51
|
Shenoy VB, Tambe DT, Prasad A, Theriot JA. A kinematic description of the trajectories of Listeria monocytogenes propelled by actin comet tails. Proc Natl Acad Sci U S A 2007; 104:8229-34. [PMID: 17485664 PMCID: PMC1895934 DOI: 10.1073/pnas.0702454104] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bacterial pathogen Listeria monocytogenes propels itself in the cytoplasm of the infected cells by forming a filamentous comet tail assembled by the polymerization of the cytoskeletal protein actin. Although a great deal is known about the molecular processes that lead to actin-based movement, most macroscale aspects of motion, including the nature of the trajectories traced out by the motile bacteria, are not well understood. Here, we present 2D trajectories of Listeria moving between a glass-slide and coverslip in a Xenopus frog egg extract motility assay. We observe that the bacteria move in a number of fascinating geometrical trajectories, including winding S curves, translating figure eights, small- and large-amplitude sine curves, serpentine shapes, circles, and a variety of spirals. We then develop a dynamic model that provides a unified description of these seemingly unrelated trajectories. A key ingredient of the model is a torque (not included in any microscopic models of which we are aware) that arises from the rotation of the propulsive force about the body axis of the bacterium. We show that a large variety of trajectories with a rich mathematical structure are obtained by varying the rate at which the propulsive force moves about the long axis. The trajectories of bacteria executing both steady and saltatory motion are found to be in excellent agreement with the predictions of our dynamic model. When the constraints that lead to planar motion are removed, our model predicts motion along regular helical trajectories, observed in recent experiments.
Collapse
Affiliation(s)
- V B Shenoy
- Division of Engineering, Brown University, Providence, RI 02912, USA.
| | | | | | | |
Collapse
|
52
|
Carlsson F, Brown EJ. Actin-based motility of intracellular bacteria, and polarized surface distribution of the bacterial effector molecules. J Cell Physiol 2006; 209:288-96. [PMID: 16826602 DOI: 10.1002/jcp.20721] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Several intracellular bacterial pathogens, including species of Listeria, Rickettsia, Shigella, Mycobacteria, and Burkholderia, have evolved mechanisms to exploit the actin polymerization machinery of their hosts to induce actin-based motility, enabling these pathogens to spread between host cells without exposing themselves to the extracellular milieu. Efficient cell-to-cell spread requires directional motility, which the bacteria may achieve by concentrating the effector molecules at one pole of their cell body, thereby restricting polymerization of monomeric actin into actin tails to this pole. The study of the molecular processes involved in the initiation of actin tail formation at the bacterial surface, and subsequent actin-based motility, has provided much insight into the pathogenesis of infections caused by these bacteria and into the cell biology of actin dynamics. Concomitantly, this field of research has provided an opportunity to understand the mechanisms whereby bacteria can achieve a polarized distribution of surface proteins. This review will describe the process of actin-based motility of intracellular bacteria, and the mechanisms by which bacteria can obtain a polarized distribution of their surface proteins.
Collapse
Affiliation(s)
- Fredric Carlsson
- Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, California 94158-2517, USA.
| | | |
Collapse
|
53
|
Abstract
Listeria, Rickettsia, Burkholderia, Shigella and Mycobacterium species subvert cellular actin dynamics to facilitate their movement within the host cytosol and to infect neighbouring cells while evading host immune surveillance and promoting their intracellular survival. 'Attaching and effacing' Escherichia coli do not enter host cells but attach intimately to the cell surface, inducing motile actin-rich pedestals, the function of which is currently unclear. The molecular basis of actin-based motility of these bacterial pathogens reveals novel insights about bacterial pathogenesis and fundamental host-cell pathways.
Collapse
Affiliation(s)
- Joanne M Stevens
- Division of Microbiology, Institute for Animal Health, Compton Laboratory, Berkshire, RG20 7NN, UK
| | | | | |
Collapse
|
54
|
Abstract
The dendritic nucleation model was devised to explain the cycle of actin dynamics resulting in actin filament network assembly and disassembly in two contexts--at the leading edge of motile cells and in the actin comet tails of intracellular pathogenic bacteria and viruses. Due to the detailed nature of its biochemical predictions, the model has provided an excellent focus for subsequent experimentation. This review summarizes recent work on actin dynamics in the context of the dendritic nucleation model. One outcome of this research is the possibility that additional proteins, as well as the six proteins included in the original model, might increase the efficiency of dendritic nucleation or modify the resulting actin network. In addition, actin dynamics at the leading edge might be influenced by a second actin filament network, independent of dendritic nucleation.
