51
|
Saraceni PR, Romero A, Figueras A, Novoa B. Establishment of Infection Models in Zebrafish Larvae (Danio rerio) to Study the Pathogenesis of Aeromonas hydrophila. Front Microbiol 2016; 7:1219. [PMID: 27540375 PMCID: PMC4972827 DOI: 10.3389/fmicb.2016.01219] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/21/2016] [Indexed: 12/12/2022] Open
Abstract
Aeromonas hydrophila is a Gram-negative opportunistic pathogen of fish and terrestrial animals. In humans, A. hydrophila mainly causes gastroenteritis, septicaemia, and tissue infections. The mechanisms of infection, the main virulence factors and the host immune response triggered by A. hydrophila have been studied in detail using murine models and adult fish. However, the great limitation of studying adult animals is that the animal must be sacrificed and its tissues/organs extracted, which prevents the study of the infectious processes in the whole living animal. Zebrafish larvae are being used for the analysis of several infectious diseases, but their use for studying the pathogenesis of A. hydrophila has never been explored. The great advantage of zebrafish larvae is their transparency during the first week after fertilization, which allows detailed descriptions of the infectious processes using in vivo imaging techniques such as differential interferential contrast (DIC) and fluorescence microscopy. Moreover, the availability of fluorescent pathogens and transgenic reporter zebrafish lines expressing fluorescent immune cells, immune marker genes or cytokines/chemokines allows the host-pathogen interactions to be characterized. The present study explores the suitability of zebrafish larvae to study the pathogenesis of A. hydrophila and the interaction mechanisms between the bacterium and the innate immune responses through an infection model using different routes for infection. We used an early-embryo infection model at 3 days post-fertilization (dpf) through the microinjection of A. hydrophila into the duct of Cuvier, caudal vein, notochord, or muscle and two bath infection models using 4 dpf healthy and injured larvae. The latter resembled the natural conditions under which A. hydrophila produces infectious diseases in animals. We compared the cellular processes after infection in each anatomical site by confocal fluorescence imaging and determined the implication of inflammatory immune genes by measuring gene expression by qPCR.
Collapse
Affiliation(s)
| | | | | | - Beatriz Novoa
- Immunology and Genomics, Institute of Marine Research (IIM) – Consejo Superior de Investigaciones Científicas (CSIC), VigoSpain
| |
Collapse
|
52
|
García Méndez KB, Bragagnolo G, O'Callaghan D, Lavigne JP, Keriel A. A high-throughput assay for the measurement of uropathogenic Escherichia coli attachment to urinary bladder cells. Int J Exp Pathol 2016; 97:194-201. [PMID: 27273601 DOI: 10.1111/iep.12181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/24/2016] [Indexed: 12/14/2022] Open
Abstract
Strains of uropathogenic Escherichia coli (UPEC) are the major causative agent of urinary tract infections (UTI), the most common infectious diseases in the world. Their ability to attach and enter into cells in the urinary tract is a limiting step for their pathogenicity. Many studies are thus focussing on these key mechanisms to propose new therapeutic strategies. To facilitate such studies, we developed a fast and high-throughput assay which makes it possible to monitor the interaction of UPEC with cultured human uroepithelial cells. This assay allows measurement of the in vitro association of fluorescently labelled clinical isolates with bladder epithelial cells using flow cytometry in a microplate format. The assay was sensitive enough to detect variations between isolates expressing different adhesins and virulence factors and the inhibitory effect of proanthocyanidins. Thus we have developed a fast and robust assay which allows us to measure variations in the adhesion properties of UPEC to human bladder cells. This novel assay will be valuable for the study of initial steps of pathogenesis in UTI and for the screening or validation of inhibitory molecules.
Collapse
Affiliation(s)
- Karellen Beren García Méndez
- U1047, UFR de Médecine, Inserm, Nîmes, Cedex, France.,U1047, Université de Montpellier, Nîmes, Cedex, France
| | - Gabriel Bragagnolo
- U1047, UFR de Médecine, Inserm, Nîmes, Cedex, France.,U1047, Université de Montpellier, Nîmes, Cedex, France
| | - David O'Callaghan
- U1047, UFR de Médecine, Inserm, Nîmes, Cedex, France.,U1047, Université de Montpellier, Nîmes, Cedex, France
| | - Jean-Philippe Lavigne
- U1047, UFR de Médecine, Inserm, Nîmes, Cedex, France.,U1047, Université de Montpellier, Nîmes, Cedex, France.,Service de Microbiologie, CHU Carémeau, Nîmes, Cedex, France
| | - Anne Keriel
- U1047, UFR de Médecine, Inserm, Nîmes, Cedex, France.,U1047, Université de Montpellier, Nîmes, Cedex, France
| |
Collapse
|
53
|
Belon C, Blanc-Potard AB. Intramacrophage Survival for Extracellular Bacterial Pathogens: MgtC As a Key Adaptive Factor. Front Cell Infect Microbiol 2016; 6:52. [PMID: 27242970 PMCID: PMC4869558 DOI: 10.3389/fcimb.2016.00052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/26/2016] [Indexed: 01/06/2023] Open
Affiliation(s)
- Claudine Belon
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier (DIMNP Centre National de la Recherche Scientifique-UMR5235) Montpellier, France
| | - Anne-Béatrice Blanc-Potard
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier (DIMNP Centre National de la Recherche Scientifique-UMR5235) Montpellier, France
| |
Collapse
|
54
|
Aubert DF, Xu H, Yang J, Shi X, Gao W, Li L, Bisaro F, Chen S, Valvano MA, Shao F. A Burkholderia Type VI Effector Deamidates Rho GTPases to Activate the Pyrin Inflammasome and Trigger Inflammation. Cell Host Microbe 2016; 19:664-74. [PMID: 27133449 DOI: 10.1016/j.chom.2016.04.004] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 03/17/2016] [Accepted: 03/30/2016] [Indexed: 10/21/2022]
Abstract
Burkholderia cenocepacia is an opportunistic pathogen of the cystic fibrosis lung that elicits a strong inflammatory response. B. cenocepacia employs a type VI secretion system (T6SS) to survive in macrophages by disarming Rho-type GTPases, causing actin cytoskeletal defects. Here, we identified TecA, a non-VgrG T6SS effector responsible for actin disruption. TecA and other bacterial homologs bear a cysteine protease-like catalytic triad, which inactivates Rho GTPases by deamidating a conserved asparagine in the GTPase switch-I region. RhoA deamidation induces caspase-1 inflammasome activation, which is mediated by the familial Mediterranean fever disease protein Pyrin. In mouse infection, the deamidase activity of TecA is necessary and sufficient for B. cenocepacia-triggered lung inflammation and also protects mice from lethal B. cenocepacia infection. Therefore, Burkholderia TecA is a T6SS effector that modifies a eukaryotic target through an asparagine deamidase activity, which in turn elicits host cell death and inflammation through activation of the Pyrin inflammasome.
Collapse
Affiliation(s)
- Daniel F Aubert
- Department of Microbiology and Immunology, University of Western Ontario, London N6A 5C1, Canada
| | - Hao Xu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jieling Yang
- National Institute of Biological Sciences, Beijing 102206, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuyan Shi
- National Institute of Biological Sciences, Beijing 102206, China
| | - Wenqing Gao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Fabiana Bisaro
- Centre for Infection and Immunity, Queen's University Belfast, Belfast BT9 7AE, UK
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Miguel A Valvano
- Department of Microbiology and Immunology, University of Western Ontario, London N6A 5C1, Canada; Centre for Infection and Immunity, Queen's University Belfast, Belfast BT9 7AE, UK.
| | - Feng Shao
- National Institute of Biological Sciences, Beijing 102206, China; National Institute of Biological Sciences, Beijing, Collaborative Innovation Center for Cancer Medicine, Beijing 102206, China.
| |
Collapse
|
55
|
Aubert DF, Valvano MA, Hu S. Quantification of type VI secretion system activity in macrophages infected with Burkholderia cenocepacia. Microbiology (Reading) 2015; 161:2161-73. [DOI: 10.1099/mic.0.000174] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
56
|
Harvie EA, Huttenlocher A. Neutrophils in host defense: new insights from zebrafish. J Leukoc Biol 2015; 98:523-37. [PMID: 25717145 PMCID: PMC4569048 DOI: 10.1189/jlb.4mr1114-524r] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 12/11/2022] Open
Abstract
Neutrophils are highly motile phagocytic cells that play a critical role in the immune response to infection. Zebrafish (Danio rerio) are increasingly used to study neutrophil function and host-pathogen interactions. The generation of transgenic zebrafish lines with fluorescently labeled leukocytes has made it possible to visualize the neutrophil response to infection in real time by use of optically transparent zebrafish larvae. In addition, the genetic tractability of zebrafish has allowed for the generation of models of inherited neutrophil disorders. In this review, we discuss several zebrafish models of infectious disease, both in the context of immunocompetent, as well as neutrophil-deficient hosts and how these models have shed light on neutrophil behavior during infection.
Collapse
Affiliation(s)
- Elizabeth A Harvie
- *Microbiology Doctoral Training Program, Departments of Medical Microbiology and Immunology and Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Anna Huttenlocher
- *Microbiology Doctoral Training Program, Departments of Medical Microbiology and Immunology and Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
57
|
Bernut A, Dupont C, Sahuquet A, Herrmann JL, Lutfalla G, Kremer L. Deciphering and Imaging Pathogenesis and Cording of Mycobacterium abscessus in Zebrafish Embryos. J Vis Exp 2015. [PMID: 26382225 DOI: 10.3791/53130] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Zebrafish (Danio rerio) embryos are increasingly used as an infection model to study the function of the vertebrate innate immune system in host-pathogen interactions. The ease of obtaining large numbers of embryos, their accessibility due to external development, their optical transparency as well as the availability of a wide panoply of genetic/immunological tools and transgenic reporter line collections, contribute to the versatility of this model. In this respect, the present manuscript describes the use of zebrafish as an in vivo model system to investigate the chronology of Mycobacterium abscessus infection. This human pathogen can exist either as smooth (S) or rough (R) variants, depending on cell wall composition, and their respective virulence can be imaged and compared in zebrafish embryos and larvae. Micro-injection of either S or R fluorescent variants directly in the blood circulation via the caudal vein, leads to chronic or acute/lethal infections, respectively. This biological system allows high resolution visualization and analysis of the role of mycobacterial cording in promoting abscess formation. In addition, the use of fluorescent bacteria along with transgenic zebrafish lines harbouring fluorescent macrophages produces a unique opportunity for multi-color imaging of the host-pathogen interactions. This article describes detailed protocols for the preparation of homogenous M. abscessus inoculum and for intravenous injection of zebrafish embryos for subsequent fluorescence imaging of the interaction with macrophages. These techniques open the avenue to future investigations involving mutants defective in cord formation and are dedicated to understand how this impacts on M. abscessus pathogenicity in a whole vertebrate.
