51
|
McGugan GC, Temesvari LA. Characterization of a Rab11-like GTPase, EhRab11, of Entamoeba histolytica. Mol Biochem Parasitol 2003; 129:137-46. [PMID: 12850258 DOI: 10.1016/s0166-6851(03)00115-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Entamoeba histolytica Rab11 family of small molecular weight GTPases consists of three members, EhRab11, EhRab11B, and EhRab11C. The functions of these Rabs in Entamoeba have not been determined. Therefore, as an approach to elucidate the role of the Rab11 family of GTPases in Entamoeba, immunofluorescence microscopy was undertaken to define the subcellular localization of one member of this family, EhRab11. Under conditions of growth, EhRab11 displayed a punctate pattern in the cytoplasm of trophozoites. EhRab11 did not colocalize with markers for the Golgi apparatus, endoplasmic reticulum, pinosomes, phagosomes, or compartments formed by receptor-mediated endocytosis, suggesting that this Rab may not play a role in vesicle trafficking between these organelles. Under conditions of iron and serum starvation, EhRab11 was translocated to the periphery of the cell. The altered cellular localization was accompanied by multinucleation of the cells as well as the acquisition of detergent resistance by the cells, features that are characteristic of Entamoeba cysts. The translocation of EhRab11 to the periphery of the cell during iron and serum starvation was specific as the subcellular localizations of two other Rab GTPases, EhRab7 and EhRabA, were not altered under the same conditions. In addition, the formation of multinucleated cells by inhibition of cytokinesis was not sufficient to induce the translocation of EhRab11 to the cell periphery. Taken together, the data suggest that iron and serum starvation may induce encystation in E. histolytica and that EhRab11 may play a role in this process. Moreover, these studies are the first to describe a putative role for a Rab GTPase in encystation in Entamoeba sp.
Collapse
Affiliation(s)
- Glen C McGugan
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634-1903, USA
| | | |
Collapse
|
52
|
West CM. Comparative analysis of spore coat formation, structure, and function in Dictyostelium. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 222:237-93. [PMID: 12503851 DOI: 10.1016/s0074-7696(02)22016-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Dictyostelium produces spores at the end of its developmental cycle to propagate the lineage. The spore coat is an essential feature of spore biology contributing a semipermeable chemical and physical barrier to protect the enclosed amoeba. The coat is assembled from secreted proteins and a polysaccharide, and from cellulose produced at the cell surface. They are organized into a polarized molecular sandwich with proteins forming layers surrounding the microfibrillar cellulose core. Genetic and biochemical studies are beginning to provide insight into how the deliveries of protein and cellulose to the cell surface are coordinated and how cysteine-rich domains of the proteins interact to form the layers. A multidomain inner layer protein, SP85/PsB, seems to have a central role in regulating coat assembly and contributing to a core structural module that bridges proteins to cellulose. Coat formation and structure have many parallels in walls from plant, algal, yeast, protist, and animal cells.
Collapse
Affiliation(s)
- Christopher M West
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| |
Collapse
|
53
|
Wang Z, Samuelson J, Clark CG, Eichinger D, Paul J, Van Dellen K, Hall N, Anderson I, Loftus B. Gene discovery in the Entamoeba invadens genome. Mol Biochem Parasitol 2003; 129:23-31. [PMID: 12798503 DOI: 10.1016/s0166-6851(03)00073-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Entamoeba invadens, a parasite of reptiles, is a model for the study of encystation by the human enteric pathogen Entamoeba histolytica, because E. invadens form cysts in axenic culture. With approximately 0.5-fold sequence coverage of the genome, we were able to get insights into E. invadens gene and genome features. Overall, the E. invadens genome displays many of the features that are emerging from ongoing genome sequencing efforts in E. histolytica. At the nucleotide level the E. invadens genome has on average 60% sequence identity with that of E. histolytica. The presence of introns in E. invadens was predicted with similar consensus (GTTTGT em leader A/TAG) sequences to those identified in E. histolytica and Entamoeba dispar. Sequences highly repeated in the genome of E. histolytica (rRNAs, tRNAs, CXXC-rich proteins, and Leu-rich repeat proteins) were found to be highly repeated in the E. invadens genome. Numerous proteins homologous to those implicated in amoebic virulence, (Gal/GalNAc lectins, amoebapores, and cysteine proteinases) and drug resistance (p-glycoproteins) were identified. Homologs of proteins involved in cell cycle, vesicular trafficking and signal transduction were identified, which may be involved in en/excystation and cell growth of E. invadens. Finally, multiple copies of a number of E. invadens genes coding for predicted enzymes involved in core metabolism and the targets of anti-amoebic drugs were identified.