Collapse
|
55
|
Abstract
The actin cytoskeleton is harnessed by several pathogenic bacteria that are capable of entering into non-phagocytic cells, the so-called 'invasive bacteria'. Among them, a few also exploit the host actin cytoskeleton to move intra- and inter-cellularly. Our knowledge of the basic mechanisms underlying actin-based motility has dramatically increased and the list of bacteria that are able to move in this way is also increasing including not only Listeria, Shigella and Rickettsia species but also Mycobacterium marinum and Burkholderia pseudomallei. In all cases the central player is the Arp2/3 complex. Vaccinia virus moves intracellularly on microtubules and just after budding, triggers actin polymerization and the formation of protrusions similar to that of adherent enteropathogenic Escherichia coli, that involve the Arp2/3 complex and facilitate its inter-cellular spread.
Collapse
Affiliation(s)
- Edith Gouin
- Unité des Interactions Bactéries-cellules, Institut Pasteur, 28 Rue du Docteur Roux, Paris 75015, France
| | | | | |
Collapse
|
56
|
Lambrechts A, Van Troys M, Ampe C. The actin cytoskeleton in normal and pathological cell motility. Int J Biochem Cell Biol 2005; 36:1890-909. [PMID: 15203104 DOI: 10.1016/j.biocel.2004.01.024] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2004] [Indexed: 11/20/2022]
Abstract
Cell motility is crucial for tissue formation and for development of organisms. Later on cell migration remains essential throughout the lifetime of the organism for wound healing and immune responses. The actin cytoskeleton is the cellular engine that drives cell motility downstream of a complex signal transduction cascade. The basic molecular machinery underlying the assembly and disassembly of actin filaments consists of a variety of actin binding proteins that regulate the dynamic behavior of the cytoskeleton in response to different signals. The multitude of proteins and regulatory mechanisms partaking in this system makes it vulnerable to mutations and alterations in expression levels that ultimately may cause diseases. The most familiar one is cancer that in later stages is characterized by active aberrant cell migration. Indeed tumor invasion and metastasis are increasingly being associated with deregulation of the actin system.
Collapse
Affiliation(s)
- Anja Lambrechts
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, A. Baertsoenkaai 3, B-9000 Gent, Belgium.
| | | | | |
Collapse
|
57
|
Rottner K, Lommel S, Wehland J, Stradal TEB. Pathogen-induced actin filament rearrangement in infectious diseases. J Pathol 2004; 204:396-406. [PMID: 15495265 DOI: 10.1002/path.1638] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Host defence mechanisms involve the establishment and maintenance of numerous barriers to infectious microbes, including skin and mucosal surfaces, connective tissues, and a sophisticated immune system to detect and destroy invaders. Defeating these defence mechanisms and breaching the cell membrane barrier is the ultimate challenge for most pathogens. By invading the host and, moreover, by penetrating into individual host cells, pathogens gain access to a protective niche, not only to avoid immune clearance, but also to replicate and to disseminate from cell to cell within the infected host. Many pathogens are accomplishing these challenges by exploiting the actin cytoskeleton in a highly sophisticated manner as a result of having evolved common as well as unique strategies.
Collapse
Affiliation(s)
- Klemens Rottner
- Cytoskeleton Dynamics Group, German Research Centre for Biotechnology (GBF), Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | | | |
Collapse
|
58
|
Valbuena G, Walker DH. Expression of CX3CL1 (fractalkine) in mice with endothelial-target rickettsial infection of the spotted-fever group. Virchows Arch 2004; 446:21-7. [PMID: 15480764 DOI: 10.1007/s00428-004-1120-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Accepted: 08/19/2004] [Indexed: 12/16/2022]
Abstract
Fractalkine (CX3CL1) is a chemokine expressed mainly by endothelial cells, which are the major cellular targets of rickettsiae. We used immunohistochemistry to investigate the normal expression of CX3CL1 in mice and the kinetics of expression of this chemokine throughout the course of lethal and sublethal rickettsial infections in a mouse model of spotted-fever group rickettsioses. The peak of expression of fractalkine on day 3 of infection coincided with the time of infiltration of macrophages into infected tissues and preceded the peak of rickettsial content in tissues.