Collapse
Affiliation(s)
- Audrey Bernut
- Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS, UMR 535, Université Montpellier; Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, CNRS, FRE 3689, Université Montpellier
| | - Christian Dupont
- Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS, UMR 535, Université Montpellier; Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, CNRS, FRE 3689, Université Montpellier
| | - Alain Sahuquet
- Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS, UMR 535, Université Montpellier
| | - Jean-Louis Herrmann
- Unité de Formation et de Recherche des Sciences de la Santé, EA3647-EPIM, Université Versailles St Quentin
| | - Georges Lutfalla
- Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS, UMR 535, Université Montpellier;
| | - Laurent Kremer
- Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS, UMR 535, Université Montpellier; Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, CNRS, FRE 3689, Université Montpellier;
| |
Collapse
|
58
|
Bernut A, Lutfalla G, Kremer L. [Looking through zebrafish to study host-pathogen interactions]. Med Sci (Paris) 2015; 31:638-46. [PMID: 26152168 DOI: 10.1051/medsci/20153106017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The zebrafish offers many advantages that motivated and validated its use to study the virulence of numerous human pathogens, including viruses, bacteria and fungi. Its immune system is homologous to the one of mammals. The optical transparency of zebrafish embryos allows non-invasive and real-time monitoring of the infection processes through the use of imaging techniques. The zebrafish is therefore a useful and powerful model to study host-pathogen interactions at a cellular level. It may be used to describe pathophysiological events and subversion mechanisms that are specific to each pathogen. In addition to increasing our understanding of the host immune defense, this model is of high potential for medical application, being particularly amenable to high-throughput screening for the discovery of new anti-infective molecules.
Collapse
Affiliation(s)
- Audrey Bernut
- Centre d'étude des pathogènes pour la biotechnologie et la santé (CPBS), CNRS FRE3689, 1919, route de Mende, 34293 Montpellier Cedex 05, France
| | - Georges Lutfalla
- Laboratoire de dynamique des interactions membranaires normales et pathologiques, CNRS UMR5235, université de Montpellier, place Eugène Bataillon, Montpellier, France
| | - Laurent Kremer
- Centre d'étude des pathogènes pour la biotechnologie et la santé (CPBS), CNRS FRE3689, 1919, route de Mende, 34293 Montpellier Cedex 05, France - Inserm, CPBS, 1919, route de Mende, 34293 Montpellier Cedex 05, France
| |
Collapse
|
59
|
Burkholderia cenocepacia Lipopolysaccharide Modification and Flagellin Glycosylation Affect Virulence but Not Innate Immune Recognition in Plants. mBio 2015; 6:e00679. [PMID: 26045541 PMCID: PMC4462625 DOI: 10.1128/mbio.00679-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED Burkholderia cenocepacia causes opportunistic infections in plants, insects, animals, and humans, suggesting that "virulence" depends on the host and its innate susceptibility to infection. We hypothesized that modifications in key bacterial molecules recognized by the innate immune system modulate host responses to B. cenocepacia. Indeed, modification of lipopolysaccharide (LPS) with 4-amino-4-deoxy-L-arabinose and flagellin glycosylation attenuates B. cenocepacia infection in Arabidopsis thaliana and Galleria mellonella insect larvae. However, B. cenocepacia LPS and flagellin triggered rapid bursts of nitric oxide and reactive oxygen species in A. thaliana leading to activation of the PR-1 defense gene. These responses were drastically reduced in plants with fls2 (flagellin FLS2 host receptor kinase), Atnoa1 (nitric oxide-associated protein 1), and dnd1-1 (reduced production of nitric oxide) null mutations. Together, our results indicate that LPS modification and flagellin glycosylation do not affect recognition by plant receptors but are required for bacteria to establish overt infection. IMPORTANCE Virulence and pathogenicity are properties ascribed to microbes, which actually require careful consideration of the host. Using the term "pathogen" to define a microbe without considering its host has recently been debated, since the microbe's capacity to establish a niche in a given host is a critical feature associated with infection. Opportunistic bacteria are a perfect example of microbes whose ability to cause disease is intimately related to the host's ability to recognize and respond to the infection. Here, we use the opportunistic bacterium Burkholderia cenocepacia and the host plant Arabidopsis thaliana to investigate the role of bacterial surface molecules, namely, lipopolysaccharide and flagellin, in contributing to infection and also in eliciting a host response. We reveal that both molecules can be modified by glycosylation, and although the modifications are critical for the bacteria to establish an infection, they do not impact the host's ability to recognize the pathogen.
Collapse
|
60
|
Torraca V, Masud S, Spaink HP, Meijer AH. Macrophage-pathogen interactions in infectious diseases: new therapeutic insights from the zebrafish host model. Dis Model Mech 2015; 7:785-97. [PMID: 24973749 PMCID: PMC4073269 DOI: 10.1242/dmm.015594] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Studying macrophage biology in the context of a whole living organism provides unique possibilities to understand the contribution of this extremely dynamic cell subset in the reaction to infections, and has revealed the relevance of cellular and molecular processes that are fundamental to the cell-mediated innate immune response. In particular, various recently established zebrafish infectious disease models are contributing substantially to our understanding of the mechanisms by which different pathogens interact with macrophages and evade host innate immunity. Transgenic zebrafish lines with fluorescently labeled macrophages and other leukocyte populations enable non-invasive imaging at the optically transparent early life stages. Furthermore, there is a continuously expanding availability of vital reporters for subcellular compartments and for probing activation of immune defense mechanisms. These are powerful tools to visualize the activity of phagocytic cells in real time and shed light on the intriguing paradoxical roles of these cells in both limiting infection and supporting the dissemination of intracellular pathogens. This Review will discuss how several bacterial and fungal infection models in zebrafish embryos have led to new insights into the dynamic molecular and cellular mechanisms at play when pathogens encounter host macrophages. We also describe how these insights are inspiring novel therapeutic strategies for infectious disease treatment.
Collapse
Affiliation(s)
- Vincenzo Torraca
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Samrah Masud
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Annemarie H Meijer
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
61
|
The tyrosine kinase BceF and the phosphotyrosine phosphatase BceD of Burkholderia contaminans are required for efficient invasion and epithelial disruption of a cystic fibrosis lung epithelial cell line. Infect Immun 2014; 83:812-21. [PMID: 25486990 DOI: 10.1128/iai.02713-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bacterial tyrosine kinases and their cognate protein tyrosine phosphatases are best known for regulating the biosynthesis of polysaccharides. Moreover, their roles in the stress response, DNA metabolism, cell division, and virulence have also been documented. The aim of this study was to investigate the pathogenicity and potential mechanisms of virulence dependent on the tyrosine kinase BceF and phosphotyrosine phosphatase BceD of the cystic fibrosis opportunistic pathogen Burkholderia contaminans IST408. The insertion mutants bceD::Tp and bceF::Tp showed similar attenuation of adhesion and invasion of the cystic fibrosis lung epithelial cell line CFBE41o- compared to the parental strain B. contaminans IST408. In the absence of bceD or bceF genes, B. contaminans also showed a reduction in the ability to translocate across polarized epithelial cell monolayers, demonstrated by a higher transepithelial electrical resistance, reduced flux of fluorescein isothiocyanate-labeled bovine serum albumin, and higher levels of tight junction proteins ZO-1, occludin, and claudin-1 present in monolayers exposed to these bacterial mutants. Furthermore, bceD::Tp and bceF::Tp mutants induced lower levels of interleukin-6 (IL-6) and IL-8 release than the parental strain. In conclusion, although the mechanisms of pathogenicity dependent on BceD and BceF are not understood, these proteins contribute to the virulence of Burkholderia by enhancement of cell attachment and invasion, disruption of epithelial integrity, and modulation of the proinflammatory response.
Collapse
|
62
|
Sridevi JP, Anantaraju HS, Kulkarni P, Yogeeswari P, Sriram D. Optimization and validation of Mycobacterium marinum-induced adult zebrafish model for evaluation of oral anti-tuberculosis drugs. Int J Mycobacteriol 2014; 3:259-67. [PMID: 26786625 DOI: 10.1016/j.ijmyco.2014.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022] Open
Abstract
INTRODUCTION Mycobacterium marinum has emerged as a suitable species for induction of tuberculosis-like disease in zebrafish, and various zebrafish models (larval and adult) for drug screening have been proposed in the literature. It is believed that an adult zebrafish model is more useful in drug screening because, apart from assessment of efficacy, one can obtain data on dosage, pharmacokinetics and overall health improvement. This study suggests a simple, cost-effective and resource-efficient protocol for screening of anti-tuberculosis drugs. METHODS The parameters used for assessment of infection as well as anti-bacterial response were: (a) bacterial count; and (b) body weight change. An optimization study was conducted to establish the concentration of bacteria required to produce a reproducible phenotype of tuberculosis (TB). A negative control (Amoxicillin) and anti-mycobacterial drugs (Isoniazid, Rifampicin, Moxifloxacin, Ethambutol and Isoniazid+Rifampicin) were used for validation of the protocol. All the drugs were administered orally. RESULTS An intra-peritoneal inoculation of 0.75million bacteria/fish was optimized for the model. All the anti-tuberculosis drugs showed efficacy in this model, whereas the negative control did not show any signs of reversing the parameters of M. marinum infection. DISCUSSION Adult zebrafish model of M. marinum-induced tuberculosis has not been fully exploited as a drug screening tool. In the present report, a protocol is suggested that is simple, reproducible and resource-efficient for screening of anti-tuberculosis agents. This protocol is an attempt to refine the published protocols and use this model as a surrogate model of human TB for the purpose of drug screening.
