developed under continuous flow of replenishing nutrients. Here, we describe a simple flow biofilm (FB) model that can be built easily with materials commonly available in most microbiological laboratories. We demonstrate that C. albicans biofilms formed using this flow system show increased architectural complexity compared to biofilms grown under static conditions. C. albicans biofilms under continuous medium flow grow rapidly, and by 8 h show characteristics similar to 24 h statically grown biofilms. Biomass measurements and microscopic observations further revealed that after 24 h of incubation, FB was more than twofold thicker than biofilms grown under static conditions. Microscopic analyses revealed that the surface of these biofilms was extremely compact and wrinkled, unlike the open hyphal layer typically seen in 24 h static biofilms. Results of antifungal drug susceptibility tests showed that C. albicans cells in FB exhibited increased resistance to most clinically used antifungal agents.
Collapse
Affiliation(s)
- Priya Uppuluri
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Ashok K Chaturvedi
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas 78249
| | - Jose Lopez Ribot
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas 78249
| |
Collapse
|
93
|
Davis DA. How human pathogenic fungi sense and adapt to pH: the link to virulence. Curr Opin Microbiol 2009; 12:365-70. [PMID: 19632143 DOI: 10.1016/j.mib.2009.05.006] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 05/04/2009] [Accepted: 05/12/2009] [Indexed: 10/20/2022]
Abstract
The ability of fungal pathogens to cause disease is dependent on the ability to grow within the human host environment. In general, the human host environment can be considered a slightly alkaline environment, and the ability of fungi to grow at this pH is essential for pathogenesis. The Rim101 signal transduction pathway is the primary pH sensing pathway described in the pathogenic fungi, and in Candida albicans, it is required for a variety of diseases. As more detailed analyses have been conducted studying pathogenesis at the molecular level, it has become clear that the Rim101 pathway, and pH responses in general, play an intimate role in pathogenesis beyond simply allowing the organism to grow. Here, several recent advances into Rim101-dependent functions implicated in disease progression are discussed.
Collapse
Affiliation(s)
- Dana A Davis
- 1360 Mayo Building MMC196, Department of Microbiology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
94
|
Nett JE, Lepak AJ, Marchillo K, Andes DR. Time course global gene expression analysis of an in vivo Candida biofilm. J Infect Dis 2009; 200:307-13. [PMID: 19527170 PMCID: PMC3159582 DOI: 10.1086/599838] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Candida infection of devices is common and invariably associated with biofilm growth. Exploratory microarray studies were undertaken to identify target genes associated with biofilm formation from an in vivo catheter model over time. We compared messenger RNA levels from Candida albicans grown in an in vivo central venous catheter biofilm model at 12 h (intermediate growth) and 24 h (mature) to in vitro planktonic cells without a biofilm substrate, using C. albicans oligo arrays. A total of 124 transcripts were similarly up-regulated at the 12- and 24-h time points. Ontology categories most highly represented included energy/metabolism (12%), carbohydrate (10%), and protein (13%) synthesis and modification, and transport (6%). Numerous genes were previously identified from in vitro biofilm studies. These genes included those associated with hyphal growth, amino acid metabolism, adherence, drug resistance, ergosterol biosynthesis, and beta-glucan synthesis. In the current data set, adherence genes were unique to those from the earlier time point. Differences between the current in vivo biofilm expression data and that previously reported from in vitro models, including alterations in metabolism and carbohydrate processing, may be due to the continuous availability of nutrients from host serum and the incorporation of the host-pathogen interaction.