Collapse
Affiliation(s)
- Gustavo Valbuena
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555-0609, USA
| | | |
Collapse
|
59
|
McLeod MP, Qin X, Karpathy SE, Gioia J, Highlander SK, Fox GE, McNeill TZ, Jiang H, Muzny D, Jacob LS, Hawes AC, Sodergren E, Gill R, Hume J, Morgan M, Fan G, Amin AG, Gibbs RA, Hong C, Yu XJ, Walker DH, Weinstock GM. Complete genome sequence of Rickettsia typhi and comparison with sequences of other rickettsiae. J Bacteriol 2004; 186:5842-55. [PMID: 15317790 PMCID: PMC516817 DOI: 10.1128/jb.186.17.5842-5855.2004] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Accepted: 05/17/2004] [Indexed: 11/20/2022] Open
Abstract
Rickettsia typhi, the causative agent of murine typhus, is an obligate intracellular bacterium with a life cycle involving both vertebrate and invertebrate hosts. Here we present the complete genome sequence of R. typhi (1,111,496 bp) and compare it to the two published rickettsial genome sequences: R. prowazekii and R. conorii. We identified 877 genes in R. typhi encoding 3 rRNAs, 33 tRNAs, 3 noncoding RNAs, and 838 proteins, 3 of which are frameshifts. In addition, we discovered more than 40 pseudogenes, including the entire cytochrome c oxidase system. The three rickettsial genomes share 775 genes: 23 are found only in R. prowazekii and R. typhi, 15 are found only in R. conorii and R. typhi, and 24 are unique to R. typhi. Although most of the genes are colinear, there is a 35-kb inversion in gene order, which is close to the replication terminus, in R. typhi, compared to R. prowazekii and R. conorii. In addition, we found a 124-kb R. typhi-specific inversion, starting 19 kb from the origin of replication, compared to R. prowazekii and R. conorii. Inversions in this region are also seen in the unpublished genome sequences of R. sibirica and R. rickettsii, indicating that this region is a hot spot for rearrangements. Genome comparisons also revealed a 12-kb insertion in the R. prowazekii genome, relative to R. typhi and R. conorii, which appears to have occurred after the typhus (R. prowazekii and R. typhi) and spotted fever (R. conorii) groups diverged. The three-way comparison allowed further in silico analysis of the SpoT split genes, leading us to propose that the stringent response system is still functional in these rickettsiae.
Collapse
MESH Headings
- Chromosome Inversion
- DNA, Bacterial/chemistry
- DNA, Bacterial/isolation & purification
- Electron Transport Complex IV/genetics
- Frameshifting, Ribosomal
- Gene Expression Regulation, Bacterial
- Gene Rearrangement
- Genes, Bacterial
- Genes, rRNA
- Genome, Bacterial
- Genomics
- Molecular Sequence Data
- Pseudogenes
- RNA, Transfer/genetics
- RNA, Untranslated/genetics
- Rickettsia/genetics
- Rickettsia conorii/genetics
- Rickettsia typhi/genetics
- Sequence Analysis, DNA
- Sequence Homology
- Synteny
Collapse
Affiliation(s)
- Michael P McLeod
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Alkek N1519, Houston, TX 77030-7783, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Jeng RL, Goley ED, D'Alessio JA, Chaga OY, Svitkina TM, Borisy GG, Heinzen RA, Welch MD. A Rickettsia WASP-like protein activates the Arp2/3 complex and mediates actin-based motility. Cell Microbiol 2004; 6:761-9. [PMID: 15236643 DOI: 10.1111/j.1462-5822.2004.00402.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spotted fever group Rickettsia are obligate intracellular pathogens that exploit the host cell actin cytoskeleton to promote motility and cell-to-cell spread. Although other pathogens such as Listeria monocytogenes use an Arp2/3 complex-dependent nucleation mechanism to generate comet tails consisting of Y-branched filament arrays, Rickettsia polymerize tails consisting of unbranched filaments by a previously unknown mechanism. We identified genes in several Rickettsia species encoding proteins (termed RickA) with similarity to the WASP family of Arp2/3-complex activators. Rickettsia rickettsii RickA activated both the nucleation and Y-branching activities of the Arp2/3 complex like other WASP-family proteins, and was sufficient to direct the motility of microscopic beads in cell extracts. Actin tails generated by RickA-coated beads consisted of Y-branched filament networks. These data suggest that Rickettsia use an Arp2/3 complex-dependent actin-nucleation mechanism similar to that of other pathogens. We propose that additional Rickettsia or host factors reorganize the Y-branched networks into parallel arrays in a manner similar to a recently proposed model of filopodia formation.
Collapse
Affiliation(s)
- Robert L Jeng
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Drevets DA, Leenen PJM, Greenfield RA. Invasion of the central nervous system by intracellular bacteria. Clin Microbiol Rev 2004; 17:323-47. [PMID: 15084504 PMCID: PMC387409 DOI: 10.1128/cmr.17.2.323-347.2004] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Infection of the central nervous system (CNS) is a severe and frequently fatal event during the course of many diseases caused by microbes with predominantly intracellular life cycles. Examples of these include the facultative intracellular bacteria Listeria monocytogenes, Mycobacterium tuberculosis, and Brucella and Salmonella spp. and obligate intracellular microbes of the Rickettsiaceae family and Tropheryma whipplei. Unfortunately, the mechanisms used by intracellular bacterial pathogens to enter the CNS are less well known than those used by bacterial pathogens with an extracellular life cycle. The goal of this review is to elaborate on the means by which intracellular bacterial pathogens establish infection within the CNS. This review encompasses the clinical and pathological findings that pertain to the CNS infection in humans and includes experimental data from animal models that illuminate how these microbes enter the CNS. Recent experimental data showing that L. monocytogenes can invade the CNS by more than one mechanism make it a useful model for discussing the various routes for neuroinvasion used by intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Douglas A Drevets
- Department of Medicine, Oklahoma University Health Sciences Center, Oklahoma City, Oklahoma 73104, USA.
