51
|
Lemos JA, Palmer SR, Zeng L, Wen ZT, Kajfasz JK, Freires IA, Abranches J, Brady LJ. The Biology of Streptococcus mutans. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0051-2018. [PMID: 30657107 PMCID: PMC6615571 DOI: 10.1128/microbiolspec.gpp3-0051-2018] [Citation(s) in RCA: 399] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 12/30/2022] Open
Abstract
As a major etiological agent of human dental caries, Streptococcus mutans resides primarily in biofilms that form on the tooth surfaces, also known as dental plaque. In addition to caries, S. mutans is responsible for cases of infective endocarditis with a subset of strains being indirectly implicated with the onset of additional extraoral pathologies. During the past 4 decades, functional studies of S. mutans have focused on understanding the molecular mechanisms the organism employs to form robust biofilms on tooth surfaces, to rapidly metabolize a wide variety of carbohydrates obtained from the host diet, and to survive numerous (and frequent) environmental challenges encountered in oral biofilms. In these areas of research, S. mutans has served as a model organism for ground-breaking new discoveries that have, at times, challenged long-standing dogmas based on bacterial paradigms such as Escherichia coli and Bacillus subtilis. In addition to sections dedicated to carbohydrate metabolism, biofilm formation, and stress responses, this article discusses newer developments in S. mutans biology research, namely, how S. mutans interspecies and cross-kingdom interactions dictate the development and pathogenic potential of oral biofilms and how next-generation sequencing technologies have led to a much better understanding of the physiology and diversity of S. mutans as a species.
Collapse
Affiliation(s)
- J A Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| | - S R Palmer
- Division of Biosciences, College of Dentistry, Ohio State University, Columbus, OH 43210
| | - L Zeng
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| | - Z T Wen
- Department of Comprehensive Dentistry and Biomaterials and Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - J K Kajfasz
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| | - I A Freires
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| | - J Abranches
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| | - L J Brady
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610
| |
Collapse
|
52
|
He J, Bao Y, Li J, Qiu Z, Liu Y, Zhang X. Nanocomplexes of carboxymethyl chitosan/amorphous calcium phosphate reduce oral bacteria adherence and biofilm formation on human enamel surface. J Dent 2019; 80:15-22. [DOI: 10.1016/j.jdent.2018.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/26/2018] [Accepted: 11/06/2018] [Indexed: 10/27/2022] Open
|
53
|
Song Y, He JZ, Wang RK, Ma JZ, Zou L. Effect of SrtA on Interspecies Adherence of Oral Bacteria. Curr Med Sci 2018; 38:160-166. [PMID: 30074166 DOI: 10.1007/s11596-018-1860-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 12/05/2017] [Indexed: 02/05/2023]
Abstract
This study aimed to study whether the Sortase A (srtA) gene helps mediate coaggregation and co-adherence between Streptococcus mutans (S. mutans) and other salivary bacteria. S. mutans UA159 and srtA-deficient mutant served as "bait" in classical co-aggregation assays and membrane-based co-adherence assays were used to examine interactions of S. mutans with Fusobacterium nucleatum (F. nucleatum), Streptococcus mitis (S. mitis), Streptococcus gordonii (S. gordonii), Streptococcus sanguis (S. sanguis), Actinomyces naeslundii (A. naeslundii) and Lactobacillus. Co-adherence assays were also performed using unfractionated saliva from healthy individuals. Co-adhering partners of S. mutans were sensitively detected using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Both UA159 and its srtA-deficient mutant bound to F. nucleatum but not to any of the other five salivary bacteria. The srtA-deficient mutant showed lower co-adherence with F.nucleatum. The two S. mutans strains also showed similar co-adherence profiles against unfractionated salivary bacteria, except that UA159 S. mutans but not the srtA-deficient bound to a Neisseria sp. under the same conditions. Deleting srtA reduces the ability of S. mutans to bind to F.nucleatum, but it does not appear to significantly affect the binding profile of S. mutans to bulk salivary bacteria.
Collapse
Affiliation(s)
- Ying Song
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Conservation Dentistry and Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Jin-Zhi He
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Conservation Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ren-Ke Wang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Conservation Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jing-Zhi Ma
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ling Zou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China. .,Department of Conservation Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
54
|
Van Gerven N, Van der Verren SE, Reiter DM, Remaut H. The Role of Functional Amyloids in Bacterial Virulence. J Mol Biol 2018; 430:3657-3684. [PMID: 30009771 PMCID: PMC6173799 DOI: 10.1016/j.jmb.2018.07.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022]
Abstract
Amyloid fibrils are best known as a product of human and animal protein misfolding disorders, where amyloid formation is associated with cytotoxicity and disease. It is now evident that for some proteins, the amyloid state constitutes the native structure and serves a functional role. These functional amyloids are proving widespread in bacteria and fungi, fulfilling diverse functions as structural components in biofilms or spore coats, as toxins and surface-active fibers, as epigenetic material, peptide reservoirs or adhesins mediating binding to and internalization into host cells. In this review, we will focus on the role of functional amyloids in bacterial pathogenesis. The role of functional amyloids as virulence factor is diverse but mostly indirect. Nevertheless, functional amyloid pathways deserve consideration for the acute and long-term effects of the infectious disease process and may form valid antimicrobial targets. Functional amyloids are widespread in bacteria, pathogenic and non-pathogenic. Bacterial biofilms most commonly function as structural support in the extracellular matrix of biofilms or spore coats, and in cell–cell and cell-surface adherence. The amyloid state can be the sole structured and functional state, or can be facultative, as a secondary state to folded monomeric subunits. Bacterial amyloids can enhance virulence by increasing persistence, cell adherence and invasion, intracellular survival, and pathogen spread by increased environmental survival. Bacterial amyloids may indirectly inflict disease by triggering inflammation, contact phase activation and possibly induce or aggravate human pathological aggregation disorders.
Collapse
Affiliation(s)
- Nani Van Gerven
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Sander E Van der Verren
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Dirk M Reiter
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
55
|
Fighting biofilms with lantibiotics and other groups of bacteriocins. NPJ Biofilms Microbiomes 2018; 4:9. [PMID: 29707229 PMCID: PMC5908865 DOI: 10.1038/s41522-018-0053-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/09/2018] [Accepted: 03/21/2018] [Indexed: 01/03/2023] Open
Abstract
Biofilms are sessile communities of bacteria typically embedded in an extracellular polymeric matrix. Bacterial cells embedded in biofilms are inherently recalcitrant to antimicrobials, compared to cells existing in a planktonic state, and are notoriously difficult to eradicate once formed. Avenues to tackle biofilms thus far have largely focussed on attempting to disrupt the initial stages of biofilm formation, including adhesion and maturation of the biofilm. Such an approach is advantageous as the concentrations required to inhibit formation of biofilms are generally much lower than removing a fully established biofilm. The crisis of antibiotic resistance in clinical settings worldwide has been further exacerbated by the ability of certain pathogenic bacteria to form biofilms. Perhaps the most notorious biofilm formers described from a clinical viewpoint have been methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Pseudomonas aeruginosa, Gardnerella vaginalis and Streptococcus mutans, the latter of which is found in oral biofilms. Due to the dearth of novel antibiotics in recent decades, compounded by the increasing rate of emergence of resistance amongst pathogens with a propensity for biofilm formation, solutions are urgently required to mitigate these crises. Bacteriocins are a class of antimicrobial peptides, which are ribosomally synthesised and often are more potent than their antibiotic counterparts. Here, we review a selection of studies conducted with bacteriocins with the ultimate objective of inhibiting biofilms. Overall, a deeper understanding of the precise means by which a biofilm forms on a substrate as well as insights into the mechanisms by which bacteriocins inhibit biofilms is warranted.
Collapse
|
56
|
De A, Pompilio A, Francis J, Sutcliffe IC, Black GW, Lupidi G, Petrelli D, Vitali LA. Antidiabetic "gliptins" affect biofilm formation by Streptococcus mutans. Microbiol Res 2018; 209:79-85. [PMID: 29580624 DOI: 10.1016/j.micres.2018.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/15/2018] [Accepted: 02/17/2018] [Indexed: 01/28/2023]
Abstract
Streptococcus mutans, a dental caries causing odontopathogen, produces X-prolyl dipeptidyl peptidase (Sm-XPDAP, encoded by pepX), a serine protease known to have a nutritional role. Considering the potential of proteases as therapeutic targets in pathogens, this study was primarily aimed at investigating the role of Sm-XPDAP in contributing to virulence-related traits. Dipeptidyl peptidase (DPP IV), an XPDAP analogous enzyme found in mammalian tissues,is a well known therapeutic target in Type II diabetes. Based on the hypothesis that gliptins, commonly used as anti-human-DPP IV drugs, may affect bacterial growth upon inhibition of Sm-XPDAP, we have determined their ex vivo antimicrobial and anti-biofilm activity towards S. mutans. All three DPP IV drugs tested reduced biofilm formation as determined by crystal violet staining. To link the observed biofilm inhibition to the human-DPP IV analogue present in S. mutans UA159, a pepX isogenic mutant was generated. In addition to reduced biofilm formation, CLSM studies of the biofilm formed by the pepX isogenic mutant showed these were comparable to those formed in the presence of saxagliptin, suggesting a probable role of this enzyme in biofilm formation by S. mutans UA159. The effects of both pepX deletion and DPP IV drugs on the proteome were studied using LC-MS/MS. Overall, this study highlights the potential of Sm-XPDAP as a novel anti-biofilm target and suggests a template molecule to synthesize lead compounds effective against this enzyme.