Collapse
Affiliation(s)
- Zheng Wang
- Center for Bio/Molecular Science Naval Research Laboratory, Washington, DC 20375, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Metcalf T, Kelley K, Erdos GW, Kaplan L, West CM. Formation of the outer layer of the Dictyostelium spore coat depends on the inner-layer protein SP85/PsB. MICROBIOLOGY (READING, ENGLAND) 2003; 149:305-317. [PMID: 12624193 DOI: 10.1099/mic.0.25984-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Dictyostelium spore is surrounded by a 220 microm thick trilaminar coat that consists of inner and outer electron-dense layers surrounding a central region of cellulose microfibrils. In previous studies, a mutant strain (TL56) lacking three proteins associated with the outer layer exhibited increased permeability to macromolecular tracers, suggesting that this layer contributes to the coat permeability barrier. Electron microscopy now shows that the outer layer is incomplete in the coats of this mutant and consists of a residual regular array of punctate electron densities. The outer layer is also incomplete in a mutant lacking a cellulose-binding protein associated with the inner layer, and these coats are deficient in an outer-layer protein and another coat protein. To examine the mechanism by which this inner-layer protein, SP85, contributes to outer-layer formation, various domain fragments were overexpressed in forming spores. Most of these exert dominant negative effects similar to the deletion of outer-layer proteins, but one construct, consisting of a fusion of the N-terminal and Cys-rich C1 domain, induces a dense mat of novel filaments at the surface of the outer layer. Biochemical studies show that the C1 domain binds cellulose, and a combination of site-directed mutations that inhibits its cellulose-binding activity suppresses outer-layer filament induction. The results suggest that, in addition to a previously described early role in regulating cellulose synthesis, SP85 subsequently contributes a cross-bridging function between cellulose and other coat proteins to organize previously unrecognized structural elements in the outer layer of the coat.
Collapse
Affiliation(s)
- Talibah Metcalf
- Dept of Anatomy and Cell Biology, ICBR, University of Florida, Gainesville, FL 32610-0235, USA
| | - Karen Kelley
- College of Medicine and Electron Microscopy Core Laboratory, ICBR, University of Florida, Gainesville, FL 32610-0235, USA
| | - Gregory W Erdos
- College of Medicine and Electron Microscopy Core Laboratory, ICBR, University of Florida, Gainesville, FL 32610-0235, USA
| | - Lee Kaplan
- Dept of Anatomy and Cell Biology, ICBR, University of Florida, Gainesville, FL 32610-0235, USA
| | - Christopher M West
- Dept of Anatomy and Cell Biology, ICBR, University of Florida, Gainesville, FL 32610-0235, USA
| |
Collapse
|
55
|
Petri WA, Haque R, Mann BJ. The bittersweet interface of parasite and host: lectin-carbohydrate interactions during human invasion by the parasite Entamoeba histolytica. Annu Rev Microbiol 2003; 56:39-64. [PMID: 12142490 DOI: 10.1146/annurev.micro.56.012302.160959] [Citation(s) in RCA: 248] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Entamoeba histolytica, as its name suggests, is an enteric parasite with a remarkable ability to lyse host tissues. However, the interaction of the parasite with the host is more complex than solely destruction and invasion. It is at the host-parasite interface that cell-signaling events commit the parasite to (a) commensal, noninvasive infection, (b) developmental change from trophozoite to cyst, or (c) invasion and potential death of the human host. The molecule central to these processes is an amebic cell surface protein that recognizes the sugars galactose (Gal) and N-acetylgalactosamine (GalNAc) on the surface of host cells. Engagement of the Gal/GalNAc lectin to the host results in cytoskeletal reorganization in the parasite. The parasite cytoskeleton regulates the extracellular adhesive activity of the lectin and recruits to the host-parasite interface factors required for parasite survival within its host. If the parasite lectin attaches to the host mucin glycoproteins lining the intestine, the result is commensal infection. In contrast, attachment of the lectin to a host cell surface glycoprotein leads to lectin-induced host cell calcium transients, caspase activation, and destruction via apoptosis. Finally, trophozoite quorum sensing via the lectin initiates the developmental pathway resulting in encystment. The structure and function of the lectin that controls these divergent cell biologic processes are the subject of this review.