Collapse
Affiliation(s)
- Jonnalagadda Padma Sridevi
- Drug Discovery Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Hasitha Shilpa Anantaraju
- Drug Discovery Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Pushkar Kulkarni
- Drug Discovery Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad 500078, India; Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500046, India.
| | - Perumal Yogeeswari
- Drug Discovery Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Dharmarajan Sriram
- Drug Discovery Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
63
|
Andrade A, Valvano MA. A Burkholderia cenocepacia gene encoding a non-functional tyrosine phosphatase is required for the delayed maturation of the bacteria-containing vacuoles in macrophages. Microbiology (Reading) 2014; 160:1332-1345. [DOI: 10.1099/mic.0.077206-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Burkholderia cenocepacia infects patients with cystic fibrosis. We have previously shown that B. cenocepacia can survive in macrophages within membrane vacuoles [B. cenocepacia-containing vacuoles (BcCVs)] that preclude fusion with the lysosome. The bacterial factors involved in B. cenocepacia intracellular survival are not fully elucidated. We report here that deletion of BCAM0628, encoding a predicted low molecular weight protein tyrosine phosphatase (LMW-PTP) that is restricted to B. cenocepacia strains of the transmissible ET-12 clone, accelerates the maturation of the BcCVs. Compared to the parental strain and deletion mutants in other LMW-PTPs that are widely conserved in Burkholderia species, a greater proportion of BcCVs containing the ΔBCAM0628 mutant were targeted to the lysosome. Accelerated BcCV maturation was not due to reduced intracellular viability since ΔBCAM0628 survived and replicated in macrophages similarly to the parental strain. Therefore, BCAM0628 was referred to as dpm (delayed phagosome maturation). We provide evidence that the Dpm protein is secreted during growth in vitro and upon macrophage infection. Dpm secretion requires an N-terminal signal peptide. Heterologous expression of Dpm in Burkholderia multivorans confers to this bacterium a similar phagosomal maturation delay to that found with B. cenocepacia. We demonstrate that Dpm is an inactive phosphatase, suggesting that its contribution to phagosomal maturation arrest must be unrelated to tyrosine phosphatase activity.
Collapse
Affiliation(s)
- Angel Andrade
- Centre for Human Immunology and Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Miguel A. Valvano
- Centre for Infection and Immunity, Queen's University Belfast, Belfast BT9 5AE, UK
- Centre for Human Immunology and Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
64
|
Hanuszkiewicz A, Pittock P, Humphries F, Moll H, Rosales AR, Molinaro A, Moynagh PN, Lajoie GA, Valvano MA. Identification of the flagellin glycosylation system in Burkholderia cenocepacia and the contribution of glycosylated flagellin to evasion of human innate immune responses. J Biol Chem 2014; 289:19231-44. [PMID: 24841205 DOI: 10.1074/jbc.m114.562603] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Burkholderia cenocepacia is an opportunistic pathogen threatening patients with cystic fibrosis. Flagella are required for biofilm formation, as well as adhesion to and invasion of epithelial cells. Recognition of flagellin via the Toll-like receptor 5 (TLR5) contributes to exacerbate B. cenocepacia-induced lung epithelial inflammatory responses. In this study, we report that B. cenocepacia flagellin is glycosylated on at least 10 different sites with a single sugar, 4,6-dideoxy-4-(3-hydroxybutanoylamino)-D-glucose. We have identified key genes that are required for flagellin glycosylation, including a predicted glycosyltransferase gene that is linked to the flagellin biosynthesis cluster and a putative acetyltransferase gene located within the O-antigen lipopolysaccharide cluster. Another O-antigen cluster gene, rmlB, which is required for flagellin glycan and O-antigen biosynthesis, was essential for bacterial viability, uncovering a novel target against Burkholderia infections. Using glycosylated and nonglycosylated purified flagellin and a cell reporter system to assess TLR5-mediated responses, we also show that the presence of glycan in flagellin significantly impairs the inflammatory response of epithelial cells. We therefore suggest that flagellin glycosylation reduces recognition of flagellin by host TLR5, providing an evasive strategy to infecting bacteria.
Collapse
Affiliation(s)
- Anna Hanuszkiewicz
- From the Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast BT9 7AE, Ireland, United Kingdom
| | - Paula Pittock
- the Don Rix Protein Identification Facility, Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Fiachra Humphries
- the Institute of Immunology, Department of Biology, National University of Ireland at Maynooth, Maynooth, County Kildare, Ireland
| | - Hermann Moll
- the Bioanalytical Chemistry, Research Centre Borstel, 23845 Borstel, Germany
| | - Amanda Roa Rosales
- the Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada, and
| | - Antonio Molinaro
- the Dipartimento di Scienze Chimiche, Università di Napoli, Federico II, 80134 Naples, Italy
| | - Paul N Moynagh
- From the Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast BT9 7AE, Ireland, United Kingdom, the Institute of Immunology, Department of Biology, National University of Ireland at Maynooth, Maynooth, County Kildare, Ireland
| | - Gilles A Lajoie
- the Don Rix Protein Identification Facility, Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Miguel A Valvano
- From the Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast BT9 7AE, Ireland, United Kingdom, the Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada, and
| |
Collapse
|
65
|
Assani K, Tazi MF, Amer AO, Kopp BT. IFN-γ stimulates autophagy-mediated clearance of Burkholderia cenocepacia in human cystic fibrosis macrophages. PLoS One 2014; 9:e96681. [PMID: 24798083 PMCID: PMC4010498 DOI: 10.1371/journal.pone.0096681] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 04/10/2014] [Indexed: 01/22/2023] Open
Abstract
Burkholderia cenocepacia is a virulent pathogen that causes significant morbidity and mortality in patients with cystic fibrosis (CF), survives intracellularly in macrophages, and uniquely causes systemic infections in CF. Autophagy is a physiologic process that involves engulfing non-functional organelles and proteins and delivering them for lysosomal degradation, but also plays a role in eliminating intracellular pathogens, including B. cenocepacia. Autophagy is defective in CF but can be stimulated in murine CF models leading to increased clearance of B. cenocepacia, but little is known about autophagy stimulation in human CF macrophages. IFN-γ activates macrophages and increases antigen presentation while also inducing autophagy in macrophages. We therefore, hypothesized that treatment with IFN-γ would increase autophagy and macrophage activation in patients with CF. Peripheral blood monocyte derived macrophages (MDMs) were obtained from CF and non-CF donors and subsequently infected with B. cenocepacia. Basal serum levels of IFN-γ were similar between CF and non-CF patients, however after B. cenocepacia infection there is deficient IFN-γ production in CF MDMs. IFN-γ treated CF MDMs demonstrate increased co-localization with the autophagy molecule p62, increased autophagosome formation, and increased trafficking to lysosomes compared to untreated CF MDMs. Electron microscopy confirmed IFN-γ promotes double membrane vacuole formation around bacteria in CF MDMs, while only single membrane vacuoles form in untreated CF cells. Bacterial burden is significantly reduced in autophagy stimulated CF MDMs, comparable to non-CF levels. IL-1β production is decreased in CF MDMs after IFN-γ treatment. Together, these results demonstrate that IFN-γ promotes autophagy-mediated clearance of B. cenocepacia in human CF macrophages.
Collapse
Affiliation(s)
- Kaivon Assani
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Mia F. Tazi
- Department of Microbial Infection and Immunity and the Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Amal O. Amer
- Department of Microbial Infection and Immunity and the Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Benjamin T. Kopp
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Section of Pediatric Pulmonology, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
66
|
Characterization of BCAM0224, a multifunctional trimeric autotransporter from the human pathogen Burkholderia cenocepacia. J Bacteriol 2014; 196:1968-79. [PMID: 24659767 DOI: 10.1128/jb.00061-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the trimeric autotransporter adhesin (TAA) family play a crucial role in adhesion of Gram-negative pathogens to host cells. Moreover, these proteins are multifunctional virulence factors involved in several other biological traits, including invasion into host cells and evasion of the host immune system. In cystic fibrosis epidemic Burkholderia cenocepacia strain J2315, we identified a unique TAA (BCAM0224)-encoding gene, previously described as being implicated in virulence. Here, we characterized this multifunctional protein, trying to establish its role in B. cenocepacia pathogenicity. We show that BCAM0224 occurs on the bacterial surface and adopts a trimeric conformation. Furthermore, we demonstrated that BCAM0224 is needed for earlier stages of biofilm formation and is required for swarming motility. In addition, BCAM0224 plays an important role in evasion of the human innate immune system, providing resistance against the bactericidal activity of serum via the complement classical pathway. Finally, BCAM0224 mediates bacterial adhesion to and invasion of cultured human bronchial epithelial cells. Together, these data reveal the high versatility of the BCAM0224 protein as a virulence factor in the pathogenic bacterium B. cenocepacia.
Collapse
|
67
|
Mycobacterium abscessus cording prevents phagocytosis and promotes abscess formation. Proc Natl Acad Sci U S A 2014; 111:E943-52. [PMID: 24567393 DOI: 10.1073/pnas.1321390111] [Citation(s) in RCA: 258] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium abscessus is a rapidly growing Mycobacterium causing a wide spectrum of clinical syndromes. It now is recognized as a pulmonary pathogen to which cystic fibrosis patients have a particular susceptibility. The M. abscessus rough (R) variant, devoid of cell-surface glycopeptidolipids (GPLs), causes more severe clinical disease than the smooth (S) variant, but the underlying mechanisms of R-variant virulence remain obscure. Exploiting the optical transparency of zebrafish embryos, we observed that the increased virulence of the M. abscessus R variant compared with the S variant correlated with the loss of GPL production. The virulence of the R variant involved the massive production of serpentine cords, absent during S-variant infection, and the cords initiated abscess formation leading to rapid larval death. Cording occurred within the vasculature and was highly pronounced in the central nervous system (CNS). It appears that M. abscessus is transported to the CNS within macrophages. The release of M. abscessus from apoptotic macrophages initiated the formation of cords that grew too large to be phagocytized by macrophages or neutrophils. This study is a description of the crucial role of cording in the in vivo physiopathology of M. abscessus infection and emphasizes cording as a mechanism of immune evasion.
Collapse
|
68
|
Abstract
In recent years the zebrafish has gained enormous attention in infection biology, and many protocols have been developed to study interaction of both human and fish pathogens, including viruses, fungi, and bacteria, with the host. Especially the extraordinary possibilities for live imaging of disease processes in the transparent embryos using fluorescent bacteria and cell-specific reporter fish combined with gene knockdown, transcriptome, and genetic studies have dramatically advanced our understanding of disease mechanisms. The zebrafish embryo is amenable to study virulence of both extracellular and facultative intracellular pathogens introduced through the technique of microinjection. Several protocols have been published that address the different sites of injection, antisense strategies, imaging, and production of transgenic fish in detail. Here we describe a protocol to study the virulence profiles, ranging from acute fatal to persistent, of bacteria belonging to the Burkholderia cepacia complex. This standard operating protocol combines simple survival assays, analysis of bacterial kinetics, analysis of the early innate immune response with qRT-PCR, and the use of transgenic reporter fish to study interactions with host phagocytes, and is also applicable to other pathogens.
