51
|
Patel MK, Ryan GN, Cerny AM, Kurt-Jones EA. Methods for in vivo and in vitro analysis of innate immune responses to Helicobacter pylori infection. Methods Mol Biol 2012; 921:209-25. [PMID: 23015507 DOI: 10.1007/978-1-62703-005-2_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is estimated that half of the world's population is infected by Helicobacter pylori (H. pylori) (Polk and Peek, Nat Rev Cancer 10:403-414, 2010; Peek et al., Physiol Rev 90:831-858, 2010). Following infection, H. pylori induces a chronic innate immune response that is thought to contribute to gastric complications. Due to the widespread prevalence of H. pylori, it is important to study the innate immune responses that result from the infection. A variety of in vitro and in vivo techniques have been developed by our laboratory to study this immune response (Fox et al., Am J Pathol 171:1520-1528, 2007; Kurt-Jones et al., Infect Immun 75:471-480, 2007; Kurt-Jones et al., J Endotoxin Res 10:419-424, 2004). These methods are described here.
Collapse
Affiliation(s)
- Milan K Patel
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | | |
Collapse
|
52
|
Abstract
Laboratory mice have become one of the best animal species for mechanistic studies in gastrointestinal research. Their abundant genetic information, the way of causing carcinogenesis easily by transgenic and gene knockout techniques, limited effort in time and costs, and their practicability provide advantages over other animal models. Meanwhile, several murine practical models have been established for the investigation of the initiation, expansion, and progression of gastritis and gastric carcinoma, for assessing the effects of bacterial, genetic and environmental factors, and for evaluating therapeutic and preventive strategies in gastric diseases. This article gives a review of murine models of gastritis and gastric cancer, placing emphasis on the models associated with Helicobacter pylori infection and techniques used in our laboratory. We discuss matters of murine gastric anatomy, as well as techniques of infection, tissue preparation, and histology.
Collapse
|
53
|
Lemberger SIK, Dorsch R, Hauck SM, Amann B, Hirmer S, Hartmann K, Deeg CA. Decrease of Trefoil factor 2 in cats with feline idiopathic cystitis. BJU Int 2011; 107:670-7. [PMID: 20636394 DOI: 10.1111/j.1464-410x.2010.09500.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To obtain new insights into aetiological backgrounds, and to search for diagnostic biomarkers by assessing the difference in urinary proteins between cats with spontaneous feline idiopathic cystitis (FIC) and healthy controls. MATERIALS AND METHODS Urine supernatants of 18 cats with FIC and 18 healthy control cats, and bladder biopsies of two FIC diseased cats and four healthy controls were included in the study. The Bradford method was used to determine protein quantity in urine supernatants. Urine was separated by two-dimensional (2-D) gel electrophoresis. Selected protein spots were excised from two-dimensional gels and analysed with tandem mass spectrometry. Validation of Trefoil factor 2 expression was realized with Western blot and immunohistochemistry. Western blot signal intensities were quantified with image quant software. RESULTS Eleven differentially expressed protein spots were identified between the 2-D gels of cats with FIC and control cats. Ten spots (only visible in the FIC gel) were identified as albumin and one spot (only visible in the control gel) was identified as Trefoil factor 2.Using quantification of Western blot signal intensities and immunohistochemistry a decrease in Trefoil factor 2 (TFF2) in cats with FIC could be revealed for the first time. CONCLUSION Deficiency in TFF2 possibly leads to impaired repairing abilities and immune response of the urothelium. The result could be a greater susceptibility to injury, inflammation and relapse. Therefore TFF2 deficiency might be an important event in FIC pathogenesis. Detection of a decrease in urinary TFF2 could serve as diagnostic biomarker, facilitating diagnosis. As FIC can serve as an animal model for human painful bladder syndrome/interstitial cystitis, the findings of this study might also be valuable for interstitial cystitis research and should be further investigated.