| | | | | |
Collapse
|
62
|
Krause M, Dent EW, Bear JE, Loureiro JJ, Gertler FB. Ena/VASP proteins: regulators of the actin cytoskeleton and cell migration. Annu Rev Cell Dev Biol 2004; 19:541-64. [PMID: 14570581 DOI: 10.1146/annurev.cellbio.19.050103.103356] [Citation(s) in RCA: 521] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ena/VASP proteins are a conserved family of actin regulatory proteins made up of EVH1, EVH2 domains, and a proline-rich central region. They have been implicated in actin-based processes such as fibroblast migration, axon guidance, and T cell polarization and are important for the actin-based motility of the intracellular pathogen Listeria monocytogenes. Mechanistically, these proteins associate with barbed ends of actin filaments and antagonize filament capping by capping protein (CapZ). In addition, they reduce the density of Arp2/3-dependent actin filament branches and bind Profilin at sites of actin polymerization. Vertebrate Ena/VASP proteins are substrates for PKA/PKG serine/threonine kinases. Phosphorylation by these kinases appears to modulate Ena/VASP function within cells, although the mechanism underlying this regulation remains to be determined.
Collapse
Affiliation(s)
- Matthias Krause
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
63
|
Carryn S, Chanteux H, Seral C, Mingeot-Leclercq MP, Van Bambeke F, Tulkens PM. Intracellular pharmacodynamics of antibiotics. Infect Dis Clin North Am 2004; 17:615-34. [PMID: 14711080 DOI: 10.1016/s0891-5520(03)00066-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article establishes the pharmacokinetic-pharmacodynamic parameters that are important when considering the intracellular activity of antibiotics. Generally speaking, the main classes of antibiotics seem to share globally the same properties against extracellular and intracellular organisms. The specific cellular pharmacokinetic properties may modulate those parameters so as to let other ones to become critical. Simple rules, such as equating accumulation and activity, are certainly incorrect, and other determinants need to be added to the equation. Finally, this article emphasizes the fact that much remains to be done in this area before rational therapeutic choices can be made.
Collapse
Affiliation(s)
- Stéphane Carryn
- Unité de Pharmacologie Cellulaire et Moléculaire, Université Catholique de Louvain, UCL 73.70 Avenue E. Mourier 73, Brussels B-1200, Belgium
| | | | | | | | | | | |
Collapse
|
64
|
Gouin E, Egile C, Dehoux P, Villiers V, Adams J, Gertler F, Li R, Cossart P. The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature 2004; 427:457-61. [PMID: 14749835 DOI: 10.1038/nature02318] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Accepted: 12/23/2003] [Indexed: 11/08/2022]
Abstract
Actin polymerization, the main driving force for cell locomotion, is also used by the bacteria Listeria and Shigella and vaccinia virus for intracellular and intercellular movements. Seminal studies have shown the key function of the Arp2/3 complex in nucleating actin and generating a branched array of actin filaments during membrane extension and pathogen movement. Arp2/3 requires activation by proteins such as the WASP-family proteins or ActA of Listeria. We previously reported that actin tails of Rickettsia conorii, another intracellular bacterium, unlike those of Listeria, Shigella or vaccinia, are made of long unbranched actin filaments apparently devoid of Arp2/3 (ref. 4). Here we identify a R. conorii surface protein, RickA, that activates Arp2/3 in vitro, although less efficiently than ActA. In infected cells, Arp2/3 is detected on the rickettsial surface but not in actin tails. When expressed in mammalian cells and targeted to the membrane, RickA induces filopodia. Thus RickA-induced actin polymerization, by generating long actin filaments reminiscent of those present in filopodia, has potential as a tool for studying filopodia formation.
