51
|
Desai C, Mavrianos J, Chauhan N. Candida albicans SRR1, a putative two-component response regulator gene, is required for stress adaptation, morphogenesis, and virulence. EUKARYOTIC CELL 2011; 10:1370-4. [PMID: 21841121 PMCID: PMC3187061 DOI: 10.1128/ec.05188-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/08/2011] [Indexed: 11/20/2022]
Abstract
We report here the identification and characterization of a previously uncharacterized, two-component response regulator gene (orf19.5843) from Candida albicans. Because of its apparent functions in stress adaptation, we have named this gene SRR1 (stress response regulator 1). Disruption of SRR1 causes defects in hyphal development, reduced resistance to stress, and severe virulence attenuation in the mouse model of disseminated candidiasis.
Collapse
Affiliation(s)
| | - John Mavrianos
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 225 Warren Street, Newark, New Jersey 07103
| | - Neeraj Chauhan
- Public Health Research Institute
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, 225 Warren Street, Newark, New Jersey 07103
| |
Collapse
|
52
|
Zhang Z, Hou B, Xin Y, Liu X. Protein profiling of the dimorphic pathogenic fungus, Sporothrix schenckii. Mycopathologia 2011; 173:1-11. [PMID: 21842181 DOI: 10.1007/s11046-011-9456-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 07/21/2011] [Indexed: 10/17/2022]
Abstract
Sporotrichosis is a common cutaneous mycosis caused by the dimorphic fungus Sporothrix schenckii, which exhibits a temperature-dependent dimorphic switch. At 25°C, it grows in a mycelial phase, while at 37°C, it forms unicellular yeast cells. The formation of yeast cells was thought to be a requisite for the pathogenicity of S. schenckii. To identify fragments that might be related to morphogenesis, whole-cell proteins from the mold and early yeast stages of S. schenckii were analyzed using 2DE. Among thousands of protein molecules displayed, more than 300 showed a differential expression between the two phases. In particular, 24 yeast-specific proteins were identified using MALDI-TOF/MS. One of the most interesting proteins was a hybrid histidine kinase, DRK1, a global regulator of dimorphism and virulence in Blastomyces dermatitidis and Histoplasma capsulatum that was abundant in the yeast phase. Our study introduced a new approach to study dimorphism in S. schenckii, and the data may help us better understand the molecular mechanisms of phase transition.
Collapse
Affiliation(s)
- Zhenying Zhang
- Department of Dermatology and Venerology, 1st Affiliated Hospital of Dalian Medical University, Zhongshan Road 222, Dalian, Liaoning Province, China
| | | | | | | |
Collapse
|
53
|
Han TL, Cannon RD, Villas-Bôas SG. The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genet Biol 2011; 48:747-63. [DOI: 10.1016/j.fgb.2011.04.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 03/07/2011] [Accepted: 04/05/2011] [Indexed: 12/15/2022]
|
54
|
Antifungal curcumin induces reactive oxygen species and triggers an early apoptosis but prevents hyphae development by targeting the global repressor TUP1 in Candida albicans. Biosci Rep 2011; 30:391-404. [PMID: 20017731 DOI: 10.1042/bsr20090151] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In the present study, we have investigated the antifungal effects of a natural polyphenol, CUR (curcumin), against albicans and non-albicans species of Candida and have shown its ability to inhibit the growth of all the tested strains. The inhibitory effects of CUR were independent of the status of the multidrug efflux pump proteins belonging to either ABC transporter (ATP-binding cassette transporter) or MFS (major facilitator) superfamilies of transporters. By using a systemic murine model of infection, we established that CUR and piperine, when administered together, caused a significant fungal load reduction (1.4log10) in kidneys of Swiss mice. Additionally, CUR raised the levels of ROS (reactive oxygen species), which, as revealed by annexin V-FITC labelling, triggered early apoptosis in Candida cells. Coincident with the raised ROS levels, mRNAs of tested oxidative stress-related genes [CAP1 (Candida albicans AP-1), CaIPF7817 (putative NADH-dependent flavin oxidoreductase), SOD2 (superoxide dismutase 2), GRP2 (NADPH-dependent methyl glyoxal reductase) and CAT1 (catalase 1)] were also elevated. The growth inhibitory effects of CUR could be reversed by the addition of natural and synthetic antioxidants. Notably, independent of ROS status, polyphenol CUR prevented hyphae development in both liquid and solid hypha-inducing media by targeting the global suppressor TUP1 (thymidine uptake 1). Taken together, our results provide the first evidence that CUR acts as an antifungal agent, via generation of oxidative stress, and inhibits hyphae development by targeting TUP1.
Collapse
|
55
|
Klippel N, Cui S, Groebe L, Bilitewski U. Deletion of the Candida albicans histidine kinase gene CHK1 improves recognition by phagocytes through an increased exposure of cell wall beta-1,3-glucans. MICROBIOLOGY-SGM 2010; 156:3432-3444. [PMID: 20688824 DOI: 10.1099/mic.0.040006-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pathogenic fungus Candida albicans is able to cover its most potent proinflammatory cell wall molecules, the β-glucans, underneath a dense mannan layer, so that the pathogen becomes partly invisible for immune cells such as phagocytes. As the C. albicans histidine kinases Chk1p, Cos1p and CaSln1p had been reported to be involved in virulence and cell wall biosynthesis, we investigated whether deletion of the respective genes influences the activity of phagocytes against C. albicans. We found that among all histidine kinase genes, CHK1 plays a prominent role in phagocyte activation. Uptake of the deletion mutant Δchk1 as well as the acidification of Δchk1-carrying phagosomes was significantly increased compared with the parental strain. These improved activities could be correlated with an enhanced accessibility of the mutant β-1,3-glucans for immunolabelling. In addition, any inhibition of β-1,3-glucan-mediated phagocytosis resulted in a reduced uptake of Δchk1, while ingestion of the parental strain was hardly affected. Moreover, deletion of CHK1 caused an enhanced release of interleukins 6 and 10, indicating a stronger activation of the β-1,3-glucan receptor dectin-1. In conclusion, the Chk1p protein is likely to be involved in masking β-1,3-glucans from immune recognition. As there are no homologues of fungal histidine kinases in mammals, Chk1p has to be considered as a promising target for new antifungal agents.
Collapse
Affiliation(s)
- Nina Klippel
- Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Shuna Cui
- Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Lothar Groebe
- Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Ursula Bilitewski
- Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
56
|
Hope H, Schmauch C, Arkowitz RA, Bassilana M. The Candida albicans ELMO homologue functions together with Rac1 and Dck1, upstream of the MAP Kinase Cek1, in invasive filamentous growth. Mol Microbiol 2010; 76:1572-90. [PMID: 20444104 DOI: 10.1111/j.1365-2958.2010.07186.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regulation of Rho G-proteins is critical for cytoskeletal organization and cell morphology in all eukaryotes. In the human opportunistic pathogen Candida albicans, Rac1 and its activator Dck1, a member of the CED5, Dock180, myoblast city family of guanine nucleotide exchange factors, are required for the budding to filamentous transition during invasive growth. We show that Lmo1, a protein with similarity to human ELMO1, is necessary for invasive filamentous growth, similar to Rac1 and Dck1. Furthermore, Rac1, Dck1 and Lmo1 are required for cell wall integrity, as the deletion mutants are sensitive to cell wall perturbing agents, but not to oxidative or osmotic stresses. The region of Lmo1 encompassing the ELMO and PH-like domains is sufficient for its function. Both Rac1 and Dck1 can bind Lmo1. Overexpression of a number of protein kinases in the rac1, dck1 and lmo1 deletion mutants indicates that Rac1, Dck1 and Lmo1 function upstream of the mitogen-activated protein kinases Cek1 and Mkc1, linking invasive filamentous growth to cell wall integrity. We conclude that the requirement of ELMO/CED12 family members for Rac1 function is conserved from fungi to humans.
Collapse
Affiliation(s)
- Hannah Hope
- Institute of Developmental Biology and Cancer, CNRS UMR 6543, Université de Nice - Sophia Antipolis, Faculté des Sciences-Parc Valrose, 06108 Nice Cedex 2, France
| | | | | | | |
Collapse
|
57
|
Bambach A, Fernandes MP, Ghosh A, Kruppa M, Alex D, Li D, Fonzi WA, Chauhan N, Sun N, Agrellos OA, Vercesi AE, Rolfes RJ, Calderone R. Goa1p of Candida albicans localizes to the mitochondria during stress and is required for mitochondrial function and virulence. EUKARYOTIC CELL 2009; 8:1706-20. [PMID: 19717740 PMCID: PMC2772395 DOI: 10.1128/ec.00066-09] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 08/18/2009] [Indexed: 11/20/2022]
Abstract
Using a Tn7 transposon library of Candida albicans, we have identified a mutant that exhibited sensitivity in drop plate assays to oxidants such as menadione and hydrogen peroxide. To verify the role of the mutated gene in stress adaptation, null mutants were constructed and phenotypically characterized. Because of its apparent functions in growth and oxidant adaptation, we have named the gene GOA1. Goa1p appears to be unique to the CTG subclade of the Saccharomycotina, including C. albicans. Mutants of C. albicans lacking goa1 (strain GOA31) were more sensitive to 6 mM H(2)O(2) and 0.125 mM menadione than the wild type (wt) or a gene-reconstituted (GOA32) strain. The sensitivity to oxidants correlated with reduced survival of the GOA31 mutant in human neutrophils and avirulence compared to control strains. Other phenotypes of GOA31 include reduced growth and filamentation in 10% serum, Spider, and SLAD agar media and an inability to form chlamydospores. Since Goa1p has an N-terminal mitochondrion localization site, we also show that green fluorescent protein-tagged Goa1p shows a mitochondrionlike distribution during oxidant or osmotic stress. Further, the inability of GOA31 to grow in medium containing lactate, ethanol, or glycerol as the sole carbon source indicates that the mitochondria are defective in the mutant. To determine how Goa1p contributes to mitochondrial function, we compared the wt, GOA32, and GOA31 strains for mitochondrial electrical membrane potential, respiration, and oxidative phosphorylation. We now show that GOA31, but not the wt or GOA32, had decreased respiration and mitochondrial membrane potential such that mutant cells are unable to drive oxidative phosphorylation. This is the first report in C. albicans of a respiratory defect caused by a loss of mitochondrial membrane potential.