Collapse
Affiliation(s)
- Stephanie I K Lemberger
- Clinic of Small Animal Medicine, Department of Veterinary Sciences, LMU University of Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
54
|
Peterson AJ, Menheniott TR, O’Connor L, Walduck AK, Fox JG, Kawakami K, Minamoto T, Ong EK, Wang TC, Judd LM, Giraud AS. Helicobacter pylori infection promotes methylation and silencing of trefoil factor 2, leading to gastric tumor development in mice and humans. Gastroenterology 2010; 139:2005-17. [PMID: 20801119 PMCID: PMC3970568 DOI: 10.1053/j.gastro.2010.08.043] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 08/07/2010] [Accepted: 08/19/2010] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Trefoil factors (TFFs) regulate mucosal repair and suppress tumor formation in the stomach. Tff1 deficiency results in gastric cancer, whereas Tff2 deficiency increases gastric inflammation. TFF2 expression is frequently lost in gastric neoplasms, but the nature of the silencing mechanism and associated impact on tumorigenesis have not been determined. METHODS We investigated the epigenetic silencing of TFF2 in gastric biopsy specimens from individuals with Helicobacter pylori-positive gastritis, intestinal metaplasia, gastric cancer, and disease-free controls. TFF2 function and methylation were manipulated in gastric cancer cell lines. The effects of Tff2 deficiency on tumor growth were investigated in the gp130(F/F) mouse model of gastric cancer. RESULTS In human tissue samples, DNA methylation at the TFF2 promoter began at the time of H pylori infection and increased throughout gastric tumor progression. TFF2 methylation levels were inversely correlated with TFF2 messenger RNA levels and could be used to discriminate between disease-free controls, H pylori-infected, and tumor tissues. Genome demethylation restored TFF2 expression in gastric cancer cell lines, so TFF2 silencing requires methylation. In Tff2-deficient gp130(F/F)/Tff2(-/-) mice, proliferation of mucosal cells and release of T helper cell type-1 (Th-1) 1 cytokines increased, whereas expression of gastric tumor suppressor genes and Th-2 cytokines were reduced, compared with gp130(F/F)controls. The fundus of gp130(F/F)/Tff2(-/-) mice displayed glandular atrophy and metaplasia, indicating accelerated preneoplasia. Experimental H pylori infection in wild-type mice reduced antral expression of Tff2 by increased promoter methylation. CONCLUSIONS TFF2 negatively regulates preneoplastic progression and subsequent tumor development in the stomach, a role that is subverted by promoter methylation during H pylori infection.
Collapse
Affiliation(s)
- Anthony J. Peterson
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Flemington Road, Parkville, Victoria
| | - Trevelyan R. Menheniott
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Flemington Road, Parkville, Victoria
| | - Louise O’Connor
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Flemington Road, Parkville, Victoria
| | - Anna K. Walduck
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - James G. Fox
- Division of Comparative Medicine, Department of Biological Engineering, MIT, Cambridge, Massachusetts
| | - Kazuyuki Kawakami
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Eng Kok Ong
- Sequenom Platform Facility, Murdoch Children’s Research Institute, Royal Children’s Hospital, Flemington Road, Parkville, Victoria, Australia
| | - Timothy C. Wang
- Division of Digestive and Liver Diseases, Columbia University Medical School, New York, New York
| | - Louise M. Judd
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Flemington Road, Parkville, Victoria,Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Flemington Road, Parkville, Victoria, Australia
| | - Andrew S. Giraud
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Flemington Road, Parkville, Victoria,Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Flemington Road, Parkville, Victoria, Australia
| |
Collapse
|
55
|
Inhibitor of growth-4 promotes IkappaB promoter activation to suppress NF-kappaB signaling and innate immunity. Proc Natl Acad Sci U S A 2010; 107:11423-8. [PMID: 20534538 DOI: 10.1073/pnas.0912116107] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Ing4 is a member of the inhibitor of growth (ING) family of chromatin-modifying proteins. Biochemical experiments indicate that Ing4 is a subunit of the HB01-JADE-hEAF6 histone acetyltransferase complex responsible for most nucleosomal histone H4 acetylation in eukaryotes, and transfection studies suggest that Ing4 may regulate a wide variety of cellular processes, including DNA repair, apoptosis, cell-cycle regulation, metastasis, angiogenesis, and tumor suppression. However, in vivo evidence for a physiological role for Ing4 in cell-growth regulation is lacking. We have generated Ing4-deficient mice to explore the role of Ing4 in development, tumorigenesis, and in NF-kappaB signaling. Ing4-null mice develop normally and are viable. Although mice deficient for Ing4 fail to form spontaneous tumors, they are hypersensitive to LPS treatment and display elevated cytokine responses. Macrophages isolated from Ing4-null mice have increased levels of nuclear p65/RelA protein, resulting in increased RelA binding to NF-kappaB target promoters and up-regulation of cytokine gene expression. However, increased promoter occupancy by RelA in LPS-stimulated, Ing4-null cells does not always correlate with increased NF-kappaB target-gene expression, as RelA activation of a subset of cytokine promoters also requires Ing4 for proper histone H4 acetylation. Furthermore, activation of the IkappaB alpha promoter by RelA is also Ing4-dependent, and LPS-stimulated, Ing4-null cells have reduced levels of IkappaB alpha promoter H4 acetylation and IkappaB gene expression. Thus, Ing4 negatively regulates the cytokine-mediated inflammatory response in mice by facilitating NF-kappaB activation of IkappaB promoters, thereby suppressing nuclear RelA levels and the activation of select NF-kappaB target cytokines.