Collapse
Affiliation(s)
- Jeniel E. Nett
- Dept of Medicine, University of Wisconsin
- Dept of Cellular and Molecular Biology, University of Wisconsin
| | | | | | - David R. Andes
- Dept of Medicine, University of Wisconsin
- Dept of Medical Microbiology and Immunology, University of Wisconsin
| |
Collapse
|
95
|
Hyphal content determines the compression strength of Candida albicans biofilms. Microbiology (Reading) 2009; 155:1997-2003. [DOI: 10.1099/mic.0.021568-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Candida albicans is the most frequently isolated human fungal pathogen among species causing biofilm-related clinical infections. Mechanical properties of Candida biofilms have hitherto been given no attention, despite the fact that mechanical properties are important for selection of treatment or dispersal of biofilm organisms due to a bodily fluid flow. The aim of this study was to identify the factors that determine the compression strength of Candida biofilms. Biofilms of C. albicans wild-type parental strain Caf2-1, mutant strain Chk24 lacking Chk1p [known to be involved in regulation of morphogenesis (yeast-to-hyphae transition)] and gene-reconstructed strain Chk23 were evaluated for their resistance to compression, along with biofilms of Candida tropicalis GB 9/9 and Candida parapsilosis GB 2/8, derived from used voice prosthetic biofilms. Additionally, cell morphologies within the biofilm, cell-surface hydrophobicities and extracellular polymeric substance composition were determined. Our results suggest that the hyphae-to-yeast ratio influences the compression strength of C. albicans biofilms. Biofilms with a hyphal content >50 % possessed significantly higher compressive strength and were more difficult to destroy by vortexing and sonication than biofilms with a lower hyphal content. However, when the amount of extracellular DNA (eDNA) in biofilms of C. albicans Caf2-1 and Chk24 increased, biofilm strength declined, suggesting that eDNA may influence biofilm integrity adversely.
Collapse
|
96
|
Moreno-Ruiz E, Ortu G, de Groot PWJ, Cottier F, Loussert C, Prévost MC, de Koster C, Klis FM, Goyard S, d'Enfert C. The GPI-modified proteins Pga59 and Pga62 of Candida albicans are required for cell wall integrity. Microbiology (Reading) 2009; 155:2004-2020. [DOI: 10.1099/mic.0.028902-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The fungal cell wall is essential in maintaining cellular integrity and plays key roles in the interplay between fungal pathogens and their hosts. The PGA59 and PGA62 genes encode two short and related glycosylphosphatidylinositol-anchored cell wall proteins and their expression has been previously shown to be strongly upregulated when the human pathogen Candida albicans grows as biofilms. Using GFP fusion proteins, we have shown that Pga59 and Pga62 are cell-wall-located, N- and O-glycosylated proteins. The characterization of C. albicans pga59Δ/pga59Δ, pga62Δ/pga62Δ and pga59Δ/pga59Δ pga62Δ/pga62Δ mutants suggested a minor role of these two proteins in hyphal morphogenesis and that they are not critical to biofilm formation. Importantly, the sensitivity to different cell-wall-perturbing agents was altered in these mutants. In particular, simultaneous inactivation of PGA59 and PGA62 resulted in high sensitivity to Calcofluor white, Congo red and nikkomicin Z and in resistance to caspofungin. Furthermore, cell wall composition and observation by transmission electron microscopy indicated an altered cell wall structure in the mutant strains. Collectively, these data suggest that the cell wall proteins Pga59 and Pga62 contribute to cell wall stability and structure.
Collapse
Affiliation(s)
- Emilia Moreno-Ruiz
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, INRA USC2019, Paris, France
| | - Giuseppe Ortu
- Sezione di Microbiologia generale ed Applicat, DISAABA, Sassari, Italy
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, INRA USC2019, Paris, France
| | - Piet W. J. de Groot
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Fabien Cottier
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, INRA USC2019, Paris, France
| | - Céline Loussert
- Plate-forme de Microscopie Ultrastructurale, Institut Pasteur, Paris, France
| | | | - Chris de Koster
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Frans M. Klis
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Sophie Goyard
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, INRA USC2019, Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, INRA USC2019, Paris, France
| |
Collapse
|
97
|
Tampakakis E, Okoli I, Mylonakis E. A C. elegans-based, whole animal, in vivo screen for the identification of antifungal compounds. Nat Protoc 2009; 3:1925-31. [PMID: 19180076 DOI: 10.1038/nprot.2008.193] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Traditional antimicrobial screens focus on compounds that block the growth of microbial organisms. A new Caenorhabditis elegans-based bioassay can be used for the identification of antifungal compounds that are effective against Candida albicans. According to the protocol, adult nematodes are infected with C. albicans and moved to 96-well plates containing the tested compounds. In the presence of compounds with no antifungal activity, the fungus kills the worms and develops filaments that penetrate through the cuticle. In contrast to traditional screening methods and mammalian models, this facile, time-efficient and less costly assay allows the study of Candida cells in nonplanktonic form and may allow the concurrent evaluation of toxicity and antifungal activity and identify compounds that target virulence factors or modify host immune response. The screening assay takes about 5-6 d depending on the experimental design.