Collapse
|
69
|
The third replicon of members of the Burkholderia cepacia Complex, plasmid pC3, plays a role in stress tolerance. Appl Environ Microbiol 2013; 80:1340-8. [PMID: 24334662 DOI: 10.1128/aem.03330-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The metabolically versatile Burkholderia cepacia complex (Bcc) occupies a variety of niches, including the plant rhizosphere and the cystic fibrosis lung (where it is often fatal to the patient). Bcc members have multipartite genomes, of which the third replicon, pC3 (previously chromosome 3), has been shown to be a nonessential megaplasmid which confers virulence and both antifungal and proteolytic activity on several strains. In this study, pC3 curing was extended to cover strains of 16 of the 17 members of the Bcc, and the phenotypes conferred by pC3 were determined. B. cenocepacia strains H111, MCO-3, and HI2424 were previously cured of pC3; however, this had not proved possible in the epidemic strain K56-2. Here, we investigated the mechanism of this unexpected stability and found that efficient toxin-antitoxin systems are responsible for maintaining pC3 of strain K56-2. Identification of these systems allowed neutralization of the toxins and the subsequent deletion of K56-2pC3. The cured strain was found to exhibit reduced antifungal activity and was attenuated in both the zebrafish and the Caenorhabditis elegans model of infection. We used a PCR screening method to examine the prevalence of pC3 within 110 Bcc isolates and found that this replicon was absent in only four cases, suggesting evolutionary fixation. It is shown that plasmid pC3 increases the resistance of B. cenocepacia H111 to various stresses (oxidative, osmotic, high-temperature, and chlorhexidine-induced stresses), explaining the prevalence of this replicon within the Bcc.
Collapse
|
70
|
Common duckweed (Lemna minor) is a versatile high-throughput infection model for the Burkholderia cepacia complex and other pathogenic bacteria. PLoS One 2013; 8:e80102. [PMID: 24223216 PMCID: PMC3819297 DOI: 10.1371/journal.pone.0080102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/07/2013] [Indexed: 01/05/2023] Open
Abstract
Members of the Burkholderia cepacia complex (Bcc) have emerged in recent decades as problematic pulmonary pathogens of cystic fibrosis (CF) patients, with severe infections progressing to acute necrotizing pneumonia and sepsis. This study presents evidence that Lemna minor (Common duckweed) is useful as a plant model for the Bcc infectious process, and has potential as a model system for bacterial pathogenesis in general. To investigate the relationship between Bcc virulence in duckweed and Galleria mellonella (Greater wax moth) larvae, a previously established Bcc infection model, a duckweed survival assay was developed and used to determine LD50 values. A strong correlation (R2 = 0.81) was found between the strains’ virulence ranks in the two infection models, suggesting conserved pathways in these vastly different hosts. To broaden the application of the duckweed model, enteropathogenic Escherichia coli (EPEC) and five isogenic mutants with previously established LD50 values in the larval model were tested against duckweed, and a strong correlation (R2 = 0.93) was found between their raw LD50 values. Potential virulence factors in B. cenocepacia K56-2 were identified using a high-throughput screen against single duckweed plants. In addition to the previously characterized antifungal compound (AFC) cluster genes, several uncharacterized genes were discovered including a novel lysR regulator, a histidine biosynthesis gene hisG, and a gene located near the gene encoding the recently characterized virulence factor SuhBBc. Finally, to demonstrate the utility of this model in therapeutic applications, duckweed was rescued from Bcc infection by treating with bacteriophage at 6-h intervals. It was observed that phage application became ineffective at a timepoint that coincided with a sharp increase in bacterial invasion of plant tissue. These results indicate that common duckweed can serve as an effective infection model for the investigation of bacterial virulence factors and therapeutic strategies to combat them.
Collapse
|
71
|
Khodai-Kalaki M, Aubert DF, Valvano MA. Characterization of the AtsR hybrid sensor kinase phosphorelay pathway and identification of its response regulator in Burkholderia cenocepacia. J Biol Chem 2013; 288:30473-30484. [PMID: 24014026 DOI: 10.1074/jbc.m113.489914] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AtsR is a membrane-bound hybrid sensor kinase of Burkholderia cenocepacia that negatively regulates quorum sensing and virulence factors such as biofilm production, type 6-secretion, and protease secretion. Here we elucidate the mechanism of AtsR phosphorelay by site-directed mutagenesis of predicted histidine and aspartic acid phosphoacceptor residues. We demonstrate by in vitro phosphorylation that histidine 245 and aspartic acid 536 are conserved sites of phosphorylation in AtsR, and we also identify the cytosolic response regulator AtsT (BCAM0381) as a key component of the AtsR phosphorelay pathway. Monitoring the function of AtsR and its derivatives in vivo by measuring extracellular protease activity and swarming motility confirmed the in vitro phosphorylation results. Together we find that the AtsR receiver domain plays a fine-tuning role in determining the levels of phosphotransfer from its sensor kinase domain to the AtsT response regulator.
Collapse
Affiliation(s)
- Maryam Khodai-Kalaki
- From the Centre for Human Immunology, Department of Microbiology and Immunology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5C1, Canada and
| | - Daniel F Aubert
- From the Centre for Human Immunology, Department of Microbiology and Immunology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5C1, Canada and
| | - Miguel A Valvano
- From the Centre for Human Immunology, Department of Microbiology and Immunology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5C1, Canada and; the Centre for Infection and Immunity, Queen's University Belfast, BT9 5GZ Belfast, United Kingdom.
| |
Collapse
|
72
|
Mostowy S, Boucontet L, Mazon Moya MJ, Sirianni A, Boudinot P, Hollinshead M, Cossart P, Herbomel P, Levraud JP, Colucci-Guyon E. The zebrafish as a new model for the in vivo study of Shigella flexneri interaction with phagocytes and bacterial autophagy. PLoS Pathog 2013; 9:e1003588. [PMID: 24039575 PMCID: PMC3764221 DOI: 10.1371/journal.ppat.1003588] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 07/19/2013] [Indexed: 01/02/2023] Open
Abstract
Autophagy, an ancient and highly conserved intracellular degradation process, is viewed as a critical component of innate immunity because of its ability to deliver cytosolic bacteria to the lysosome. However, the role of bacterial autophagy in vivo remains poorly understood. The zebrafish (Danio rerio) has emerged as a vertebrate model for the study of infections because it is optically accessible at the larval stages when the innate immune system is already functional. Here, we have characterized the susceptibility of zebrafish larvae to Shigella flexneri, a paradigm for bacterial autophagy, and have used this model to study Shigella-phagocyte interactions in vivo. Depending on the dose, S. flexneri injected in zebrafish larvae were either cleared in a few days or resulted in a progressive and ultimately fatal infection. Using high resolution live imaging, we found that S. flexneri were rapidly engulfed by macrophages and neutrophils; moreover we discovered a scavenger role for neutrophils in eliminating infected dead macrophages and non-immune cell types that failed to control Shigella infection. We observed that intracellular S. flexneri could escape to the cytosol, induce septin caging and be targeted to autophagy in vivo. Depletion of p62 (sequestosome 1 or SQSTM1), an adaptor protein critical for bacterial autophagy in vitro, significantly increased bacterial burden and host susceptibility to infection. These results show the zebrafish larva as a new model for the study of S. flexneri interaction with phagocytes, and the manipulation of autophagy for anti-bacterial therapy in vivo. Autophagy, an ancient and highly conserved intracellular degradation process, is viewed as a critical component of innate immunity because of its ability to deliver cytosolic bacteria to the lysosome. However, a complete understanding of the molecules and mechanisms restricting cytosolic bacteria has not been obtained, and the role of bacterial autophagy in vivo remains poorly understood. Shigella flexneri are human-adapted Escherichia coli that have gained the ability to invade the colonic mucosa, causing inflammation and diarrhea. The intracellular lifestyle of this pathogen has been well-studied in vitro, and Shigella has recently gained recognition as a paradigm of bacterial autophagy. We show that the zebrafish larva represents a valuable new host for the analysis of S. flexneri infection. Interactions between bacteria and host phagocytes can be imaged at high resolution in vivo, and the zebrafish model should prove useful for understanding the cell biology of Shigella infection. We use zebrafish larvae to investigate the role of bacterial autophagy in host defense, and observed that the perturbation of autophagy can adversely affect host survival in response to Shigella infection. Therefore, the zebrafish constitutes a valuable system to develop new strategies aimed at pathogen clearance by manipulation of anti-bacterial autophagy.
Collapse
Affiliation(s)
- Serge Mostowy
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, Paris, France
- Inserm, U604, Paris, France
- INRA, USC2020, Paris, France
- * E-mail: (SM); (ECG)
| | - Laurent Boucontet
- Institut Pasteur, Unité Macrophages et Développement de l'Immunité, Département de Biologie du Développement et des Cellules Souches, Paris, France
- CNRS, URA2578, Paris, France
| | - Maria J. Mazon Moya
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Andrea Sirianni
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Pierre Boudinot
- INRA, Virologie et Immunologie Moléculaire, Jouy-en-Josas, France
| | - Michael Hollinshead
- Section of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Département de Biologie Cellulaire et Infection, Paris, France
- Inserm, U604, Paris, France
- INRA, USC2020, Paris, France
| | - Philippe Herbomel
- Institut Pasteur, Unité Macrophages et Développement de l'Immunité, Département de Biologie du Développement et des Cellules Souches, Paris, France
- CNRS, URA2578, Paris, France
| | - Jean-Pierre Levraud
- Institut Pasteur, Unité Macrophages et Développement de l'Immunité, Département de Biologie du Développement et des Cellules Souches, Paris, France
- CNRS, URA2578, Paris, France
| | - Emma Colucci-Guyon
- Institut Pasteur, Unité Macrophages et Développement de l'Immunité, Département de Biologie du Développement et des Cellules Souches, Paris, France
- CNRS, URA2578, Paris, France
- * E-mail: (SM); (ECG)
| |
Collapse
|
73
|
Abstract
Enterococcus faecalis is an opportunistic pathogen responsible for a wide range of life-threatening nosocomial infections, such as septicemia, peritonitis, and endocarditis. E. faecalis infections are associated with a high mortality and substantial health care costs and cause therapeutic problems due to the intrinsic resistance of this bacterium to antibiotics. Several factors contributing to E. faecalis virulence have been identified. Due to the variety of infections caused by this organism, numerous animal models have been used to mimic E. faecalis infections, but none of them is considered ideal for monitoring pathogenesis. Here, we studied for the first time E. faecalis pathogenesis in zebrafish larvae. Using model strains, chosen isogenic mutants, and fluorescent derivatives expressing green fluorescent protein (GFP), we analyzed both lethality and bacterial dissemination in infected larvae. Genetically engineered immunocompromised zebrafish allowed the identification of two critical steps for successful establishment of disease: (i) host phagocytosis evasion mediated by the Epa rhamnopolysaccharide and (ii) tissue damage mediated by the quorum-sensing Fsr regulon. Our results reveal that the zebrafish is a novel, powerful model for studying E. faecalis pathogenesis, enabling us to dissect the mechanism of enterococcal virulence.