Collapse
Affiliation(s)
- Edith Gouin
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, 28 Rue du Docteur Roux, Paris 75015, France
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Stamm LM, Morisaki JH, Gao LY, Jeng RL, McDonald KL, Roth R, Takeshita S, Heuser J, Welch MD, Brown EJ. Mycobacterium marinum escapes from phagosomes and is propelled by actin-based motility. ACTA ACUST UNITED AC 2003; 198:1361-8. [PMID: 14597736 PMCID: PMC2194249 DOI: 10.1084/jem.20031072] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Mycobacteria are responsible for a number of human and animal diseases and are classical intracellular pathogens, living inside macrophages rather than as free-living organisms during infection. Numerous intracellular pathogens, including Listeria monocytogenes, Shigella flexneri, and Rickettsia rickettsii, exploit the host cytoskeleton by using actin-based motility for cell to cell spread during infection. Here we show that Mycobacterium marinum, a natural pathogen of fish and frogs and an occasional pathogen of humans, is capable of actively inducing actin polymerization within macrophages. M. marinum that polymerized actin were free in the cytoplasm and propelled by actin-based motility into adjacent cells. Immunofluorescence demonstrated the presence of host cytoskeletal proteins, including the Arp2/3 complex and vasodilator-stimulated phosphoprotein, throughout the actin tails. In contrast, Wiskott-Aldrich syndrome protein localized exclusively at the actin-polymerizing pole of M. marinum. These findings show that M. marinum can escape into the cytoplasm of infected macrophages, where it can recruit host cell cytoskeletal factors to induce actin polymerization leading to direct cell to cell spread.
Collapse
Affiliation(s)
- Luisa M Stamm
- Program in Host-Pathogen Interactions, University of California San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Macaluso KR, Mulenga A, Simser JA, Azad AF. Differential expression of genes in uninfected and rickettsia-infected Dermacentor variabilis ticks as assessed by differential-display PCR. Infect Immun 2003; 71:6165-70. [PMID: 14573632 PMCID: PMC219596 DOI: 10.1128/iai.71.11.6165-6170.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ticks serve as both the vector and the reservoir for members of the spotted fever group rickettsiae. The molecular interaction(s) that results from this close relationship is largely unknown. To identify genetic factors associated with the tick response to rickettsial infection, we utilized differential-display PCR. The majority of upregulation appeared in the infected tissue. We cloned and sequenced 54 differentially expressed transcripts and compared the sequences to those in the GenBank database. Nine of the 54 clones were assigned putative identities and included a clathrin-coated vesicle ATPase, peroxisomal farnesylated protein, Ena/vasodilator-stimulated phosphoprotein-like protein, alpha-catenin, tubulin alpha-chain, copper-transporting ATPase, salivary gland protein SGS-3 precursor, glycine-rich protein, and Dreg-2 protein. Confirmation of the rickettsial influence on the differential expression in the ovaries for a number of these clones was demonstrated by semiquantitative reverse transcription-PCR and Northern blot analyses, resulting in confirmation of six out of nine and three out of four assessed clones, respectively. Further characterization of the clones identified tissue-dependent expression in the midguts and salivary glands. The potential roles of these molecules in the maintenance and transmission of rickettsiae are discussed.
Collapse
Affiliation(s)
- Kevin R Macaluso
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Baltimore, Maryland 21201, USA.
| | | | | | | |
Collapse
|
67
|
Valbuena G, Bradford W, Walker DH. Expression analysis of the T-cell-targeting chemokines CXCL9 and CXCL10 in mice and humans with endothelial infections caused by rickettsiae of the spotted fever group. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1357-69. [PMID: 14507644 PMCID: PMC1868304 DOI: 10.1016/s0002-9440(10)63494-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rocky Mountain spotted fever and other related diseases are systemic infections caused by rickettsiae. These obligatory intracellular bacteria target the endothelium, offering an appealing model to study the interactions between endothelial cells and T lymphocytes. We investigated the mRNA expression of chemokines known to target CD8+ T cells and CD4(+) T-helper 1 cells in the lungs of C3H/HeN mice infected with Rickettsia conorii with the purpose of identifying evidence for a role of chemokines in the immune clearance of rickettsiae from the vasculature. The expression of the CXCR3 ligands CXCL9 and CXCL10 was significantly higher than the other chemokines investigated. We validated the relevance of these results in the animal model through the analysis of tissues from humans with Rocky Mountain spotted fever. We then characterized the kinetics and localization of expression of CXCL9 and CXCL10 in lungs, brain, and liver of mice infected with lethal or sublethal doses of R. conorii by a combination of quantitative real-time polymerase chain reaction and immunohistochemistry. Interestingly, the peak of expression of these chemokines occurred 4 days before CD8+ T cells infiltrated the infected tissues. Our results suggest that CXCL9 and CXCL10 may play a role early during the immune response against rickettsial infections.