Collapse
|
56
|
Hoffmann W. Trefoil factor family (TFF) peptides and chemokine receptors: a promising relationship. J Med Chem 2009; 52:6505-10. [PMID: 19888754 DOI: 10.1021/jm9008136] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Werner Hoffmann
- Institut fur Molekularbiologie und Medizinische Chemie, Otto-von-Guericke-Universitat Magdeburg, Leipziger Strasse 44, D-39120 Magdeburg, Germany.
| |
Collapse
|
57
|
Rogers AB, Houghton J. Helicobacter-based mouse models of digestive system carcinogenesis. Methods Mol Biol 2009; 511:267-95. [PMID: 19347301 DOI: 10.1007/978-1-59745-447-6_11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Animal models are necessary to reproduce the complex host, microbial and environmental influences associated with infectious carcinogenesis of the digestive system. Today, mouse models are preferred by most researchers because of cost efficiencies, rapid reproduction, choice of laboratory reagents, and availability of genetically engineered mutants to study specific gene functions in vivo. Mouse models have validated the once-provocative hypothesis that Helicobacter pylori infection is a major risk factor for gastric carcinoma, dispelling early skepticism over the pathogenic nature of this organism in the human stomach. Enterohepatic Helicobacter spp. induce inflammatory bowel disease and colorectal carcinoma in susceptible mouse strains, permitting study of host immunity and microbial factors at the cellular and molecular level. H. hepaticus is the only proven infectious hepatocarcinogen of mice and has been used to explore mechanisms of inflammation-associated liver cancer as seen in human chronic viral hepatitis. For example, this model was used to identify for the first time a potential mechanism for male-predominant liver cancer risk independent of circulating sex hormones. Helicobacter-based mouse models of digestive system carcino-genesis are used to investigate the basic biology of inflammation-associated human cancers and to evaluate therapeutic interventions at the discovery level. Because of exciting advances in genetic engineering of mice, in vivo imaging, and system-wide genomics and proteomics, these models will provide even more information in the future. This chapter introduces the mouse as a model species; summarizes important models of inflammation-associated cancer incited by murine Helicobacter infection; and describes methods for the collection, sampling, and histologic grading of mouse digestive system tissues.
Collapse
Affiliation(s)
- Arlin B Rogers
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | |
Collapse
|
58
|
Capoccia BJ, Huh WJ, Mills JC. How form follows functional genomics: gene expression profiling gastric epithelial cells with a particular discourse on the parietal cell. Physiol Genomics 2009; 37:67-78. [PMID: 19208773 PMCID: PMC2685495 DOI: 10.1152/physiolgenomics.90408.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 02/08/2009] [Indexed: 02/08/2023] Open
Abstract
The cellular composition and morphology of the stomach epithelium have been described in detail; however, the molecular mechanisms that regulate the differentiation of the various cell lineages as well as the function of mature gastric cells are far less clear. Recently, dissection of the molecular anatomy of the stomach has been boosted by the advent of functional genomics, which allows investigators to determine patterns of gene expression across virtually the entire cellular transcriptome. In this review, we discuss the impact of functional genomic studies on the understanding of gastric epithelial physiology. We show how functional genomic studies have uncovered genes that are useful as new cell lineage-specific markers of differentiation and provide new insights into cell physiology. For example, vascular endothelial growth factor B (Vegfb) has been identified as a parietal cell-specific marker that may allow parietal cells to regulate the mucosal vascular network. We also discuss how functional genomics has identified aberrantly expressed genes in disease states. Human epididymis 4 (HE4), for example, was recently identified as a metaplasia-induced gene product in mice based on microarray analysis. Finally, we will examine how analysis of higher-order patterns of gene expression can go beyond simply identifying individual genes to show how cells work as integrated systems. Specifically, we show how application of a Gene Ontology (GO) analysis of gene expression patterns from multiple tissues identifies the gastric parietal cell as an outlier, unlike other differentiated cell lineages in the stomach or elsewhere in the body.