Collapse
|
74
|
Subramoni S, Sokol PA. Quorum sensing systems influence Burkholderia cenocepacia virulence. Future Microbiol 2013; 7:1373-87. [PMID: 23231487 DOI: 10.2217/fmb.12.118] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Burkholderia cepacia complex strains communicate using N-acyl homoserine lactones and BDSF-dependent quorum sensing (QS) systems. Burkholderia cenocepacia QS systems include CepIR, CciIR, CepR2 and BDSF. Analysis of CepR, CciIR, CepR2 and RpfF (BDSF synthase) QS regulons revealed that these QS systems both independently regulate and coregulate many target genes, often in an opposing manner. The role of QS and several QS-regulated genes in virulence has been determined using vertebrate, invertebrate and plant infection models. Virulence phenotypes are strain and model dependent, suggesting that different QS-regulated genes are important depending on the strain and type of infection. QS inhibitors in combination with antibiotics can reduce biofilm formation and virulence in infection models.
Collapse
Affiliation(s)
- Sujatha Subramoni
- Department of Microbiology, Immunology & Infectious Diseases, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | | |
Collapse
|
75
|
Veneman WJ, Stockhammer OW, de Boer L, Zaat SAJ, Meijer AH, Spaink HP. A zebrafish high throughput screening system used for Staphylococcus epidermidis infection marker discovery. BMC Genomics 2013; 14:255. [PMID: 23586901 PMCID: PMC3638012 DOI: 10.1186/1471-2164-14-255] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 04/11/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Staphylococcus epidermidis bacteria are a major cause of biomaterial-associated infections in modern medicine. Yet there is little known about the host responses against this normally innocent bacterium in the context of infection of biomaterials. In order to better understand the factors involved in this process, a whole animal model with high throughput screening possibilities and markers for studying the host response to S. epidermidis infection are required. RESULTS We have used a zebrafish yolk injection system to study bacterial proliferation and the host response in a time course experiment of S. epidermidis infection. By combining an automated microinjection system with complex object parametric analysis and sorting (COPAS) technology we have quantified bacterial proliferation. This system was used together with transcriptome analysis at several time points during the infection period. We show that bacterial colony forming unit (CFU) counting can be replaced by high throughput flow-based fluorescence analysis of embryos enabling high throughput readout. Comparison of the host transcriptome response to S. epidermidis and Mycobacterium marinum infection in the same system showed that M. marinum has a far stronger effect on host gene regulation than S. epidermidis. However, multiple genes responded differently to S. epidermidis infection than to M. marinum, including a cell adhesion gene linked to specific infection by staphylococci in mammals. CONCLUSIONS Our zebrafish embryo infection model allowed (i) quantitative assessment of bacterial proliferation, (ii) identification of zebrafish genes serving as markers for infection with the opportunistic pathogen S. epidermidis, and (iii) comparison of the transcriptome response of infection with S. epidermidis and with the pathogen M. marinum. As a result we have identified markers that can be used to distinguish common and specific responses to S. epidermidis. These markers enable the future integration of our high throughput screening technology with functional analyses of immune response genes and immune modulating factors.
Collapse
Affiliation(s)
- Wouter J Veneman
- Institute of Biology, Leiden University, Leiden RA, the Netherlands.
| | | | | | | | | | | |
Collapse
|
76
|
Comparative transcriptomic analysis of the Burkholderia cepacia tyrosine kinase bceF mutant reveals a role in tolerance to stress, biofilm formation, and virulence. Appl Environ Microbiol 2013; 79:3009-20. [PMID: 23435894 DOI: 10.1128/aem.00222-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The bacterial tyrosine-kinase (BY-kinase) family comprises the major group of bacterial enzymes endowed with tyrosine kinase activity. We previously showed that the BceF protein from Burkholderia cepacia IST408 belongs to this BY-kinase family and is involved in the biosynthesis of the exopolysaccharide cepacian. However, little is known about the extent of regulation of this protein kinase activity. In order to examine this regulation, we performed a comparative transcriptome profile between the bceF mutant and wild-type B. cepacia IST408. The analyses led to identification of 630 genes whose expression was significantly changed. Genes with decreased expression in the bceF mutant were related to stress response, motility, cell adhesion, and carbon and energy metabolism. Genes with increased expression were related to intracellular signaling and lipid metabolism. Mutation of bceF led to reduced survival under heat shock and UV light exposure, reduced swimming motility, and alteration in biofilm architecture when grown in vitro. Consistent with some of these phenotypes, the bceF mutant demonstrated elevated levels of cyclic-di-GMP. Furthermore, BceF contributed to the virulence of B. cepacia for larvae of the Greater wax moth, Galleria mellonella. Taken together, BceF appears to play a considerable role in many cellular processes, including biofilm formation and virulence. As homologues of BceF occur in a number of pathogenic and plant-associated Burkholderia strains, the modulation of bacterial behavior through tyrosine kinase activity is most likely a widely occurring phenomenon.
Collapse
|
77
|
Schmerk CL, Valvano MA. Burkholderia multivorans survival and trafficking within macrophages. J Med Microbiol 2013; 62:173-184. [PMID: 23105020 DOI: 10.1099/jmm.0.051243-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Cystic fibrosis (CF) patients are at great risk of opportunistic lung infection, particularly by members of the Burkholderia cepacia complex (Bcc). This group of bacteria can cause damage to the lung tissue of infected patients and are difficult to eradicate due to their high levels of antibiotic resistance. Although the highly virulent Burkholderia cenocepacia has been the focus of virulence research for the past decade, Burkholderia multivorans is emerging as the most prevalent Bcc species infecting CF patients in North America. Despite several studies detailing the intramacrophage trafficking and survival of B. cenocepacia, no such data exist for B. multivorans. The results of this study demonstrated that the clinical CF isolates C5568 and C0514 and an environmental B. multivorans isolate, ATCC 17616, were able to replicate and survive within murine macrophages in a manner similar to that of B. cenocepacia strain K56-2. These strains were also able to survive but were unable to replicate within human THP-1 macrophages. Differences in macrophage uptake were observed among all three B. multivorans strains; these variances were attributed to major differences in O-antigen production. Unlike B. cenocepacia-containing vacuoles, which delay phagosomal maturation in murine macrophages by 6 h, all B. multivorans-containing vacuoles co-localized with lysosome-associated membrane protein-1, a late endosome/lysosomal marker, and the lysosomal marker dextran within 2 h of uptake. Together, these results indicated that, whilst both Bcc species were able to survive and replicate within macrophages, they utilized different intramacrophage survival strategies. To observe differences in virulence, the strains were compared using the Galleria mellonella (wax worm) model. When compared with the B. multivorans strains tested, B. cenocepacia K56-2 was highly virulent in this model and killed all worms within 24 h when injected at 10(7) c.f.u. B. multivorans clinical isolates C5568 and C0514 were significantly more virulent than the soil isolate ATCC 17616, which was avirulent even when worms were injected with 10(7) c.f.u. These results suggest strain differences in the virulence of B. multivorans isolates.
Collapse
Affiliation(s)
- Crystal L Schmerk
- Center for Human Immunology, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Microbiology and Immunology, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Miguel A Valvano
- Center for Human Immunology, University of Western Ontario, London, Ontario, N6A 5C1, Canada
- Microbiology and Immunology, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| |
Collapse
|
78
|
Abstract
Streptococcus iniae causes systemic infection characterized by meningitis and sepsis. Here, we report a larval zebrafish model of S. iniae infection. Injection of wild-type S. iniae into the otic vesicle induced a lethal infection by 24 h postinfection. In contrast, an S. iniae mutant deficient in polysaccharide capsule (cpsA mutant) was not lethal, with greater than 90% survival at 24 h postinfection. Live imaging demonstrated that both neutrophils and macrophages were recruited to localized otic infection with mutant and wild-type S. iniae and were able to phagocytose bacteria. Depletion of neutrophils and macrophages impaired host survival following infection with wild-type S. iniae and the cpsA mutant, suggesting that leukocytes are critical for host survival in the presence of both the wild-type and mutant bacteria. However, zebrafish larvae with impaired neutrophil function but normal macrophage function had increased susceptibility to wild-type bacteria but not the cpsA mutant. Taking these findings together, we have developed a larval zebrafish model of S. iniae infection and have found that although neutrophils are important for controlling infection with wild-type S. iniae, neutrophils are not necessary for host defense against the cpsA mutant.