Collapse
Affiliation(s)
- Gustavo Valbuena
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | |
Collapse
|
68
|
Abstract
Actin-based motility (ABM) is employed by spotted fever group (SFG) rickettsiae, such as Rickettsia rickettsii, to promote cell-to-cell spread. Time-lapse video microscopy revealed that ABM is not strictly confined to SFG rickettsiae as typhus group R. typhi moved at approximately the same rate as R. rickettsii (approximately 4 micro m/min), but in a highly erratic fashion. A number of common behaviors were observed between ABM of R. typhi and R. rickettsii, such as entrance into plasma membrane protrusions, formation of new actin tails only on the old surface of newly formed daughter cells, and quick (within 15 sec) reassembly of the actin tail to the opposite pole upon contact with cellular structures that impede forward movement. This last behavior suggests that the rickettsial protein(s) required for ABM is uniformly localized to both poles of the bacterium and possibly throughout the rickettsial surface. Functional roles in rickettsial ABM for neuronal Wiskott-Aldrich syndrome protein (N-WASP) and the actin-related protein (Arp)2/3 complex, critical regulators of ABM of other pathogens, have not been established. Domains of N-WASP that have characterized inhibitory effects on N-WASP or Arp2/3 complex function were expressed in HeLa cells infected with R. rickettsii. Shigella flexneri-infected cells were used as a control. When ectopically expressed, the VCA domain of N-WASP (VCA) acts as a dominant/negative with respect to Arp2/3 complex function and N-WASP missing VCA (DeltaVCA) acts as a dominant/negative form of N-WASP. Expression of VCA or DeltaVCA severely inhibited S. flexneri ABM (no Shigella motility observed in the majority of expressing cells) while only moderately inhibiting ABM of R. rickettsii (approximately 35% decrease in the rate of ABM). In addition, ectopically expressed full-length GFP-N-WASP was recruited by S. flexneri but not R. rickettsii, and Arp3 was detected by indirect immunofluorescence in S. flexneri actin tails but not within R. rickettsii actin tails. Collectively, these data suggest that rickettsial ABM is independent of N-WASP and Arp2/3 complex function.
Collapse
Affiliation(s)
- Robert A Heinzen
- Department of Molecular Biology, University of Wyoming, Laramie 82071-3944, USA.
| |
Collapse
|
69
|
Abstract
The specter of bioterrorism employing genetically engineered Rickettsia resistant to all antibiotics should reawaken the world's desire to elucidate the pathogenesis of typhus and spotted fever rickettsioses in a search for mechanisms vulnerable to interdiction. The pathogenetic sequence includes rickettsial entry into the dermis, hematogenous dissemination to vascular endothelial cells (most critically in brain and lungs), increased vascular permeability, edema, and immunity mediated by NK cells, IFN-gamma, TNF-alpha, RANTES, antibodies, and cytotoxic T lymphocytes. Silverman has demonstrated the role of reactive oxygen species (ROS) produced by R. rickettsii-infected endothelial cells in peroxidative damage to cell membranes in vitro, and Heinzen has described actin-based rickettsial intracellular mobility and intercellular spread. At this point the availability of sequences of rickettsial genomes and excellent animal models of rickettsioses have yielded insufficient progress towards the identification of rickettsial virulence factors and knowledge of the importance of injury mediated by ROS, phospholipase A(2), protease(s) or other mechanisms in vivo. Attention to the rickettsiosis-associated procoagulant state led to determination that hemostatic mechanisms largely prevent major hemorrhage without disseminated intravascular coagulation or thrombosis-mediated ischemia. Particularly lacking is knowledge of early events in vivo at the portal of entry in skin (or lung), of the effects of the inoculum medium (arthropod saliva or feces), mediators produced by infected endothelium under conditions of flow and of the contributions in vivo of immune effectors to pathology, of the role of apoptosis in rickettsial infection, and of the endothelial cell alterations that account for increased vascular permeability. The host cell receptor for the Rickettsia ligand and the mechanism of rickettsial escape from the phagosome need to be elucidated.
Collapse
Affiliation(s)
- David H Walker
- University of Texas Medical Branch, Galveston, Texas 77555-0609, USA.
| | | | | |
Collapse
|
70
|
Fehrenbacher K, Huckaba T, Yang HC, Boldogh I, Pon L. Actin comet tails, endosomes and endosymbionts. J Exp Biol 2003; 206:1977-84. [PMID: 12756279 DOI: 10.1242/jeb.00240] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Arp2/3 complex consists of seven highly conserved and tightly associated subunits, two of which are the actin-related proteins Arp2 and Arp3. One of the best-studied functions of the Arp2/3 complex is to stimulate actin nucleation and force production at the leading edge of motile cells. What is now clear is that Arp2/3-complex-mediated force production drives many intracellular movements, including movement of bacterial pathogens in infected host cells, internalization of extracellular materials via phagocytosis and endocytosis, and movement of mitochondria during cell division in budding yeast. Here, we describe recent advances in the mechanisms underlying Arp2/3 complex-driven intracellular movement.