Collapse
Affiliation(s)
- Benjamin J Capoccia
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
59
|
Klopstock N, Katzenellenbogen M, Pappo O, Sklair-Levy M, Olam D, Mizrahi L, Potikha T, Galun E, Goldenberg D. HCV tumor promoting effect is dependent on host genetic background. PLoS One 2009; 4:e5025. [PMID: 19340302 PMCID: PMC2660413 DOI: 10.1371/journal.pone.0005025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Accepted: 02/27/2009] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The hepatitis C virus (HCV) is one of the major risk factors for the development of hepatocellular carcinoma (HCC). Nevertheless, transgenic mice which express the whole HCV polyprotein (HCV-Tg) do not develop HCC. Whereas chronic HCV infection causes inflammation in patients, in HCV-Tg mice, the host immune reaction against viral proteins is lacking. We aimed to test the role of HCV proteins in HCC development on the background of chronic inflammation in vivo. METHODOLOGY/PRINCIPAL FINDINGS We crossed HCV-Tg mice that do not develop HCC with the Mdr2-knockout (Mdr2-KO) mice which develop inflammation-associated HCC, to generate Mdr2-KO/HCV-Tg mice. We studied the effect of the HCV transgene on tumor incidence, hepatocyte mitosis and apoptosis, and investigated the potential contributing factors for the generated phenotype by gene expression and protein analyses. The Mdr2-KO/HCV-Tg females from the N2 generation of this breeding (having 75% of the FVB/N genome and 25% of the C57BL/6 genome) produced significantly larger tumors in comparison with Mdr2-KO mice. In parallel, the Mdr2-KO/HCV-Tg females had an enhanced inflammatory gene expression signature. However, in the N7 generation (having 99.2% of the FVB/N genome and 0.8% of the C57BL/6 genome) there was no difference in tumor development between Mdr2-KO/HCV-Tg and Mdr2-KO animals of both sexes. The HCV transgene was similarly expressed in the livers of Mdr2-KO/HCV-Tg females of both generations, as revealed by detection of the HCV transcript and the core protein. CONCLUSION These findings suggest that the HCV transgene accelerated inflammation-associated hepatocarcinogenesis in a host genetic background-dependent manner.
Collapse
Affiliation(s)
- Naama Klopstock
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Mark Katzenellenbogen
- Bioinformatics and Microarray Unit, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Orit Pappo
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Devorah Olam
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Lina Mizrahi
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tamara Potikha
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eithan Galun
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Daniel Goldenberg
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
60
|
Teng X, Xu LF, Zhou P, Sun HW, Sun M. Effects of trefoil peptide 3 on expression of TNF-alpha, TLR4, and NF-kappaB in trinitrobenzene sulphonic acid induced colitis mice. Inflammation 2009; 32:120-129. [PMID: 19238529 DOI: 10.1007/s10753-009-9110-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The trefoil factor (TFF) peptides are major secretory products of mucus cells of the gastrointestinal tract. There were evidences that administration of recombinant human TFF3 is effective in treatment of models of colitis, but the mechanism of the effects of rTFF3 is not fully understood. The main aims of this study is to evaluate effects of intraperitoneal injection recombinant human TFF3 on the expression of tumour necrosis factor alpha (TNF-alpha), toll-like receptor 4(TLR4), and nuclear factor kappaB (NF-kappaB) in trinitrobenzene sulphonic acid (TNBS) induced colitis mice. Distal colitis was induced in BALB/C mice by intracolonic administration of TNBS in ethanol. Treated with administration rhTFF3 for treatment group(5 mg/ml; approximately 0.5 mg/mouse), and normal saline for control for 5 consecutive days. Colonic damage score, tissue myeloperoxidase (MPO) activity, TLR4, NF-kappaB mRNA expression, and tissue TNF-alpha, TLR4, NF-kappaB production were determined, respectively. Once daily application of hTFF3 for 5 days after TNBS/ethanol had been injected, both microscopic and macroscopic injury and inflammatory index had been reduced compared with controls. In addition, decreased tissue TNF-alpha, TLR4, NF-kappaB production, and TLR4, NF-kappaB mRNA expression had been found. This study has shown that hTFF3 may have therapeutic potential in the treatment of inflammatory bowel disease, and one of the mechanisms may related to inhibit the TLR4/NF-kappaB signaling pathways.