Collapse
Affiliation(s)
- Arpan De
- School of Pharmacy, University of Camerino, 62032, Camerino, Italy
| | - Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, School of Medicine, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy; Center of Excellence on Ageing, "G. d'Annunzio" University Foundation, 66100, Chieti, Italy
| | - Jenifer Francis
- Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, NE1 8ST, Newcastle upon Tyne, UK
| | - Iain C Sutcliffe
- Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, NE1 8ST, Newcastle upon Tyne, UK
| | - Gary W Black
- Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, NE1 8ST, Newcastle upon Tyne, UK
| | - Giulio Lupidi
- School of Pharmacy, University of Camerino, 62032, Camerino, Italy
| | - Dezemona Petrelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, Italy
| | - Luca A Vitali
- School of Pharmacy, University of Camerino, 62032, Camerino, Italy.
| |
Collapse
|
57
|
Akhalwaya S, van Vuuren S, Patel M. An in vitro investigation of indigenous South African medicinal plants used to treat oral infections. JOURNAL OF ETHNOPHARMACOLOGY 2018; 210:359-371. [PMID: 28888760 DOI: 10.1016/j.jep.2017.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/30/2017] [Accepted: 09/03/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Over a 120 South African medicinal plants are used for the treatment of oral diseases. Despite the vast collection of antimicrobial studies being done on South African plants, there is still limited research on pathogens associated with oral infections. In consultation with the available ethnobotanical literature, this study investigates the antimicrobial efficacy of some South African medicinal plants against oral pathogens. AIM OF THE STUDY To provide a detailed account of the antimicrobial properties of selected South African medicinal plants used traditionally to treat oral infections. The effect on Streptococcus mutans biofilm formation and the toxicity profiles of these plants are also investigated. MATERIALS AND METHODS A total of 136 aqueous and organic extracts and six essential oils were prepared from 31 different plant species. These plant samples were screened for antimicrobial efficacy against nine oral pathogens using the micro-titre plate dilution assay. Plant extracts that were found to have noteworthy antimicrobial activity against S. mutans were further evaluated on the effect on S. mutans biofilm formation using the glass slide technique. The toxicity profiles of plant samples that were found to have noteworthy antimicrobial activity were evaluated using the brine shrimp lethality assay. RESULTS The organic extract of Cissampelos torulosa stems displayed the lowest MIC value of 0.05mg/mL against both Lactobacillus spp. This high antimicrobial activity was also observed with the organic extract of Spirostachys africana leaves against Candida albicans. In some instances, a direct relationship was found between the traditional use of the plant and the antimicrobial activity observed. For example, noteworthy activity (MIC < 1.00mg/mL) was observed against all three Candida spp. when tested against Clematis brachiata (leaves), a plant traditionally used to treat oral thrush. Englerophytum magalismonatanum stems displayed notable activity against both Streptococcus spp. (MIC 0.83mg/mL against S. mutans and MIC 0.67mg/mL against S. sanguis). Spirostachys africana leaves displayed the greatest anti-adherent properties against S. mutans biofilm formation at both 24 and 48h, reducing the biofilm by 97.56% and 86.58% respectively. The majority of plant samples tested in the brine shrimp lethality assay (BSLA) were considered safe, however, 13 plant samples were considered toxic, at a concentration of 1mg/mL. CONCLUSION Noteworthy antimicrobial activity for plants species such as C. brachiata and E. magalismonatnum provides validation for the traditional use of these plants. Spirostachys africana displayed the greatest reduction of adherent S. mutans cells. The BSLA results revealed that the majority of the plant samples were not toxic in nature. The findings from the results favour the potential use of these plants in treating oral diseases such as dental caries, periodontal diseases and oral thrush.
Collapse
Affiliation(s)
- S Akhalwaya
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - S van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - M Patel
- Department of Oral Biological Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
58
|
Iwamoto A, Nakamura T, Narisawa N, Kawasaki Y, Abe S, Torii Y, Senpuku H, Takenaga F. The Japanese Fermented Food Natto Inhibits Sucrose-dependent Biofilm Formation by Cariogenic Streptococci. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Aya Iwamoto
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University
| | - Tomoyo Nakamura
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University
| | - Naoki Narisawa
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University
| | - Yukimasa Kawasaki
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University
| | - Shin Abe
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University
| | - Yasuyoshi Torii
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University
| | - Hidenobu Senpuku
- Department of Bacteriology, National Institute of Infectious Diseases
| | - Fumio Takenaga
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University
| |
Collapse
|
59
|
Wen ZT, Liao S, Bitoun JP, De A, Jorgensen A, Feng S, Xu X, Chain PSG, Caufield PW, Koo H, Li Y. Streptococcus mutans Displays Altered Stress Responses While Enhancing Biofilm Formation by Lactobacillus casei in Mixed-Species Consortium. Front Cell Infect Microbiol 2017; 7:524. [PMID: 29326887 PMCID: PMC5742344 DOI: 10.3389/fcimb.2017.00524] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/11/2017] [Indexed: 12/13/2022] Open
Abstract
Like Streptococcus mutans, lactobacilli are commonly isolated from carious sites, although their exact role in caries development remains unclear. This study used mixed-species models to analyze biofilm formation by major groups of oral lactobacilli, including L. casei, L. fermentum, L. rhamnosus, L. salivarius ssp. salivarius, and L. gasseri. The results showed that lactobacilli did not form good biofilms when grown alone, although differences existed between different species. When grown together with S. mutans, biofilm formation by L. gasseri and L. rhamnosus was increased by 2-log (P < 0.001), while biofilms by L. fermentum reduced by >1-log (P < 0.001). L. casei enhanced biofilm formation by ~2-log when grown with S. mutans wild-type, but no such effects were observed with S. mutans deficient of glucosyltransferase GtfB and adhesin P1. Both S. mutans and L. casei in dual-species enhanced resistance to acid killing with increases of survival rate by >1-log (P < 0.001), but drastically reduced the survival rates following exposure to hydrogen peroxide (P < 0.001), as compared to the respective mono-species cultures. When analyzed by RNA-seq, more than 134 genes were identified in S. mutans in dual-species with L. casei as either up- or down-regulated when compared to those grown alone. The up-regulated genes include those for superoxide dismutase, NADH oxidase, and members of the mutanobactin biosynthesis cluster. Among the down-regulated genes were those for GtfB and alternative sigma factor SigX. These results further suggest that interactions between S. mutans and oral lactobacilli are species-specific and may have significant impact on cariogenic potential of the community.
Collapse
Affiliation(s)
- Zezhang T Wen
- Center of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Sumei Liao
- Center of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Jacob P Bitoun
- Center of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Arpan De
- Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Ashton Jorgensen
- Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Shihai Feng
- Genome Science Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Xiaoming Xu
- Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Patrick S G Chain
- Genome Science Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Page W Caufield
- Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| | - Hyun Koo
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yihong Li
- Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States
| |
Collapse
|
60
|
Calixto GMF, Duque C, Aida KL, dos Santos VR, Massunari L, Chorilli M. Development and characterization of p1025-loaded bioadhesive liquid-crystalline system for the prevention of Streptococcus mutans biofilms. Int J Nanomedicine 2017; 13:31-41. [PMID: 29296084 PMCID: PMC5741066 DOI: 10.2147/ijn.s147553] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Formation of a dental biofilm by Streptococcus mutans can cause dental caries, and remains a costly health problem worldwide. Recently, there has been a growing interest in the use of peptidic drugs, such as peptide p1025, analogous to the fragments 1025-1044 of S. mutans cellular adhesin, responsible for the adhesion and formation of dental biofilm. However, peptides have physicochemical characteristics that may affect their biological action, limiting their clinical performance. Therefore, drug-delivery systems, such as a bioadhesive liquid-crystalline system (LCS), may be attractive strategies for peptide delivery. Potentiation of the action of LCS can be achieved with the use of bioadhesive polymers to prolong their residence on the teeth. In line with this, three formulations - polyoxypropylene-(5)-polyoxyethylene-(20)-cetyl alcohol, oleic acid, and Carbopol C974P in different combinations (F1C, F2C, and F3C) were developed to observe the influence of water in the LCS, with the aim of achieving in situ gelling in the oral environment. These formulations were assessed by polarized light microscopy, small-angle X-ray scattering, rheological analysis, and in vitro bioadhesion analysis. Then, p1025 and a control (chlorhexidine) were incorporated into the aqueous phase of the formulation (F + p1025 and F + chlorhexidine), to determine their antibiofilm effect and toxicity on epithelial cells. Polarized light microscopy and small-angle X-ray scattering showed that F1C and F2C were LCS, whereas F3C was a microemulsion. F1C and F2C showed pseudoplastic behavior and F3C Newtonian behavior. F1C showed the highest elastic and bioadhesive characteristics compared to other formulations. Antibiofilm effects were observed for F + p1025 when applied in the surface-bound salivary phase. The p1025-loaded nanostructured LCS presented limited cytotoxicity and effectively reduced S. mutans biofilm formation, and could be a promising p1025-delivery strategy to prevent the formation of S. mutans dental biofilm.
Collapse
Affiliation(s)
| | - Cristiane Duque
- School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Kelly Limi Aida
- School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | | | - Loiane Massunari
- School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
61
|
Khan ST, Khan M, Ahmad J, Wahab R, Abd-Elkader OH, Musarrat J, Alkhathlan HZ, Al-Kedhairy AA. Thymol and carvacrol induce autolysis, stress, growth inhibition and reduce the biofilm formation by Streptococcus mutans. AMB Express 2017; 7:49. [PMID: 28233286 PMCID: PMC5323333 DOI: 10.1186/s13568-017-0344-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 02/06/2023] Open
Abstract
Organic compounds from plants are an attractive alternative to conventional antimicrobial agents. Therefore, two compounds namely M-1 and M-2 were purified from Origanum vulgare L. and were identified as carvacrol and thymol, respectively. Antimicrobial and antibiofilm activities of these compounds along with chlorhexidine digluconate using various assays was determined against dental caries causing bacteria Streptococcus mutans. The IC50 values of carvacrol (M-1) and thymol (M-2) against S. mutans were 65 and 54 µg/ml, respectively. Live and dead staining and the MTT assays reveal that a concentration of 100 µg/ml of these compounds reduced the viability and the metabolic activity of S. mutans by more than 50%. Biofilm formation on the surface of polystyrene plates was significantly reduced by M-1 and M-2 at 100 µg/ml as observed under scanning electron microscope and by colorimetric assay. These results were in agreement with RT-PCR studies. Wherein exposure to 25 µg/ml of M-1 and M-2 showed a 2.2 and 2.4-fold increase in Autolysin gene (AtlE) expression level, respectively. While an increase of 1.3 and 1.4 fold was observed in the super oxide dismutase gene (sodA) activity with the same concentrations of M-1 and M-2, respectively. An increase in the ymcA gene and a decrease in the gtfB gene expression levels was observed following the treatment with M-1 and M-2. These results strongly suggest that carvacrol and thymol isolated from O. vulgare L. exhibit good bactericidal and antibiofilm activity against S. mutans and can be used as a green alternative to control dental caries.