Collapse
Affiliation(s)
- Kammy Fehrenbacher
- Department of Anatomy and Cell Biology, Columbia University, New York, NY, USA.
| | | | | | | | | |
Collapse
|
71
|
Harlander RS, Way M, Ren Q, Howe D, Grieshaber SS, Heinzen RA. Effects of ectopically expressed neuronal Wiskott-Aldrich syndrome protein domains on Rickettsia rickettsii actin-based motility. Infect Immun 2003; 71:1551-6. [PMID: 12595475 PMCID: PMC148882 DOI: 10.1128/iai.71.3.1551-1556.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neuronal Wiskott-Aldrich syndrome protein (N-WASP) and the actin-related protein 2/3 (Arp2/3) complex have emerged as critical host proteins that regulate pathogen actin-based motility. Actin tail formation and motility in Listeria monocytogenes require the Arp2/3 complex but bypasses N-WASP signaling. Motility of Shigella flexneri and vaccinia virus requires both N-WASP and the Arp2/3 complex. Functional roles for these cytoskeletal regulatory proteins in actin-based motility of Rickettsia rickettsii have not been established. In this study, functional domains of N-WASP tagged with green fluorescent protein that have characterized effects on Shigella and vaccinia virus actin-based motility were ectopically expressed in HeLa cells infected with R. rickettsii to assess their effects on rickettsial motility. S. flexneri-infected cells were used as a control. Expressed N-WASP domains did not localize to R. rickettsii or their actin tails. Expression of N-WASP missing the VCA domain (for "verprolin homology, cofilin homology, and acidic domains"), which acts as a dominant-negative form of N-WASP, completely inhibited actin-based motility of S. flexneri while only moderately inhibiting motility of R. rickettsii. Similarly, expression of the VCA domain, which acts as a dominant-negative with respect to Arp2/3 complex function, severely inhibited actin-based motility of S. flexneri (no motility observed in the majority of expressing cells) but only moderately inhibited R. rickettsii motility. These results, taken together with the differential effects on motility observed upon expression of other N-WASP domains, suggest that actin-based motility of R. rickettsii is independent of N-WASP and the Arp2/3 complex.
Collapse
Affiliation(s)
- Ronald S Harlander
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071-3944, USA
| | | | | | | | | | | |
Collapse
|
72
|
Simser JA, Palmer AT, Fingerle V, Wilske B, Kurtti TJ, Munderloh UG. Rickettsia monacensis sp. nov., a spotted fever group Rickettsia, from ticks (Ixodes ricinus) collected in a European city park. Appl Environ Microbiol 2002; 68:4559-66. [PMID: 12200314 PMCID: PMC124077 DOI: 10.1128/aem.68.9.4559-4566.2002] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe the isolation and characterization of Rickettsia monacensis sp. nov. (type strain, IrR/Munich(T)) from an Ixodes ricinus tick collected in a city park, the English Garden in Munich, Germany. Rickettsiae were propagated in vitro with Ixodes scapularis cell line ISE6. BLAST analysis of the 16S rRNA, the citrate synthase, and the partial 190-kDa rickettsial outer membrane protein A (rOmpA) gene sequences demonstrated that the isolate was a spotted fever group (SFG) rickettsia closely related to several yet-to-be-cultivated rickettsiae associated with I. ricinus. Phylogenetic analysis of partial rompA sequences demonstrated that the isolate was genotypically different from other validated species of SFG rickettsiae. R. monacensis also replicated in cell lines derived from the ticks I. ricinus (IRE11) and Dermacentor andersoni (DAE100) and in the mammalian cell lines L-929 and Vero, causing cell lysis. Transmission electron microscopy of infected ISE6 and Vero cells showed rickettsiae within the cytoplasm, pseudopodia, nuclei, and vacuoles. Hamsters inoculated with R. monacensis had immunoglobulin G antibody titers as high as 1:16,384, as determined by indirect immunofluorescence assay. Western blot analyses demonstrated that the hamster sera cross-reacted with peptides from other phylogenetically distinct rickettsiae, including rOmpA. R. monacensis induced actin tails in both tick and mammalian cells similar to those reported for R. rickettsii. R. monacensis joins a growing list of SFG rickettsiae that colonize ticks but whose infectivity and pathogenicity for vertebrates are unknown.
Collapse
Affiliation(s)
- Jason A Simser
- Department of Entomology, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | | | | | |
Collapse
|
73
|
Valbuena G, Feng HM, Walker DH. Mechanisms of immunity against rickettsiae. New perspectives and opportunities offered by unusual intracellular parasites. Microbes Infect 2002; 4:625-33. [PMID: 12048032 DOI: 10.1016/s1286-4579(02)01581-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Investigation of the biology, pathology and immunology of rickettsial diseases offers new insights useful not only for the field of rickettsiology, but more importantly for the understanding of general principles of host-intracellular parasite relationships and, in particular, the immune interaction between endothelial cells and immune cells in the context of infection.