Collapse
Affiliation(s)
- Xu Teng
- Department of Pediatric Gastroenterology, Shengjing Hospital Of China Medical University, Shenyang, 110004, Liaoning, China
| | | | | | | | | |
Collapse
|
61
|
Khare S, Nunes JS, Figueiredo JF, Lawhon SD, Rossetti CA, Gull T, Rice-Ficht AC, Adams LG. Early phase morphological lesions and transcriptional responses of bovine ileum infected with Mycobacterium avium subsp. paratuberculosis. Vet Pathol 2009; 46:717-28. [PMID: 19276052 DOI: 10.1354/vp.08-vp-0187-g-fl] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of chronic enteritis in ruminants (Johne's disease) and a possible etiopathologic agent in human Crohn's disease. The host-pathogen interaction in this chronic disease has largely depended on the randomly collected static lesions studied in subclinically or clinically infected animals. We have established and utilized the neonatal calf ligated ileal loop model to study the early temporal host changes during MAP infection. After inoculation of ligated ileal loop with MAP, samples were analyzed for bacterial invasion, histologic and ultrastructural morphologic changes, and gene expression at several times (0.5-12 hours) postinfection. Our results indicate that MAP invades the intestinal mucosa as early as 0.5 hour postinoculation. Distribution and migration of neutrophils, monocytes/macrophages, and goblet cells were confirmed by histopathology, scanning and transmission electron microscopy. Coincident with the morphologic analysis, we measured by real-time polymerase chain reaction gene expression of various cytokines/chemokines that are involved in the recruitment of mononuclear and polymorphonuclear leukocytes to the site of infection. We also detected expression of several other genes, including intestinal-trefoil factor, profilin, lactoferrin, and enteric ss-defensin, which may play significant roles in the early MAP infection. Thus, the calf ligated intestinal loop model may be used as a human disease model to understand the role of MAP in the pathogenesis of Crohn's disease.
Collapse
Affiliation(s)
- S Khare
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Veterinary Research Building, Bldg. 1197, Room 141, Texas A&M University, College Station, TX 77843-4467, USA
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Schmitz JM, Durham CG, Ho SB, Lorenz RG. Gastric mucus alterations associated with murine Helicobacter infection. J Histochem Cytochem 2009; 57:457-67. [PMID: 19153195 DOI: 10.1369/jhc.2009.952473] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The C57BL/6 mouse has been shown to develop gastric adenocarcinoma after Helicobacter felis infection. This model was used to determine whether mucin and trefoil factor (TFF) expression after infection was altered in a similar fashion to the changes seen in the protective gastric mucus layer of the human stomach after H. pylori infection. Our results indicate that this mouse model mimics many of the changes seen after human H. pylori infection, including increased expression of muc4 and muc5b and loss of muc5ac. These alterations in mucin expression occurred as early as 4 weeks postinfection, before the development of significant mucous metaplasia or gastric dysplasia. The decrease in muc5ac expression occurred only in the body of the stomach and was not secondary to the adaptive immune response to infection, because a similar decrease in expression was seen after infection of B6.Rag-1(-/-) mice, which lack B and T cells. Intriguingly, the increased expression of Muc4 and Muc5b in infected C57BL/6 mice was not seen in the infected B6.Rag-1(-/-) mice. Because B6.Rag-1(-/-) mice do not develop gastric pathology after H. felis infection, these findings point to the potential role of Muc4 and Muc5b in disease progression. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.