Collapse
|
62
|
Senpuku H, Yonezawa H, Yoneda S, Suzuki I, Nagasawa R, Narisawa N. SMU.940 regulates dextran-dependent aggregation and biofilm formation in Streptococcus mutans. Mol Oral Microbiol 2017; 33:47-58. [PMID: 28845576 DOI: 10.1111/omi.12196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 11/30/2022]
Abstract
The oral bacterium Streptococcus mutans is the principal agent in the development of dental caries. Biofilm formation by S. mutans requires bacterial attachment, aggregation, and glucan formation on the tooth surface under sucrose supplementation conditions. Our previous microarray analysis of clinical strains identified 74 genes in S. mutans that were related to biofilm morphology; however, the roles of almost all of these genes in biofilm formation are poorly understood. We investigated the effects of 21 genes randomly selected from our previous study regarding S. mutans biofilm formation, regulation by the complement pathway, and responses to competence-stimulating peptide. Eight competence-stimulating peptide-dependent genes were identified, and their roles in biofilm formation and aggregation were examined by mutational analyses of the S. mutansUA159 strain. Of these eight genes, the inactivation of the putative hemolysin III family SMU.940 gene of S. mutansUA159 promoted rapid dextran-dependent aggregation and biofilm formation in tryptic soy broth without dextrose (TSB) with 0.25% glucose and slightly reduced biofilm formation in TSB with 0.25% sucrose. The SMU.940 mutant showed higher expression of GbpC and gbpC gene than wild-type. GbpC is known to be involved in the dextran-dependent aggregation of S. mutans. An SMU.940-gbpC double mutant strain was constructed in the SMU.940 mutant background. The gbpC mutation completely abolished the dextran-dependent aggregation of the SMU.940 mutant. In addition, the aggregation of the mutant was abrogated by dextranase. These findings suggest that SMU.940 controls GbpC expression, and contributes to the regulation of dextran-dependent aggregation and biofilm formation.
Collapse
Affiliation(s)
- Hidenobu Senpuku
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Hideo Yonezawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Saori Yoneda
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Department of Microbiology, Faculty of Medicine, Kagawa University, Takamatsu, Japan
| | - Itaru Suzuki
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Department of Pediatric Dentistry, Nihon University at Matsudo, Chiba, Japan
| | - Ryo Nagasawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Graduate School of Science and Engineering, Hosei University, Shinjuku-ku, Tokyo, Japan
| | - Naoki Narisawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan.,Department of Food Science and Technology, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| |
Collapse
|
63
|
Effect of water containing organic acids on aspiration pneumonia-causative bacteria in the biofilm on the tooth surface. J Dent Sci 2017; 12:268-274. [PMID: 30895061 PMCID: PMC6400008 DOI: 10.1016/j.jds.2017.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/02/2017] [Indexed: 11/27/2022] Open
Abstract
Background/purpose The tooth surface is a source of oral microbes in dentulous individuals, it is difficult for elderly people requiring nursing care to perform mechanical tooth cleaning by themselves. The objective of this study was to investigate the antimicrobial effect of water containing organic acids (WOA) made by some organic acids as food additives on chemical cleaning for elderly people on aspiration pneumonia-causative bacteria in the biofilm on the tooth surface. Materials and methods Ninety-six specimens made from bovine incisors were divided into four groups and incubated with one of four aspiration pneumonia-causative bacteria. Each group was further divided into six subgroups according to treatment as follows: control group (DW), chlorhexidine gluconate solution group (CHX), WOA group (WOA), ultrasonic treatment in distilled water group (DW-U), ultrasonic treatment in chlorhexidine gluconate solution group (CHX-U) or ultrasonic treatment in WOA group (WOA-U). After treatment, the levels of viable microbes in the biofilm were evaluated by quantitative adenosine triphosphate analysis and compared among the six groups. Results For every evaluated microbe, there were significant differences between DW and WOA, and DW and WOA-U. However, there was no significant difference among the WOA, DW-U, CHX-U and WOA-U groups. These results suggested that the antimicrobial effect of WOA on microbes attached to the tooth surface was similar to that of ultrasonic cleaning. Conclusion WOA has an antimicrobial effect on microbes in the biofilm on the tooth surface.
Collapse
|
64
|
Damiano S, Forino M, De A, Vitali LA, Lupidi G, Taglialatela-Scafati O. Antioxidant and antibiofilm activities of secondary metabolites from Ziziphus jujuba leaves used for infusion preparation. Food Chem 2017; 230:24-29. [DOI: 10.1016/j.foodchem.2017.02.141] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/14/2017] [Accepted: 02/28/2017] [Indexed: 11/27/2022]
|
65
|
Use of Single-Frequency Impedance Spectroscopy to Characterize the Growth Dynamics of Biofilm Formation in Pseudomonas aeruginosa. Sci Rep 2017; 7:5223. [PMID: 28701712 PMCID: PMC5507860 DOI: 10.1038/s41598-017-05273-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 05/26/2017] [Indexed: 02/08/2023] Open
Abstract
Impedance spectroscopy has been applied in prokaryotic and eukaryotic cytometry as a label-free method for the investigation of adherent cells. In this paper, its use for characterizing the growth dynamics of P. aeruginosa biofilms is described and compared to crystal violet staining and confocal microscopy. The method allows monitoring the growth of biofilm-forming P. aeruginosa in a continuous and label-free manner over a period of 72 h in a 96 well plate format. Impedance curves obtained for P. aeruginosa PA14 wild type and mutant strains with a transposon insertion in pqsA and pelA genes exhibited distinct phases. We propose that the slope of the declining curve following a maximum at ca. 35–40 h is a measure of biofilm formation. Transplant experiments with P. aeruginosa biofilms and paraffin suggest that the impedance also reflects pellicle formation at the liquid-air interface, a barely considered contributor to impedance. Finally, the impairment of biofilm formation upon treatment of cultures with L-arginine and with ciprofloxacin, tobramycin and meropenem was studied by single frequency impedance spectroscopy. We suggest that these findings qualify impedance spectroscopy as an additional technique to characterize biofilm formation and its modulation by small molecule drugs.
Collapse
|
66
|
Pérez-Ibarreche M, Mendoza LM, Vignolo G, Fadda S. Proteomic and genetics insights on the response of the bacteriocinogenic Lactobacillus sakei CRL1862 during biofilm formation on stainless steel surface at 10°C. Int J Food Microbiol 2017; 258:18-27. [PMID: 28738195 DOI: 10.1016/j.ijfoodmicro.2017.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 06/07/2017] [Accepted: 07/02/2017] [Indexed: 11/16/2022]
Abstract
Some lactic acid bacteria have the ability to form biofilms on food-industry surfaces and this property could be used to control food pathogens colonization. Lactobacillus sakei CR1862 was selected considering its bacteriocinogenic nature and ability to adhere to abiotic surfaces at low temperatures. In this study, the proteome of L. sakei CRL1862 grown either under biofilm on stainless steel surface and planktonic modes of growth at 10°C, was investigated. Using two-dimensional gel electrophoresis, 29 out of 43 statistically significant spots were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Ten proteins resulted up-regulated whereas 16 were down-regulated during biofilm formation. Differentially expressed proteins were found to belong to carbohydrate, nucleotide, aminoacid and lipid metabolisms as well as translation, peptide hydrolysis, cell envelope/cell wall biosynthesis, adaption to atypical conditions and protein secretion. Some proteins related to carbohydrate and nucleotide metabolisms, translation and peptide degradation were overexpressed whereas those associated to stress conditions were synthesized in lower amounts. It seems that conditions for biofilm development would not imply a stressful environment for L. sakei CRL1862 cells, directing its growth strategy towards glycolytic flux regulation and reinforcing protein synthesis. In addition, L. sakei CRL1862 showed to harbor nine out of ten assayed genes involved in biofilm formation and protein anchoring. By applying qRT-PCR analysis, four of these genes showed to be up regulated, srtA2 being the most remarkable. The results of this study contribute to the knowledge of the physiology of L. sakei CRL1862 growing in biofilm on a characteristic food contact surface. The use of this strain as green biocide preventing L. monocytogenes post-processing contamination on industrial surfaces may be considered.