Collapse
|
79
|
Brothers KM, Wheeler RT. Non-invasive imaging of disseminated candidiasis in zebrafish larvae. J Vis Exp 2012:4051. [PMID: 22872032 DOI: 10.3791/4051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Disseminated candidiasis caused by the pathogen Candida albicans is a clinically important problem in hospitalized individuals and is associated with a 30 to 40% attributable mortality(6). Systemic candidiasis is normally controlled by innate immunity, and individuals with genetic defects in innate immune cell components such as phagocyte NADPH oxidase are more susceptible to candidemia(7-9). Very little is known about the dynamics of C. albicans interaction with innate immune cells in vivo. Extensive in vitro studies have established that outside of the host C. albicans germinates inside of macrophages, and is quickly destroyed by neutrophils(10-14). In vitro studies, though useful, cannot recapitulate the complex in vivo environment, which includes time-dependent dynamics of cytokine levels, extracellular matrix attachments, and intercellular contacts(10, 15-18). To probe the contribution of these factors in host-pathogen interaction, it is critical to find a model organism to visualize these aspects of infection non-invasively in a live intact host. The zebrafish larva offers a unique and versatile vertebrate host for the study of infection. For the first 30 days of development zebrafish larvae have only innate immune defenses(2, 19-21), simplifying the study of diseases such as disseminated candidiasis that are highly dependent on innate immunity. The small size and transparency of zebrafish larvae enable imaging of infection dynamics at the cellular level for both host and pathogen. Transgenic larvae with fluorescing innate immune cells can be used to identify specific cells types involved in infection(22-24). Modified anti-sense oligonucleotides (Morpholinos) can be used to knock down various immune components such as phagocyte NADPH oxidase and study the changes in response to fungal infection(5). In addition to the ethical and practical advantages of using a small lower vertebrate, the zebrafish larvae offers the unique possibility to image the pitched battle between pathogen and host both intravitally and in color. The zebrafish has been used to model infection for a number of human pathogenic bacteria, and has been instrumental in major advances in our understanding of mycobacterial infection(3, 25). However, only recently have much larger pathogens such as fungi been used to infect larva(5, 23, 26), and to date there has not been a detailed visual description of the infection methodology. Here we present our techniques for hindbrain ventricle microinjection of prim(25) zebrafish, including our modifications to previous protocols. Our findings using the larval zebrafish model for fungal infection diverge from in vitro studies and reinforce the need to examine the host-pathogen interaction in the complex environment of the host rather than the simplified system of the Petri dish(5).
Collapse
|
80
|
Aubert DF, O'Grady EP, Hamad MA, Sokol PA, Valvano MA. The Burkholderia cenocepacia sensor kinase hybrid AtsR is a global regulator modulating quorum-sensing signalling. Environ Microbiol 2012; 15:372-85. [PMID: 22830644 DOI: 10.1111/j.1462-2920.2012.02828.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Burkholderia cenocepacia is commonly found in the environment and also as an important opportunistic pathogen infecting patients with cystic fibrosis. Successful infection by this bacterium requires coordinated expression of virulence factors, which is achieved through different quorum sensing (QS) regulatory systems. Biofilm formation and Type 6 secretion system (T6SS) expression in B. cenocepacia K56-2 are positively regulated by QS and negatively regulated by the sensor kinase hybrid AtsR. This study reveals that in addition to affecting biofilm and T6SS activity, the deletion of atsR in B. cenocepacia leads to overproduction of other QS-regulated virulence determinants including proteases and swarming motility. Expression of the QS genes, cepIR and cciIR, was upregulated in the ΔatsR mutant and resulted in early and increased N-acylhomoserine lactone (AHL) production, suggesting that AtsR plays a role in controlling the timing and fine-tuning of virulence gene expression by modulating QS signalling. Furthermore, a ΔatsRΔcepIΔcciI mutant could partially upregulate the same virulence determinants indicating that AtsR also modulates the expression of virulence genes by a second mechanism, independently of any AHL production. Together, our results strongly suggest that AtsR is a global virulence regulator in B. cenocepacia.
Collapse
Affiliation(s)
- Daniel F Aubert
- Centre for Human Immunology, Department of Microbiology, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
81
|
Mil-Homens D, Fialho AM. A BCAM0223 mutant of Burkholderia cenocepacia is deficient in hemagglutination, serum resistance, adhesion to epithelial cells and virulence. PLoS One 2012; 7:e41747. [PMID: 22848588 PMCID: PMC3404963 DOI: 10.1371/journal.pone.0041747] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 06/25/2012] [Indexed: 11/19/2022] Open
Abstract
Burkholderia cepacia complex (Bcc) bacteria are a problematic group of microorganisms causing severe infections in patients with Cystic Fibrosis. In early stages of infection, Bcc bacteria must be able to adhere to and colonize the respiratory epithelium. Although this is not fully understood, this primary stage of infection is believed to be in part mediated by a specific type of adhesins, named trimeric autotransporter adhesins (TAAs). These homotrimeric proteins exist on the surface of many gram negative pathogens and often mediate a number of critical functions, including biofilm formation, serum resistance and adherence to an invasion of host cells. We have previously identified in the genome of the epidemic clinical isolate B. cenocepacia J2315, a novel cluster of genes putatively encoding three TAAs (BCAM0219, BCAM0223 and BCAM0224). In this study, the genomic organization of the TAA cluster has been determined. To further address the direct role of the putative TAA BCAM0223 in B. cenocepacia pathogenicity, an isogenic mutant was constructed via insertional inactivation. The BCAM0223::Tp mutant is deficient in hemagglutination, affected in adherence to vitronectin and in biofilm formation and showed attenuated virulence in the Galleria mellonella model of infection. Moreover, the BCAM0223::Tp mutant also showed a significant reduction in its resistance to human serum as well as in adherence, but not in invasion of, cultured human bronchial epithelial cells. Altogether these results demonstrate that the BCAM0223 protein is a multifunctional virulence factor that may contribute to the pathogenicity of B. cenocepacia.
Collapse
Affiliation(s)
- Dalila Mil-Homens
- IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering, Instituto Superior Técnico, Lisbon, Portugal
| | - Arsenio M. Fialho
- IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering, Instituto Superior Técnico, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon, Lisbon, Portugal
- * E-mail:
| |
Collapse
|
82
|
Takaki K, Cosma CL, Troll MA, Ramakrishnan L. An in vivo platform for rapid high-throughput antitubercular drug discovery. Cell Rep 2012; 2:175-84. [PMID: 22840407 DOI: 10.1016/j.celrep.2012.06.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 05/18/2012] [Accepted: 06/11/2012] [Indexed: 11/19/2022] Open
Abstract
Treatment of tuberculosis, like other infectious diseases, is increasingly hindered by the emergence of drug resistance. Drug discovery efforts would be facilitated by facile screening tools that incorporate the complexities of human disease. Mycobacterium marinum-infected zebrafish larvae recapitulate key aspects of tuberculosis pathogenesis and drug treatment. Here, we develop a model for rapid in vivo drug screening using fluorescence-based methods for serial quantitative assessment of drug efficacy and toxicity. We provide proof-of-concept that both traditional bacterial-targeting antitubercular drugs and newly identified host-targeting drugs would be discovered through the use of this model. We demonstrate the model's utility for the identification of synergistic combinations of antibacterial drugs and demonstrate synergy between bacterial- and host-targeting compounds. Thus, the platform can be used to identify new antibacterial agents and entirely new classes of drugs that thwart infection by targeting host pathways. The methods developed here should be widely applicable to small-molecule screens for other infectious and noninfectious diseases.
Collapse
Affiliation(s)
- Kevin Takaki
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
83
|
Silva MT, Pestana NTS. The in vivo extracellular life of facultative intracellular bacterial parasites: role in pathogenesis. Immunobiology 2012; 218:325-37. [PMID: 22795971 DOI: 10.1016/j.imbio.2012.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/23/2012] [Accepted: 05/16/2012] [Indexed: 01/14/2023]
Abstract
Classically labeled facultative intracellular pathogens are characterized by the ability to have an intracellular phase in the host, which is required for pathogenicity, while capable of extracellular growth in vitro. The ability of these bacteria to replicate in cell-free conditions is usually assessed by culture in artificial bacteriological media. However, the extracellular growth ability of these pathogens may also be expressed by a phase of extracellular infection in the natural setting of the host with pathologic consequences, an ability that adds to the pathogenic potential of the infectious agent. This infective capability to grow in the extracellular sites of the host represents an additional virulence attribute of those pathogens which may lead to severe outcomes. Here we discuss examples of infectious diseases where the in vivo infective extracellular life is well documented, including infections by Francisella tularensis, Yersinia pestis, Burkholderia pseudomallei, Burkholderia cenocepacia, Salmonella enterica serovar Typhimurium and Edwardsiella tarda. The occurrence of a phase of systemic dissemination with extracellular multiplication during progressive infections by facultative intracellular bacterial pathogens has been underappreciated, with most studies exclusively centered on the intracellular phase of the infections. The investigation of the occurrence of a dual lifestyle in the host among bacterial pathogens in general should be extended and likely will reveal more cases of infectious diseases with a dual infective intracellular/extracellular pattern.
Collapse
Affiliation(s)
- Manuel T Silva
- Institute for Molecular and Cell Biology, University of Porto, Porto, Portugal
| | | |
Collapse
|
84
|
O'Grady EP, Viteri DF, Sokol PA. A unique regulator contributes to quorum sensing and virulence in Burkholderia cenocepacia. PLoS One 2012; 7:e37611. [PMID: 22624054 PMCID: PMC3356288 DOI: 10.1371/journal.pone.0037611] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 04/23/2012] [Indexed: 01/08/2023] Open
Abstract
Burkholderia cenocepacia causes chronic and life-threatening respiratory infections in immunocompromized people. The B. cenocepacia N-acyl-homoserine lactone (AHL)-dependent quorum sensing system relies on the production of AHLs by the synthases CepI and CciI while CepR, CciR and CepR2 control expression of many genes important for pathogenesis. Downstream from, and co-transcribed with cepI, lies BCAM1871 encoding a hypothetical protein that was uncharacterized prior to this study. Orthologs of B. cenocepacia BCAM1871 are uniquely found in Burkholderia spp and are conserved in their genomic locations in pathogenic Burkholderia. We observed significant effects on AHL activity upon mutation or overexpression of BCAM1871, although these effects were more subtle than those observed for CepI indicating BCAM1871 acts as an enhancer of AHL activity. Transcription of cepI, cepR and cciIR was significantly reduced in the BCAM1871 mutant. Swimming and swarming motilities as well as transcription of fliC, encoding flagellin, were significantly reduced in the BCAM1871 mutant. Protease activity and transcription of zmpA and zmpB, encoding extracellular zinc metalloproteases, were undetectable in the BCAM1871 mutant indicating a more significant effect of mutating BCAM1871 than cepI. Exogenous addition of OHL restored cepI, cepR and fliC transcription but had no effect on motility, protease activity or zmpA or zmpB transcription suggesting AHL-independent effects. The BCAM1871 mutant exhibited significantly reduced virulence in rat chronic respiratory and nematode infection models. Gene expression and phenotypic assays as well as vertebrate and invertebrate infection models showed that BCAM1871 significantly contributes to pathogenesis in B. cenocepacia.