Collapse
Affiliation(s)
- Gustavo Valbuena
- Department of Pathology and WHO Collaborating Center for Tropical Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston 77555-0609, USA
| | | | | |
Collapse
|
74
|
Radulovic S, Price PW, Beier MS, Gaywee J, Macaluso JA, Azad A. Rickettsia-macrophage interactions: host cell responses to Rickettsia akari and Rickettsia typhi. Infect Immun 2002; 70:2576-82. [PMID: 11953398 PMCID: PMC127898 DOI: 10.1128/iai.70.5.2576-2582.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The existence of intracellular rickettsiae requires entry, survival, and replication in the eukaryotic host cells and exit to initiate new infection. While endothelial cells are the preferred target cells for most pathogenic rickettsiae, infection of monocytes/macrophages may also contribute to the establishment of rickettsial infection and resulting pathogenesis. We initiated studies to characterize macrophage-Rickettsia akari and -Rickettsia typhi interactions and to determine how rickettsiae survive within phagocytic cells. Flow cytometry, microscopic analysis, and LDH release demonstrated that R. akari and R. typhi caused negligible cytotoxicity in mouse peritoneal macrophages as well as in macrophage-like cell line, P388D1. Host cells responded to rickettsial infection with increased secretion of proinflammatory cytokines such as interleukin-1beta (IL-1beta) and IL-6. Furthermore, macrophage infection with R. akari and R. typhi resulted in differential synthesis and expression of IL-beta and IL-6, which may correlate with the existence of biological differences among these two closely related bacteria. In contrast, levels of gamma interferon (IFN-gamma), IL-10, and IL-12 in supernatants of infected P388D1 cells and mouse peritoneal macrophages did not change significantly during the course of infection and remained below the enzyme-linked immunosorbent assay cytokine detection limits. In addition, differential expression of cytokines was observed between R. akari- and R. typhi-infected macrophages, which may correlate with the biological differences among these closely related bacteria.
Collapse
Affiliation(s)
- S Radulovic
- University of Maryland, School of Medicine, Department of Microbiology and Immunology, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | |
Collapse
|
75
|
Goldberg MB. Actin-based motility of intracellular microbial pathogens. Microbiol Mol Biol Rev 2001; 65:595-626, table of contents. [PMID: 11729265 PMCID: PMC99042 DOI: 10.1128/mmbr.65.4.595-626.2001] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A diverse group of intracellular microorganisms, including Listeria monocytogenes, Shigella spp., Rickettsia spp., and vaccinia virus, utilize actin-based motility to move within and spread between mammalian host cells. These organisms have in common a pathogenic life cycle that involves a stage within the cytoplasm of mammalian host cells. Within the cytoplasm of host cells, these organisms activate components of the cellular actin assembly machinery to induce the formation of actin tails on the microbial surface. The assembly of these actin tails provides force that propels the organisms through the cell cytoplasm to the cell periphery or into adjacent cells. Each of these organisms utilizes preexisting mammalian pathways of actin rearrangement to induce its own actin-based motility. Particularly remarkable is that while all of these microbes use the same or overlapping pathways, each intercepts the pathway at a different step. In addition, the microbial molecules involved are each distinctly different from the others. Taken together, these observations suggest that each of these microbes separately and convergently evolved a mechanism to utilize the cellular actin assembly machinery. The current understanding of the molecular mechanisms of microbial actin-based motility is the subject of this review.
Collapse
Affiliation(s)
- M B Goldberg
- Infectious Disease Division, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| |
Collapse
|
76
|
Affiliation(s)
- T Suzuki
- Division of Bacterial Infection, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
77
|
Abstract
A method for simulating the growth of branched actin networks against obstacles has been developed. The method is based on simple stochastic events, including addition or removal of monomers at filament ends, capping of filament ends, nucleation of branches from existing filaments, and detachment of branches; the network structure for several different models of the branching process has also been studied. The models differ with regard to their inclusion of effects such as preferred branch orientations, filament uncapping at the obstacle, and preferential branching at filament ends. The actin ultrastructure near the membrane in lamellipodia is reasonably well produced if preferential branching in the direction of the obstacle or barbed-end uncapping effects are included. Uncapping effects cause the structures to have a few very long filaments that are similar to those seen in pathogen-induced "actin tails." The dependence of the growth velocity, branch spacing, and network density on the rate parameters for the various processes is quite different among the branching models. An analytic theory of the growth velocity and branch spacing of the network is described. Experiments are suggested that could distinguish among some of the branching models.
Collapse
Affiliation(s)
- A E Carlsson
- Department of Physics, Washington University, St. Louis, Missouri 63130-4899, USA.
| |
Collapse
|