Collapse
Affiliation(s)
- Mariana Pérez-Ibarreche
- Centro de Referencia para Lactobacilos (CERELA), CONICET, Chacabuco 145, T4000ILC Tucumán, Argentina
| | - Lucía M Mendoza
- Centro de Referencia para Lactobacilos (CERELA), CONICET, Chacabuco 145, T4000ILC Tucumán, Argentina
| | - Graciela Vignolo
- Centro de Referencia para Lactobacilos (CERELA), CONICET, Chacabuco 145, T4000ILC Tucumán, Argentina
| | - Silvina Fadda
- Centro de Referencia para Lactobacilos (CERELA), CONICET, Chacabuco 145, T4000ILC Tucumán, Argentina.
| |
Collapse
|
67
|
Müller WE, Neufurth M, Ackermann M, Tolba E, Korzhev M, Wang S, Feng Q, Schröder HC, Wang X. Bifunctional dentifrice: Amorphous polyphosphate a regeneratively active sealant with potent anti- Streptococcus mutans activity. Dent Mater 2017; 33:753-764. [DOI: 10.1016/j.dental.2017.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 03/17/2017] [Accepted: 04/11/2017] [Indexed: 02/06/2023]
|
68
|
Glauser S, Astasov-Frauenhoffer M, Müller JA, Fischer J, Waltimo T, Rohr N. Bacterial colonization of resin composite cements: influence of material composition and surface roughness. Eur J Oral Sci 2017; 125:294-302. [DOI: 10.1111/eos.12355] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Stephanie Glauser
- Division of Dental Materials and Engineering; Department of Reconstructive Dentistry and Temporomandibular Disorders; University Center for Dental Medicine; University of Basel; Basel Switzerland
| | - Monika Astasov-Frauenhoffer
- Department of Preventive Dentistry and Oral Microbiology; University Center for Dental Medicine; University of Basel; Basel Switzerland
| | - Johannes A. Müller
- Division of Dental Materials and Engineering; Department of Reconstructive Dentistry and Temporomandibular Disorders; University Center for Dental Medicine; University of Basel; Basel Switzerland
| | - Jens Fischer
- Division of Dental Materials and Engineering; Department of Reconstructive Dentistry and Temporomandibular Disorders; University Center for Dental Medicine; University of Basel; Basel Switzerland
| | - Tuomas Waltimo
- Department of Preventive Dentistry and Oral Microbiology; University Center for Dental Medicine; University of Basel; Basel Switzerland
| | - Nadja Rohr
- Division of Dental Materials and Engineering; Department of Reconstructive Dentistry and Temporomandibular Disorders; University Center for Dental Medicine; University of Basel; Basel Switzerland
| |
Collapse
|
69
|
Liu J, Sun L, Liu W, Guo L, Liu Z, Wei X, Ling J. A Nuclease from Streptococcus mutans Facilitates Biofilm Dispersal and Escape from Killing by Neutrophil Extracellular Traps. Front Cell Infect Microbiol 2017; 7:97. [PMID: 28401067 PMCID: PMC5368189 DOI: 10.3389/fcimb.2017.00097] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/13/2017] [Indexed: 02/02/2023] Open
Abstract
Streptococcus mutans is the primary etiologic agent of dental caries and occasionally infective endocarditis, with the ability to form biofilms and disperse cells into distal sites to exacerbate and spread infection. In this study, we identified a nuclease (DeoC) as a S. mutans biofilm dispersal modulating factor through microarray analysis. In vitro assays revealed a dispersal defect of a deoC deletion mutant, and functional studies with purified protein were indicative of the biofilm dispersal activity of DeoC. Neutrophils are a key host response factor restraining bacterial spreading through the formation of neutrophil extracellular traps (NETs), which consist of a nuclear DNA backbone associated with antimicrobial peptides. Therefore, we hypothesized that the dispersed S. mutans might utilize DeoC to degrade NETs and escape killing by the immune system. It was found that S. mutans induced NET formation upon contact with neutrophils, while the presence of NETs in turn enhanced the deoC expression of S. mutans. Fluorescence microscopy inspection showed that deoC deletion resulted in a decreased NET degradation ability of S. mutans and enhanced susceptibility to neutrophil killing. Data obtained from this study assigned two important roles for DeoC in S. mutans: contributing to the spread of infection through mediating biofilm dispersal, and facilitating the escape of S. mutans from neutrophil killing through NET degradation.
Collapse
Affiliation(s)
- Jia Liu
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University Guangzhou, China
| | - Luping Sun
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University Guangzhou, China
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University Guangzhou, China
| | - Lihong Guo
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University Guangzhou, China
| | - Zhaohui Liu
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University Guangzhou, China
| | - Xi Wei
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University Guangzhou, China
| | - Junqi Ling
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University Guangzhou, China
| |
Collapse
|
70
|
Garcia SS, Blackledge MS, Michalek S, Su L, Ptacek T, Eipers P, Morrow C, Lefkowitz EJ, Melander C, Wu H. Targeting of Streptococcus mutans Biofilms by a Novel Small Molecule Prevents Dental Caries and Preserves the Oral Microbiome. J Dent Res 2017; 96:807-814. [PMID: 28571487 DOI: 10.1177/0022034517698096] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dental caries is a costly and prevalent disease characterized by the demineralization of the tooth's enamel. Disease outcome is influenced by host factors, dietary intake, cariogenic bacteria, and other microbes. The cariogenic bacterial species Streptococcus mutans metabolizes sucrose to initiate biofilm formation on the tooth surface and consequently produces lactic acid to degrade the tooth's enamel. Persistence of S. mutans biofilms in the oral cavity can lead to tooth decay. To date, no anticaries therapies that specifically target S. mutans biofilms but do not disturb the overall oral microbiome are available. We screened a library of 2-aminoimidazole antibiofilm compounds with a biofilm dispersion assay and identified a small molecule that specifically targets S. mutans biofilms. At 5 µM, the small molecule annotated 3F1 dispersed 50% of the established S. mutans biofilm but did not disperse biofilms formed by the commensal species Streptococcus sanguinis or Streptococcus gordonii. 3F1 dispersed S. mutans biofilms independently of biofilm-related factors such as antigen I/II and glucosyltransferases. 3F1 treatment effectively prevented dental caries by controlling S. mutans in a rat caries model without perturbing the oral microbiota. Our study demonstrates that selective targeting of S. mutans biofilms by 3F1 was able to effectively reduce dental caries in vivo without affecting the overall oral microbiota shaped by the intake of dietary sugars, suggesting that the pathogenic biofilm-specific treatment is a viable strategy for disease prevention.
Collapse
Affiliation(s)
- S S Garcia
- 1 Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA.,2 Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M S Blackledge
- 3 Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - S Michalek
- 2 Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - L Su
- 1 Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - T Ptacek
- 2 Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.,4 Schools of Dentistry and Medicine, Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - P Eipers
- 5 Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - C Morrow
- 5 Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - E J Lefkowitz
- 5 Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - C Melander
- 3 Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - H Wu
- 1 Department of Pediatric Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
71
|
Spengler C, Thewes N, Nolle F, Faidt T, Umanskaya N, Hannig M, Bischoff M, Jacobs K. Enhanced adhesion ofStreptococcus mutansto hydroxyapatite after exposure to saliva. J Mol Recognit 2017; 30. [DOI: 10.1002/jmr.2615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/16/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023]
Affiliation(s)
| | - Nicolas Thewes
- Experimental Physics; Saarland University; Saarbrücken Saarland Germany
| | - Friederike Nolle
- Experimental Physics; Saarland University; Saarbrücken Saarland Germany
| | - Thomas Faidt
- Experimental Physics; Saarland University; Saarbrücken Saarland Germany
| | - Natalia Umanskaya
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry; Saarland University; Homburg Saarland Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry; Saarland University; Homburg Saarland Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene; Saarland University; Homburg Saarland Germany
| | - Karin Jacobs
- Experimental Physics; Saarland University; Saarbrücken Saarland Germany
| |
Collapse
|
72
|
De A, Pasquantonio G, Cerroni L, Petrelli D, Lauro D, Longhi M, Vitali LA. Genotypic and phenotypic heterogeneity in Streptococcus mutans isolated from diabetic patients in Rome, Italy. SPRINGERPLUS 2016; 5:1794. [PMID: 27795936 PMCID: PMC5063833 DOI: 10.1186/s40064-016-3470-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 10/04/2016] [Indexed: 02/08/2023]
Abstract
Our study focuses on the antimicrobial susceptibility, genotypic and phenotypic heterogeneity, and serotype classification of the Streptococcus mutans isolated from type II diabetic patients (n = 25; age 42-68). Eighty-two percent of isolates were classified as serotype c. No serotype k was present. Macrorestriction analysis of genomic DNA of the isolates exhibited a clonal diversity that paralleled the phenotypic heterogeneity, which was also assessed in terms of biofilm forming ability. Isolates were susceptible to all the classes of antibiotics. In conclusion a great heterogeneity and no antimicrobial resistance were apparent in the considered S. mutans strains from diabetic patients.
Collapse
Affiliation(s)
- Arpan De
- Microbiology Unit, School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC Italy
| | - Guido Pasquantonio
- Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Loredana Cerroni
- Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Dezemona Petrelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Davide Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Marta Longhi
- Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Luca A. Vitali
- Microbiology Unit, School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC Italy
| |
Collapse
|
73
|
Mathur H, Rea MC, Cotter PD, Hill C, Ross RP. The efficacy of thuricin CD, tigecycline, vancomycin, teicoplanin, rifampicin and nitazoxanide, independently and in paired combinations against Clostridium difficile biofilms and planktonic cells. Gut Pathog 2016; 8:20. [PMID: 27257437 PMCID: PMC4890490 DOI: 10.1186/s13099-016-0102-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 05/05/2016] [Indexed: 01/10/2023] Open
Abstract
Background Thuricin CD is a two-component antimicrobial, belonging to the recently designated sactibiotic subclass of bacteriocins. The aim of this study was to investigate the effects of thuricin CD, as well as the antibiotics, tigecycline, vancomycin, teicoplanin, rifampicin and nitazoxanide when used independently and when combined at low concentrations on the viability of Clostridium difficile 20291 R027, TL178 R002, Liv022 R106, DPC6350 and VPI10463 biofilms and planktonic cells. Results On the basis of XTT (2,3-bis[2-methyloxy-4-nitro-5-sulphophenyl]-2H-tetrazolium-5-carboxanilide)-menadione biofilm viability assays, we found that thuricin CD was effective against biofilms of R027, Liv022 R106 and DPC6350 when used independently while nitazoxanide and rifampicin were also potent against biofilms of R027 and DPC6350, when applied on their own. Tigecycline was found to be effective against R027 and DPC6350 biofilms, whereas teicoplanin and vancomycin when used independently were only effective against DPC6350 biofilms. The efficacies of the antibiotics rifampicin, tigecycline, vancomycin and teicoplanin against C. difficile 20291 R027 biofilms were significantly potentiated when combined with thuricin CD, indicating effective antimicrobial combinations with this sactibiotic against R027 biofilms. However, the potency of nitazoxanide against R027 biofilms was significantly diminished when combined with thuricin CD, indicating an ineffective combination with this sactibiotic against R027 biofilms. Paired combinations of thuricin CD along with these five antibiotics were effective at diminishing the viability of DPC6350 biofilms. However, such combinations were largely ineffective against biofilms of TL178 R002, Liv022 R106 and VPI10463. Conclusions To the best of our knowledge, this is the first study to highlight the activity of a sactibiotic bacteriocin against biofilms and the first to reveal the potency of the antibiotics tigecycline, teicoplanin and nitazoxanide against C. difficile biofilms. On the basis of this study, it is apparent that different strains of C. difficile possess varying abilities to form biofilms and that the sensitivities of these biofilms to different antimicrobials and antimicrobial combinations are strain-dependent. Since the formation of relatively strong biofilms by certain C. difficile strains may contribute to increased cases of antibiotic resistance and recurrence and relapse of C. difficile infection, the findings presented in this study could provide alternative strategies to target this pathogen.