Collapse
Affiliation(s)
- Adrienne Bambach
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, Departamento de Patologia Clínica, Universidade Estadual de Campinas, Campinas, Brazil, Department of Biology, Georgetown University, Washington, DC, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana P. Fernandes
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, Departamento de Patologia Clínica, Universidade Estadual de Campinas, Campinas, Brazil, Department of Biology, Georgetown University, Washington, DC, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anup Ghosh
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, Departamento de Patologia Clínica, Universidade Estadual de Campinas, Campinas, Brazil, Department of Biology, Georgetown University, Washington, DC, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michael Kruppa
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, Departamento de Patologia Clínica, Universidade Estadual de Campinas, Campinas, Brazil, Department of Biology, Georgetown University, Washington, DC, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Deepu Alex
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, Departamento de Patologia Clínica, Universidade Estadual de Campinas, Campinas, Brazil, Department of Biology, Georgetown University, Washington, DC, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, Departamento de Patologia Clínica, Universidade Estadual de Campinas, Campinas, Brazil, Department of Biology, Georgetown University, Washington, DC, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - William A. Fonzi
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, Departamento de Patologia Clínica, Universidade Estadual de Campinas, Campinas, Brazil, Department of Biology, Georgetown University, Washington, DC, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Neeraj Chauhan
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, Departamento de Patologia Clínica, Universidade Estadual de Campinas, Campinas, Brazil, Department of Biology, Georgetown University, Washington, DC, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nuo Sun
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, Departamento de Patologia Clínica, Universidade Estadual de Campinas, Campinas, Brazil, Department of Biology, Georgetown University, Washington, DC, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Orlando A. Agrellos
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, Departamento de Patologia Clínica, Universidade Estadual de Campinas, Campinas, Brazil, Department of Biology, Georgetown University, Washington, DC, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anibal E. Vercesi
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, Departamento de Patologia Clínica, Universidade Estadual de Campinas, Campinas, Brazil, Department of Biology, Georgetown University, Washington, DC, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ronda J. Rolfes
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, Departamento de Patologia Clínica, Universidade Estadual de Campinas, Campinas, Brazil, Department of Biology, Georgetown University, Washington, DC, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Richard Calderone
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, Departamento de Patologia Clínica, Universidade Estadual de Campinas, Campinas, Brazil, Department of Biology, Georgetown University, Washington, DC, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
58
|
Li D, Williams D, Lowman D, Monteiro MA, Tan X, Kruppa M, Fonzi W, Roman E, Pla J, Calderone R. The Candida albicans histidine kinase Chk1p: signaling and cell wall mannan. Fungal Genet Biol 2009; 46:731-41. [PMID: 19563901 PMCID: PMC2731578 DOI: 10.1016/j.fgb.2009.06.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 06/22/2009] [Accepted: 06/23/2009] [Indexed: 12/18/2022]
Abstract
Several published functions associated with the CHK1 histidine kinase of Candida albicans resemble those of the MAPK Cek1p and its cognate receptor Sho1p (SSU81). To explore this further, we have compared mutants lacking the proteins mentioned above and have constructed a double sho1/chk1Delta null mutant to determine relationships among these proteins. We observed that the sensitivity to Congo red (CR), calcofluor white (CW), as well as clumping of cells, was slightly increased in the double mutant compared to the single chk1Delta or sho1Delta mutants. However, Cek1p phosphorylation via Sho1p, which occurs during log phase growth in the presence or absence of CR in Wt cells, does not require Chk1p. These data suggest that Chk1p and Sho1p are components of parallel but independent signal pathways. In addition, bulk mannan of strains was analyzed by GLC/MS and GPC MALLS and NMR. Compared to Wt and a CHK1 gene-reconstituted strain (CHK23) that contained high, intermediate and low Mw mannan species, we found that the mannan of strains CHK21 (chk1Delta null), the cek1Delta null, and the double mutant consisted only of low Mw mannan. The sho1Delta null mutant only demonstrated a reduced intermediate type of mannan. Alcian blue binding was lower in cek1Delta, chk1Delta, and the double sho1/chk1Delta null mutant lacking high and intermediate Mw mannan than in the sho1Delta null which had a partial loss of intermediate Mw mannan only. We conclude that the Chk1p HK is part of a functionally similar but parallel pathway to the Sho1p-Cek1p pathway that confers resistance to the cell wall inhibitors CR and CW. However, a functional relationship in mannan biosynthesis of Chk1p and Cek1p exists that only partially requires Sho1p.
Collapse
Affiliation(s)
- Dongmei Li
- Georgetown University Medical Center, Department of Microbiology & Immunology, East Tennessee State University, Johnson City, TN, 37614
| | - David Williams
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614
| | - Douglas Lowman
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614
- Global Analytical Services, Eastman Chemical Company, Kingsport, TN. 37662-5150
| | - Mario A. Monteiro
- Department of Chemistry, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Xuan Tan
- Department of Chemistry, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Michael Kruppa
- Georgetown University Medical Center, Department of Microbiology & Immunology, East Tennessee State University, Johnson City, TN, 37614
| | - William Fonzi
- Georgetown University Medical Center, Department of Microbiology & Immunology, East Tennessee State University, Johnson City, TN, 37614
| | | | | | - Richard Calderone
- Georgetown University Medical Center, Department of Microbiology & Immunology, East Tennessee State University, Johnson City, TN, 37614
| |
Collapse
|
59
|
Krasowska A, Murzyn A, Dyjankiewicz A, Łukaszewicz M, Dziadkowiec D. The antagonistic effect of Saccharomyces boulardii on Candida albicans filamentation, adhesion and biofilm formation. FEMS Yeast Res 2009; 9:1312-21. [PMID: 19732158 DOI: 10.1111/j.1567-1364.2009.00559.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The dimorphic fungus Candida albicans is a member of the normal flora residing in the intestinal tract of humans. In spite of this, under certain conditions it can induce both superficial and serious systemic diseases, as well as be the cause of gastrointestinal infections. Saccharomyces boulardii is a yeast strain that has been shown to have applications in the prevention and treatment of intestinal infections caused by bacterial pathogens. The purpose of this study was to determine whether S. boulardii affects the virulence factors of C. albicans. We demonstrate the inhibitory effect of live S. boulardii cells on the filamentation (hyphae and pseudohyphae formation) of C. albicans SC5314 strain proportional to the amount of S. boulardii added. An extract from S. boulardii culture has a similar effect. Live S. boulardii and the extract from S. boulardii culture filtrate diminish C. albicans adhesion to and subsequent biofilm formation on polystyrene surfaces under both aerobic and microaerophilic conditions. This effect is very strong and requires lower doses of S. boulardii cells or concentrations of the extract than serum-induced filamentation tests. Saccharomyces boulardii has a strong negative effect on very important virulence factors of C. albicans, i.e. the ability to form filaments and to adhere and form biofilms on plastic surfaces.
Collapse
Affiliation(s)
- Anna Krasowska
- Faculty of Biotechnology, Wrocław University, Wrocław, Poland
| | | | | | | | | |
Collapse
|
60
|
Msb2 signaling mucin controls activation of Cek1 mitogen-activated protein kinase in Candida albicans. EUKARYOTIC CELL 2009; 8:1235-49. [PMID: 19542310 DOI: 10.1128/ec.00081-09] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have characterized the role that the Msb2 protein plays in the fungal pathogen Candida albicans by the use of mutants defective in the putative upstream components of the HOG pathway. Msb2, in cooperation with Sho1, controls the activation of the Cek1 mitogen-activated protein kinase under conditions that damage the cell wall, thus defining Msb2 as a signaling element of this pathway in the fungus. msb2 mutants display altered sensitivity to Congo red, caspofungin, zymolyase, or tunicamycin, indicating that this protein is involved in cell wall biogenesis. Msb2 (as well as Sho1 and Hst7) is involved in the transmission of the signal toward Cek1 mediated by the Cdc42 GTPase, as revealed by the use of activated alleles (Cdc42(G12V)) of this protein. msb2 mutants have a stronger defective invasion phenotype than sho1 mutants when tested on certain solid media that use mannitol or sucrose as a carbon source or under hypoxia. Interestingly, Msb2 contributes to growth under conditions of high osmolarity when both branches of the HOG pathway are altered, as triple ssk1 msb2 sho1 mutants (but not any single or double mutant) are osmosensitive. However, this phenomenon is independent of the presence of Hog1, as Hog1 phosphorylation, Hog1 translocation to the nucleus, and glycerol accumulation are not affected in this mutant following an osmotic shock. These results reveal essential functions in morphogenesis, invasion, cell wall biogenesis, and growth under conditions of high osmolarity for Msb2 in C. albicans and suggest the divergence and specialization of this signaling pathway in filamentous fungi.
Collapse
|
61
|
Hypoxic adaptation by Efg1 regulates biofilm formation by Candida albicans. Appl Environ Microbiol 2009; 75:3663-72. [PMID: 19346360 DOI: 10.1128/aem.00098-09] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Hypoxia is encountered frequently by Candida albicans during systemic infection of the human host. We tested if hypoxia allows biofilm formation by C. albicans, which is a major cause of perseverance and antifungal resistance in C. albicans infections. Using an in vitro biofilm system, we unexpectedly discovered that several positive regulators of biofilm formation during normoxia, including Tec1, Ace2, Czf1, Och1, and Als3, had little or no influence on biofilm development during hypoxia, irrespective of the carbon dioxide level, indicating that C. albicans biofilm pathways differ depending on the oxygen level. In contrast, the Efg1 and Flo8 regulators were required for both normoxic and hypoxic biofilm formation. To explore the role of Efg1 during hypoxic and/or biofilm growth, we determined transcriptome kinetics following release of EFG1 expression by a system under transcriptional control of a doxycycline-inducible promoter. During hypoxia, Efg1 rapidly induced expression of all major classes of genes known to be associated with normoxic biofilm formation, including genes involved in glycolysis, sulfur metabolism, and antioxidative and peroxisome activities, as well as genes for iron uptake. The results suggest that hypoxic adaptation mediated by the Efg1 and Flo8 regulators is required even during normoxic biofilm development, while hypoxic biofilm formation in deep tissues or in organs may generate foci of C. albicans infections.