Collapse
Affiliation(s)
- William A Petri
- Division of Infectious Diseases, University of Virginia, MR4 Bldg Room 2115, Lane Road, Charlottesville 22908-1340, USA.
| | | | | |
Collapse
|
56
|
Samuelson J. WhatEntamoeba histolytica andGiardia lamblia tell us about the evolution of eukaryotic diversity. J Biosci 2002. [DOI: 10.1007/bf02704848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
57
|
Das S, Stevens T, Castillo C, Villasenõr A, Arredondo H, Reddy K. Lipid metabolism in mucous-dwelling amitochondriate protozoa. Int J Parasitol 2002; 32:655-75. [PMID: 12062485 DOI: 10.1016/s0020-7519(02)00006-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Entamoeba, Giardia, and trichomonads are the prominent members of a group known as 'mucosal parasites'. While Entamoeba and Giardia trophozoites colonise the small intestine, trichomonads inhabit the genitourinary tracts of humans and animals. These protozoa lack mitochondria, well-developed Golgi complexes, and other organelles typical of higher eukaryotes. Nonetheless, they have developed unique metabolic pathways that allow them to survive and multiply in the small intestine and reproductive tracts by scavenging nutrients from the host. Various investigators have shown that these protozoa are unable to synthesise the majority of their own lipids and cholesterol de novo; rather, they depend mostly on supplies from outside sources. Therefore, questions of how they transport and utilise exogenous lipids for metabolic purposes are extremely important. There is evidence suggesting that these parasites can take up the lipids and cholesterol they need from lipoprotein particles present in the host and/or in the growth medium. Studies also support the idea that individual lipid and fatty acid molecules can be transported without the help of lipoproteins. Exogenous phospholipids have been shown to undergo fatty acid remodelling (by deacylation/reacylation reactions), which allows these protozoa to alter lipids, bypassing the synthesis of entirely new phospholipid molecules. In addition, many of these amitochondriates are, however, capable of elongating/desaturating long-chain fatty acids, and assembling novel glycophospholipid molecules. In this review, progress in various aspects of lipid research on these organisms is discussed. Attempts are also made to identify steps of lipid metabolic pathways that can be used to develop chemotherapeutic agents against these and other mucosal parasites.
Collapse
Affiliation(s)
- Siddhartha Das
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519, USA.
| | | | | | | | | | | |
Collapse
|
58
|
Van Dellen K, Ghosh SK, Robbins PW, Loftus B, Samuelson J. Entamoeba histolytica lectins contain unique 6-Cys or 8-Cys chitin-binding domains. Infect Immun 2002; 70:3259-63. [PMID: 12011021 PMCID: PMC127964 DOI: 10.1128/iai.70.6.3259-3263.2002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2001] [Revised: 10/01/2001] [Accepted: 02/22/2002] [Indexed: 11/20/2022] Open
Abstract
The Jacob lectin, the most abundant glycoprotein in the cyst wall of Entamoeba invadens, contains five unique 6-Cys chitin-binding domains (CBDs). We identified Entamoeba histolytica and Entamoeba dispar genes encoding Jacob homologues, each of which contains two predicted 6-Cys CBDs. A unique 8-Cys CBD was found at the N termini of the E. histolytica chitinase and three other predicted lectins, called Jessie 1 to Jessie 3. The CBDs of four E. histolytica lectins (Jacob, chitinase, and Jessies 2 and 3) were expressed in secretory vesicles of transfected amebae and shown to bind to particulate chitin.
Collapse
Affiliation(s)
- Katrina Van Dellen
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston University School of Dental Medicine, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
59
|
Reiner DS, McCaffery JM, Gillin FD. Reversible interruption of Giardia lamblia cyst wall protein transport in a novel regulated secretory pathway. Cell Microbiol 2001; 3:459-72. [PMID: 11437832 DOI: 10.1046/j.1462-5822.2001.00129.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To survive in the environment and infect a new host, Giardia lamblia secretes an extracellular cyst wall using a poorly understood pathway. The two cyst wall proteins (CWPs) form disulphide-bonded heterodimers and are exported via novel encystation-specific secretory vesicles (ESVs). Exposure of eukaryotic cells to dithiothreitol (DTT) blocks the formation of disulphide bonds in nascent proteins that accumulate in the endoplasmic reticulum (ER) and induces an unfolded protein response (UPR). Proteins that have exited the ER are not susceptible. Exposure to DTT inhibits ESV formation by > 85%. Addition of DTT to encysting cells causes rapid (t1/2 < 10 min), reversible disappearance of ESVs, correlated with reduction of CWPs to monomers and reformation of CWP oligomers upon removal of DTT. Neither CWPs nor ESVs are affected by mercaptoethanesulphonic acid, a strong reducing agent that does not penetrate cells. DTT does not inhibit the overall protein secretory pathway, and recovery does not require new protein synthesis. We found evidence of protein disulphide isomerases in the ESV and the surface of encysting cells, in which they may catalyse initial CWP folding and recovery from DTT. This is the first suggestion of non-CWP proteins in ESVs and of enzymes on the giardial surface. DTT treatment did not stimulate a UPR, suggesting that Giardia may have diverged before the advent of this conserved form of ER quality control.