Collapse
Affiliation(s)
- Harsh Mathur
- School of Microbiology, University College Cork, Cork, Ireland ; Teagasc Food Research Centre, Moorepark, Fermoy, County Cork Ireland
| | - Mary C Rea
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork Ireland ; Alimentary Pharmabiotic Centre Microbiome Institute, University College Cork, Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork Ireland ; Alimentary Pharmabiotic Centre Microbiome Institute, University College Cork, Cork, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland ; Alimentary Pharmabiotic Centre Microbiome Institute, University College Cork, Cork, Ireland
| | - R Paul Ross
- Alimentary Pharmabiotic Centre Microbiome Institute, University College Cork, Cork, Ireland ; College of Science, Engineering and Food Science, University College Cork, Cork, Ireland
| |
Collapse
|
74
|
Kautto L, Nguyen-Khuong T, Everest-Dass A, Leong A, Zhao Z, Willcox MD, Packer NH, Peterson R. Glycan involvement in the adhesion of Pseudomonas aeruginosa to tears. Exp Eye Res 2016; 145:278-288. [DOI: 10.1016/j.exer.2016.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 01/21/2016] [Accepted: 01/21/2016] [Indexed: 10/22/2022]
|
75
|
Polyphenol-Rich Extract from Propolis Reduces the Expression and Activity of Streptococcus mutans Glucosyltransferases at Subinhibitory Concentrations. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4302706. [PMID: 27110563 PMCID: PMC4821976 DOI: 10.1155/2016/4302706] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/08/2016] [Indexed: 11/17/2022]
Abstract
Tooth decay is an infectious disease, whose main causative agent identified is Streptococcus mutans (S. mutans). Diverse treatments have been used to eradicate this microorganism, including propolis. To date, it has been shown that polyphenols from Chilean propolis inhibit S. mutans growth and biofilm formation. However, the molecular mechanisms underlying this process are unclear. In the present study, we assessed the effect of Chilean propolis on the expression and activity of the glycosyltransferases enzymes and their related genes. Polyphenol-rich extract from propolis inhibited gene expression of glycosyltransferases (GtfB, GtfC, and GtfD) and their related regulatory genes, for example, VicK, VicR, and CcpA. Moreover, the treatment inhibited glucosyltransferases activity measured by the formation of sucrose-derived glucans. Additionally, an inhibitory effect was observed in the expression of SpaP involved in sucrose-independent virulence of S. mutans. In summary, our results suggest that Chilean propolis has a dose-dependent effect on the inhibition of genes involved in S. mutans virulence and adherence through the inhibition of glucosyltransferases, showing an anticariogenic potential of polyphenols from propolis beyond S. mutans growth inhibition.
Collapse
|
76
|
Mohammadi-Sichani M, Karbasizadeh V, Dokhaharani SC. Evaluation of biofilm removal activity of Quercus infectoria galls against Streptococcus mutans. Dent Res J (Isfahan) 2016; 13:46-51. [PMID: 26962315 PMCID: PMC4770469 DOI: 10.4103/1735-3327.174708] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: Dental caries is one of the most prevalent infectious diseases affecting humans of all ages. Streptococcus mutans has an important role in the development of dental caries by acid production. The purpose of this study was to evaluate the antibacterial and biofilm disinfective effects of the oak tree Quercus infectoria galls against S. mutans. Materials and Methods: The bacterial strain used in this study was S. mutans (ATCC: 35668). Two kinds of galls, Mazouj and Ghalghaf were examined. Galls were extracted by methanol, ethanol and acetone by Soxhlet apparatus, separately. Extracts were dissolved in sterile distilled water to a final concentration of 10.00, 5.00, 2.50, 1.25, 0.63, 0.31, and 0.16 mg/ml. Microdilution determined antibacterial activities. The biofilm removal activities of the extracts were examined using crystal violet-stained microtiter plate method. One-way ANOVA was used to compare biofilm formation in the presence or absence of the extracts. Results: The methanolic, ethanolic, and acetonic extracts of Q. infectoria galls showed the strong inhibitory effects on S. mutans (P < 0.05). The minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values for the Mazouj and Ghalghaf gall extracts against S. mutans were identical. The MIC values ranged from 160 μg/ml to 320 μg/ml, whereas the MBC values ranged from 320 μg/ml to 640 μg/ml. All extracts of Q. infectoria galls significantly (P < 0.05) reduced biofilm biomass of S. mutans at the concentrations higher than 9.8 μg/ml. Conclusion: Three different extracts of Q. infectoria galls were similar in their antibacterial activity against S. mutans. These extracts had the highest biofilm removal activities at 312.5 μg/ml concentration. The galls of Q. infectoria are potentially good sources of antibacterial and biofilm disinfection agent.
Collapse
Affiliation(s)
| | - Vajihe Karbasizadeh
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | | |
Collapse
|
77
|
Ge X, Shi X, Shi L, Liu J, Stone V, Kong F, Kitten T, Xu P. Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis. PLoS One 2016; 11:e0151142. [PMID: 26950587 PMCID: PMC4780693 DOI: 10.1371/journal.pone.0151142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/24/2016] [Indexed: 01/20/2023] Open
Abstract
Biofilms play important roles in microbial communities and are related to infectious diseases. Here, we report direct evidence that a bacterial nox gene encoding NADH oxidase is involved in biofilm formation. A dramatic reduction in biofilm formation was observed in a Streptococcus sanguinis nox mutant under anaerobic conditions without any decrease in growth. The membrane fluidity of the mutant bacterial cells was found to be decreased and the fatty acid composition altered, with increased palmitic acid and decreased stearic acid and vaccenic acid. Extracellular DNA of the mutant was reduced in abundance and bacterial competence was suppressed. Gene expression analysis in the mutant identified two genes with altered expression, gtfP and Idh, which were found to be related to biofilm formation through examination of their deletion mutants. NADH oxidase-related metabolic pathways were analyzed, further clarifying the function of this enzyme in biofilm formation.
Collapse
Affiliation(s)
- Xiuchun Ge
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Xiaoli Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing 21008, China
| | - Limei Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing 21008, China
| | - Jinlin Liu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Victoria Stone
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Fanxiang Kong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Science, Nanjing 21008, China
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA 23298, United States of America
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, United States of America
| | - Ping Xu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA 23298, United States of America
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, United States of America
- * E-mail:
| |
Collapse
|
78
|
Tang W, Bhatt A, Smith AN, Crowley PJ, Brady LJ, Long JR. Specific binding of a naturally occurring amyloidogenic fragment of Streptococcus mutans adhesin P1 to intact P1 on the cell surface characterized by solid state NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2016; 64:153-64. [PMID: 26837620 PMCID: PMC4756430 DOI: 10.1007/s10858-016-0017-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/24/2016] [Indexed: 06/05/2023]
Abstract
The P1 adhesin (aka Antigen I/II or PAc) of the cariogenic bacterium Streptococcus mutans is a cell surface-localized protein involved in sucrose-independent adhesion and colonization of the tooth surface. The immunoreactive and adhesive properties of S. mutans suggest an unusual functional quaternary ultrastructure comprised of intact P1 covalently attached to the cell wall and interacting with non-covalently associated proteolytic fragments thereof, particularly the ~57-kDa C-terminal fragment C123 previously identified as Antigen II. S. mutans is capable of amyloid formation when grown in a biofilm and P1 is among its amyloidogenic proteins. The C123 fragment of P1 readily forms amyloid fibers in vitro suggesting it may play a role in the formation of functional amyloid during biofilm development. Using wild-type and P1-deficient strains of S. mutans, we demonstrate that solid state NMR (ssNMR) spectroscopy can be used to (1) globally characterize cell walls isolated from a Gram-positive bacterium and (2) characterize the specific binding of heterologously expressed, isotopically-enriched C123 to cell wall-anchored P1. Our results lay the groundwork for future high-resolution characterization of the C123/P1 ultrastructure and subsequent steps in biofilm formation via ssNMR spectroscopy, and they support an emerging model of S. mutans colonization whereby quaternary P1-C123 interactions confer adhesive properties important to binding to immobilized human salivary agglutinin.
Collapse
Affiliation(s)
- Wenxing Tang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Avni Bhatt
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Adam N Smith
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA
| | - Paula J Crowley
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - L Jeannine Brady
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA.
| | - Joanna R Long
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
79
|
Singh A, Gupta R, Pandey R. Rice Seed Priming with Picomolar Rutin Enhances Rhizospheric Bacillus subtilis CIM Colonization and Plant Growth. PLoS One 2016; 11:e0146013. [PMID: 26742102 PMCID: PMC4711789 DOI: 10.1371/journal.pone.0146013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/12/2015] [Indexed: 11/19/2022] Open
Abstract
The effect of rutin, a bioflavonoid on the growth and biofilm formation of Bacillus subtilis strain CIM was investigated. In addition to swimming, swarming, and twitching potentials of B. subtilis CIM (BS), one picomolar (1 pM) of rutin was also observed to boost the biofilm forming ability of the bacterium. Bio-priming of rice seeds with BS and rutin not only augmented root and shoot lengths but also the photosynthetic pigments like chlorophyll and carotenoid. Similarly, high accumulation of phenolic and flavonoid contents was observed in the leaves. Fluorescent microscopic images revealed that BS plus rutin enhanced callose deposition in the leaves. It was also established that the least formation of reactive oxygen species in BS plus rutin treated rice plants was due to higher free radicals scavenging activity and total antioxidant potential. The results highlight chemo attractant nature of BS towards rutin, which by enhancing biofilm formation and root colonization indirectly strengthened the plants' defensive state.