Collapse
|
62
|
Rispail N, Soanes DM, Ant C, Czajkowski R, Grünler A, Huguet R, Perez-Nadales E, Poli A, Sartorel E, Valiante V, Yang M, Beffa R, Brakhage AA, Gow NAR, Kahmann R, Lebrun MH, Lenasi H, Perez-Martin J, Talbot NJ, Wendland J, Di Pietro A. Comparative genomics of MAP kinase and calcium-calcineurin signalling components in plant and human pathogenic fungi. Fungal Genet Biol 2009; 46:287-98. [PMID: 19570501 DOI: 10.1016/j.fgb.2009.01.002] [Citation(s) in RCA: 242] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 01/16/2009] [Accepted: 01/17/2009] [Indexed: 01/22/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades and the calcium-calcineurin pathway control fundamental aspects of fungal growth, development and reproduction. Core elements of these signalling pathways are required for virulence in a wide array of fungal pathogens of plants and mammals. In this review, we have used the available genome databases to explore the structural conservation of three MAPK cascades and the calcium-calcineurin pathway in ten different fungal species, including model organisms, plant pathogens and human pathogens. While most known pathway components from the model yeast Saccharomyces cerevisiae appear to be widely conserved among taxonomically and biologically diverse fungi, some of them were found to be restricted to the Saccharomycotina. The presence of multiple paralogues in certain species such as the zygomycete Rhizopus oryzae and the incorporation of new functional domains that are lacking in S. cerevisiae signalling proteins, most likely reflect functional diversification or adaptation as filamentous fungi have evolved to occupy distinct ecological niches.
Collapse
Affiliation(s)
- Nicolas Rispail
- Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Master and commander in fungal pathogens: the two-component system and the HOG signaling pathway. EUKARYOTIC CELL 2008; 7:2017-36. [PMID: 18952900 DOI: 10.1128/ec.00323-08] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
64
|
Two-component signal transduction proteins as potential drug targets in medically important fungi. Infect Immun 2008; 76:4795-803. [PMID: 18765727 DOI: 10.1128/iai.00834-08] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
65
|
Motoyama T, Ochiai N, Morita M, Iida Y, Usami R, Kudo T. Involvement of putative response regulator genes of the rice blast fungus Magnaporthe oryzae in osmotic stress response, fungicide action, and pathogenicity. Curr Genet 2008; 54:185-95. [PMID: 18726099 DOI: 10.1007/s00294-008-0211-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 08/01/2008] [Accepted: 08/06/2008] [Indexed: 10/21/2022]
Abstract
Rice blast fungus (Magnaporthe oryzae) has ten histidine kinases (HKs), one histidine-containing phosphotransfer protein (HPt), and three response regulators (RRs) as putative components of the two-component signal transduction system (TCS). Here, we constructed knockout mutants of two putative RR genes (MoSSK1, MoSKN7) and a RR homolog gene (MoRIM15) to analyze the roles of TCS in environmental adaptation and pathogenicity. The DeltaMossk1 strain had increased sensitivity to high osmolarity and decreased sensitivity to fludioxonil. The DeltaMoskn7 strain had slightly decreased sensitivity to fludioxonil. The involvement of MoSkn7 in the osmoresponse was obvious only on the DeltaMossk1 background. These results show that MoSsk1 and MoSkn7 are major and minor contributors, respectively, in the high osmolarity response and fludioxonil action. The DeltaMossk1 strain was more osmosensitive than the predicted upstream HK gene disruptant Deltahik1, which shows sugar-specific high osmolarity sensitivity. The DeltaMossk1 and DeltaMoskn7 strains showed enhanced hyphal melanization, suggesting that RRs regulate hyphal melanization. MoSsk1 and MoRim15 are required for full virulence, because the DeltaMossk1 and DeltaMorim15 strains exhibited reduced virulence. These results suggest that the putative RRs of the rice blast fungus are involved in the osmotic stress response, fludioxonil action, and pathogenicity.
Collapse
|
66
|
Menon V, De Bernardis F, Calderone R, Chauhan N. Transcriptional profiling of the Candida albicans Ssk1p receiver domain point mutants and their virulence. FEMS Yeast Res 2008; 8:756-63. [PMID: 18616606 PMCID: PMC2576740 DOI: 10.1111/j.1567-1364.2008.00404.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The Ssk1p response regulator of Candida albicans is required for oxidant adaptation, survival in human neutrophils, and virulence in a disseminated murine model of candidiasis. We have previously shown that the amino acid residues D556 and D513 of the Ssk1p receiver domain are critical to the Ssk1p in oxidant stress adaptation and morphogenesis. Herein, transcriptional profiling is used to explain the oxidant sensitivity and morphogenesis defect of two point mutants (D556N and D513K, respectively) compared with a WT strain. In the D556N mutant, during oxidative stress (5 mM H(2)O(2)), a downregulation of genes associated with redox homeostasis and oxidative stress occurred, which accounted for about 5% of all gene changes, including among others, SOD1 (superoxide dismutase), CAP1 (required for some types of oxidant stress), and three genes encoding glutathione biosynthesis proteins (GLR1, GSH1, and GSH2). Mutant D513K was not sensitive to peroxide but was impaired in its yeast $/to hyphal transition. We noted downregulation of genes associated with morphogenesis and cell elongation. Virulence of each mutant was also evaluated in a rat vaginitis model of candidiasis. Clearance of an SSK1 null and the D556N mutants from the vaginal canal was significantly greater than wild type or the D513K mutant, indicating that a change in a single amino acid of the Ssk1p alters the ability of this strain to colonize the rat vaginal mucosa.
Collapse
Affiliation(s)
- Veena Menon
- Georgetown University Medical Center, Department of Microbiology & Immunology, 3900 Reservoir Rd, NW, Washington DC 20057
| | - Flavia De Bernardis
- Laboratory of Bacteriology and Mycology, Istituto Superiore di Sanita, Rome, Italy
| | - Richard Calderone
- Georgetown University Medical Center, Department of Microbiology & Immunology, 3900 Reservoir Rd, NW, Washington DC 20057
| | - Neeraj Chauhan
- Georgetown University Medical Center, Department of Microbiology & Immunology, 3900 Reservoir Rd, NW, Washington DC 20057
| |
Collapse
|
67
|
Hope H, Bogliolo S, Arkowitz RA, Bassilana M. Activation of Rac1 by the guanine nucleotide exchange factor Dck1 is required for invasive filamentous growth in the pathogen Candida albicans. Mol Biol Cell 2008; 19:3638-51. [PMID: 18579689 DOI: 10.1091/mbc.e07-12-1272] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Rho G proteins and their regulators are critical for cytoskeleton organization and cell morphology in all eukaryotes. In the opportunistic pathogen Candida albicans, the Rho G proteins Cdc42 and Rac1 are required for the switch from budding to filamentous growth in response to different stimuli. We show that Dck1, a protein with homology to the Ced-5, Dock180, myoblast city family of guanine nucleotide exchange factors, is necessary for filamentous growth in solid media, similar to Rac1. Our results indicate that Dck1 and Rac1 do not function in the same pathway as the transcription factor Czf1, which is also required for embedded filamentous growth. The conserved catalytic region of Dck1 is required for such filamentous growth, and in vitro this region directly binds a Rac1 mutant, which mimics the nucleotide-free state. In vivo overexpression of a constitutively active Rac1 mutant, but not wild-type Rac1, in a dck1 deletion mutant restores filamentous growth. These results indicate that the Dock180 guanine nucleotide exchange factor homologue, Dck1 activates Rac1 during invasive filamentous growth. We conclude that specific exchange factors, together with the G proteins they activate, are required for morphological changes in response to different stimuli.
Collapse
Affiliation(s)
- Hannah Hope
- Institute of Developmental Biology and Cancer, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6543, Université de Nice, Faculté des Sciences-Parc Valrose, 06108 Nice Cedex 2, France
| | | | | | | |
Collapse
|
68
|
Contributions of the response regulators Ssk1p and Skn7p in the pseudohyphal development, stress adaptation, and drug sensitivity of the opportunistic yeast Candida lusitaniae. EUKARYOTIC CELL 2008; 7:1071-4. [PMID: 18408054 DOI: 10.1128/ec.00066-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We recently characterized the histidine kinase receptor genes of Candida lusitaniae. For the present study, we have further investigated the role of SSK1 and SKN7, encoding response regulators. The results of functional analysis of mutants indicated that Ssk1p is involved in osmotolerance and pseudohyphal development, whereas Skn7p appears crucial for oxidative stress adaptation.
Collapse
|
69
|
Abstract
Unicellular fungi thrive in diverse niches around the world, and many of these niches present unique and stressful challenges that must be contended with by their inhabitants. Numerous studies have investigated the genomic expression responses to environmental stress in 'model' ascomycete fungi, including Saccharomyces cerevisiae, Candida albicans and Schizosaccharomyces pombe. This review presents a comparative-genomics perspective on the environmental stress response, a common response to diverse stresses. Implications for the role of this response, based on its presence or absence in fungi from disparate ecological niches, are discussed.