Collapse
Affiliation(s)
- Julia M Schmitz
- Department of Microbiology, University of Alabama at Birmingham, 1825 University Boulevard, SHEL 602, Birmingham, AL 35294-2182, USA
| | | | | | | |
Collapse
|
63
|
Dubeykovskaya Z, Dubeykovskiy A, Solal-Cohen J, Wang TC. Secreted trefoil factor 2 activates the CXCR4 receptor in epithelial and lymphocytic cancer cell lines. J Biol Chem 2008; 284:3650-62. [PMID: 19064997 DOI: 10.1074/jbc.m804935200] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The secreted trefoil factor family 2 (TFF2) protein contributes to the protection of the gastrointestinal mucosa from injury by strengthening and stabilizing mucin gels, stimulating epithelial restitution, and restraining the associated inflammation. Although trefoil factors have been shown to activate signaling pathways, no cell surface receptor has been directly linked to trefoil peptide signaling. Here we demonstrate the ability of TFF2 peptide to activate signaling via the CXCR4 chemokine receptor in cancer cell lines. We found that both mouse and human TFF2 proteins (at approximately 0.5 microm) activate Ca2+ signaling in lymphoblastic Jurkat cells that could be abrogated by receptor desensitization (with SDF-1alpha) or pretreatment with the specific antagonist AMD3100 or an anti-CXCR4 antibody. TFF2 pretreatment of Jurkat cells decreased Ca2+ rise and chemotactic response to SDF-1alpha. In addition, the CXCR4-negative gastric epithelial cell line AGS became highly responsive to TFF2 treatment upon expression of the CXCR4 receptor. TFF2-induced activation of mitogen-activated protein kinases in gastric and pancreatic cancer cells, KATO III and AsPC-1, respectively, was also dependent on the presence of the CXCR4 receptor. Finally we demonstrate a distinct proliferative effect of TFF2 protein on an AGS gastric cancer cell line that expresses CXCR4. Overall these data identify CXCR4 as a bona fide signaling receptor for TFF2 and suggest a mechanism through which TFF2 may modulate immune and tumorigenic responses in vivo.
Collapse
Affiliation(s)
- Zinaida Dubeykovskaya
- Department of Medicine, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | |
Collapse
|
64
|
Lubka M, Müller M, Baus-Loncar M, Hinz M, Blaschke K, Hoffmann W, Pfister M, Löwenheim H, Pusch CM, Knipper M, Blin N. Lack of Tff3 peptide results in hearing impairment and accelerated presbyacusis. Cell Physiol Biochem 2008; 21:437-44. [PMID: 18453751 DOI: 10.1159/000129636] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2008] [Indexed: 11/19/2022] Open
Abstract
Tff peptides are secreted mainly by the gastrointestinal epithelial cells and their primary role is maintaining normal structure and function of mucous epithelia. Ongoing studies on their expression pattern have disclosed other sites of their synthesis thus revealing additional physiological functions in the organism. Here we present new data about Tff3 expression in the cochlea of the rodent inner ear. On the basis of RT-PCR we describe the presence of Tff3 transcripts in both, a mouse cDNA library isolated from whole cochleae from postnatal days 3-15 (P3-P15), and also in cochlear tissue. By using a riboprobe for the fragment containing exon 1, 2 and 3 of Tff3, in situ hybridization, localized Tff3 signals in neurons of spiral ganglion and vestibular organ. We did not observe any abnormalities in the middle ear of Tff3 knock-out mice, neither did histological examination of the inner ear indicate any gross morphological changes in the cochlea. However, ABR (auditory evoked brain stem responses) audiograms revealed that the Tff3 knock-out animals show an accelerated presbyacusis and a hearing loss of about 15 dB at low frequencies increasing to 25 dB loss at higher frequencies. These findings suggest that Tff3 could play a role in neurosensory signaling. Further studies are needed to clarify this new function in the auditory system.
Collapse
Affiliation(s)
- Maria Lubka
- Division of Molecular Genetics, University of Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Lee CW, Wang XD, Chien KL, Ge Z, Rickman BH, Rogers AB, Varro A, Whary MT, Wang TC, Fox JG. Vitamin C supplementation does not protect L-gulono-gamma-lactone oxidase-deficient mice from Helicobacter pylori-induced gastritis and gastric premalignancy. Int J Cancer 2008; 122:1068-76. [PMID: 17990318 PMCID: PMC2766771 DOI: 10.1002/ijc.23228] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In human studies, low vitamin C intake has been associated with more severe Helicobacter pylori gastritis and a higher incidence of gastric cancer. However, vitamin C supplementation has not been definitively shown to protect against gastric cancer. Using vitamin C-deficient B6.129P2-Gulo(tm1Umc/mmcd) (gulo(-/-)) mice lacking L-gulono-gamma-lactone oxidase, we compared gastric lesions and Th1 immune responses in H. pylori-infected gulo(-/-) mice supplemented with low (33 mg/L) or high (3,300 mg/L) vitamin C in drinking water for 16 or 32 weeks. Vitamin C levels in plasma and gastric tissue correlated with the vitamin C supplementation levels in gulo(-/-) mice. H. pylori infection resulted in comparable gastritis and premalignant lesions in wildtype C57BL/6 and gulo(-/-) mice supplemented with high vitamin C, but lesions were less severe in gulo(-/-) mice supplemented with low vitamin C at 32 weeks post infection. The reduced gastric lesions in infected gulo(-/-) mice supplemented with low vitamin C correlated with reduced Th1-associated IgG2c, gastric IFN-gamma and TNF-alpha mRNA and higher H. pylori colonization levels. These results in the H. pylori-infected gulo(-/-) mouse model suggest that although supplementation with a high level of vitamin C achieved physiologically normal vitamin C levels in plasma and gastric tissue, this dose of vitamin C did not protect gulo(-/-) mice from H. pylori-induced premalignant gastric lesions. In addition, less severe gastric lesions in H.pylori infected gulo(-/-) mice supplemented with low vitamin C correlated with an attenuated Th1 inflammatory response.