Collapse
Affiliation(s)
- Akanksha Singh
- Department of Microbial Technology and Nematology, CSIR- Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, India
| | - Rupali Gupta
- Department of Microbial Technology and Nematology, CSIR- Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, India
| | - Rakesh Pandey
- Department of Microbial Technology and Nematology, CSIR- Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow 226015, India
| |
Collapse
|
80
|
Peterson RA, Gueniche A, Adam de Beaumais S, Breton L, Dalko-Csiba M, Packer NH. Sweating the small stuff: Glycoproteins in human sweat and their unexplored potential for microbial adhesion. Glycobiology 2015; 26:218-29. [DOI: 10.1093/glycob/cwv102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/02/2015] [Indexed: 12/19/2022] Open
|
81
|
Jurczak A, Kościelniak D, Papież M, Vyhouskaya P, Krzyściak W. A study on β-defensin-2 and histatin-5 as a diagnostic marker of early childhood caries progression. Biol Res 2015; 48:61. [PMID: 26520150 PMCID: PMC4628373 DOI: 10.1186/s40659-015-0050-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/19/2015] [Indexed: 11/10/2022] Open
Abstract
Background Recently, a continuous growth of interest has been observed in antimicrobial peptides (AMPs) in the light of an alarming increase in resistance of bacteria and fungi against antibiotics. AMPs are used as biomarkers in diagnosis and monitoring of oral cavity pathologies. Therefore, the determination of specific protein profiles in children diagnosed with early childhood caries (ECC) might be a basis for effective screening tests and specialized examinations which may enable progression of disease. Methods The objective of the studies was to determine the role of histatin-5 and β-defensing-2 as a diagnostic marker of early childhood caries progression. In this work, results of concentration determination of two salivary proteins (histatin-5 and β-defensin-2) were presented. In addition, bacterial profiles from dental plaque in various stages of ECC and control were marked. The assessment of alteration in the concentration of these two proteins in a study group of children with various stages of ECC and a control group consisting of children with no symptoms was performed by enzyme-linked immunosorbent assays. Results The statistical analysis showed a significant increase in the concentration of histatin-5 and β-defensin-2 in the study group compared to the control group and correlated with the progression of the disease. Conclusions The confirmation of concentration changes in these proteins during the progression of dental caries may discover valuable disease progression biomarkers.
Collapse
Affiliation(s)
- Anna Jurczak
- Department of Pediatric Dentistry, Institute of Dentistry, Jagiellonian University, Medical College, Krakow, Poland.
| | - Dorota Kościelniak
- Department of Pediatric Dentistry, Institute of Dentistry, Jagiellonian University, Medical College, Krakow, Poland.
| | - Monika Papież
- Department of Cytobiology, Pharmacy Faculty, Jagiellonian University, Medical College, Krakow, Poland.
| | - Palina Vyhouskaya
- Department of Medical Diagnostics, Pharmacy Faculty, Jagiellonian University, Medical College, 9 Medyczna St., 30-688, Krakow, Poland.
| | - Wirginia Krzyściak
- Department of Medical Diagnostics, Pharmacy Faculty, Jagiellonian University, Medical College, 9 Medyczna St., 30-688, Krakow, Poland.
| |
Collapse
|
82
|
Abstract
The oral bacterial microbiome encompasses approximately 700 commonly occurring phylotypes, approximately half of which can be present at any time in any individual. These bacteria are largely indigenous to the oral cavity; this limited habitat range suggests that interactions between the various phylotypes, and between the phylotypes and their environment, are crucial for their existence. Molecular cataloging has confirmed many basic observations on the composition of the oral microbiome that were formulated well before ribosomal RNA-based systematics, but the power and the scope of molecular taxonomy have resulted in the discovery of new phylotypes and, more importantly, have made possible a level of bacterial community analysis that was unachievable with classical methods. Bacterial community structure varies with location within the mouth, and changes in community structure are related to disease initiation and disease progression. Factors that influence the formation and the evolution of communities include selective adherence to epithelial or tooth surfaces, specific cell-to-cell binding as a driver of early community composition, and interorganismal interaction leading to alteration of the local environment, which represents the first step on the road to oral disease. A comprehensive understanding of how these factors interact to drive changes in the composition of the oral microbial community can lead to new strategies for the inhibition of periodontal diseases and dental caries.
Collapse
|
83
|
Molecule Targeting Glucosyltransferase Inhibits Streptococcus mutans Biofilm Formation and Virulence. Antimicrob Agents Chemother 2015; 60:126-35. [PMID: 26482298 DOI: 10.1128/aac.00919-15] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 09/30/2015] [Indexed: 02/05/2023] Open
Abstract
Dental plaque biofilms are responsible for numerous chronic oral infections and cause a severe health burden. Many of these infections cannot be eliminated, as the bacteria in the biofilms are resistant to the host's immune defenses and antibiotics. There is a critical need to develop new strategies to control biofilm-based infections. Biofilm formation in Streptococcus mutans is promoted by major virulence factors known as glucosyltransferases (Gtfs), which synthesize adhesive extracellular polysaccharides (EPS). The current study was designed to identify novel molecules that target Gtfs, thereby inhibiting S. mutans biofilm formation and having the potential to prevent dental caries. Structure-based virtual screening of approximately 150,000 commercially available compounds against the crystal structure of the glucosyltransferase domain of the GtfC protein from S. mutans resulted in the identification of a quinoxaline derivative, 2-(4-methoxyphenyl)-N-(3-{[2-(4-methoxyphenyl)ethyl]imino}-1,4-dihydro-2-quinoxalinylidene)ethanamine, as a potential Gtf inhibitor. In vitro assays showed that the compound was capable of inhibiting EPS synthesis and biofilm formation in S. mutans by selectively antagonizing Gtfs instead of by killing the bacteria directly. Moreover, the in vivo anti-caries efficacy of the compound was evaluated in a rat model. We found that the compound significantly reduced the incidence and severity of smooth and sulcal-surface caries in vivo with a concomitant reduction in the percentage of S. mutans in the animals' dental plaque (P < 0.05). Taken together, these results represent the first description of a compound that targets Gtfs and that has the capacity to inhibit biofilm formation and the cariogenicity of S. mutans.
Collapse
|
84
|
Isolation of a Novel Phage with Activity against Streptococcus mutans Biofilms. PLoS One 2015; 10:e0138651. [PMID: 26398909 PMCID: PMC4580409 DOI: 10.1371/journal.pone.0138651] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/02/2015] [Indexed: 01/21/2023] Open
Abstract
Streptococcus mutans is one of the principal agents of caries formation mainly, because of its ability to form biofilms at the tooth surface. Bacteriophages (phages) are promising antimicrobial agents that could be used to prevent or treat caries formation by S. mutans. The aim of this study was to isolate new S. mutans phages and to characterize their antimicrobial properties. A new phage, ɸAPCM01, was isolated from a human saliva sample. Its genome was closely related to the only two other available S. mutans phage genomes, M102 and M102AD. ɸAPCM01 inhibited the growth of S. mutans strain DPC6143 within hours in broth and in artificial saliva at multiplicity of infections as low as 2.5x10-5. In the presence of phage ɸAPCM01 the metabolic activity of a S. mutans biofilm was reduced after 24 h of contact and did not increased again after 48 h, and the live cells in the biofilm decreased by at least 5 log cfu/ml. Despite its narrow host range, this newly isolated S. mutans phage exhibits promising antimicrobial properties.
Collapse
|
85
|
Genetics and Physiology of Acetate Metabolism by the Pta-Ack Pathway of Streptococcus mutans. Appl Environ Microbiol 2015; 81:5015-25. [PMID: 25979891 DOI: 10.1128/aem.01160-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/12/2015] [Indexed: 12/24/2022] Open
Abstract
In the dental caries pathogen Streptococcus mutans, phosphotransacetylase (Pta) catalyzes the conversion of acetyl coenzyme A (acetyl-CoA) to acetyl phosphate (AcP), which can be converted to acetate by acetate kinase (Ack), with the concomitant generation of ATP. A ΔackA mutant displayed enhanced accumulation of AcP under aerobic conditions, whereas little or no AcP was observed in the Δpta or Δpta ΔackA mutant. The Δpta and Δpta ΔackA mutants also had diminished ATP pools compared to the size of the ATP pool for the parental or ΔackA strain. Surprisingly, when exposed to oxidative stress, the Δpta ΔackA strain appeared to regain the capacity to produce AcP, with a concurrent increase in the size of the ATP pool compared to that for the parental strain. The ΔackA and Δpta ΔackA mutants exhibited enhanced (p)ppGpp accumulation, whereas the strain lacking Pta produced less (p)ppGpp than the wild-type strain. The ΔackA and Δpta ΔackA mutants displayed global changes in gene expression, as assessed by microarrays. All strains lacking Pta, which had defects in AcP production under aerobic conditions, were impaired in their abilities to form biofilms when glucose was the growth carbohydrate. Collectively, these data demonstrate the complex regulation of the Pta-Ack pathway and critical roles for these enzymes in processes that appear to be essential for the persistence and pathogenesis of S. mutans.