Collapse
Affiliation(s)
- Audrey P Gasch
- Laboratory of Genetics and Genome Center of Wisconsin, University of Wisconsin Madison, Madison, WI 53706, USA.
| |
Collapse
|
70
|
Walia A, Calderone R. The SSK2 MAPKKK of Candida albicans is required for oxidant adaptation in vitro. FEMS Yeast Res 2007; 8:287-99. [PMID: 18093132 DOI: 10.1111/j.1567-1364.2007.00329.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The Ssk2p (MAPKKK) of Candida albicans was deleted and functions assigned based on phenotyping studies. SSK2 deletion was first attempted using the UAU1 disruption method. All transformants lacking one copy of SSK2 appeared to be triploids, suggesting that the SSK2 is essential for the organism. To verify this observation, a strain was constructed in which one allele was deleted using the SAT1 flipper disruption method. The second allele was then placed under control of the on/off tetracycline-regulatable (TetR) promoter. The transcription of SSK2 was measured by reverse transcriptase-PCR and although the promoter was somewhat leaky, transcript was significantly reduced in an ssk2/TetR-SSK2 transformant (AT2) in the presence of doxycycline. Strains AT1 and AT2 constructed using the SAT1 flipper and TetR promoter method, respectively, were studied phenotypically in different growth media to determine the role of Ssk2p in morphogenesis. The mutants were also compared under on/off conditions in the presence of 1.5 M NaCl and various types of oxidants. Strain AT2 demonstrated resistance to 1.5 M NaCl in the absence of doxycycline but was inhibited by 8 mM hydrogen peroxide.
Collapse
Affiliation(s)
- Aditi Walia
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | |
Collapse
|
71
|
Vylkova S, Jang WS, Li W, Nayyar N, Edgerton M. Histatin 5 initiates osmotic stress response in Candida albicans via activation of the Hog1 mitogen-activated protein kinase pathway. EUKARYOTIC CELL 2007; 6:1876-88. [PMID: 17715369 PMCID: PMC2043398 DOI: 10.1128/ec.00039-07] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 07/27/2007] [Indexed: 01/24/2023]
Abstract
Histatin 5 (Hst 5) is a salivary cationic peptide that has toxicity for Candida albicans by inducing rapid cellular ion imbalance and cell volume loss. Microarray analyses of peptide-treated cells were used to evaluate global gene responses elicited by Hst 5. The major transcriptional response of C. albicans to Hst 5 was expression of genes involved in adaptation to osmotic stress, including production of glycerol (RHR2, SKO1, and PDC11) and the general stress response (CTA1 and HSP70). The oxidative-stress genes AHP1, TRX1, and GPX1 were mildly induced by Hst 5. Cell defense against Hst 5 was dependent on the Hog1 mitogen-activated protein kinase (MAPK) pathway, since C. albicans hog1/hog1 mutants were significantly hypersensitive to Hst 5 but not to Mkc1 MAPK or Cek1 MAPK mutants. Activation of the high-osmolarity glycerol (HOG) pathway was demonstrated by phosphorylation of Hog1 MAPK as well as by glycerol production following Hst 5 treatment in a dose-dependent manner. C. albicans cells prestressed with sorbitol were less sensitive to subsequent Hst 5 treatment; however, cells treated concurrently with osmotic stress and Hst 5 were hypersensitive to Hst 5. In contrast, cells subjected to oxidative stress had no difference in sensitivity to Hst 5. These results suggest a common underlying cellular response to osmotic stress and Hst 5. The HOG stress response pathway likely represents a significant and effective challenge to physiological levels of Hst 5 and other toxic peptides in fungal cells.
Collapse
Affiliation(s)
- Slavena Vylkova
- Department of Oral Biology, SUNY at Buffalo Main Street Campus, Buffalo, NY 14214, USA
| | | | | | | | | |
Collapse
|
72
|
Yang L, Wang L, Peng J, Yu L, Liu T, Leng W, Yang J, Chen L, Zhang W, Zhang Q, Qi Y, Jin Q. Comparison between gene expression of conidia and germinating phase in Trichophyton rubrum. ACTA ACUST UNITED AC 2007; 50:377-84. [PMID: 17609895 DOI: 10.1007/s11427-007-0046-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 11/22/2006] [Indexed: 10/23/2022]
Abstract
Trichophyton rubrum is a dominating superficial dermatophyte, whose conidial germination is correlated to pathopoiesis and a highly important developmental process. To investigate the changes of physiology, biochemistry and cytology during the germination, we selected 3364 function identified ESTs from T. rubrum cDNA library to construct cDNA microarrays, and compared the gene expression levels of conidia and germinating phase. Data analysis indicated that 335 genes were up-regulated during the germination, which mainly encoded translated, modified proteins and structural proteins. The constituents of cell wall and cell membrane were synthetized abundantly, suggesting that they are the foundation of cell morphogenesis. The ingredients of the two-component signal transduction system were up-regulated, presuming that they were important for the conidial germination. Genes of various metabolic pathways were expressed prosperously, especially the genes that participated in glycolysis and oxidative phosphorylation were up-regulated on the whole, demonstrating that in the environment with sufficient oxygen and glucose, conidia obtained energy through aerobic respiration. This paper provides important clues which are helpful to understanding the changes in gene expression, signal conduction and metabolism characteristics during T. rubrum conidial germination, and possess significant meaning to the study of other superficial dermatophytes.
Collapse
Affiliation(s)
- Li Yang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Chauhan N, Kruppa M, Calderone R. The Ssk1p response regulator and Chk1p histidine kinase mutants of Candida albicans are hypersensitive to fluconazole and voriconazole. Antimicrob Agents Chemother 2007; 51:3747-51. [PMID: 17664325 PMCID: PMC2043284 DOI: 10.1128/aac.00929-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hypersensitivity to the triazoles fluconazole and voriconazole associated with two-component signal transduction proteins has not been reported in Candida albicans. Herein, we show that strains of C. albicans lacking the response regulator Ssk1p or the Chk1p histidine kinase signal transduction proteins are hypersensitive to fluconazole and voriconazole compared to wild-type (wt) as well as gene-reconstituted strains, reflecting an increased hypersensitivity to these drugs of about 16- to 500-fold. In comparison to wt cells, both mutants had elevated levels of fluconazole accumulation and reduced viability upon incubation with either drug, suggesting that in the absence of Ssk1p or Chk1p, fluconazole and voriconazole have significantly increased fungicidal effects on C. albicans.
Collapse
Affiliation(s)
- Neeraj Chauhan
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | |
Collapse
|
74
|
Furukawa K, Yoshimi A, Furukawa T, Hoshi Y, Hagiwara D, Sato N, Fujioka T, Mizutani O, Mizuno T, Kobayashi T, Abe K. Novel reporter gene expression systems for monitoring activation of the Aspergillus nidulans HOG pathway. Biosci Biotechnol Biochem 2007; 71:1724-30. [PMID: 17617716 DOI: 10.1271/bbb.70131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Aspergillus nidulans high-osmolarity glycerol response (AnHOG) pathway is involved in osmoadaptation. We found that fludioxonil, a fungicide, causes improper activation of HogA mitogen-activated protein kinase (MAPK) in A. nidulans. Here we present novel reporter systems for monitoring activation of the AnHOG pathway. The promoter region of gfdB (glycerol-3-phosphate dehydrogenase), whose expression depends on the presence of HogA, was fused to a beta-glucuronidase uidA gene (GUS) to construct the reporter, which was introduced into A. nidulans wild type and hogADelta. Increased GUS activity was detected in the wild type only when it was treated with high osmolarity or fludioxonil, while reporter activity was scarcely stimulated in the hogADelta mutant. These results indicate that the reporter activity is controlled via HogA activation. Furthermore, we present possible applications of the reporter systems in screening new antifungal compounds.
Collapse
Affiliation(s)
- Kentaro Furukawa
- Laboratory of Enzymology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Banerjee D, Martin N, Nandi S, Shukla S, Dominguez A, Mukhopadhyay G, Prasad R. A genome-wide steroid response study of the major human fungal pathogen Candida albicans. Mycopathologia 2007; 164:1-17. [PMID: 17574539 DOI: 10.1007/s11046-007-9025-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 05/09/2007] [Indexed: 10/23/2022]
Abstract
In the absence of steroid receptors and any known mechanism of gene regulation by steroid hormones in Candida albicans, we did a genome-wide analysis of C. albicans cells treated with progesterone using Eurogentec cDNA microarrays to find the complete repertoire of steroid responsive genes. Northern blotting analysis was employed to validate the genes that were differentially regulated by progesterone in the microarray experiments. A total of 99 genes were found to be significantly regulated by progesterone, among them 60 were up-regulated and 39 were down-regulated. It was observed that progesterone considerably enhanced the expression of multi-drug resistance (MDR) genes belonging to ATP Binding Cassette (CDR1 and CDR2) super-family of multidrug transporters, suggesting a possible relationship between steroid stress and MDR genes. Several genes associated with hyphal induction and the establishment of pathogenesis were also found up-regulated. In silico search for various transcription factor (TF) binding sites in the promoter of the affected genes revealed that EFG1, CPH1, NRG1, TUP1, MIG1 and AP-1 regulated genes are responsive to progesterone. The stress responsive elements (STRE; AG(4) or C(4)T) were also found in the promoters of several responsive genes. Our data sheds new light on the regulation of gene expression in C. albicans by human steroids, and its correlation with drug resistance, virulence, morphogenesis and general stress response. A comparison with drug induced stress response has also been discussed.
Collapse
Affiliation(s)
- Dibyendu Banerjee
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | | | | | | | |
Collapse
|
76
|
Arana DM, Alonso-Monge R, Du C, Calderone R, Pla J. Differential susceptibility of mitogen-activated protein kinase pathway mutants to oxidative-mediated killing by phagocytes in the fungal pathogen Candida albicans. Cell Microbiol 2007; 9:1647-59. [PMID: 17346314 DOI: 10.1111/j.1462-5822.2007.00898.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The role of four mitogen-activated protein (MAP) kinase pathways in the survival of Candida albicans following infection of human phagocytes has been addressed through the analysis of mutants defective in their respective MAP kinase. While the contribution of the cell integrity (Mkc1-mediated) or mating (Cek2-mediated) pathways is relatively minor to survival, clear and opposite effects were observed for cek1 and hog1 mutants, despite the fact that these two MAP kinases are important virulence determinants in the mouse model of experimental infection. The Cek1-mediated pathway is involved in sensitivity to phagocyte-mediated killing, while the HOG pathway contributes to the survival of the fungal cells in this interaction. Furthermore, reporter genes have been developed to quantify oxidative and nitrosative stress. hog1 mutants show an oxidative and nitrosative stress response augmented - albeit non-protective - when challenged with oxidants and NO donors in vitro or phagocytic cells (macrophages, neutrophils and the myelomonocytic cell line HL-60), suggesting this as the cause of their reduced virulence in the murine model of infection. These data have important consequences for the development of novel antifungal therapies to combat against fungal infection.