Collapse
Affiliation(s)
- Chung-Wei Lee
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Xiang-Dong Wang
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Kuo-Liong Chien
- School of Public Health, Harvard University, Boston, MA
- Institute of Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA
| | - Barry H. Rickman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA
| | - Arlin B. Rogers
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA
| | - Andrea Varro
- Physiological Laboratory, University of Liverpool, Liverpool, United Kingdom
| | - Mark T. Whary
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA
| | - Timothy C. Wang
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, NY, NY
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
66
|
Fox JG, Rogers AB, Whary MT, Ge Z, Ohtani M, Jones EK, Wang TC. Accelerated progression of gastritis to dysplasia in the pyloric antrum of TFF2 -/- C57BL6 x Sv129 Helicobacter pylori-infected mice. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 171:1520-8. [PMID: 17982128 DOI: 10.2353/ajpath.2007.070249] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Trefoil factor family 2 (TFF2) is up-regulated in Helicobacter spp.-infected gastric tissues of both humans and mice. To ascertain the biological effects of TFF2 in vivo, TFF2(-/-) C57BL/6 x Sv129 and wild-type (WT) C57BL/6 x Sv129 mice were orally infected with Helicobacter pylori SS1. Mice were evaluated for gastric H. pylori colonization, pathology, and cytokine profiles at 6 and 19 months post inoculation (pi). At 6 months pi, there was a significant difference (P < 0.05) for epithelial criteria (mucosal defects, atrophy, hyperplasia, pseudopyloric metaplasia, and dysplasia) in the corpus of TFF2(-/-) versus WT mice. At 19 months pi, a similar statistical difference in epithelial parameters was noted in the antrum of TFF2(-/-) versus WT mice (P < 0.01). All of the TFF2(-/-) H. pylori-infected mice had high-grade antral dysplasia, including gastric intraepithelial neoplasia, which was statistically significant (P < 0.05) compared with the infected WT mice. Levels of interferon-gamma were markedly elevated in the gastric mucosa of infected TFF2(-/-) mice at both 6 and 19 months pi. TFF2 provided a cytoprotective and/or anti-inflammatory effect against the progression of premalignant lesions of the gastric corpus at 6 months pi and in the pyloric antrum in H. pylori-infected mice at 19 months pi. These data support a protective role for TFF2 in part by modulating levels of gastric interferon-gamma in the development of H. pylori-associated premalignancy of the distal stomach.
Collapse
Affiliation(s)
- James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | | | |
Collapse
|
67
|
Kawada M, Arihiro A, Mizoguchi E. Insights from advances in research of chemically induced experimental models of human inflammatory bowel disease. World J Gastroenterol 2007; 13:5581-93. [PMID: 17948932 PMCID: PMC4172737 DOI: 10.3748/wjg.v13.i42.5581] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD), the most important being Crohn's disease and ulcerative colitis, results from chronic dysregulation of the mucosal immune system in the gastrointestinal tract. Although the pathogenesis of IBD remains unclear, it is widely accepted that genetic, environmental, and immunological factors are involved. Recent studies suggest that intestinal epithelial defenses are important to prevent inflammation by protecting against microbial pathogens and oxidative stresses. To investigate the etiology of IBD, animal models of experimental colitis have been developed and are frequently used to evaluate new anti-inflammatory treatments for IBD. Several models of experimental colitis that demonstrate various pathophysiological aspects of the human disease have been described. In this manuscript, we review the characteristic features of IBD through a discussion of the various chemically induced experimental models of colitis (e.g., dextran sodium sulfate-, 2,4,6-trinitrobenzene sulfonic acid-, oxazolone-, acetic acid-, and indomethacin-induced models). We also summarize some regulatory and pathogenic factors demonstrated by these models that can, hopefully, be exploited to develop future therapeutic strategies against IBD.