Collapse
|
86
|
Izumi S, Ryu M, Ueda T, Ishihara K, Sakurai K. Evaluation of application possibility of water containing organic acids for chemical denture cleaning for older adults. Geriatr Gerontol Int 2015; 16:300-6. [PMID: 25752802 DOI: 10.1111/ggi.12467] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2015] [Indexed: 11/29/2022]
Abstract
AIM The purpose of the present study was to evaluate the application possibility of water containing organic acids (WOA), made by some organic acids used as food additives, for chemical denture cleaning for older adults by microbial investigation. METHODS Using an in vitro biofilm study, we determined the effects of WOA on Streptococcus sanguinis, S. pneumoniae and Candida albicans attached to heat-cured acrylic resins. Specimens were divided into three groups as follows: control group (TW), commercial denture cleaner group (DC) and WOA group (WOA). Specimens were treated with each for 5 min, 30 min or 8 h, and the numbers of attached microbes were determined by counting colony-forming units or adenosine triphosphate analysis. Using an in vivo biofilm study, we studied the effects of these same solutions on 60 complete dentures. The dentures were divided randomly and blindness into three groups as described above, and treated for 10 min. The numbers of microbes attached to dentures before and after treatment were determined by counting colony-forming units. RESULTS For the in vitro biofilm study, there were significant differences in the numbers of microbes between WOA and TW, although there were no significant differences between WOA and DC except for C. albicans. For the in vivo biofilm study, there were significant differences between WOA, DC and TW, although there was no significant difference between WOA and DC. CONCLUSION We conclude that water containing organic acids exerts antimicrobial effects as strong as commercial denture cleaner, and it has an application possibility of use for safe chemical denture cleaning for older adults.
Collapse
Affiliation(s)
- Sachi Izumi
- Department of Removable Prosthodontics and Gerodontology, Tokyo Dental College, Tokyo, Japan
| | - Masahiro Ryu
- Department of Removable Prosthodontics and Gerodontology, Tokyo Dental College, Tokyo, Japan
| | - Takayuki Ueda
- Department of Removable Prosthodontics and Gerodontology, Tokyo Dental College, Tokyo, Japan
| | | | - Kaoru Sakurai
- Department of Removable Prosthodontics and Gerodontology, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
87
|
Selvaraj C, Priya RB, Lee JK, Singh SK. Mechanistic insights of SrtA–LPXTG blockers targeting the transpeptidase mechanism in Streptococcus mutans. RSC Adv 2015. [DOI: 10.1039/c5ra12869b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The SrtA–LPXTG interaction plays a key role in transpeptidation reaction, cell wall and biofilm formations. This study explains the blocking of LEU interactions with SrtA will results as SrtA inhibitors through MD simulation and energy calculations methods.
Collapse
Affiliation(s)
| | - Ramanathan Bharathi Priya
- Department of Bioinformatics
- Computer Aided Drug Design and Molecular Modeling Lab
- Alagappa University
- Karaikudi-630003
- India
| | - Jung-Kul Lee
- Department of Chemical Engineering
- Konkuk University
- Seoul
- Korea
| | - Sanjeev Kumar Singh
- Department of Bioinformatics
- Computer Aided Drug Design and Molecular Modeling Lab
- Alagappa University
- Karaikudi-630003
- India
| |
Collapse
|
88
|
Singh BN, Prateeksha P, Pandey G, Jadaun V, Singh S, Bajpai R, Nayaka S, Naqvi AH, Singh Rawat AK, Upreti DK, Singh BR. Development and characterization of a novel Swarna-based herbo-metallic colloidal nano-formulation – inhibitor of Streptococcus mutans quorum sensing. RSC Adv 2015. [DOI: 10.1039/c4ra11939h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Herbo-metallic preparations such as bhasmas (ash) are used traditionally in Indian and Chinese medicinal systems.
Collapse
|
89
|
Ahn SJ, Park SN, Lee YJ, Cho EJ, Lim YK, Li XM, Choi MH, Seo YW, Kook JK. In vitro antimicrobial activities of 1-methoxyficifolinol, licorisoflavan A, and 6,8-diprenylgenistein against Streptococcus mutans. Caries Res 2014; 49:78-89. [PMID: 25531232 DOI: 10.1159/000362676] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 04/02/2014] [Indexed: 11/19/2022] Open
Abstract
The objective of the study was to investigate the antimicrobial effects of purified single compounds from ethanol-extracted licorice root on Streptococcus mutans. The crude licorice root extract (CLE) was obtained from Glycyrrhiza uralensis, which was subjected to column chromatography to separate compounds. Purified compounds were identified by mass spectrometry and nuclear magnetic resonance. Antimicrobial activities of purified compounds from CLE were evaluated by determining the minimum inhibitory concentration and by performing time-kill kinetics. The inhibitory effects of the compounds on biofilm development were evaluated using crystal violet assay and confocal microscopy. Cell toxicity of substances to normal human gingival fibroblast (NHGF) cells was tested using a methyl thiazolyl tetrazolium assay. Chlorhexidine digluconate (CHX) was used in the control group. Three antimicrobial flavonoids, 1-methoxyficifolinol, licorisoflavan A, and 6,8-diprenylgenistein, were isolated from the CLE. We found that the three flavonoids and CHX had bactericidal effects on S. mutans UA159 at the concentration of ≥4 and ≥1 µg/ml, respectively. The purified compounds completely inhibited biofilm development of S. mutans UA159 at concentrations over 4 μg/ml, which was equivalent to 2 μg/ml of CHX. Confocal analysis showed that biofilms were sparsely scattered in the presence of over 4 μg/ml of the purified compounds. However, the three compounds purified from CLE showed less cytotoxic effects on NHGF cells than CHX at these biofilm-inhibitory concentrations. Our results suggest that purified flavonoids from CLE can be useful in developing oral hygiene products, such as gargling solutions and dentifrices for preventing dental caries.
Collapse
Affiliation(s)
- Sug-Joon Ahn
- Dental Research Institute, School of Dentistry, Seoul National University, Jongro-Gu, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Usnic acid, a lichen secondary metabolite inhibits Group A Streptococcus biofilms. Antonie van Leeuwenhoek 2014; 107:263-72. [PMID: 25367342 DOI: 10.1007/s10482-014-0324-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/29/2014] [Indexed: 10/24/2022]
Abstract
Group A Streptococci (GAS) are involved in a number of life threatening diseases and biofilm formation by these pathogens are considered as an important virulence determinant as it mediates antibiotic resistance among them. In the present study, we have explored the ability of (+)-usnic acid, a lichen secondary metabolite, as an antibiofilm agent against four serotypes of Streptococcus pyogenes causing pharyngitis. Usnic acid inhibited the biofilms of M serotypes M56, st38, M89 efficiently and the biofilm of M74 to a lesser extent. Confocal imaging of the treated samples showed that usnic acid reduced the biomass of the biofilms when compared to that of the control. Fourier Transfer Infrared (FT-IR) spectroscopy indicated that usnic acid reduced the cellular components (proteins and fatty acids) of the biofilms. Interestingly, the FT-IR spectrum further revealed that usnic acid probably acted upon the fatty acids of the biofilms as evident from the disappearance of a peak at 2,455-2,100 cm(-1) when compared to the control only in serotypes M56, st38 and M89 but not in M74. The present study shows, for the first time, that usnic acid can act as an effective antibiofilm agent against GAS.
Collapse
|
91
|
Fletcher MH, Jennings MC, Wuest WM. Draining the moat: disrupting bacterial biofilms with natural products. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.06.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
92
|
Ahn SJ, Song YD, Mah SJ, Cho EJ, Kook JK. Determination of optimal concentration of deglycyrrhizinated licorice root extract for preventing dental caries using a bacterial model system. J Dent Sci 2014. [DOI: 10.1016/j.jds.2014.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
93
|
Shang D, Liang H, Wei S, Yan X, Yang Q, Sun Y. Effects of antimicrobial peptide L-K6, a temporin-1CEb analog on oral pathogen growth, Streptococcus mutans biofilm formation, and anti-inflammatory activity. Appl Microbiol Biotechnol 2014; 98:8685-95. [PMID: 25056289 DOI: 10.1007/s00253-014-5927-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 06/16/2014] [Accepted: 07/01/2014] [Indexed: 10/25/2022]
Abstract
Dental caries and periodontitis are common bacterial mouth infections. As a potentially attractive substitute for conventional antibiotics, antimicrobial peptides have been widely tested and used for controlling bacterial infections. In this study, we tested the efficacy of the peptides from the skin secretions of Rana chensinensis for killing several major cariogenic and periodontic pathogens as well as Candida albicans. L-K6, a temporin-1CEb analog, exhibited high antimicrobial activity against the tested oral pathogens and was able to inhibit Streptococcus mutans biofilm formation and reduce 1-day-old S. mutans biofilms with a minimum biofilm inhibitory concentration and reducing concentration of 3.13 and 6.25 μM, respectively. The results of confocal laser scanning microscopy demonstrated that the peptide significantly reduced cell viability within oral biofilms. Furthermore, as little as 5 μM L-K6 significantly inhibited lipopolysaccharide (LPS)- and interleukin-1β-induced productions of interleukin-8 and tumor necrosis factor-α from THP-1 monocytic cells. This anti-inflammatory activity is associated with the binding of L-K6 to LPS and neutralizing LPS-induced proinflammatory responses in THP-1 cells, as well as dissociating LPS aggregates. Our results suggest that L-K6 may have potential clinical applications in treating dental caries by killing S. mutans within dental plaque and acting as anti-inflammatory agents in infected tissues.
Collapse
Affiliation(s)
- Dejing Shang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, 116081, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
94
|
Mhatre E, Monterrosa RG, Kovács AT. From environmental signals to regulators: modulation of biofilm development in Gram-positive bacteria. J Basic Microbiol 2014; 54:616-32. [PMID: 24771632 DOI: 10.1002/jobm.201400175] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 03/30/2014] [Indexed: 12/22/2022]
Abstract
Bacterial lifestyle is influenced by environmental signals, and many differentiation processes in bacteria are governed by the threshold concentrations of molecules present in their niche. Biofilm is one such example where bacteria in their sessile state adapt to a lifestyle that causes several adaptive alterations in the population. Here, a brief overview is given on a variety of environmental signals that bias biofilm development in Gram-positive bacteria, including nutrient conditions, self- and heterologously produced substances, like quorum sensing and host produced molecules. The Gram-positive model organism, Bacillus subtilis is a superb example to illustrate how distinct signals activate sensor proteins that integrate the environmental signals towards global regulators related to biofilm formation. The role of reduced oxygen level, polyketides, antimicrobials, plant secreted carbohydrates, plant cell derived polymers, glycerol, and osmotic conditions are discussed during the transcriptional activation of biofilm related genes in B. subtilis.