Collapse
Affiliation(s)
- David M Arana
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
77
|
Menon V, Li D, Chauhan N, Rajnarayanan R, Dubrovska A, West AH, Calderone R. Functional studies of the Ssk1p response regulator protein of Candida albicans as determined by phenotypic analysis of receiver domain point mutants. Mol Microbiol 2006; 62:997-1013. [PMID: 17038117 DOI: 10.1111/j.1365-2958.2006.05438.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Candida albicans response regulator protein Ssk1p regulates oxidant adaptation through the MAPK HOG1 pathway. Deletion mutants lacking SSK1 are oxidant sensitive in vitro and are killed more than wild-type (WT) cells by human neutrophils. Furthermore, the mutants are avirulent in an invasive murine model, and unable to adhere to human esophageal cells. Transcriptional profiling has indicated that approximately 25% of all changes occur in genes encoding cell wall and stress adaptation functions. In this study, we have investigated the role of amino acid residues in the Ssk1p receiver (or regulatory) domain by constructing point mutants at positions D556 (putative site of protein phosphorylation) and D513 (putative role in divalent metal binding, phosphorylation and conformational switching). For each point mutant, their sensitivity to a variety of oxidant stress conditions was assessed and correlated with in vitro phosphorylation of each Ssk1p receiver domain, phosphorylation of the Hog1p MAP kinase, and translocation to the nucleus. We show that a D556N mutant is sensitive to 5 mM H(2)O(2) or t-butyl hydroperoxide, similar to a gene knock-out ssk1 mutant, even though Hog1p is phosphorylated in the D556N mutant. To resolve this apparent paradox, we also demonstrate that Hog1p translocation to the nucleus in the D556N mutant is significantly reduced compared with WT cells (CAF2-1). In a second point mutant, D513 was changed to a lysine residue (D513K). This mutant had WT levels of resistance to peroxide, but in comparison to WT cells and the D556N mutant, morphogenesis (yeast to hyphae transition) was inhibited in 10% serum or in M-199 medium at 37 degrees C. In the D513K point mutant, constitutive phosphorylation of Hog1p was observed, suggesting that a non-conservative change (D513K) traps Ssk1p in an active conformation and therefore constitutive Hog1p phosphorylation. The inhibition of morphogenesis in D513K is related to a downregulation of the transcription factors of morphogenesis, EFG1 and CPH1. Another non-conserved point mutant (D556R) was also constructed and phenotypically was like the D513K mutant. The receiver domains of the D556N and the D513K mutants could not be appreciably phosphorylated in vitro indicating that constitutive activation of Hog1p occurs in vivo due to the inability of Ssk1p to be phosphorylated at least in the D513K mutant. We speculate that the non-conservative changes described above in Ssk1p response regulator may cause conformational changes in the Ssk1p that account for phenotype differences compared with the D556N mutant that are also Hog-independent.
Collapse
Affiliation(s)
- Veena Menon
- Georgetown University Medical Center, Department of Microbiology and Immunology, 3900 Reservoir Road, NW, Washington, DC 20057, USA
| | | | | | | | | | | | | |
Collapse
|
78
|
Du C, Sarfati J, Latge JP, Calderone R. The role of the sakA (Hog1) and tcsB (sln1) genes in the oxidant adaptation of Aspergillus fumigatus. Med Mycol 2006; 44:211-8. [PMID: 16702099 DOI: 10.1080/13693780500338886] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The Hog1 MAP kinase pathway regulates stress adaptation in several fungi. To assess its role in stress adaptation in Aspergillus fumigatus, we constructed mutants in genes encoding the sensor histidine kinase (HK) tcsB as well as sakA, which are homologues of the Saccharomyces cerevisiae sln1 and Hog1, respectively. Compared to the wild type strain (Wt), growth of sakA (sakAtriangle up) mutant was reduced, and growth inhibition was increased when H(2)O(2), menadione, or SDS was added to the media. On the other hand, the tcsB mutant (tcsBtriangle up) was similar to the Wt strain in regard to growth and morphology, although a partial sensitivity to SDS was observed. Western blot analysis of Wt and the tcsBtriangle up strains indicated that when stressed with H(2)O(2), phosphorylation of Hog1p still occurs in the mutant. Since in Candida albicans, Hog1 regulates transcription of at least one histidine kinase, we performed RT-PCR of 6 histidine kinase genes as well as the ssk1 and skn7 response regulator genes of A. fumigatus. No significant differences in transcription were observed with the sakAtriangle up when compared to the Wt, indicating that the sakA does not regulate transcription of these genes. Our studies indicate that the A. fumigatus sakA is required for optimal growth of the organism with or without oxidant stress, while tcsB gene is dispensable.
Collapse
Affiliation(s)
- Chen Du
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
79
|
Chauhan N, Latge JP, Calderone R. Signalling and oxidant adaptation in Candida albicans and Aspergillus fumigatus. Nat Rev Microbiol 2006; 4:435-44. [PMID: 16710324 DOI: 10.1038/nrmicro1426] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Candida species and Aspergillus fumigatus were once thought to be relatively benign organisms. However, it is now known that this is not the case - Candida species rank among the top four causes of nosocomial infectious diseases in humans and A. fumigatus is the most deadly mould, often having a 90% mortality rate in immunocompromised transplant recipients. Adaptation to stress, including oxidative stress, is a necessary requisite for survival of these organisms during infection. Here, we describe the latest information on the signalling pathways and target proteins that contribute to oxidant adaptation in C. albicans and A. fumigatus, which has been obtained primarily through the analysis of mutants or inference from genome annotation.
Collapse
Affiliation(s)
- Neeraj Chauhan
- Georgetown University Medical Center, Department of Microbiology & Immunology, Washington, DC 20057, USA
| | | | | |
Collapse
|
80
|
Monge RA, Román E, Nombela C, Pla J. The MAP kinase signal transduction network in Candida albicans. Microbiology (Reading) 2006; 152:905-912. [PMID: 16549655 DOI: 10.1099/mic.0.28616-0] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
MAP (mitogen-activated protein) kinase-mediated pathways are key elements in sensing and transmitting the response of cells to environmental conditions by the sequential action of phosphorylation events. In the fungal pathogenCandida albicans, different routes have been identified by genetic analysis, and especially by the phenotypic characterization of mutants altered in the Mkc1, Cek1/2 and Hog1 MAP kinases. The cell integrity (orMKC1-mediated) pathway is primarily involved in the biogenesis of the cell wall. The HOG pathway participates in the response to osmotic stress while the Cek1 pathway mediates mating and filamentation. Their actual functions are, however, much broader and Mkc1 senses several types of stress, while Hog1 is also responsive to other stress conditions and participates in two morphogenetic programmes: filamentation and chlamydospore formation. Furthermore, it has been recently shown that Cek1 participates in a putative pathway involved in the construction of the cell wall and which seems to be operative under basal conditions. As these stimuli are frequently encountered in the human host, they provide a reasonable explanation for the significant reduction in pathogenicity that several signal transduction mutants show in certain animal models of virulence. MAPK pathways therefore represent an attractive multienzymic system for which novel antifungal therapy could be designed.
Collapse
Affiliation(s)
- R Alonso Monge
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - E Román
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - C Nombela
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - J Pla
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| |
Collapse
|
81
|
Abstract
Signal transduction pathways provide mechanisms for adaptation to stress conditions. One of the most studied of these pathways is the HOG1 MAP kinase pathway that in Saccharomyces cerevisiae is used to adapt cells to osmostress. The HOG1 MAPK has also been studied in Candida albicans, and more recently observations on the Hog1p functions have been described in two other human pathogens, Aspergillus fumigatus and Cryptococcus neoformans. The important, but not surprising, concept is that this pathway is used for different yet similar functions in each of these fungi, given their need to adapt to different environmental signals. Current studies of C. albicans focus upon the identification of two-component signal proteins that, in both C. albicans and S. cerevisiae, regulate the HOG1 MAPK. In C. albicans, these proteins regulate cell wall biosynthesis (and, therefore, adherence to host cells), osmotic and oxidant adaptation, white-opaque switching, morphogenesis, and virulence of the organism.
Collapse
Affiliation(s)
- Michael Kruppa
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington DC 20057, USA
| | | |
Collapse
|
82
|
Abstract
Candida albicans, an opportunistic fungal pathogen, causes a wide variety of human diseases such as oral thrush and disseminated candidiasis. Many aspects of C. albicans physiology have been studied during liquid growth, but in its natural environment, the gastrointestinal tract of a mammalian host, the organism associates with surfaces. Growth on a surface triggers several behaviors, such as biofilm formation, invasion, and thigmotropism, that are important for infection. Recent discoveries have identified factors that regulate these behaviors and revealed the importance of these behaviors for pathogenesis.