Collapse
|
68
|
Abstract
PURPOSE OF REVIEW The gastroduodenum resists mucosal injury despite continuous exposure to concentrated gastric acid. The mucosal barrier consists of a preepithelial mucus HCO3- layer, intercellular tight junctions connecting the epithelial cells, and submucosal acid sensors, prostaglandins, cytokines, enteric nerves and blood flow. In the past year, study of these defensive mechanisms has revealed new insight into the observed sex differences in ulcer prevalence, the protective role of transforming growth factor, the role of serotonin in regulating HCO3- secretion, the role of mechanisms in ulcer healing, the interaction of trefoil factors with the mucus gel, the interaction of glucocorticoids with cyclooxygenase and the characterization of novel, mucosal sparing antiinflammatory agents. RECENT FINDINGS Transforming growth factor, melatonin, serotonin, trefoil factors and H2S all enhance mucosal barrier function or accelerate ulcer healing. Newer coxibs may have safety and advantages over existing compounds. Existing nonsteroidal antiinflammatory drugs may be safer than originally thought. SUMMARY The continued elucidation of basic defense mechanisms has led to the development of several new compounds designed to enhance barrier function and repair mechanisms.
Collapse
Affiliation(s)
- Maggie Ham
- The David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | |
Collapse
|
69
|
Lee CW, Rao VP, Rogers AB, Ge Z, Erdman SE, Whary MT, Fox JG. Wild-type and interleukin-10-deficient regulatory T cells reduce effector T-cell-mediated gastroduodenitis in Rag2-/- mice, but only wild-type regulatory T cells suppress Helicobacter pylori gastritis. Infect Immun 2007; 75:2699-707. [PMID: 17353283 PMCID: PMC1932875 DOI: 10.1128/iai.01788-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 12/14/2006] [Accepted: 02/22/2007] [Indexed: 12/25/2022] Open
Abstract
CD4(+) CD45RB(hi) CD25(-) effector T cells (T(E)) promote Helicobacter pylori gastritis in mice, and CD4(+) CD45RB(lo) CD25(+) regulatory T cells (T(R)) are anti-inflammatory. Using adoptive transfer into H. pylori-infected Rag2(-/-) mice, we evaluated effects of wild-type (wt) C57BL/6 or congenic interleukin-10-deficient (IL-10(-/-)) T(R) cells on gastritis, gastric cytokines, and H. pylori colonization. Infected Rag2(-/-) mice colonized in the corpus and antrum with 10(5) to 10(6) H. pylori CFU/gram without associated gastritis. T(E) cell transfer caused morbidity and an H. pylori-independent pangastritis and duodenitis (gastroduodenitis) associated with increased expression of gamma interferon (IFN-gamma) and tumor necrosis factor alpha. T(E) cell transfer to H. pylori-infected mice led to additive corpus gastritis associated with inflammatory cytokine expression and reduced colonization. wt T(R) cells reduced morbidity, H. pylori corpus gastritis, gastroduodenitis, and inflammatory cytokine expression and reversed the decline in H. pylori colonization attributable to T(E) cells. Although less effective than wt T(R) cells, IL-10(-/-) T(R) cells also reduced morbidity and gastroduodenitis but did not reduce H. pylori corpus gastritis or impact T(E) cell inhibition of colonization. Gastric tissues from mice receiving wt T(R) cells expressed higher levels of Foxp3 compared to recipients of IL-10(-/-) T(R) cells, consistent with lower regulatory activity of IL-10(-/-) T(R) cells. These results demonstrate that wt T(R) cells suppressed T(E)-cell-mediated H. pylori-independent gastroduodenitis and H. pylori-dependent corpus gastritis more effectively than IL-10(-/-) T(R) cells. Compartmental differences in T(E)-cell- and H. pylori-mediated inflammation and in regulatory effects between wt T(R) and IL-10(-/-) T(R) cells suggest that IL-10 expression by wt T(R) cells is important to regulatory suppression of gastric inflammation.
Collapse
Affiliation(s)
- Chung-Wei Lee
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|