Collapse
Affiliation(s)
| | | | - Pamela A. Sokol
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
85
|
Renshaw SA, Trede NS. A model 450 million years in the making: zebrafish and vertebrate immunity. Dis Model Mech 2012; 5:38-47. [PMID: 22228790 PMCID: PMC3255542 DOI: 10.1242/dmm.007138] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since its first splash 30 years ago, the use of the zebrafish model has been extended from a tool for genetic dissection of early vertebrate development to the functional interrogation of organogenesis and disease processes such as infection and cancer. In particular, there is recent and growing attention in the scientific community directed at the immune systems of zebrafish. This development is based on the ability to image cell movements and organogenesis in an entire vertebrate organism, complemented by increasing recognition that zebrafish and vertebrate immunity have many aspects in common. Here, we review zebrafish immunity with a particular focus on recent studies that exploit the unique genetic and in vivo imaging advantages available for this organism. These unique advantages are driving forward our study of vertebrate immunity in general, with important consequences for the understanding of mammalian immune function and its role in disease pathogenesis.
Collapse
Affiliation(s)
- Stephen A Renshaw
- MRC Centre for Developmental and Biomedical Genetics, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | | |
Collapse
|
86
|
Lavigne JP, Vergunst AC, Goret L, Sotto A, Combescure C, Blanco J, O'Callaghan D, Nicolas-Chanoine MH. Virulence potential and genomic mapping of the worldwide clone Escherichia coli ST131. PLoS One 2012; 7:e34294. [PMID: 22457832 PMCID: PMC3311635 DOI: 10.1371/journal.pone.0034294] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 02/27/2012] [Indexed: 11/19/2022] Open
Abstract
Recently, the worldwide propagation of clonal CTX-M-15-producing Escherichia coli isolates, namely ST131 and O25b:H4, has been reported. Like the majority of extra-intestinal pathogenic E. coli isolates, the pandemic clone ST131 belongs to phylogenetic group B2, and has recently been shown to be highly virulent in a mouse model, even though it lacks several genes encoding key virulence factors (Pap, Cnf1 and HlyA). Using two animal models, Caenorhabditis elegans and zebrafish embryos, we assessed the virulence of three E. coli ST131 strains (2 CTX-M-15- producing urine and 1 non-ESBL-producing faecal isolate), comparing them with five non-ST131 B2 and a group A uropathogenic E. coli (UPEC). In C. elegans, the three ST131 strains showed intermediate virulence between the non virulent group A isolate and the virulent non-ST131 B2 strains. In zebrafish, the CTX-M-15-producing ST131 UPEC isolates were also less virulent than the non-ST131 B2 strains, suggesting that the production of CTX-M-15 is not correlated with enhanced virulence. Amongst the non-ST131 B2 group isolates, variation in pathogenic potential in zebrafish embryos was observed ranging from intermediate to highly virulent. Interestingly, the ST131 strains were equally persistent in surviving embryos as the non-ST131-group B2 strains, suggesting similar mechanisms may account for development of persistent infection. Optical maps of the genome of the ST131 strains were compared with those of 24 reference E. coli strains. Although small differences were seen within the ST131 strains, the tree built on the optical maps showed that these strains belonged to a specific cluster (86% similarity) with only 45% similarity with the other group B2 strains and 25% with strains of group A and D. Thus, the ST131 clone has a genetic composition that differs from other group B2 strains, and appears to be less virulent than previously suspected.
Collapse
Affiliation(s)
- Jean-Philippe Lavigne
- Institut National de la Santé et de la Recherche Médicale, U1047, UFR Médecine, Université Montpellier 1, Nîmes, France.
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Agnoli K, Schwager S, Uehlinger S, Vergunst A, Viteri DF, Nguyen DT, Sokol PA, Carlier A, Eberl L. Exposing the third chromosome of Burkholderia cepacia complex strains as a virulence plasmid. Mol Microbiol 2011; 83:362-78. [PMID: 22171913 DOI: 10.1111/j.1365-2958.2011.07937.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Burkholderia cepacia complex (Bcc) consists of 17 closely related species of opportunistic bacterial pathogens, which are particularly problematic for cystic fibrosis patients and immunocompromised individuals. Bcc genomes consist of multiple replicons, and each strain sequenced to date has three chromosomes. In addition to genes thought to be essential for survival, each chromosome carries at least one rRNA operon. We isolated three mutants during a transposon mutagenesis screen that were non-pathogenic in a Caenorhabditis elegans infection model. It was demonstrated that these mutants had lost chromosome 3 (c3), and that the observed attenuation of virulence was a consequence of this. We constructed a c3 mini-replicon and used it to cure c3 from strains of several Bcc species by plasmid incompatibility, resulting in nine c3-null strains covering seven Bcc species. Phenotypic characterization of c3-null mutants revealed that they were attenuated in virulence in multiple infection hosts (rat, zebrafish, C. elegans, Galleria mellonella and Drosophila melanogaster), that they exhibited greatly diminished antifungal activity, and that c3 was required for d-xylose, fatty acid and pyrimidine utilization, as well as for exopolysaccharide production and proteolytic activity in some strains. In conclusion, we show that c3 is not an essential chromosomal element, rather a large plasmid that encodes virulence, secondary metabolism and other accessory functions in Bcc bacteria.
Collapse
Affiliation(s)
- K Agnoli
- Department of Microbiology, Institute of Plant Biology, University of Zürich, Zollikerstrasse 107. CH-8008 Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
O'Grady EP, Sokol PA. Burkholderia cenocepacia differential gene expression during host-pathogen interactions and adaptation to the host environment. Front Cell Infect Microbiol 2011; 1:15. [PMID: 22919581 PMCID: PMC3417382 DOI: 10.3389/fcimb.2011.00015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/20/2011] [Indexed: 01/08/2023] Open
Abstract
Members of the Burkholderia cepacia complex (Bcc) are important in medical, biotechnological, and agricultural disciplines. These bacteria naturally occur in soil and water environments and have adapted to survive in association with plants and animals including humans. All Bcc species are opportunistic pathogens including Burkholderia cenocepacia that causes infections in cystic fibrosis and chronic granulomatous disease patients. The adaptation of B. cenocepacia to the host environment was assessed in a rat chronic respiratory infection model and compared to that of high cell-density in vitro grown cultures using transcriptomics. The distribution of genes differentially expressed on chromosomes 1, 2, and 3 was relatively proportional to the size of each genomic element, whereas the proportion of plasmid-encoded genes differentially expressed was much higher relative to its size and most genes were induced in vivo. The majority of genes encoding known virulence factors, components of types II and III secretion systems and chromosome 2-encoded type IV secretion system were similarly expressed between in vitro and in vivo environments. Lower expression in vivo was detected for genes encoding N-acyl-homoserine lactone synthase CepI, orphan LuxR homolog CepR2, zinc metalloproteases ZmpA and ZmpB, LysR-type transcriptional regulator ShvR, nematocidal protein AidA, and genes associated with flagellar motility, Flp type pilus formation, and type VI secretion. Plasmid-encoded type IV secretion genes were markedly induced in vivo. Additional genes induced in vivo included genes predicted to be involved in osmotic stress adaptation or intracellular survival, metal ion, and nutrient transport, as well as those encoding outer membrane proteins. Genes identified in this study are potentially important for virulence during host–pathogen interactions and may be associated with survival and adaptation to the host environment during chronic lung infections.
Collapse
Affiliation(s)
- Eoin P O'Grady
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
89
|
Abdulrahman BA, Khweek AA, Akhter A, Caution K, Kotrange S, Abdelaziz DHA, Newland C, Rosales-Reyes R, Kopp B, McCoy K, Montione R, Schlesinger LS, Gavrilin MA, Wewers MD, Valvano MA, Amer AO. Autophagy stimulation by rapamycin suppresses lung inflammation and infection by Burkholderia cenocepacia in a model of cystic fibrosis. Autophagy 2011; 7:1359-70. [PMID: 21997369 DOI: 10.4161/auto.7.11.17660] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cystic fibrosis (CF) is the most common inherited lethal disease of Caucasians which results in multi organ dysfunction. However, 85% of the deaths are due to pulmonary infections. Infection by Burkholderia cenocepacia (B. cepacia) is a particularly lethal threat to CF patients because it causes severe and persistent lung inflammation and is resistant to nearly all available antibiotics. In CFTR ΔF508 mouse macrophages, B. cepacia persists in vacuoles that do not fuse with the lysosomes and mediates increased production of IL-1β. It is believed that intracellular bacterial survival contributes to the persistence of the bacterium. Here we show for the first time that in wild-type macrophages but not in ΔF508 macrophages, many B. cepacia reside in autophagosomes that fuse with lysosomes at later stages of infection. Accordingly, association and intracellular survival of B. cepacia are higher in CFTR-ΔF508 (ΔF508) macrophages than in WT macrophages. An autophagosome is a compartment that engulfs non-functional organelles and parts of the cytoplasm then delivers them to the lysosome for degradation to produce nutrients during periods of starvation or stress. Furthermore, we show that B. cepacia downregulates autophagy genes in WT and ΔF508 macrophages. However, autophagy dysfunction is more pronounced in ΔF508 macrophages since they already have compromised autophagy activity. We demonstrate that the autophagy-stimulating agent, rapamycin markedly decreases B. cepacia infection in vitro by enhancing the clearance of B. cepacia via induced autophagy. In vivo, Rapamycin decreases bacterial burden in the lungs of CF mice and drastically reduces signs of lung inflammation. Together, our studies reveal that if efficiently activated, autophagy can control B. cepacia infection and ameliorate the associated inflammation. Therefore, autophagy is a novel target for new drug development for CF patients to control B. cepacia infection and accompanying inflammation.