Collapse
Affiliation(s)
- Carol A Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111, USA.
| | | |
Collapse
|
83
|
Román E, Nombela C, Pla J. The Sho1 adaptor protein links oxidative stress to morphogenesis and cell wall biosynthesis in the fungal pathogen Candida albicans. Mol Cell Biol 2005; 25:10611-27. [PMID: 16287872 PMCID: PMC1291223 DOI: 10.1128/mcb.25.23.10611-10627.2005] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Sho1 adaptor protein is an important element of one of the two upstream branches of the high-osmolarity glycerol (HOG) mitogen-activated protein (MAP) kinase pathway in Saccharomyces cerevisiae, a signal transduction cascade involved in adaptation to stress. In the present work, we describe its role in the pathogenic yeast Candida albicans by the construction of mutants altered in this gene. We report here that sho1 mutants are sensitive to oxidative stress but that Sho1 has a minor role in the transmission of the phosphorylation signal to the Hog1 MAP kinase in response to oxidative stress, which mainly occurs through a putative Sln1-Ssk1 branch of the HOG pathway. Genetic analysis revealed that double ssk1 sho1 mutants were still able to grow on high-osmolarity media and activate Hog1 in response to this stress, indicating the existence of alternative inputs of the pathway. We also demonstrate that the Cek1 MAP kinase is constitutively active in hog1 and ssk1 mutants, a phenotypic trait that correlates with their resistance to the cell wall inhibitor Congo red, and that Sho1 is essential for the activation of the Cek1 MAP kinase under different conditions that require active cell growth and/or cell wall remodeling, such as the resumption of growth upon exit from the stationary phase. sho1 mutants are also sensitive to certain cell wall interfering compounds (Congo red, calcofluor white), presenting an altered cell wall structure (as shown by the ability to aggregate), and are defective in morphogenesis on different media, such as SLAD and Spider, that stimulate hyphal growth. These results reveal a role for the Sho1 protein in linking oxidative stress, cell wall biogenesis, and morphogenesis in this important human fungal pathogen.
Collapse
Affiliation(s)
- Elvira Román
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | | | | |
Collapse
|
84
|
Furukawa K, Hoshi Y, Maeda T, Nakajima T, Abe K. Aspergillus nidulans HOG pathway is activated only by two-component signalling pathway in response to osmotic stress. Mol Microbiol 2005; 56:1246-61. [PMID: 15882418 DOI: 10.1111/j.1365-2958.2005.04605.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genome sequencing analyses revealed that Aspergillus nidulans has orthologous genes to all those of the high-osmolarity glycerol (HOG) response mitogen-activated protein kinase (MAPK) pathway of Saccharomyces cerevisiae. A. nidulans mutant strains lacking sskA, sskB, pbsB, or hogA, encoding proteins orthologous to the yeast Ssk1p response regulator, Ssk2p/Ssk22p MAPKKKs, Pbs2p MAPKK and Hog1p MAPK, respectively, showed growth inhibition under high osmolarity, and HogA MAPK in these mutants was not phosphorylated under osmotic or oxidative stress. Thus, activation of the A. nidulans HOG (AnHOG) pathway depends solely on the two-component signalling system, and MAPKK activation mechanisms in the AnHOG pathway differ from those in the yeast HOG pathway, where Pbs2p is activated by two branches, Sln1p and Sho1p. Expression of pbsB complemented the high-osmolarity sensitivity of yeast pbs2Delta, and the complementation depended on Ssk2p/Ssk22p, but not on Sho1p. Pbs2p requires its Pro-rich motif for binding to the Src-homology3 (SH3) domain of Sho1p, but PbsB lacks a typical Pro-rich motif. However, a PbsB mutant (PbsB(Pro)) with the yeast Pro-rich motif was activated by the Sho1p branch in yeast. In contrast, HogA in sskADelta expressing PbsB(Pro) was not phosphorylated under osmotic stress, suggesting that A. nidulans ShoA, orthologous to yeast Sho1p, is not involved in osmoresponsive activation of the AnHOG pathway. We also found that besides HogA, PbsB can activate another Hog1p MAPK orthologue, MpkC, in A. nidulans, although mpkC is dispensable in osmoadaptation. In this study, we discuss the differences between the AnHOG and the yeast HOG pathways.
Collapse
Affiliation(s)
- Kentaro Furukawa
- Graduate School of Agricultural Sciences, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | | | | | | | | |
Collapse
|
85
|
Brand A, MacCallum DM, Brown AJP, Gow NAR, Odds FC. Ectopic expression of URA3 can influence the virulence phenotypes and proteome of Candida albicans but can be overcome by targeted reintegration of URA3 at the RPS10 locus. EUKARYOTIC CELL 2005; 3:900-9. [PMID: 15302823 PMCID: PMC500875 DOI: 10.1128/ec.3.4.900-909.2004] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Uridine auxotrophy, based on disruption of both URA3 alleles in diploid Candida albicans strain SC5314, has been widely used to select gene deletion mutants created in this fungus by "Ura-blasting" and PCR-mediated disruption. We compared wild-type URA3 expression with levels in mutant strains where URA3 was positioned either within deleted genes or at the highly expressed RPS10 locus. URA3 expression levels differed significantly and correlated with the specific activity of Ura3p, orotidine 5'-monophosphate decarboxylase. Reduced URA3 expression following integration at the GCN4 locus was associated with an attenuation of virulence. Furthermore, a comparison of the SC5314 (URA3) and CAI-4 (ura3) proteomes revealed that inactivation of URA3 caused significant changes in the levels of 14 other proteins. The protein levels of all except one were partially or fully restored by the reintegration of a single copy of URA3 at the RPS10 locus. Transcript levels of genes expressed ectopically at this locus in reconstituted heterozygous mutants also matched the levels found when the genes were expressed at their native loci. Therefore, phenotypic changes in C. albicans can be associated with the selectable marker rather than the target gene. Reintegration of URA3 at an appropriate expression locus such as RPS10 can offset most problems related to the phenotypic changes associated with gene knockout methodologies.
Collapse
Affiliation(s)
- Alexandra Brand
- School of Medical Sciences, Institute of Medical Sciences, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
86
|
Kruppa M, Krom BP, Chauhan N, Bambach AV, Cihlar RL, Calderone RA. The two-component signal transduction protein Chk1p regulates quorum sensing in Candida albicans. EUKARYOTIC CELL 2005; 3:1062-5. [PMID: 15302838 PMCID: PMC500889 DOI: 10.1128/ec.3.4.1062-1065.2004] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Regulation of hyphal morphogenesis in Candida albicans can occur through quorum sensing (QS). A QS signal, farnesol, is produced during high-density growth and inhibits morphogenesis. However, the signal transduction pathway that regulates QS is unknown. Here, we show that a C. albicans mutant lacking Chk1p but not either the Sln1p or the Nik1p histidine kinase is refractory to the inhibitory effect of farnesol both in cell suspension and during the formation of a biofilm. This study is the first to demonstrate a role for a two-component signal transduction protein in QS by a eukaryotic organism.
Collapse
Affiliation(s)
- Michael Kruppa
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | | | |
Collapse
|
87
|
Arana DM, Nombela C, Alonso-Monge R, Pla J. The Pbs2 MAP kinase kinase is essential for the oxidative-stress response in the fungal pathogen Candida albicans. MICROBIOLOGY-SGM 2005; 151:1033-1049. [PMID: 15817773 DOI: 10.1099/mic.0.27723-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The human fungal pathogen Candida albicans responds to stress by phosphorylation of the Hog1 MAP kinase. PBS2 was cloned and shown to encode the MAP kinase kinase that is involved in this activation, as determined by immunoblot analyses using antibodies that recognize the active form of the target Hog1 protein. Characterization of pbs2 mutants revealed that they were sensitive to both osmotic and oxidative stress and that they, interestingly, displayed differential behaviour from that of hog1 mutants, losing viability when exposed to an oxidative challenge more rapidly than the hog1 strain. Hog1 and Pbs2 were also shown to be involved in the mechanism of adaptation to oxidative stress, as evidenced by the enhanced susceptibility to oxidants of pbs2 and hog1 mutants, compared with the wild-type strain, when cells were previously exposed to a low, sub-lethal concentration of hydrogen peroxide and by the PBS2-dependent diminished activation of Hog1 MAP kinase in the adaptive process. Studies with a chimaeric Hog1-green fluorescent protein fusion revealed that this protein was localized throughout the cell (being excluded from the vacuole), but concentrated in the nucleus in response to NaCl stress, a process that was dependent on the Pbs2 protein. Both Hog1 and Pbs2 also play a role in controlling the phosphorylation state of the other MAP kinases Mkc1 and Cek1, involved respectively in cell-wall integrity and invasive growth. Furthermore, it is demonstrated that PBS2 plays a role in cell-wall biogenesis in this fungal pathogen, as its deletion renders cells with an altered susceptibility to certain cell wall-interfering compounds.
Collapse
Affiliation(s)
- David M Arana
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - César Nombela
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Rebeca Alonso-Monge
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Jesús Pla
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| |
Collapse
|
88
|
Du C, Calderone R, Richert J, Li D. Deletion of the SSK1 response regulator gene in Candida albicans contributes to enhanced killing by human polymorphonuclear neutrophils. Infect Immun 2005; 73:865-71. [PMID: 15664927 PMCID: PMC547022 DOI: 10.1128/iai.73.2.865-871.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The isolation and partial functional characterization of the two-component response regulator SSK1 gene of Candida albicans was previously reported. Compared to wild-type (CAF2-1) and gene-reconstituted (SSK23) strains, the ssk1 null strain (SSK21) was avirulent in a murine model of hematogenously disseminated candidiasis and less able to adhere to human esophageal cells. More recent data indicate that SSK21 is sensitive to 4 to 8 mM H(2)O(2) in vitro than CAF2-1 and SSK23. Furthermore, microarray studies indicate that the regulation of two classes of genes, those encoding cell wall functions and stress adaptation, are altered in the ssk1 mutant. In the present study, the susceptibility of strains CAF2-1, SSK21, and SSK23 to killing by human polymorphonuclear neutrophils (PMNs) was assessed. Results are also described for a newly constructed ssk1 mutant (SSK24) in which the URA3 gene is integrated into its native locus. Our results indicate that killing of SSK21 and SSK24 was significantly greater than that of CAF2-1 and SSK23 (P < 0.01). In order to determine why Ssk1p at least partially protects the organism against the killing activity of human PMNs, we compared the signal transduction activity and the inflammatory response gene profiles of PMNs infected with either the wild type or the ssk1 mutant. Phosphorylation of the mitogen-activated protein kinases p42/44 and p38 from neutrophils infected with either CAF2-1 (wild type) or SSK21 (ssk1/ssk1) was similar, while expression and phosphorylation of the JNK mitogen-activated protein kinase was not observed following infection with either strain. On the other hand, we observed an upregulation of seven inflammatory response genes in PMNs infected with the SSK21 mutant only, while an increase in interleukin-10 expression was measured in PMNs infected with either strain. Downregulation of interleukin-2 was observed in PMNs infected with either strain. Verification of the transcriptional profiling was obtained by reverse transcription-PCR for three of the genes that were upregulated in neutrophils infected with the ssk1 mutant. Also, the sensitivity of strain SSK21 to human defensin-1, one of the nonoxidative, antimicrobial peptides of PMNs, was greater than that of CAF2-1, demonstrating that nonoxidative killing in PMNs may contribute to the increased susceptibility of the ssk1 mutant. Our results indicate that the Ssk1p response regulator protein may provide at least partial adaptive functions for the survival of C. albicans following its encounter with human neutrophils.