Collapse
Affiliation(s)
- D S Reiner
- Department of Pathology, Division of Infectious Diseases, University of California San Diego, School of Medicine, San Diego, CA 92103-8416, USA
| | | | | |
Collapse
|
60
|
Abstract
Glycoconjugates are abundant and ubiquitious on the surface of many protozoan parasites. Their tremendous diversity has implicated their critical importance in the life cycle of these organisms. This review highlights our current knowledge of the major glycoconjugates, with particular emphasis on their structures, of representative protozoan parasites, including Leishmania, Trypanosoma, Giardia, Plasmodia, and others.
Collapse
Affiliation(s)
- A Guha-Niyogi
- Department of Molecular and Cellular Biochemistry, University of Kentucky Medical Center, Lexington KY 40536, USA
| | | | | |
Collapse
|
61
|
Ganguly A, Lohia A. The cell cycle of Entamoeba invadens during vegetative growth and differentiation. Mol Biochem Parasitol 2001; 112:277-85. [PMID: 11223134 DOI: 10.1016/s0166-6851(00)00376-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The cell division cycle of Entamoeba invadens was studied during vegetative growth of trophozoites and during their differentiation into cysts. During vegetative growth of trophozoites, it was observed that DNA synthesis typically continued after one genome content had been duplicated. During encystation, DNA synthesis was arrested after 4n genome content had been synthesised. Using multi-parameter flow cytometry, the light scattering properties of cysts and trophozoites were studied. The cytoplasmic granularity, reflected by the side scatter of light, was proportional to DNA content of trophozoites, whereas cysts with similar DNA contents showed heterogeneity in their cytoplasmic granularity. Dynamic changes in the intracellular calcium pools were observed during differentiation of trophozoites to cysts. Comparison of E. invadens and Entamoeba histolytica cell cycles suggest that both organisms may have similar regulatory processes during cell division and differentiation. Since E. histolytica cannot be induced to encyst in axenic culture, analysis of the E. invadens cell cycle during encystation may be useful for identifying homologous processes in E.histolytica.
Collapse
Affiliation(s)
- A Ganguly
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VIIM, Calcutta 700 054, India
| | | |
Collapse
|
62
|
Abstract
In the life cycle of Entamoeba parasites alternate between the colon-dwelling trophozoite and the infectious cyst forms. The physiologic stimuli that trigger differentiation of trophozoites into cysts remain undefined. On the surface of the human-infecting Entamoeba, parasites express a galactose/N-acetylgatactosamine (gal/galNAc)-binding lectin, which plays demonstrated roles in contact-dependent lysis of target cells and resistance to host complement. Using a reptilian parasite, Entamoeba invadens, to study cyst formation in vitro, we found that efficient encystation was dependent on the presence of gal-terminated ligands in the induction medium. Precise concentration ranges of several gal-terminated ligands, such as asialofetuin, gal-bovine serum albumin (gal-BSA), and mucin, functioned in encystation medium to stimulate differentiation. Greater than 10 mM levels of free gal inhibited the amoeba aggregation that precedes encystation and prevented formation of mature cysts. Inhibitory levels of gal also prevented the up-regulation of genes which normally occurs at 24 h of encystation. The surface of Entamoeba invadens was found to express a gal lectin which has a heterodimeric structure similar to that of Entamoeba histolytica. The 30 kDa light subunit (LGL) of the E. invadens lectin is similar in overall size and sequence to the LGL of E. histolytica. The heavy subunits, however, differ in size, have an identical spacing of cysteines in their extracellular domains, and have highly conserved C-terminal transmembrane and cytoplasmic domains. These results suggest a new role for the Entamoeba gal lectins in monitoring the concentrations of gal ligands in the colon and contributing to stimuli that induce encystment.
Collapse
Affiliation(s)
- D Eichinger
- Department of Medical and Molecular Parasitology, New York University School of Medicine, New York 10010, USA.
| |
Collapse
|
63
|
Field J, Van Dellen K, Ghosh SK, Samuelson J. Responses of Entamoeba invadens to heat shock and encystation are related. J Eukaryot Microbiol 2000; 47:511-4. [PMID: 11001149 DOI: 10.1111/j.1550-7408.2000.tb00083.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An Entamoeba invadens gene encoding a homologue of BiP/GRP78, a 70-kDa heat shock protein or chaperonin was cloned. The predicted E. invadens BiP contained an ATP-binding site, a substrate-recognition domain, and a carboxy-terminal KDEL-peptide. Messenger RNAs of E. invadens for BiP, for a 70-kDa heat shock cognate, for a cyst wall glycoprotein (Jacob), and for chitinase were all induced by heat shock and by encystation medium. The presence of Jacob in heat-shocked amebae was confirmed by confocal microscopy and suggests that heat shock and encystation responses in E. invadens are related.
Collapse
Affiliation(s)
- J Field
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|