Collapse
Affiliation(s)
- Eisha Mhatre
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | | | | |
Collapse
|
95
|
Streptococcus mutans extracellular DNA is upregulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery. J Bacteriol 2014; 196:2355-66. [PMID: 24748612 DOI: 10.1128/jb.01493-14] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Streptococcus mutans, a major etiological agent of human dental caries, lives primarily on the tooth surface in biofilms. Limited information is available concerning the extracellular DNA (eDNA) as a scaffolding matrix in S. mutans biofilms. This study demonstrates that S. mutans produces eDNA by multiple avenues, including lysis-independent membrane vesicles. Unlike eDNAs from cell lysis that were abundant and mainly concentrated around broken cells or cell debris with floating open ends, eDNAs produced via the lysis-independent pathway appeared scattered but in a structured network under scanning electron microscopy. Compared to eDNA production of planktonic cultures, eDNA production in 5- and 24-h biofilms was increased by >3- and >1.6-fold, respectively. The addition of DNase I to growth medium significantly reduced biofilm formation. In an in vitro adherence assay, added chromosomal DNA alone had a limited effect on S. mutans adherence to saliva-coated hydroxylapatite beads, but in conjunction with glucans synthesized using purified glucosyltransferase B, the adherence was significantly enhanced. Deletion of sortase A, the transpeptidase that covalently couples multiple surface-associated proteins to the cell wall peptidoglycan, significantly reduced eDNA in both planktonic and biofilm cultures. Sortase A deficiency did not have a significant effect on membrane vesicle production; however, the protein profile of the mutant membrane vesicles was significantly altered, including reduction of adhesin P1 and glucan-binding proteins B and C. Relative to the wild type, deficiency of protein secretion and membrane protein insertion machinery components, including Ffh, YidC1, and YidC2, also caused significant reductions in eDNA.
Collapse
|
96
|
Krzyściak W, Jurczak A, Kościelniak D, Bystrowska B, Skalniak A. The virulence of Streptococcus mutans and the ability to form biofilms. Eur J Clin Microbiol Infect Dis 2014; 33:499-515. [PMID: 24154653 PMCID: PMC3953549 DOI: 10.1007/s10096-013-1993-7] [Citation(s) in RCA: 377] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/02/2013] [Indexed: 01/01/2023]
Abstract
In some diseases, a very important role is played by the ability of bacteria to form multi-dimensional complex structure known as biofilm. The most common disease of the oral cavity, known as dental caries, is a top leader. Streptococcus mutans, one of the many etiological factors of dental caries, is a microorganism which is able to acquire new properties allowing for the expression of pathogenicity determinants determining its virulence in specific environmental conditions. Through the mechanism of adhesion to a solid surface, S. mutans is capable of colonizing the oral cavity and also of forming bacterial biofilm. Additional properties enabling S. mutans to colonize the oral cavity include the ability to survive in an acidic environment and specific interaction with other microorganisms colonizing this ecosystem. This review is an attempt to establish which characteristics associated with biofilm formation--virulence determinants of S. mutans--are responsible for the development of dental caries. In order to extend the knowledge of the nature of Streptococcus infections, an attempt to face the following problems will be made: Biofilm formation as a complex process of protein-bacterium interaction. To what extent do microorganisms of the cariogenic flora exemplified by S. mutans differ in virulence determinants "expression" from microorganisms of physiological flora? How does the environment of the oral cavity and its microorganisms affect the biofilm formation of dominant species? How do selected inhibitors affect the biofilm formation of cariogenic microorganisms?
Collapse
Affiliation(s)
- W Krzyściak
- Department of Medical Diagnostics, Faculty of Pharmacy, Medical College, Jagiellonian University, UJCM 9 Medyczna St., 30-688, Krakow, Poland,
| | | | | | | | | |
Collapse
|
97
|
Ma R, Sun M, Wang S, Kang Q, Huang L, Li T, Xia WW. Effect of high-fructose corn syrup on the acidogenicity, adherence and biofilm formation of Streptococcus mutans. Aust Dent J 2014; 58:213-8. [PMID: 23713642 DOI: 10.1111/adj.12074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2012] [Indexed: 12/01/2022]
Abstract
BACKGROUND Although high-fructose corn syrup (HFCS) as a kind of sugar has been widely used in manufactured foods recently, there is little information available regarding its cariogenicity. The aim of this study was to evaluate the cariogenic potential of HFCS. METHODS Streptococcus mutans UA159 was inoculated into HFCS media and cultivated. The pH of each culture was measured to assess acidogenicity. Spectrophotometric turbidity was measured to determine the percentage of adherence. Confocal laser scanning microscopy and SYTO-9 staining were employed to observe biofilm formation. Sucrose media was used as a positive control. RESULTS The ΔpH in HFCS media was significantly larger than that in sucrose media and the pH in HFCS media decreased faster (p < 0.05). The percentage of adherence of S. mutans in HFCS media was significantly lower than that in sucrose media (p < 0.05). The biofilm formed in sucrose media was significantly thicker than that in HFCS media (p < 0.05). CONCLUSIONS The results of this study suggest that the cariogenicity of S. mutans in the presence of HFCS may differ compared to its cariogenicity in the presence of sucrose. Further in vivo studies need to be undertaken to resolve this uncertainty.
Collapse
Affiliation(s)
- R Ma
- Department of Endodontics and Operative Dentistry, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
98
|
Krzyściak W, Pluskwa KK, Jurczak A, Kościelniak D. The pathogenicity of the Streptococcus genus. Eur J Clin Microbiol Infect Dis 2013; 32:1361-76. [PMID: 24141975 PMCID: PMC3824240 DOI: 10.1007/s10096-013-1914-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/11/2013] [Indexed: 12/11/2022]
Abstract
Streptococcus infections are still one of the important problems facing contemporary medicine. As the World Health Organization (WHO) warns, Streptococcus pneumoniae is responsible for the highest number of pneumonia cases all over the world. Despite an increasing number of pneumococcal vaccinations, incidences of disease connected to this pathogen's infection stay at the same level, which is related to a constantly increasing number of infections caused by nonvaccinal serotypes. Unfortunately, the pathogenicity of bacteria of the Streptococcus genus is also connected to species considered to be physiological flora in humans or animals and, additionally, new species exhibiting pathogenic potential have been discovered. This paper presents an opinion concerning the epidemiology of streptococci infections based on case studies and other publications devoted to this problem. It also sheds new light based on recent reports on the prevention of protective vaccinations application in the case of streptococci infections.
Collapse
Affiliation(s)
- W Krzyściak
- Department of Medical Diagnostics, Pharmacy Faculty, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Krakow, Poland,
| | | | | | | |
Collapse
|
99
|
Lim BS, Cheng Y, Lee SP, Ahn SJ. Chlorhexidine release from orthodontic adhesives after topical chlorhexidine treatment. Eur J Oral Sci 2013; 121:211-7. [DOI: 10.1111/eos.12033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Bum-Soon Lim
- Dental Research Institute and Department of Dental Biomaterials; School of Dentistry; Seoul National University; Seoul Korea
| | - Yanping Cheng
- Dental Research Institute and Department of Dental Biomaterials; School of Dentistry; Seoul National University; Seoul Korea
| | - Seung-Pyo Lee
- Dental Research Institute and Department of Oral Anatomy; School of Dentistry; Seoul National University; Seoul Korea
| | - Sug-Joon Ahn
- Dental Research Institute and Department of Orthodontics; School of Dentistry; Seoul National University; Seoul Korea
| |
Collapse
|
100
|
Ahn SJ, Cho EJ, Oh SS, Lim BS. The effects of orthodontic bonding steps on biofilm formation of Streptococcus mutans in the presence of saliva. Acta Odontol Scand 2012; 70:504-10. [PMID: 22181697 DOI: 10.3109/00016357.2011.640277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To investigate the effects of various orthodontic bonding steps on biofilm formation of Streptococcus mutans in the presence of saliva. MATERIALS AND METHODS Hydroxyapatite (HA) and orthodontic adhesive (AD) disks were prepared to a uniform size. HA disks were etched with 37% phosphoric acid gel in the etched group (HE). In the primed group (HP), Transbond XT primer was applied to the etched HA surface and light-cured. For biofilm formation, Streptococcus mutans was grown on each specimen in a biofilm medium with either glucose or sucrose in the presence of fluid-phase UWS (F-UWS) or surface adsorbed saliva (S-UWS). The adherent bacteria were quantified by enumeration of the total viable counts of bacteria. Biofilms formed on each surface were examined by scanning electron microscopy. RESULTS When glucose was used, both F-UWS and S-UWS suppressed biofilm formation of S. mutans. Compared to HA and HE, biofilm formation was significantly inhibited on HP and AD in the presence of glucose. Biofilm-forming patterns that were inhibited by saliva were restored in a sucrose-containing medium. F-UWS promoted biofilm formation on HA and HE, while S-UWS significantly promoted biofilm formation on HP. S. mutans developed biofilm better on HA and HE than on AD when sucrose was used as the sole carbohydrate source. CONCLUSIONS This study suggests that the biofilm development by S. mutans is significantly influenced by the orthodontic bonding procedure. Biofilm formation of S. mutans was inhibited on AD more than other surfaces, irrespective of the presence of saliva or a carbohydrate source.
Collapse
Affiliation(s)
- Sug-Joon Ahn
- Dental Research Institute, School of Dentistry, Seoul National University, Korea
| | | | | | | |
Collapse
|