Collapse
Affiliation(s)
- Chen Du
- Department of Microbiology and Immunology, Georgetown University Medical Center, 312 SE Med Dent Building, 3900 Reservoir Road NW, Washington, DC 20057-2197, USA
| | | | | | | |
Collapse
|
89
|
Chauhan N, Inglis D, Roman E, Pla J, Li D, Calera JA, Calderone R. Candida albicans response regulator gene SSK1 regulates a subset of genes whose functions are associated with cell wall biosynthesis and adaptation to oxidative stress. EUKARYOTIC CELL 2004; 2:1018-24. [PMID: 14555484 PMCID: PMC219380 DOI: 10.1128/ec.2.5.1018-1024.2003] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ssk1p of Candida albicans is a putative response regulator protein of the Hog1 two-component signal transduction system. In Saccharomyces cerevisiae, the phosphorylation state of Ssk1p determines whether genes that promote the adaptation of cells to osmotic stress are activated. We have previously shown that C. albicans SSK1 does not complement the ssk1 mutant of S. cerevisiae and that the ssk1 mutant of C. albicans is not sensitive to sorbitol. In this study, we show that the C. albicans ssk1 mutant is sensitive to several oxidants, including hydrogen peroxide, t-butyl hydroperoxide, menadione, and potassium superoxide when each is incorporated in yeast extract-peptone-dextrose (YPD) agar medium. We used DNA microarrays to identify genes whose regulation is affected by the ssk1 mutation. RNA from mutant cells (strain CSSK21) grown in YPD medium for 3 h at 30 degrees C was reverse transcribed and then compared with similarly prepared RNA from wild-type cells (CAF2). We observed seven genes from mutant cells that were consistently up regulated (three-fold or greater compared to CAF2). In S. cerevisiae, three (AHP1, HSP12, and PYC2) of the seven genes that were up regulated provide cells with an adaptation function in response to oxidative stress; another gene (GPH1) is regulated under stress conditions by Hog1p. Three other genes that are up regulated encode a cell surface protein (FLO1), a mannosyl transferase (MNN4-4), and a putative two-component histidine kinase (CHK1) that regulates cell wall biosynthesis in C. albicans. Of the down-regulated genes, ALS1 is a known cell adhesin in C. albicans. Verification of the microarray data was obtained by reverse transcription-PCR for HSP12, AHP1, CHK1, PYC2, GPH1, ALS1, MNN4-4, and FLO1. To further determine the function of Ssk1p in the Hog1p signal transduction pathway in C. albicans, we used Western blot analysis to measure phosphorylation of Hog1p in the ssk1 mutant of C. albicans when grown under either osmotic or oxidative stress. We observed that Hog1p was phosphorylated in the ssk1 mutant of C. albicans when grown in a hyperosmotic medium but was not phosphorylated in the ssk1 mutant when the latter was grown in the presence of hydrogen peroxide. These data indicate that C. albicans utilizes the Ssk1p response regulator protein to adapt cells to oxidative stress, while its role in the adaptation to osmotic stress is less certain. Further, SSK1 appears to have a regulatory function in some aspects of cell wall biosynthesis. Thus, the functions of C. albicans SSK1 differ from those of S. cerevisiae SSK1.
Collapse
Affiliation(s)
- Neeraj Chauhan
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, District of Columbia 20057, USA
| | | | | | | | | | | | | |
Collapse
|
90
|
Singh P, Chauhan N, Ghosh A, Dixon F, Calderone R. SKN7 of Candida albicans: mutant construction and phenotype analysis. Infect Immun 2004; 72:2390-4. [PMID: 15039366 PMCID: PMC375215 DOI: 10.1128/iai.72.4.2390-2394.2004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SKN7 two-component response regulator gene of Candida albicans was deleted, and the phenotype of the mutant was established. This mutant exhibited impaired growth on Spider agar and 10% serum agar compared to wild-type and gene-reconstituted strains. The skn7 mutant was sensitive to H(2)O(2) in vitro, but its virulence was only mildly attenuated. A comparison of the Skn7p and Ssk1p response regulators of C. albicans is discussed.
Collapse
Affiliation(s)
- Praveen Singh
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | |
Collapse
|
91
|
Kruppa M, Jabra-Rizk MA, Meiller TF, Calderone R. The histidine kinases of Candida albicans: regulation of cell wall mannan biosynthesis. FEMS Yeast Res 2004; 4:409-16. [PMID: 14734021 DOI: 10.1016/s1567-1356(03)00201-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Previously, we have used both biochemical and immunological approaches to determine that the two-component, histidine kinase Chk1p regulates cell wall biosynthesis in Candida albicans. These data were obtained by comparing wild-type cells to a strain of C. albicans deleted in CHK1. The dysregulation of cell wall biosynthesis in the mutant reduces its adherence to human esophageal tissue and results in avirulence. In the current study, we used transmission immune electron microscopy (IEM) to visualize the cell surface of both wild-type (CAF2) and the chk1 mutant (CHK21). IEM was performed using two IgM monoclonal antibodies to either an acid-stable mannan epitope (Mab B6) or to an acid-labile mannan epitope (Mab B6.1). We observed that the cell surface of the CHK21 mutant was more reactive than wild-type cells with Mab B6, while the reactivity of Mab B6.1 was similar for both CAF2 and CHK21. These observations correlate with previous data on the Western blotting of mutant and wild-type cells using the same monoclonal antibodies, i.e., greater activity with Mab B6 than with Mab B6.1. In addition to CHK1, two other histidine kinases (SLN1 and NIK1) have been described in C. albicans. Mutants in both sln1Delta and nik1Delta were compared by Western blotting using Mab B6 and Mab B6.1. Reactivity of each mutant to Mab B6 was similar to that observed with the chk1 mutant; on the other hand, the mannoprotein profiles obtained with Mab B6.1 in all mutants were similar to wild-type cells. We also compared the expression of 29 genes involved in mannan synthesis by reverse transcription-polymerase chain reaction (RT-PCR) and found that expression of a subset of six genes (ALG2, ALG6, ALG8, MNT3, PMT6, KRT2) was upregulated in all histidine kinase mutants, while increased expression of ALG7 was only observed in the sln1 and nik1 mutants, MNN1 was upregulated in the chk1 and nik1 mutants, and MNN4 was upregulated in the nik1Delta. Our data indicate that each of the C. albicans HK proteins may regulate similar functions in cell wall biosynthesis. This activity could be achieved in either a common or parallel, redundant signal transduction pathway(s).
Collapse
Affiliation(s)
- Michael Kruppa
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| | | | | | | |
Collapse
|
92
|
Kruppa M, Goins T, Cutler JE, Lowman D, Williams D, Chauhan N, Menon V, Singh P, Li D, Calderone R. The role of the Candida albicans histidine kinase [CHK1) gene in the regulation of cell wall mannan and glucan biosynthesis. FEMS Yeast Res 2003; 3:289-99. [PMID: 12689636 DOI: 10.1111/j.1567-1364.2003.tb00170.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The human pathogen Candida albicans encodes at least three putative two-component histidine kinase signal transduction proteins, including Chk1p and a response regulator protein (Cssk1p). Strains deleted in CHK1 are avirulent in a murine model of hematogenously disseminated disease. The specific function of Chk1p has not been established, but hyphae of the chk1 mutant exhibit extensive flocculation while yeast forms are less adherent to reconstituted human esophageal tissue, indicating that this protein may regulate cell surface properties. Herein, we analyze glucan, mannan and chitin profiles in strains deleted in chk1 (CHK21) compared to a gene-reconstituted strain (CHK23) and a parental strain CAF2. Total alkali-soluble hexose from the cell wall of the chk1 mutant (strain CHK21) was significantly reduced. Western blots of cell wall extracts from CHK21, CHK23 and CAF2 reacted with a Mab to the acid-stable mannan fraction revealed extensive staining of lower molecular mass species in strain CHK21 only. FACE (fluorophore assisted carbohydrate electrophoresis) was used to characterize the oligosaccharide side chains of beta-eliminated (O-linked), acid-hydrolyzed (acid-labile phosphomannan) and acetolysis (acid-stable mannan) extracted fractions of total mannan. The profiles of O-linked as well as the acid-labile oligosaccharides were similar in both CAF2 and CHK21, but the acid-stable oligosaccharide side chains were significantly truncated. We also characterized the beta-glucan from each strain using NMR, and found that both the degree of polymerization and the ratio of (1-3)/(1-6) linkages was lower in CHK21 relative to wild-type cells. The sensitivity of CHK21 to antifungal drugs and inhibitors was unaffected. In summary, our data have identified a new function for a histidine kinase two-component signal protein in a human pathogenic fungus.
Collapse
Affiliation(s)
- Michael Kruppa
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Clemons KV, Miller TK, Selitrennikoff CP, Stevens DA. fos-1, a putative histidine kinase as a virulence factor for systemic aspergillosis. Med Mycol 2002; 40:259-62. [PMID: 12146755 DOI: 10.1080/mmy.40.3.259.262] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
In fungi, two-component histidine kinases have various functions including regulation of osmosensitivity, and of cell-wall assembly. Furthermore, one of these proteins, cos-1, has been shown to be important for virulence of Candida albicans. Recently, a putative histidine kinase, fos-1, has been isolated and partially characterized from Aspergillus fumigatus. Here we compare the virulence of a fos-1 deletion strain with that of the parental wild-type strain in a murine model of systemic aspergillosis. Our results show that the fos-1 deletion strain has significantly reduced virulence as compared with the parental wild-type strain. Thus, we propose that the fos-1 two-component histidine kinase is a virulence factor of A. fumigatus.