Collapse
Affiliation(s)
- Basant A Abdulrahman
- Center for Microbial Interface Biology, Department of Microbial Infection, Ohio State University, Columbus, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
van Soest JJ, Stockhammer OW, Ordas A, Bloemberg GV, Spaink HP, Meijer AH. Comparison of static immersion and intravenous injection systems for exposure of zebrafish embryos to the natural pathogen Edwardsiella tarda. BMC Immunol 2011; 12:58. [PMID: 22003892 PMCID: PMC3206475 DOI: 10.1186/1471-2172-12-58] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 10/17/2011] [Indexed: 11/25/2022] Open
Abstract
Background The zebrafish embryo is an important in vivo model to study the host innate immune response towards microbial infection. In most zebrafish infectious disease models, infection is achieved by micro-injection of bacteria into the embryo. Alternatively, Edwardsiella tarda, a natural fish pathogen, has been used to treat embryos by static immersion. In this study we used transcriptome profiling and quantitative RT-PCR to analyze the immune response induced by E. tarda immersion and injection. Results Mortality rates after static immersion of embryos in E. tarda suspension varied between 25-75%, while intravenous injection of bacteria resulted in 100% mortality. Quantitative RT-PCR analysis on the level of single embryos showed that expression of the proinflammatory marker genes il1b and mmp9 was induced only in some embryos that were exposed to E. tarda in the immersion system, whereas intravenous injection of E. tarda led to il1b and mmp9 induction in all embryos. In addition, microarray expression profiles of embryos subjected to immersion or injection showed little overlap. E. tarda-injected embryos displayed strong induction of inflammatory and defense genes and of regulatory genes of the immune response. E. tarda-immersed embryos showed transient induction of the cytochrome P450 gene cyp1a. This gene was also induced after immersion in Escherichia coli and Pseudomonas aeruginosa suspensions, but, in contrast, was not induced upon intravenous E. tarda injection. One of the rare common responses in the immersion and injection systems was induction of irg1l, a homolog of a murine immunoresponsive gene of unknown function. Conclusions Based on the differences in mortality rates between experiments and gene expression profiles of individual embryos we conclude that zebrafish embryos cannot be reproducibly infected by exposure to E. tarda in the immersion system. Induction of il1b and mmp9 was consistently observed in embryos that had been systemically infected by intravenous injection, while the early transcriptional induction of cyp1a and irg1l in the immersion system may reflect an epithelial or other tissue response towards cell membrane or other molecules that are shed or released by bacteria. Our microarray expression data provide a useful reference for future analysis of signal transduction pathways underlying the systemic innate immune response versus those underlying responses to external bacteria and secreted virulence factors and toxins.
Collapse
Affiliation(s)
- Joost J van Soest
- Institute of Biology, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
91
|
Meijer AH, Spaink HP. Host-pathogen interactions made transparent with the zebrafish model. Curr Drug Targets 2011; 12:1000-17. [PMID: 21366518 PMCID: PMC3319919 DOI: 10.2174/138945011795677809] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 10/21/2010] [Indexed: 01/18/2023]
Abstract
The zebrafish holds much promise as a high-throughput drug screening model for immune-related diseases, including inflammatory and infectious diseases and cancer. This is due to the excellent possibilities for in vivo imaging in combination with advanced tools for genomic and large scale mutant analysis. The context of the embryo’s developing immune system makes it possible to study the contribution of different immune cell types to disease progression. Furthermore, due to the temporal separation of innate immunity from adaptive responses, zebrafish embryos and larvae are particularly useful for dissecting the innate host factors involved in pathology. Recent studies have underscored the remarkable similarity of the zebrafish and human immune systems, which is important for biomedical applications. This review is focused on the use of zebrafish as a model for infectious diseases, with emphasis on bacterial pathogens. Following a brief overview of the zebrafish immune system and the tools and methods used to study host-pathogen interactions in zebrafish, we discuss the current knowledge on receptors and downstream signaling components that are involved in the zebrafish embryo’s innate immune response. We summarize recent insights gained from the use of bacterial infection models, particularly the Mycobacterium marinum model, that illustrate the potential of the zebrafish model for high-throughput antimicrobial drug screening.
Collapse
Affiliation(s)
- Annemarie H Meijer
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| | | |
Collapse
|
92
|
Live imaging of disseminated candidiasis in zebrafish reveals role of phagocyte oxidase in limiting filamentous growth. EUKARYOTIC CELL 2011; 10:932-44. [PMID: 21551247 DOI: 10.1128/ec.05005-11] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Candida albicans is a human commensal and a clinically important fungal pathogen that grows in both yeast and hyphal forms during human infection. Although Candida can cause cutaneous and mucosal disease, systemic infections cause the greatest mortality in hospitals. Candidemia occurs primarily in immunocompromised patients, for whom the innate immune system plays a paramount role in immunity. We have developed a novel transparent vertebrate model of candidemia to probe the molecular nature of Candida-innate immune system interactions in an intact host. Our zebrafish infection model results in a lethal disseminated disease that shares important traits with disseminated candidiasis in mammals, including dimorphic fungal growth, dependence on hyphal growth for virulence, and dependence on the phagocyte NADPH oxidase for immunity. Dual imaging of fluorescently marked immune cells and fungi revealed that phagocytosed yeast cells can remain viable and even divide within macrophages without germinating. Similarly, although we observed apparently killed yeast cells within neutrophils, most yeast cells within these innate immune cells were viable. Exploiting this model, we combined intravital imaging with gene knockdown to show for the first time that NADPH oxidase is required for regulation of C. albicans filamentation in vivo. The transparent and easily manipulated larval zebrafish model promises to provide a unique tool for dissecting the molecular basis of phagocyte NADPH oxidase-mediated limitation of filamentous growth in vivo.
Collapse
|
93
|
Milligan-McClellan K, Charette JR, Phennicie RT, Stephens WZ, Rawls JF, Guillemin K, Kim CH. Study of host-microbe interactions in zebrafish. Methods Cell Biol 2011; 105:87-116. [PMID: 21951527 PMCID: PMC4700925 DOI: 10.1016/b978-0-12-381320-6.00004-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
All animals are ecosystems, home to diverse microbial populations. Animal-associated microbes play important roles in the normal development and physiology of their hosts, but can also be agents of infectious disease. Traditionally, mice have been used to study pathogenic and beneficial associations between microbes and vertebrate animals. The zebrafish is emerging as a valuable new model system for host-microbe interaction studies, affording researchers with the opportunity to survey large populations of hosts and to visualize microbe-host associations at a cellular level in living animals. This chapter provides detailed protocols for the analysis of zebrafish-associated microbial communities, the derivation and husbandry of germ-free zebrafish, and the modeling of infectious disease in different stages of zebrafish development via different routes of inoculation. These protocols offer a starting point for researchers to address a multitude of questions about animals' coexistence with microorganisms.
Collapse
|
94
|
Cui C, Benard EL, Kanwal Z, Stockhammer OW, van der Vaart M, Zakrzewska A, Spaink HP, Meijer AH. Infectious disease modeling and innate immune function in zebrafish embryos. Methods Cell Biol 2011; 105:273-308. [PMID: 21951535 DOI: 10.1016/b978-0-12-381320-6.00012-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The major cell types of the innate immune system, macrophages and neutrophils, develop during the first two days of zebrafish embryogenesis. The interaction of these immune cells with pathogenic microbes can excellently be traced in the optically transparent zebrafish embryos. Various tools and methods have recently been developed for visualizing and isolating the zebrafish embryonic innate immune cells, for establishing infections by different micro-injection techniques, and for analyzing the host innate immune response following microbial recognition. Here we provide practical guidelines for the application of these methodologies and review the current state of the art in zebrafish infectious disease research.
Collapse
Affiliation(s)
- Chao Cui
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
Macrophages and neutrophils play important roles during the innate immune response, phagocytosing invading microbes and delivering antimicrobial compounds to the site of injury. Functional analyses of the cellular innate immune response in zebrafish infection/inflammation models have been aided by transgenic lines with fluorophore-marked neutrophils. However, it has not been possible to study macrophage behaviors and neutrophil/macrophage interactions in vivo directly because there has been no macrophage-only reporter line. To remove this roadblock, a macrophage-specific marker was identified (mpeg1) and its promoter used in mpeg1-driven transgenes. mpeg1-driven transgenes are expressed in macrophage-lineage cells that do not express neutrophil-marking transgenes. Using these lines, the different dynamic behaviors of neutrophils and macrophages after wounding were compared side-by-side in compound transgenics. Macrophage/neutrophil interactions, such as phagocytosis of senescent neutrophils, were readily observed in real time. These zebrafish transgenes provide a new resource that will contribute to the fields of inflammation, infection, and leukocyte biology.
Collapse
|
96
|
The Burkholderia cenocepacia LysR-type transcriptional regulator ShvR influences expression of quorum-sensing, protease, type II secretion, and afc genes. J Bacteriol 2010; 193:163-76. [PMID: 20971902 DOI: 10.1128/jb.00852-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia cenocepacia is a significant opportunistic pathogen in individuals with cystic fibrosis. ShvR, a LysR-type transcriptional regulator, has previously been shown to influence colony morphology, biofilm formation, virulence in plant and animal infection models, and some quorum-sensing-dependent phenotypes. In the present study, it was shown that ShvR negatively regulates its own expression, as is typical for LysR-type regulators. The production of quorum-sensing signal molecules was detected earlier in growth in the shvR mutant than in the wild type, and ShvR repressed expression of the quorum-sensing regulatory genes cepIR and cciIR. Microarray analysis and transcriptional fusions revealed that ShvR regulated over 1,000 genes, including the zinc metalloproteases zmpA and zmpB. The shvR mutant displayed increased gene expression of the type II secretion system and significantly increased protease and lipase activities. Both ShvR and CepR influence expression of a 24-kb genomic region adjacent to shvR that includes the afcA and afcC operons, required for the production of an antifungal agent; however, the reduction in expression was substantially greater in the shvR mutant than in the cepR mutant. Only the shvR mutation resulted in reduced antifungal activity against Rhizoctonia solani. ShvR, but not CepR, was shown to directly regulate expression of the afcA and afcC promoters. In summary, ShvR was determined to have a significant influence on the expression of quorum-sensing, protease, lipase, type II secretion, and afc genes.
Collapse
|
97
|
Vial L, Chapalain A, Groleau MC, Déziel E. The various lifestyles of theBurkholderia cepaciacomplex species: a tribute to adaptation. Environ Microbiol 2010; 13:1-12. [DOI: 10.1111/j.1462-2920.2010.02343.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
98
|
O'Callaghan D, Vergunst A. Non-mammalian animal models to study infectious disease: worms or fly fishing? Curr Opin Microbiol 2010; 13:79-85. [PMID: 20045373 DOI: 10.1016/j.mib.2009.12.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 11/19/2022]
Abstract
A major challenge in studying human infectious diseases is to understand in detail the molecular bases, including both pathogen and host-related factors, which contribute to disease development. Non-mammalian models have proven to be of great value for our understanding of disease and have shown conservation in fundamental virulence mechanisms for the infection of evolutionary divergent hosts. In this review we describe recent advances with three major non-mammalian models used for analysis of infectious disease in humans; the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster and the zebrafish Danio rerio.
Collapse
Affiliation(s)
- David O'Callaghan
- INSERM Espri 26, UFR Médecine, Université de Montpellier 1, EA4204, UFR Médecine, Nimes, France.
| | | |
Collapse
|