Collapse
Affiliation(s)
- Emmanouil Tampakakis
- Division of Infectious Diseases, Massachusetts General Hospital, Gray-Jackson 504, 55 Fruit Street, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
98
|
Interaction of Candida albicans with an intestinal pathogen, Salmonella enterica serovar Typhimurium. EUKARYOTIC CELL 2009; 8:732-7. [PMID: 19329669 DOI: 10.1128/ec.00016-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Candida albicans is an opportunistic human fungal pathogen that normally resides in the gastrointestinal tract and on the skin as a commensal but can cause life-threatening invasive disease. Salmonella enterica serovar Typhimurium is a gram-negative bacterial pathogen that causes a significant amount of gastrointestinal infection in humans. Both of these organisms are also pathogenic to the nematode Caenorhabditis elegans, causing a persistent gut infection leading to worm death. In the present study, we used a previously developed C. elegans polymicrobial infection model to assess the interactions between S. Typhimurium and C. albicans. We observed that when C. elegans is infected with C. albicans and serovar Typhimurium, C. albicans filamentation is inhibited. The inhibition of C. albicans filamentation by S. Typhimurium in C. elegans appeared to be mediated by a secretary molecule, since filter-sterilized bacterial supernatant was able to inhibit C. albicans filamentation. In vitro coculture assays under planktonic conditions showed that S. Typhimurium reduces the viability of C. albicans, with greater effects seen at 37 degrees C than at 30 degrees C. Interestingly, S. Typhimurium reduces the viability of both yeast and filamentous forms of C. albicans, but the killing appeared more rapid for the filamentous cells. The antagonistic interaction was also observed in a C. albicans biofilm environment. This study describes the interaction between two diverse human pathogens that reside within the gastrointestinal tract and shows that the prokaryote, S. Typhimurium, reduces the viability of the eukaryote, C. albicans. Identifying the molecular mechanisms of this interaction may provide important insights into microbial pathogenesis.
Collapse
|
99
|
Abstract
Candida is the major fungal pathogen of humans causing a variety of afflictions ranging from superficial mucosal diseases to deep seated mycoses. Biofilm formation is a major virulence factor in the pathogenicity of Candida, and Candida biofilms are difficult to eradicate especially because of their very high antifungal resistance. Consequently, research into the pathogenicity of Candida has focused on the prevention and management of biofilm development, their architecture, and antifungal resistance. Although studies have shed some light, molecular mechanisms that govern biofilm formation and pathogenicity still await full clarification. This review outlines the key features of what is currently known of Candida biofilm development, regulation and antifungal resistance and, their proteomics.
Collapse
Affiliation(s)
- C J Seneviratne
- Oral Bio-Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | | | | |
Collapse
|
100
|
Correlation between biofilm formation and the hypoxic response in Candida parapsilosis. EUKARYOTIC CELL 2009; 8:550-9. [PMID: 19151323 PMCID: PMC2669199 DOI: 10.1128/ec.00350-08] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ability of Candida parapsilosis to form biofilms on indwelling medical devices is correlated with virulence. To identify genes that are important for biofilm formation, we used arrays representing approximately 4,000 open reading frames (ORFs) to compare the transcriptional profile of biofilm cells growing in a microfermentor under continuous flow conditions with that of cells in planktonic culture. The expression of genes involved in fatty acid and ergosterol metabolism and in glycolysis, is upregulated in biofilms. The transcriptional profile of C. parapsilosis biofilm cells resembles that of Candida albicans cells grown under hypoxic conditions. We therefore subsequently used whole-genome arrays (representing 5,900 ORFs) to determine the hypoxic response of C. parapsilosis and showed that the levels of expression of genes involved in the ergosterol and glycolytic pathways, together with several cell wall genes, are increased. Our results indicate that there is substantial overlap between the hypoxic responses of C. parapsilosis and C. albicans and that this may be important for biofilm development. Knocking out an ortholog of the cell wall gene RBT1, whose expression is induced both in biofilms and under conditions of hypoxia in C. parapsilosis, reduces biofilm development.
Collapse
|