Collapse
Affiliation(s)
- K V Clemons
- California Institute for Medical Research, San Jose 95128, USA.
| | | | | | | |
Collapse
|
94
|
Abstract
The ability to adapt to altered availability of free water is a fundamental property of living cells. The principles underlying osmoadaptation are well conserved. The yeast Saccharomyces cerevisiae is an excellent model system with which to study the molecular biology and physiology of osmoadaptation. Upon a shift to high osmolarity, yeast cells rapidly stimulate a mitogen-activated protein (MAP) kinase cascade, the high-osmolarity glycerol (HOG) pathway, which orchestrates part of the transcriptional response. The dynamic operation of the HOG pathway has been well studied, and similar osmosensing pathways exist in other eukaryotes. Protein kinase A, which seems to mediate a response to diverse stress conditions, is also involved in the transcriptional response program. Expression changes after a shift to high osmolarity aim at adjusting metabolism and the production of cellular protectants. Accumulation of the osmolyte glycerol, which is also controlled by altering transmembrane glycerol transport, is of central importance. Upon a shift from high to low osmolarity, yeast cells stimulate a different MAP kinase cascade, the cell integrity pathway. The transcriptional program upon hypo-osmotic shock seems to aim at adjusting cell surface properties. Rapid export of glycerol is an important event in adaptation to low osmolarity. Osmoadaptation, adjustment of cell surface properties, and the control of cell morphogenesis, growth, and proliferation are highly coordinated processes. The Skn7p response regulator may be involved in coordinating these events. An integrated understanding of osmoadaptation requires not only knowledge of the function of many uncharacterized genes but also further insight into the time line of events, their interdependence, their dynamics, and their spatial organization as well as the importance of subtle effects.
Collapse
Affiliation(s)
- Stefan Hohmann
- Department of Cell and Molecular Biology/Microbiology, Göteborg University, S-405 30 Göteborg, Sweden.
| |
Collapse
|
95
|
Abstract
Pathogenic fungi have become an increasingly common cause of systemic disease in healthy people and those with impaired immune systems. Although a vast number of fungal species inhabit our planet, just a small number are pathogens, and one feature that links many of them is the ability to differentiate morphologically from mould to yeast, or yeast to mould. Morphological differentiation between yeast and mould forms has commanded attention for its putative impact on the pathogenesis of invasive fungal infections. This review explores the current body of evidence linking fungal morphogenesis and virulence. The topics addressed cover work on phase-locked fungal cells, expression of phase-specific virulence traits and modulation of host responses by fungal morphotypes. The effect of morphological differentiation on fungal interaction with host cells, immune modulation and the net consequence on pathogenesis of disease in animal model systems are considered. The evidence argues strongly that morphological differentiation plays a vital role in the pathogenesis of fungal infection, suggesting that factors associated with this conversion process represent promising therapeutic targets.
Collapse
Affiliation(s)
- Peggy J Rooney
- Department of Medical Microbiology and Immunology, University of Wisconsin Medical School, Madison, Wisconsin, USA
| | | |
Collapse
|
96
|
Li D, Bernhardt J, Calderone R. Temporal expression of the Candida albicans genes CHK1 and CSSK1, adherence, and morphogenesis in a model of reconstituted human esophageal epithelial candidiasis. Infect Immun 2002; 70:1558-65. [PMID: 11854244 PMCID: PMC127796 DOI: 10.1128/iai.70.3.1558-1565.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2001] [Revised: 10/30/2001] [Accepted: 12/10/2001] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated that genes encoding a putative two-component histidine kinase (CHK1) or a response regulator (CSSK1) are each required for virulence in a murine model of hematogenously disseminated candidiasis and that strains with each gene deleted are also defective in morphogenesis under certain growth conditions. In the present study, the role of these two genes in the adherence to and colonization of reconstituted human esophageal tissue (RHE) is described. We compared strains of Candida albicans with deletions of chk1 (strain CHK21) and cssk1 (strain CSSK21) to wild-type cells (CAF2), as well as strains with CHK1 and CSSK1 reconstituted (strains CHK23 and CSSK23, respectively). Adherence and colonization of RHE were evaluated in periodic acid-Schiff-stained sections, as well as by SEM. We observed that both deletion-containing strains colonized the RHE to a lesser extent than did CAF2 and that the percent germination by both strains was reduced in comparison to that of control strains at 1 h postinfection. Expression of CHK1 or CSSK1 was quantitated by reverse transcription (RT)-PCR from RHE tissues infected with wild-type C. albicans yeast cells. Expression of both CHK1 and CSSK1 increased over the 48-h period following infection of the tissue, although expression of CHK1 was greater than that of CSSK1. By RT-PCR, we have also shown that expression of CHK1 and CSSK1 in the strains with cssk1 and chk1 deleted, respectively, was similar to that of CAF2, indicating that CHK1 and CSSK1 do not regulate each other but probably encode signal proteins of different pathways. Our observations indicate that CHK1 and CSSK1 are each partially required for colonization and conversion to filamentous growth on RHE tissue.
Collapse
Affiliation(s)
- Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20007 , Universitätsklinik fur Chirurgie, D-17487 Greifswald, Germany
| | - Joern Bernhardt
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20007 , Universitätsklinik fur Chirurgie, D-17487 Greifswald, Germany
| | - Richard Calderone
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20007 , Universitätsklinik fur Chirurgie, D-17487 Greifswald, Germany
| |
Collapse
|
97
|
Abstract
A main avenue of defense against fungal infection uses oxidative killing of these and other microorganisms. Consequently, the ability of fungi to withstand an oxidative challenge has important implications for their ultimate pathogenicity in a host organism. Fungi also serve as an excellent model system for handling of reactive oxygen species in eukaryotic cells. For these reasons, a great deal of work has been invested in analyzing pathways involved in and the mechanisms regulating oxidative stress tolerance in fungi. The goal of this review is to discuss the current state of knowledge underlying the ability of fungal cells to mount a response to oxidative stress via activation of transcription factors. Studies in Saccharomyces cerevisiae have identified multiple transcriptional regulatory proteins that mediate tolerance to oxidative stress. Experiments focused on the fission yeast Schizosaccharomyces pombe have led to the discovery of protein kinase cascades highly related to mammalian stress-activated protein kinases. Recent studies on the pathogenic yeast Candida albicans have allowed analysis of the role of a critical oxidant-regulated transcription factor in this important human pathogen. Further understanding of oxidative stress resistance pathways in fungi is an important step toward understanding the molecular pathogenesis of these microorganisms.
Collapse
Affiliation(s)
- W Scott Moye-Rowley
- Department of Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
98
|
Singh P, Ghosh S, Datta A. Attenuation of virulence and changes in morphology in Candida albicans by disruption of the N-acetylglucosamine catabolic pathway. Infect Immun 2001; 69:7898-903. [PMID: 11705974 PMCID: PMC98888 DOI: 10.1128/iai.69.12.7898-7903.2001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A Candida albicans mutant with mutations in the N-acetylglucosamine (GlcNAc) catabolic pathway gene cluster, including the GlcNAc-6-phosphate deacetylase (DAC1), glucosamine-6-phosphate deaminase (NAG1), and GlcNAc kinase (HXK1) genes, was not able to grow on amino sugars, exhibited highly attenuated virulence in a murine systemic candidiasis model, and was less adherent to human buccal epithelial cells in vitro. No germ tubes were formed by the mutant after induction with GlcNAc, but the mutant exhibited hyperfilamentation under stress-induced filamentation conditions. In addition, the GlcNAc catabolic pathway played a vital role in determining the colony phenotype. Our results imply that this pathway is very important because of its diverse links with pathways involved in virulence and morphogenesis of the organism.
Collapse
Affiliation(s)
- P Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | |
Collapse
|
99
|
Affiliation(s)
- H Saito
- Dana-Farber Cancer Institute, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA.
| |
Collapse
|
100
|
Jong AY, Stins MF, Huang SH, Chen SH, Kim KS. Traversal of Candida albicans across human blood-brain barrier in vitro. Infect Immun 2001; 69:4536-44. [PMID: 11401997 PMCID: PMC98530 DOI: 10.1128/iai.69.7.4536-4544.2001] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is an opportunistic pathogen, which primarily affects neonates and immunocompromised individuals. The pathogen can invade the central nervous system, resulting in meningitis. At present, the pathogenesis of C. albicans meningitis is unclear. We used an in vitro model of the human blood-brain barrier to investigate the interaction(s) of C. albicans with human brain microvascular endothelial cells (BMEC). Binding of C. albicans to human BMEC was time and inoculum dependent. Invasion of C. albicans into human BMEC was demonstrated by using an enzyme-linked immunosorbent assay based on fluorescent staining of C. albicans with calcoflour. In contrast, avirulent Candida mutant strains and nonpathogenic yeast Saccharomyces cerevisiae were not able to bind and invade human BMEC. Morphological studies revealed that on association with human BMEC, C. albicans formed germ tubes and was able to bud intracellularly. Transmission electron microscopy showed various stages of C. albicans interactions with human BMEC, e.g., pseudopod-like structures on human BMEC membrane and intracellular vacuole-like structures retaining C. albicans. Of interest, C. albicans was able to bud and develop pseudohyphae inside human BMEC without apparent morphological changes of the host cells. In addition, C. albicans penetrates through human BMEC monolayers without a detectable change in transendothelial electrical resistance and inulin permeability. This is the first demonstration that C. albicans is able to adhere, invade, and transcytose across human BMEC without affecting monolayer integrity. A complete understanding of the interaction(s) of C. albicans with human BMEC should contribute to the understanding of the pathogenic mechanism(s) of C. albicans meningitis.
Collapse
Affiliation(s)
- A Y Jong
- Divisions of Hematology-Oncology, Childrens Hospital Los Angeles, Los Angeles, California 90027, USA.
| | | | | | | | | |
Collapse
|